• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/livepatch_sched.h>
40 #include <linux/android_vendor.h>
41 #include <linux/android_kabi.h>
42 #include <asm/kmap_size.h>
43 
44 /* task_struct member predeclarations (sorted alphabetically): */
45 struct audit_context;
46 struct bio_list;
47 struct blk_plug;
48 struct bpf_local_storage;
49 struct bpf_run_ctx;
50 struct capture_control;
51 struct cfs_rq;
52 struct fs_struct;
53 struct futex_pi_state;
54 struct io_context;
55 struct io_uring_task;
56 struct mempolicy;
57 struct nameidata;
58 struct nsproxy;
59 struct perf_event_context;
60 struct pid_namespace;
61 struct pipe_inode_info;
62 struct rcu_node;
63 struct reclaim_state;
64 struct robust_list_head;
65 struct root_domain;
66 struct rq;
67 struct sched_attr;
68 struct sched_param;
69 struct seq_file;
70 struct sighand_struct;
71 struct signal_struct;
72 struct task_delay_info;
73 struct task_group;
74 struct user_event_mm;
75 
76 /*
77  * Task state bitmask. NOTE! These bits are also
78  * encoded in fs/proc/array.c: get_task_state().
79  *
80  * We have two separate sets of flags: task->__state
81  * is about runnability, while task->exit_state are
82  * about the task exiting. Confusing, but this way
83  * modifying one set can't modify the other one by
84  * mistake.
85  */
86 
87 /* Used in tsk->__state: */
88 #define TASK_RUNNING			0x00000000
89 #define TASK_INTERRUPTIBLE		0x00000001
90 #define TASK_UNINTERRUPTIBLE		0x00000002
91 #define __TASK_STOPPED			0x00000004
92 #define __TASK_TRACED			0x00000008
93 /* Used in tsk->exit_state: */
94 #define EXIT_DEAD			0x00000010
95 #define EXIT_ZOMBIE			0x00000020
96 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
97 /* Used in tsk->__state again: */
98 #define TASK_PARKED			0x00000040
99 #define TASK_DEAD			0x00000080
100 #define TASK_WAKEKILL			0x00000100
101 #define TASK_WAKING			0x00000200
102 #define TASK_NOLOAD			0x00000400
103 #define TASK_NEW			0x00000800
104 #define TASK_RTLOCK_WAIT		0x00001000
105 #define TASK_FREEZABLE			0x00002000
106 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
107 #define TASK_FROZEN			0x00008000
108 #define TASK_STATE_MAX			0x00010000
109 
110 #define TASK_ANY			(TASK_STATE_MAX-1)
111 
112 /*
113  * DO NOT ADD ANY NEW USERS !
114  */
115 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
116 
117 /* Convenience macros for the sake of set_current_state: */
118 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
119 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
120 #define TASK_TRACED			__TASK_TRACED
121 
122 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
123 
124 /* Convenience macros for the sake of wake_up(): */
125 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
126 
127 /* get_task_state(): */
128 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
129 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
130 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
131 					 TASK_PARKED)
132 
133 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
134 
135 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
136 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
137 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
138 
139 /*
140  * Special states are those that do not use the normal wait-loop pattern. See
141  * the comment with set_special_state().
142  */
143 #define is_special_task_state(state)				\
144 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
145 
146 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
147 # define debug_normal_state_change(state_value)				\
148 	do {								\
149 		WARN_ON_ONCE(is_special_task_state(state_value));	\
150 		current->task_state_change = _THIS_IP_;			\
151 	} while (0)
152 
153 # define debug_special_state_change(state_value)			\
154 	do {								\
155 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
156 		current->task_state_change = _THIS_IP_;			\
157 	} while (0)
158 
159 # define debug_rtlock_wait_set_state()					\
160 	do {								 \
161 		current->saved_state_change = current->task_state_change;\
162 		current->task_state_change = _THIS_IP_;			 \
163 	} while (0)
164 
165 # define debug_rtlock_wait_restore_state()				\
166 	do {								 \
167 		current->task_state_change = current->saved_state_change;\
168 	} while (0)
169 
170 #else
171 # define debug_normal_state_change(cond)	do { } while (0)
172 # define debug_special_state_change(cond)	do { } while (0)
173 # define debug_rtlock_wait_set_state()		do { } while (0)
174 # define debug_rtlock_wait_restore_state()	do { } while (0)
175 #endif
176 
177 /*
178  * set_current_state() includes a barrier so that the write of current->__state
179  * is correctly serialised wrt the caller's subsequent test of whether to
180  * actually sleep:
181  *
182  *   for (;;) {
183  *	set_current_state(TASK_UNINTERRUPTIBLE);
184  *	if (CONDITION)
185  *	   break;
186  *
187  *	schedule();
188  *   }
189  *   __set_current_state(TASK_RUNNING);
190  *
191  * If the caller does not need such serialisation (because, for instance, the
192  * CONDITION test and condition change and wakeup are under the same lock) then
193  * use __set_current_state().
194  *
195  * The above is typically ordered against the wakeup, which does:
196  *
197  *   CONDITION = 1;
198  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
199  *
200  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
201  * accessing p->__state.
202  *
203  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
204  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
205  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
206  *
207  * However, with slightly different timing the wakeup TASK_RUNNING store can
208  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
209  * a problem either because that will result in one extra go around the loop
210  * and our @cond test will save the day.
211  *
212  * Also see the comments of try_to_wake_up().
213  */
214 #define __set_current_state(state_value)				\
215 	do {								\
216 		debug_normal_state_change((state_value));		\
217 		WRITE_ONCE(current->__state, (state_value));		\
218 	} while (0)
219 
220 #define set_current_state(state_value)					\
221 	do {								\
222 		debug_normal_state_change((state_value));		\
223 		smp_store_mb(current->__state, (state_value));		\
224 	} while (0)
225 
226 /*
227  * set_special_state() should be used for those states when the blocking task
228  * can not use the regular condition based wait-loop. In that case we must
229  * serialize against wakeups such that any possible in-flight TASK_RUNNING
230  * stores will not collide with our state change.
231  */
232 #define set_special_state(state_value)					\
233 	do {								\
234 		unsigned long flags; /* may shadow */			\
235 									\
236 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
237 		debug_special_state_change((state_value));		\
238 		WRITE_ONCE(current->__state, (state_value));		\
239 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
240 	} while (0)
241 
242 /*
243  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
244  *
245  * RT's spin/rwlock substitutions are state preserving. The state of the
246  * task when blocking on the lock is saved in task_struct::saved_state and
247  * restored after the lock has been acquired.  These operations are
248  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
249  * lock related wakeups while the task is blocked on the lock are
250  * redirected to operate on task_struct::saved_state to ensure that these
251  * are not dropped. On restore task_struct::saved_state is set to
252  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
253  *
254  * The lock operation looks like this:
255  *
256  *	current_save_and_set_rtlock_wait_state();
257  *	for (;;) {
258  *		if (try_lock())
259  *			break;
260  *		raw_spin_unlock_irq(&lock->wait_lock);
261  *		schedule_rtlock();
262  *		raw_spin_lock_irq(&lock->wait_lock);
263  *		set_current_state(TASK_RTLOCK_WAIT);
264  *	}
265  *	current_restore_rtlock_saved_state();
266  */
267 #define current_save_and_set_rtlock_wait_state()			\
268 	do {								\
269 		lockdep_assert_irqs_disabled();				\
270 		raw_spin_lock(&current->pi_lock);			\
271 		current->saved_state = current->__state;		\
272 		debug_rtlock_wait_set_state();				\
273 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
274 		raw_spin_unlock(&current->pi_lock);			\
275 	} while (0);
276 
277 #define current_restore_rtlock_saved_state()				\
278 	do {								\
279 		lockdep_assert_irqs_disabled();				\
280 		raw_spin_lock(&current->pi_lock);			\
281 		debug_rtlock_wait_restore_state();			\
282 		WRITE_ONCE(current->__state, current->saved_state);	\
283 		current->saved_state = TASK_RUNNING;			\
284 		raw_spin_unlock(&current->pi_lock);			\
285 	} while (0);
286 
287 #define get_current_state()	READ_ONCE(current->__state)
288 
289 /*
290  * Define the task command name length as enum, then it can be visible to
291  * BPF programs.
292  */
293 enum {
294 	TASK_COMM_LEN = 16,
295 };
296 
297 extern void scheduler_tick(void);
298 
299 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
300 
301 extern long schedule_timeout(long timeout);
302 extern long schedule_timeout_interruptible(long timeout);
303 extern long schedule_timeout_killable(long timeout);
304 extern long schedule_timeout_uninterruptible(long timeout);
305 extern long schedule_timeout_idle(long timeout);
306 asmlinkage void schedule(void);
307 extern void schedule_preempt_disabled(void);
308 asmlinkage void preempt_schedule_irq(void);
309 #ifdef CONFIG_PREEMPT_RT
310  extern void schedule_rtlock(void);
311 #endif
312 
313 extern int __must_check io_schedule_prepare(void);
314 extern void io_schedule_finish(int token);
315 extern long io_schedule_timeout(long timeout);
316 extern void io_schedule(void);
317 extern struct task_struct *pick_migrate_task(struct rq *rq);
318 extern int select_fallback_rq(int cpu, struct task_struct *p);
319 
320 /**
321  * struct prev_cputime - snapshot of system and user cputime
322  * @utime: time spent in user mode
323  * @stime: time spent in system mode
324  * @lock: protects the above two fields
325  *
326  * Stores previous user/system time values such that we can guarantee
327  * monotonicity.
328  */
329 struct prev_cputime {
330 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
331 	u64				utime;
332 	u64				stime;
333 	raw_spinlock_t			lock;
334 #endif
335 };
336 
337 enum vtime_state {
338 	/* Task is sleeping or running in a CPU with VTIME inactive: */
339 	VTIME_INACTIVE = 0,
340 	/* Task is idle */
341 	VTIME_IDLE,
342 	/* Task runs in kernelspace in a CPU with VTIME active: */
343 	VTIME_SYS,
344 	/* Task runs in userspace in a CPU with VTIME active: */
345 	VTIME_USER,
346 	/* Task runs as guests in a CPU with VTIME active: */
347 	VTIME_GUEST,
348 };
349 
350 struct vtime {
351 	seqcount_t		seqcount;
352 	unsigned long long	starttime;
353 	enum vtime_state	state;
354 	unsigned int		cpu;
355 	u64			utime;
356 	u64			stime;
357 	u64			gtime;
358 };
359 
360 /*
361  * Utilization clamp constraints.
362  * @UCLAMP_MIN:	Minimum utilization
363  * @UCLAMP_MAX:	Maximum utilization
364  * @UCLAMP_CNT:	Utilization clamp constraints count
365  */
366 enum uclamp_id {
367 	UCLAMP_MIN = 0,
368 	UCLAMP_MAX,
369 	UCLAMP_CNT
370 };
371 
372 #ifdef CONFIG_SMP
373 extern struct root_domain def_root_domain;
374 extern struct mutex sched_domains_mutex;
375 #endif
376 
377 struct sched_info {
378 #ifdef CONFIG_SCHED_INFO
379 	/* Cumulative counters: */
380 
381 	/* # of times we have run on this CPU: */
382 	unsigned long			pcount;
383 
384 	/* Time spent waiting on a runqueue: */
385 	unsigned long long		run_delay;
386 
387 	/* Timestamps: */
388 
389 	/* When did we last run on a CPU? */
390 	unsigned long long		last_arrival;
391 
392 	/* When were we last queued to run? */
393 	unsigned long long		last_queued;
394 
395 #endif /* CONFIG_SCHED_INFO */
396 };
397 
398 /*
399  * Integer metrics need fixed point arithmetic, e.g., sched/fair
400  * has a few: load, load_avg, util_avg, freq, and capacity.
401  *
402  * We define a basic fixed point arithmetic range, and then formalize
403  * all these metrics based on that basic range.
404  */
405 # define SCHED_FIXEDPOINT_SHIFT		10
406 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
407 
408 /* Increase resolution of cpu_capacity calculations */
409 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
410 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
411 
412 struct load_weight {
413 	unsigned long			weight;
414 	u32				inv_weight;
415 };
416 
417 /*
418  * The load/runnable/util_avg accumulates an infinite geometric series
419  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
420  *
421  * [load_avg definition]
422  *
423  *   load_avg = runnable% * scale_load_down(load)
424  *
425  * [runnable_avg definition]
426  *
427  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
428  *
429  * [util_avg definition]
430  *
431  *   util_avg = running% * SCHED_CAPACITY_SCALE
432  *
433  * where runnable% is the time ratio that a sched_entity is runnable and
434  * running% the time ratio that a sched_entity is running.
435  *
436  * For cfs_rq, they are the aggregated values of all runnable and blocked
437  * sched_entities.
438  *
439  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
440  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
441  * for computing those signals (see update_rq_clock_pelt())
442  *
443  * N.B., the above ratios (runnable% and running%) themselves are in the
444  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
445  * to as large a range as necessary. This is for example reflected by
446  * util_avg's SCHED_CAPACITY_SCALE.
447  *
448  * [Overflow issue]
449  *
450  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
451  * with the highest load (=88761), always runnable on a single cfs_rq,
452  * and should not overflow as the number already hits PID_MAX_LIMIT.
453  *
454  * For all other cases (including 32-bit kernels), struct load_weight's
455  * weight will overflow first before we do, because:
456  *
457  *    Max(load_avg) <= Max(load.weight)
458  *
459  * Then it is the load_weight's responsibility to consider overflow
460  * issues.
461  */
462 struct sched_avg {
463 	u64				last_update_time;
464 	u64				load_sum;
465 	u64				runnable_sum;
466 	u32				util_sum;
467 	u32				period_contrib;
468 	unsigned long			load_avg;
469 	unsigned long			runnable_avg;
470 	unsigned long			util_avg;
471 	unsigned int			util_est;
472 	u32                             reserved;
473 } ____cacheline_aligned;
474 
475 /*
476  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
477  * updates. When a task is dequeued, its util_est should not be updated if its
478  * util_avg has not been updated in the meantime.
479  * This information is mapped into the MSB bit of util_est at dequeue time.
480  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
481  * it is safe to use MSB.
482  */
483 #define UTIL_EST_WEIGHT_SHIFT		2
484 #define UTIL_AVG_UNCHANGED		0x80000000
485 
486 struct sched_statistics {
487 #ifdef CONFIG_SCHEDSTATS
488 	u64				wait_start;
489 	u64				wait_max;
490 	u64				wait_count;
491 	u64				wait_sum;
492 	u64				iowait_count;
493 	u64				iowait_sum;
494 
495 	u64				sleep_start;
496 	u64				sleep_max;
497 	s64				sum_sleep_runtime;
498 
499 	u64				block_start;
500 	u64				block_max;
501 	s64				sum_block_runtime;
502 
503 	u64				exec_max;
504 	u64				slice_max;
505 
506 	u64				nr_migrations_cold;
507 	u64				nr_failed_migrations_affine;
508 	u64				nr_failed_migrations_running;
509 	u64				nr_failed_migrations_hot;
510 	u64				nr_forced_migrations;
511 
512 	u64				nr_wakeups;
513 	u64				nr_wakeups_sync;
514 	u64				nr_wakeups_migrate;
515 	u64				nr_wakeups_local;
516 	u64				nr_wakeups_remote;
517 	u64				nr_wakeups_affine;
518 	u64				nr_wakeups_affine_attempts;
519 	u64				nr_wakeups_passive;
520 	u64				nr_wakeups_idle;
521 
522 #ifdef CONFIG_SCHED_CORE
523 	u64				core_forceidle_sum;
524 #endif
525 #endif /* CONFIG_SCHEDSTATS */
526 } ____cacheline_aligned;
527 
528 struct sched_entity {
529 	/* For load-balancing: */
530 	struct load_weight		load;
531 	struct rb_node			run_node;
532 	u64				deadline;
533 	u64				min_vruntime;
534 
535 	struct list_head		group_node;
536 	unsigned int			on_rq;
537 
538 	u64				exec_start;
539 	u64				sum_exec_runtime;
540 	u64				prev_sum_exec_runtime;
541 	u64				vruntime;
542 	s64				vlag;
543 	u64				slice;
544 
545 	u64				nr_migrations;
546 
547 #ifdef CONFIG_FAIR_GROUP_SCHED
548 	int				depth;
549 	struct sched_entity		*parent;
550 	/* rq on which this entity is (to be) queued: */
551 	struct cfs_rq			*cfs_rq;
552 	/* rq "owned" by this entity/group: */
553 	struct cfs_rq			*my_q;
554 	/* cached value of my_q->h_nr_running */
555 	unsigned long			runnable_weight;
556 #endif
557 
558 #ifdef CONFIG_SMP
559 	/*
560 	 * Per entity load average tracking.
561 	 *
562 	 * Put into separate cache line so it does not
563 	 * collide with read-mostly values above.
564 	 */
565 	struct sched_avg		avg;
566 #endif
567 
568 	ANDROID_KABI_RESERVE(1);
569 	ANDROID_KABI_RESERVE(2);
570 	ANDROID_KABI_RESERVE(3);
571 	ANDROID_KABI_RESERVE(4);
572 };
573 
574 struct sched_rt_entity {
575 	struct list_head		run_list;
576 	unsigned long			timeout;
577 	unsigned long			watchdog_stamp;
578 	unsigned int			time_slice;
579 	unsigned short			on_rq;
580 	unsigned short			on_list;
581 
582 	struct sched_rt_entity		*back;
583 #ifdef CONFIG_RT_GROUP_SCHED
584 	struct sched_rt_entity		*parent;
585 	/* rq on which this entity is (to be) queued: */
586 	struct rt_rq			*rt_rq;
587 	/* rq "owned" by this entity/group: */
588 	struct rt_rq			*my_q;
589 #endif
590 
591 	ANDROID_KABI_RESERVE(1);
592 	ANDROID_KABI_RESERVE(2);
593 	ANDROID_KABI_RESERVE(3);
594 	ANDROID_KABI_RESERVE(4);
595 } __randomize_layout;
596 
597 struct sched_dl_entity {
598 	struct rb_node			rb_node;
599 
600 	/*
601 	 * Original scheduling parameters. Copied here from sched_attr
602 	 * during sched_setattr(), they will remain the same until
603 	 * the next sched_setattr().
604 	 */
605 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
606 	u64				dl_deadline;	/* Relative deadline of each instance	*/
607 	u64				dl_period;	/* Separation of two instances (period) */
608 	u64				dl_bw;		/* dl_runtime / dl_period		*/
609 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
610 
611 	/*
612 	 * Actual scheduling parameters. Initialized with the values above,
613 	 * they are continuously updated during task execution. Note that
614 	 * the remaining runtime could be < 0 in case we are in overrun.
615 	 */
616 	s64				runtime;	/* Remaining runtime for this instance	*/
617 	u64				deadline;	/* Absolute deadline for this instance	*/
618 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
619 
620 	/*
621 	 * Some bool flags:
622 	 *
623 	 * @dl_throttled tells if we exhausted the runtime. If so, the
624 	 * task has to wait for a replenishment to be performed at the
625 	 * next firing of dl_timer.
626 	 *
627 	 * @dl_yielded tells if task gave up the CPU before consuming
628 	 * all its available runtime during the last job.
629 	 *
630 	 * @dl_non_contending tells if the task is inactive while still
631 	 * contributing to the active utilization. In other words, it
632 	 * indicates if the inactive timer has been armed and its handler
633 	 * has not been executed yet. This flag is useful to avoid race
634 	 * conditions between the inactive timer handler and the wakeup
635 	 * code.
636 	 *
637 	 * @dl_overrun tells if the task asked to be informed about runtime
638 	 * overruns.
639 	 */
640 	unsigned int			dl_throttled      : 1;
641 	unsigned int			dl_yielded        : 1;
642 	unsigned int			dl_non_contending : 1;
643 	unsigned int			dl_overrun	  : 1;
644 
645 	/*
646 	 * Bandwidth enforcement timer. Each -deadline task has its
647 	 * own bandwidth to be enforced, thus we need one timer per task.
648 	 */
649 	struct hrtimer			dl_timer;
650 
651 	/*
652 	 * Inactive timer, responsible for decreasing the active utilization
653 	 * at the "0-lag time". When a -deadline task blocks, it contributes
654 	 * to GRUB's active utilization until the "0-lag time", hence a
655 	 * timer is needed to decrease the active utilization at the correct
656 	 * time.
657 	 */
658 	struct hrtimer inactive_timer;
659 
660 #ifdef CONFIG_RT_MUTEXES
661 	/*
662 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
663 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
664 	 * to (the original one/itself).
665 	 */
666 	struct sched_dl_entity *pi_se;
667 #endif
668 };
669 
670 #ifdef CONFIG_UCLAMP_TASK
671 /* Number of utilization clamp buckets (shorter alias) */
672 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
673 
674 /*
675  * Utilization clamp for a scheduling entity
676  * @value:		clamp value "assigned" to a se
677  * @bucket_id:		bucket index corresponding to the "assigned" value
678  * @active:		the se is currently refcounted in a rq's bucket
679  * @user_defined:	the requested clamp value comes from user-space
680  *
681  * The bucket_id is the index of the clamp bucket matching the clamp value
682  * which is pre-computed and stored to avoid expensive integer divisions from
683  * the fast path.
684  *
685  * The active bit is set whenever a task has got an "effective" value assigned,
686  * which can be different from the clamp value "requested" from user-space.
687  * This allows to know a task is refcounted in the rq's bucket corresponding
688  * to the "effective" bucket_id.
689  *
690  * The user_defined bit is set whenever a task has got a task-specific clamp
691  * value requested from userspace, i.e. the system defaults apply to this task
692  * just as a restriction. This allows to relax default clamps when a less
693  * restrictive task-specific value has been requested, thus allowing to
694  * implement a "nice" semantic. For example, a task running with a 20%
695  * default boost can still drop its own boosting to 0%.
696  */
697 struct uclamp_se {
698 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
699 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
700 	unsigned int active		: 1;
701 	unsigned int user_defined	: 1;
702 };
703 #endif /* CONFIG_UCLAMP_TASK */
704 
705 union rcu_special {
706 	struct {
707 		u8			blocked;
708 		u8			need_qs;
709 		u8			exp_hint; /* Hint for performance. */
710 		u8			need_mb; /* Readers need smp_mb(). */
711 	} b; /* Bits. */
712 	u32 s; /* Set of bits. */
713 };
714 
715 enum perf_event_task_context {
716 	perf_invalid_context = -1,
717 	perf_hw_context = 0,
718 	perf_sw_context,
719 	perf_nr_task_contexts,
720 };
721 
722 struct wake_q_node {
723 	struct wake_q_node *next;
724 };
725 
726 struct kmap_ctrl {
727 #ifdef CONFIG_KMAP_LOCAL
728 	int				idx;
729 	pte_t				pteval[KM_MAX_IDX];
730 #endif
731 };
732 
733 struct task_struct {
734 #ifdef CONFIG_THREAD_INFO_IN_TASK
735 	/*
736 	 * For reasons of header soup (see current_thread_info()), this
737 	 * must be the first element of task_struct.
738 	 */
739 	struct thread_info		thread_info;
740 #endif
741 	unsigned int			__state;
742 
743 	/* saved state for "spinlock sleepers" */
744 	unsigned int			saved_state;
745 
746 	/*
747 	 * This begins the randomizable portion of task_struct. Only
748 	 * scheduling-critical items should be added above here.
749 	 */
750 	randomized_struct_fields_start
751 
752 	void				*stack;
753 	refcount_t			usage;
754 	/* Per task flags (PF_*), defined further below: */
755 	unsigned int			flags;
756 	unsigned int			ptrace;
757 
758 #ifdef CONFIG_SMP
759 	int				on_cpu;
760 	struct __call_single_node	wake_entry;
761 	unsigned int			wakee_flips;
762 	unsigned long			wakee_flip_decay_ts;
763 	struct task_struct		*last_wakee;
764 
765 	/*
766 	 * recent_used_cpu is initially set as the last CPU used by a task
767 	 * that wakes affine another task. Waker/wakee relationships can
768 	 * push tasks around a CPU where each wakeup moves to the next one.
769 	 * Tracking a recently used CPU allows a quick search for a recently
770 	 * used CPU that may be idle.
771 	 */
772 	int				recent_used_cpu;
773 	int				wake_cpu;
774 #endif
775 	int				on_rq;
776 
777 	int				prio;
778 	int				static_prio;
779 	int				normal_prio;
780 	unsigned int			rt_priority;
781 
782 	struct sched_entity		se;
783 	struct sched_rt_entity		rt;
784 	struct sched_dl_entity		dl;
785 	const struct sched_class	*sched_class;
786 
787 #ifdef CONFIG_SCHED_CORE
788 	struct rb_node			core_node;
789 	unsigned long			core_cookie;
790 	unsigned int			core_occupation;
791 #endif
792 
793 #ifdef CONFIG_CGROUP_SCHED
794 	struct task_group		*sched_task_group;
795 #endif
796 
797 #ifdef CONFIG_UCLAMP_TASK
798 	/*
799 	 * Clamp values requested for a scheduling entity.
800 	 * Must be updated with task_rq_lock() held.
801 	 */
802 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
803 	/*
804 	 * Effective clamp values used for a scheduling entity.
805 	 * Must be updated with task_rq_lock() held.
806 	 */
807 	struct uclamp_se		uclamp[UCLAMP_CNT];
808 #endif
809 
810 	struct sched_statistics         stats;
811 
812 #ifdef CONFIG_PREEMPT_NOTIFIERS
813 	/* List of struct preempt_notifier: */
814 	struct hlist_head		preempt_notifiers;
815 #endif
816 
817 #ifdef CONFIG_BLK_DEV_IO_TRACE
818 	unsigned int			btrace_seq;
819 #endif
820 
821 	unsigned int			policy;
822 	int				nr_cpus_allowed;
823 	const cpumask_t			*cpus_ptr;
824 	cpumask_t			*user_cpus_ptr;
825 	cpumask_t			cpus_mask;
826 	void				*migration_pending;
827 #ifdef CONFIG_SMP
828 	unsigned short			migration_disabled;
829 #endif
830 	unsigned short			migration_flags;
831 
832 #ifdef CONFIG_PREEMPT_RCU
833 	int				rcu_read_lock_nesting;
834 	union rcu_special		rcu_read_unlock_special;
835 	struct list_head		rcu_node_entry;
836 	struct rcu_node			*rcu_blocked_node;
837 #endif /* #ifdef CONFIG_PREEMPT_RCU */
838 
839 #ifdef CONFIG_TASKS_RCU
840 	unsigned long			rcu_tasks_nvcsw;
841 	u8				rcu_tasks_holdout;
842 	u8				rcu_tasks_idx;
843 	int				rcu_tasks_idle_cpu;
844 	struct list_head		rcu_tasks_holdout_list;
845 #endif /* #ifdef CONFIG_TASKS_RCU */
846 
847 #ifdef CONFIG_TASKS_TRACE_RCU
848 	int				trc_reader_nesting;
849 	int				trc_ipi_to_cpu;
850 	union rcu_special		trc_reader_special;
851 	struct list_head		trc_holdout_list;
852 	struct list_head		trc_blkd_node;
853 	int				trc_blkd_cpu;
854 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
855 
856 	struct sched_info		sched_info;
857 
858 	struct list_head		tasks;
859 #ifdef CONFIG_SMP
860 	struct plist_node		pushable_tasks;
861 	struct rb_node			pushable_dl_tasks;
862 #endif
863 
864 	struct mm_struct		*mm;
865 	struct mm_struct		*active_mm;
866 
867 	int				exit_state;
868 	int				exit_code;
869 	int				exit_signal;
870 	/* The signal sent when the parent dies: */
871 	int				pdeath_signal;
872 	/* JOBCTL_*, siglock protected: */
873 	unsigned long			jobctl;
874 
875 	/* Used for emulating ABI behavior of previous Linux versions: */
876 	unsigned int			personality;
877 
878 	/* Scheduler bits, serialized by scheduler locks: */
879 	unsigned			sched_reset_on_fork:1;
880 	unsigned			sched_contributes_to_load:1;
881 	unsigned			sched_migrated:1;
882 
883 	/* Force alignment to the next boundary: */
884 	unsigned			:0;
885 
886 	/* Unserialized, strictly 'current' */
887 
888 	/*
889 	 * This field must not be in the scheduler word above due to wakelist
890 	 * queueing no longer being serialized by p->on_cpu. However:
891 	 *
892 	 * p->XXX = X;			ttwu()
893 	 * schedule()			  if (p->on_rq && ..) // false
894 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
895 	 *   deactivate_task()		      ttwu_queue_wakelist())
896 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
897 	 *
898 	 * guarantees all stores of 'current' are visible before
899 	 * ->sched_remote_wakeup gets used, so it can be in this word.
900 	 */
901 	unsigned			sched_remote_wakeup:1;
902 
903 	/* Bit to tell LSMs we're in execve(): */
904 	unsigned			in_execve:1;
905 	unsigned			in_iowait:1;
906 #ifndef TIF_RESTORE_SIGMASK
907 	unsigned			restore_sigmask:1;
908 #endif
909 #ifdef CONFIG_MEMCG
910 	unsigned			in_user_fault:1;
911 #endif
912 #ifdef CONFIG_LRU_GEN
913 	/* whether the LRU algorithm may apply to this access */
914 	unsigned			in_lru_fault:1;
915 #endif
916 #ifdef CONFIG_COMPAT_BRK
917 	unsigned			brk_randomized:1;
918 #endif
919 #ifdef CONFIG_CGROUPS
920 	/* disallow userland-initiated cgroup migration */
921 	unsigned			no_cgroup_migration:1;
922 	/* task is frozen/stopped (used by the cgroup freezer) */
923 	unsigned			frozen:1;
924 #endif
925 #ifdef CONFIG_BLK_CGROUP
926 	unsigned			use_memdelay:1;
927 #endif
928 #ifdef CONFIG_PSI
929 	/* Stalled due to lack of memory */
930 	unsigned			in_memstall:1;
931 #endif
932 #ifdef CONFIG_PAGE_OWNER
933 	/* Used by page_owner=on to detect recursion in page tracking. */
934 	unsigned			in_page_owner:1;
935 #endif
936 #ifdef CONFIG_EVENTFD
937 	/* Recursion prevention for eventfd_signal() */
938 	unsigned			in_eventfd:1;
939 #endif
940 #ifdef CONFIG_IOMMU_SVA
941 	unsigned			pasid_activated:1;
942 #endif
943 #ifdef	CONFIG_CPU_SUP_INTEL
944 	unsigned			reported_split_lock:1;
945 #endif
946 #ifdef CONFIG_TASK_DELAY_ACCT
947 	/* delay due to memory thrashing */
948 	unsigned                        in_thrashing:1;
949 #endif
950 
951 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
952 
953 	struct restart_block		restart_block;
954 
955 	pid_t				pid;
956 	pid_t				tgid;
957 
958 #ifdef CONFIG_STACKPROTECTOR
959 	/* Canary value for the -fstack-protector GCC feature: */
960 	unsigned long			stack_canary;
961 #endif
962 	/*
963 	 * Pointers to the (original) parent process, youngest child, younger sibling,
964 	 * older sibling, respectively.  (p->father can be replaced with
965 	 * p->real_parent->pid)
966 	 */
967 
968 	/* Real parent process: */
969 	struct task_struct __rcu	*real_parent;
970 
971 	/* Recipient of SIGCHLD, wait4() reports: */
972 	struct task_struct __rcu	*parent;
973 
974 	/*
975 	 * Children/sibling form the list of natural children:
976 	 */
977 	struct list_head		children;
978 	struct list_head		sibling;
979 	struct task_struct		*group_leader;
980 
981 	/*
982 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
983 	 *
984 	 * This includes both natural children and PTRACE_ATTACH targets.
985 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
986 	 */
987 	struct list_head		ptraced;
988 	struct list_head		ptrace_entry;
989 
990 	/* PID/PID hash table linkage. */
991 	struct pid			*thread_pid;
992 	struct hlist_node		pid_links[PIDTYPE_MAX];
993 	struct list_head		thread_group;
994 	struct list_head		thread_node;
995 
996 	struct completion		*vfork_done;
997 
998 	/* CLONE_CHILD_SETTID: */
999 	int __user			*set_child_tid;
1000 
1001 	/* CLONE_CHILD_CLEARTID: */
1002 	int __user			*clear_child_tid;
1003 
1004 	/* PF_KTHREAD | PF_IO_WORKER */
1005 	void				*worker_private;
1006 
1007 	u64				utime;
1008 	u64				stime;
1009 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1010 	u64				utimescaled;
1011 	u64				stimescaled;
1012 #endif
1013 	u64				gtime;
1014 #ifdef CONFIG_CPU_FREQ_TIMES
1015 	u64				*time_in_state;
1016 	unsigned int			max_state;
1017 #endif
1018 	struct prev_cputime		prev_cputime;
1019 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1020 	struct vtime			vtime;
1021 #endif
1022 
1023 #ifdef CONFIG_NO_HZ_FULL
1024 	atomic_t			tick_dep_mask;
1025 #endif
1026 	/* Context switch counts: */
1027 	unsigned long			nvcsw;
1028 	unsigned long			nivcsw;
1029 
1030 	/* Monotonic time in nsecs: */
1031 	u64				start_time;
1032 
1033 	/* Boot based time in nsecs: */
1034 	u64				start_boottime;
1035 
1036 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1037 	unsigned long			min_flt;
1038 	unsigned long			maj_flt;
1039 
1040 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1041 	struct posix_cputimers		posix_cputimers;
1042 
1043 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1044 	struct posix_cputimers_work	posix_cputimers_work;
1045 #endif
1046 
1047 	/* Process credentials: */
1048 
1049 	/* Tracer's credentials at attach: */
1050 	const struct cred __rcu		*ptracer_cred;
1051 
1052 	/* Objective and real subjective task credentials (COW): */
1053 	const struct cred __rcu		*real_cred;
1054 
1055 	/* Effective (overridable) subjective task credentials (COW): */
1056 	const struct cred __rcu		*cred;
1057 
1058 #ifdef CONFIG_KEYS
1059 	/* Cached requested key. */
1060 	struct key			*cached_requested_key;
1061 #endif
1062 
1063 	/*
1064 	 * executable name, excluding path.
1065 	 *
1066 	 * - normally initialized setup_new_exec()
1067 	 * - access it with [gs]et_task_comm()
1068 	 * - lock it with task_lock()
1069 	 */
1070 	char				comm[TASK_COMM_LEN];
1071 
1072 	struct nameidata		*nameidata;
1073 
1074 #ifdef CONFIG_SYSVIPC
1075 	struct sysv_sem			sysvsem;
1076 	struct sysv_shm			sysvshm;
1077 #endif
1078 #ifdef CONFIG_DETECT_HUNG_TASK
1079 	unsigned long			last_switch_count;
1080 	unsigned long			last_switch_time;
1081 #endif
1082 	/* Filesystem information: */
1083 	struct fs_struct		*fs;
1084 
1085 	/* Open file information: */
1086 	struct files_struct		*files;
1087 
1088 #ifdef CONFIG_IO_URING
1089 	struct io_uring_task		*io_uring;
1090 #endif
1091 
1092 	/* Namespaces: */
1093 	struct nsproxy			*nsproxy;
1094 
1095 	/* Signal handlers: */
1096 	struct signal_struct		*signal;
1097 	struct sighand_struct __rcu		*sighand;
1098 	sigset_t			blocked;
1099 	sigset_t			real_blocked;
1100 	/* Restored if set_restore_sigmask() was used: */
1101 	sigset_t			saved_sigmask;
1102 	struct sigpending		pending;
1103 	unsigned long			sas_ss_sp;
1104 	size_t				sas_ss_size;
1105 	unsigned int			sas_ss_flags;
1106 
1107 	struct callback_head		*task_works;
1108 
1109 #ifdef CONFIG_AUDIT
1110 #ifdef CONFIG_AUDITSYSCALL
1111 	struct audit_context		*audit_context;
1112 #endif
1113 	kuid_t				loginuid;
1114 	unsigned int			sessionid;
1115 #endif
1116 	struct seccomp			seccomp;
1117 	struct syscall_user_dispatch	syscall_dispatch;
1118 
1119 	/* Thread group tracking: */
1120 	u64				parent_exec_id;
1121 	u64				self_exec_id;
1122 
1123 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1124 	spinlock_t			alloc_lock;
1125 
1126 	/* Protection of the PI data structures: */
1127 	raw_spinlock_t			pi_lock;
1128 
1129 	struct wake_q_node		wake_q;
1130 	int				wake_q_count;
1131 
1132 #ifdef CONFIG_RT_MUTEXES
1133 	/* PI waiters blocked on a rt_mutex held by this task: */
1134 	struct rb_root_cached		pi_waiters;
1135 	/* Updated under owner's pi_lock and rq lock */
1136 	struct task_struct		*pi_top_task;
1137 	/* Deadlock detection and priority inheritance handling: */
1138 	struct rt_mutex_waiter		*pi_blocked_on;
1139 #endif
1140 
1141 #ifdef CONFIG_DEBUG_MUTEXES
1142 	/* Mutex deadlock detection: */
1143 	struct mutex_waiter		*blocked_on;
1144 #endif
1145 
1146 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1147 	int				non_block_count;
1148 #endif
1149 
1150 #ifdef CONFIG_TRACE_IRQFLAGS
1151 	struct irqtrace_events		irqtrace;
1152 	unsigned int			hardirq_threaded;
1153 	u64				hardirq_chain_key;
1154 	int				softirqs_enabled;
1155 	int				softirq_context;
1156 	int				irq_config;
1157 #endif
1158 #ifdef CONFIG_PREEMPT_RT
1159 	int				softirq_disable_cnt;
1160 #endif
1161 
1162 #ifdef CONFIG_LOCKDEP
1163 # define MAX_LOCK_DEPTH			48UL
1164 	u64				curr_chain_key;
1165 	int				lockdep_depth;
1166 	unsigned int			lockdep_recursion;
1167 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1168 #endif
1169 
1170 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1171 	unsigned int			in_ubsan;
1172 #endif
1173 
1174 	/* Journalling filesystem info: */
1175 	void				*journal_info;
1176 
1177 	/* Stacked block device info: */
1178 	struct bio_list			*bio_list;
1179 
1180 	/* Stack plugging: */
1181 	struct blk_plug			*plug;
1182 
1183 	/* VM state: */
1184 	struct reclaim_state		*reclaim_state;
1185 
1186 	struct io_context		*io_context;
1187 
1188 #ifdef CONFIG_COMPACTION
1189 	struct capture_control		*capture_control;
1190 #endif
1191 	/* Ptrace state: */
1192 	unsigned long			ptrace_message;
1193 	kernel_siginfo_t		*last_siginfo;
1194 
1195 	struct task_io_accounting	ioac;
1196 #ifdef CONFIG_PSI
1197 	/* Pressure stall state */
1198 	unsigned int			psi_flags;
1199 #endif
1200 #ifdef CONFIG_TASK_XACCT
1201 	/* Accumulated RSS usage: */
1202 	u64				acct_rss_mem1;
1203 	/* Accumulated virtual memory usage: */
1204 	u64				acct_vm_mem1;
1205 	/* stime + utime since last update: */
1206 	u64				acct_timexpd;
1207 #endif
1208 #ifdef CONFIG_CPUSETS
1209 	/* Protected by ->alloc_lock: */
1210 	nodemask_t			mems_allowed;
1211 	/* Sequence number to catch updates: */
1212 	seqcount_spinlock_t		mems_allowed_seq;
1213 	int				cpuset_mem_spread_rotor;
1214 	int				cpuset_slab_spread_rotor;
1215 #endif
1216 #ifdef CONFIG_CGROUPS
1217 	/* Control Group info protected by css_set_lock: */
1218 	struct css_set __rcu		*cgroups;
1219 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1220 	struct list_head		cg_list;
1221 #endif
1222 #ifdef CONFIG_X86_CPU_RESCTRL
1223 	u32				closid;
1224 	u32				rmid;
1225 #endif
1226 #ifdef CONFIG_FUTEX
1227 	struct robust_list_head __user	*robust_list;
1228 #ifdef CONFIG_COMPAT
1229 	struct compat_robust_list_head __user *compat_robust_list;
1230 #endif
1231 	struct list_head		pi_state_list;
1232 	struct futex_pi_state		*pi_state_cache;
1233 	struct mutex			futex_exit_mutex;
1234 	unsigned int			futex_state;
1235 #endif
1236 #ifdef CONFIG_PERF_EVENTS
1237 	struct perf_event_context	*perf_event_ctxp;
1238 	struct mutex			perf_event_mutex;
1239 	struct list_head		perf_event_list;
1240 #endif
1241 #ifdef CONFIG_DEBUG_PREEMPT
1242 	unsigned long			preempt_disable_ip;
1243 #endif
1244 #ifdef CONFIG_NUMA
1245 	/* Protected by alloc_lock: */
1246 	struct mempolicy		*mempolicy;
1247 	short				il_prev;
1248 	short				pref_node_fork;
1249 #endif
1250 #ifdef CONFIG_NUMA_BALANCING
1251 	int				numa_scan_seq;
1252 	unsigned int			numa_scan_period;
1253 	unsigned int			numa_scan_period_max;
1254 	int				numa_preferred_nid;
1255 	unsigned long			numa_migrate_retry;
1256 	/* Migration stamp: */
1257 	u64				node_stamp;
1258 	u64				last_task_numa_placement;
1259 	u64				last_sum_exec_runtime;
1260 	struct callback_head		numa_work;
1261 
1262 	/*
1263 	 * This pointer is only modified for current in syscall and
1264 	 * pagefault context (and for tasks being destroyed), so it can be read
1265 	 * from any of the following contexts:
1266 	 *  - RCU read-side critical section
1267 	 *  - current->numa_group from everywhere
1268 	 *  - task's runqueue locked, task not running
1269 	 */
1270 	struct numa_group __rcu		*numa_group;
1271 
1272 	/*
1273 	 * numa_faults is an array split into four regions:
1274 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1275 	 * in this precise order.
1276 	 *
1277 	 * faults_memory: Exponential decaying average of faults on a per-node
1278 	 * basis. Scheduling placement decisions are made based on these
1279 	 * counts. The values remain static for the duration of a PTE scan.
1280 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1281 	 * hinting fault was incurred.
1282 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1283 	 * during the current scan window. When the scan completes, the counts
1284 	 * in faults_memory and faults_cpu decay and these values are copied.
1285 	 */
1286 	unsigned long			*numa_faults;
1287 	unsigned long			total_numa_faults;
1288 
1289 	/*
1290 	 * numa_faults_locality tracks if faults recorded during the last
1291 	 * scan window were remote/local or failed to migrate. The task scan
1292 	 * period is adapted based on the locality of the faults with different
1293 	 * weights depending on whether they were shared or private faults
1294 	 */
1295 	unsigned long			numa_faults_locality[3];
1296 
1297 	unsigned long			numa_pages_migrated;
1298 #endif /* CONFIG_NUMA_BALANCING */
1299 
1300 #ifdef CONFIG_RSEQ
1301 	struct rseq __user *rseq;
1302 	u32 rseq_len;
1303 	u32 rseq_sig;
1304 	/*
1305 	 * RmW on rseq_event_mask must be performed atomically
1306 	 * with respect to preemption.
1307 	 */
1308 	unsigned long rseq_event_mask;
1309 #endif
1310 
1311 #ifdef CONFIG_SCHED_MM_CID
1312 	int				mm_cid;		/* Current cid in mm */
1313 	int				last_mm_cid;	/* Most recent cid in mm */
1314 	int				migrate_from_cpu;
1315 	int				mm_cid_active;	/* Whether cid bitmap is active */
1316 	struct callback_head		cid_work;
1317 #endif
1318 
1319 	struct tlbflush_unmap_batch	tlb_ubc;
1320 
1321 	/* Cache last used pipe for splice(): */
1322 	struct pipe_inode_info		*splice_pipe;
1323 
1324 	struct page_frag		task_frag;
1325 
1326 #ifdef CONFIG_TASK_DELAY_ACCT
1327 	struct task_delay_info		*delays;
1328 #endif
1329 
1330 #ifdef CONFIG_FAULT_INJECTION
1331 	int				make_it_fail;
1332 	unsigned int			fail_nth;
1333 #endif
1334 	/*
1335 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1336 	 * balance_dirty_pages() for a dirty throttling pause:
1337 	 */
1338 	int				nr_dirtied;
1339 	int				nr_dirtied_pause;
1340 	/* Start of a write-and-pause period: */
1341 	unsigned long			dirty_paused_when;
1342 
1343 #ifdef CONFIG_LATENCYTOP
1344 	int				latency_record_count;
1345 	struct latency_record		latency_record[LT_SAVECOUNT];
1346 #endif
1347 	/*
1348 	 * Time slack values; these are used to round up poll() and
1349 	 * select() etc timeout values. These are in nanoseconds.
1350 	 */
1351 	u64				timer_slack_ns;
1352 	u64				default_timer_slack_ns;
1353 
1354 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1355 	unsigned int			kasan_depth;
1356 #endif
1357 
1358 #ifdef CONFIG_KCSAN
1359 	struct kcsan_ctx		kcsan_ctx;
1360 #ifdef CONFIG_TRACE_IRQFLAGS
1361 	struct irqtrace_events		kcsan_save_irqtrace;
1362 #endif
1363 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1364 	int				kcsan_stack_depth;
1365 #endif
1366 #endif
1367 
1368 #ifdef CONFIG_KMSAN
1369 	struct kmsan_ctx		kmsan_ctx;
1370 #endif
1371 
1372 #if IS_ENABLED(CONFIG_KUNIT)
1373 	struct kunit			*kunit_test;
1374 #endif
1375 
1376 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1377 	/* Index of current stored address in ret_stack: */
1378 	int				curr_ret_stack;
1379 	int				curr_ret_depth;
1380 
1381 	/* Stack of return addresses for return function tracing: */
1382 	struct ftrace_ret_stack		*ret_stack;
1383 
1384 	/* Timestamp for last schedule: */
1385 	unsigned long long		ftrace_timestamp;
1386 
1387 	/*
1388 	 * Number of functions that haven't been traced
1389 	 * because of depth overrun:
1390 	 */
1391 	atomic_t			trace_overrun;
1392 
1393 	/* Pause tracing: */
1394 	atomic_t			tracing_graph_pause;
1395 #endif
1396 
1397 #ifdef CONFIG_TRACING
1398 	/* Bitmask and counter of trace recursion: */
1399 	unsigned long			trace_recursion;
1400 #endif /* CONFIG_TRACING */
1401 
1402 #ifdef CONFIG_KCOV
1403 	/* See kernel/kcov.c for more details. */
1404 
1405 	/* Coverage collection mode enabled for this task (0 if disabled): */
1406 	unsigned int			kcov_mode;
1407 
1408 	/* Size of the kcov_area: */
1409 	unsigned int			kcov_size;
1410 
1411 	/* Buffer for coverage collection: */
1412 	void				*kcov_area;
1413 
1414 	/* KCOV descriptor wired with this task or NULL: */
1415 	struct kcov			*kcov;
1416 
1417 	/* KCOV common handle for remote coverage collection: */
1418 	u64				kcov_handle;
1419 
1420 	/* KCOV sequence number: */
1421 	int				kcov_sequence;
1422 
1423 	/* Collect coverage from softirq context: */
1424 	unsigned int			kcov_softirq;
1425 #endif
1426 
1427 #ifdef CONFIG_MEMCG
1428 	struct mem_cgroup		*memcg_in_oom;
1429 	gfp_t				memcg_oom_gfp_mask;
1430 	int				memcg_oom_order;
1431 
1432 	/* Number of pages to reclaim on returning to userland: */
1433 	unsigned int			memcg_nr_pages_over_high;
1434 
1435 	/* Used by memcontrol for targeted memcg charge: */
1436 	struct mem_cgroup		*active_memcg;
1437 #endif
1438 
1439 #ifdef CONFIG_BLK_CGROUP
1440 	struct gendisk			*throttle_disk;
1441 #endif
1442 
1443 #ifdef CONFIG_UPROBES
1444 	struct uprobe_task		*utask;
1445 #endif
1446 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1447 	unsigned int			sequential_io;
1448 	unsigned int			sequential_io_avg;
1449 #endif
1450 	struct kmap_ctrl		kmap_ctrl;
1451 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1452 	unsigned long			task_state_change;
1453 # ifdef CONFIG_PREEMPT_RT
1454 	unsigned long			saved_state_change;
1455 # endif
1456 #endif
1457 	struct rcu_head			rcu;
1458 	refcount_t			rcu_users;
1459 	int				pagefault_disabled;
1460 #ifdef CONFIG_MMU
1461 	struct task_struct		*oom_reaper_list;
1462 	struct timer_list		oom_reaper_timer;
1463 #endif
1464 #ifdef CONFIG_VMAP_STACK
1465 	struct vm_struct		*stack_vm_area;
1466 #endif
1467 #ifdef CONFIG_THREAD_INFO_IN_TASK
1468 	/* A live task holds one reference: */
1469 	refcount_t			stack_refcount;
1470 #endif
1471 #ifdef CONFIG_LIVEPATCH
1472 	int patch_state;
1473 #endif
1474 #ifdef CONFIG_SECURITY
1475 	/* Used by LSM modules for access restriction: */
1476 	void				*security;
1477 #endif
1478 #ifdef CONFIG_BPF_SYSCALL
1479 	/* Used by BPF task local storage */
1480 	struct bpf_local_storage __rcu	*bpf_storage;
1481 	/* Used for BPF run context */
1482 	struct bpf_run_ctx		*bpf_ctx;
1483 #endif
1484 
1485 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1486 	unsigned long			lowest_stack;
1487 	unsigned long			prev_lowest_stack;
1488 #endif
1489 
1490 #ifdef CONFIG_X86_MCE
1491 	void __user			*mce_vaddr;
1492 	__u64				mce_kflags;
1493 	u64				mce_addr;
1494 	__u64				mce_ripv : 1,
1495 					mce_whole_page : 1,
1496 					__mce_reserved : 62;
1497 	struct callback_head		mce_kill_me;
1498 	int				mce_count;
1499 #endif
1500 	ANDROID_VENDOR_DATA_ARRAY(1, 64);
1501 	ANDROID_OEM_DATA_ARRAY(1, 6);
1502 
1503 #ifdef CONFIG_KRETPROBES
1504 	struct llist_head               kretprobe_instances;
1505 #endif
1506 #ifdef CONFIG_RETHOOK
1507 	struct llist_head               rethooks;
1508 #endif
1509 
1510 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1511 	/*
1512 	 * If L1D flush is supported on mm context switch
1513 	 * then we use this callback head to queue kill work
1514 	 * to kill tasks that are not running on SMT disabled
1515 	 * cores
1516 	 */
1517 	struct callback_head		l1d_flush_kill;
1518 #endif
1519 	ANDROID_KABI_RESERVE(1);
1520 	ANDROID_KABI_RESERVE(2);
1521 	ANDROID_KABI_RESERVE(3);
1522 	ANDROID_KABI_RESERVE(4);
1523 	ANDROID_KABI_RESERVE(5);
1524 	ANDROID_KABI_RESERVE(6);
1525 	ANDROID_KABI_RESERVE(7);
1526 	ANDROID_KABI_RESERVE(8);
1527 
1528 #ifdef CONFIG_RV
1529 	/*
1530 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1531 	 * If we find justification for more monitors, we can think
1532 	 * about adding more or developing a dynamic method. So far,
1533 	 * none of these are justified.
1534 	 */
1535 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1536 #endif
1537 
1538 #ifdef CONFIG_USER_EVENTS
1539 	struct user_event_mm		*user_event_mm;
1540 #endif
1541 
1542 	/*
1543 	 * New fields for task_struct should be added above here, so that
1544 	 * they are included in the randomized portion of task_struct.
1545 	 */
1546 	randomized_struct_fields_end
1547 
1548 	/* CPU-specific state of this task: */
1549 	struct thread_struct		thread;
1550 
1551 	/*
1552 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1553 	 * structure.  It *MUST* be at the end of 'task_struct'.
1554 	 *
1555 	 * Do not put anything below here!
1556 	 */
1557 };
1558 
task_pid(struct task_struct * task)1559 static inline struct pid *task_pid(struct task_struct *task)
1560 {
1561 	return task->thread_pid;
1562 }
1563 
1564 /*
1565  * the helpers to get the task's different pids as they are seen
1566  * from various namespaces
1567  *
1568  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1569  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1570  *                     current.
1571  * task_xid_nr_ns()  : id seen from the ns specified;
1572  *
1573  * see also pid_nr() etc in include/linux/pid.h
1574  */
1575 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1576 
task_pid_nr(struct task_struct * tsk)1577 static inline pid_t task_pid_nr(struct task_struct *tsk)
1578 {
1579 	return tsk->pid;
1580 }
1581 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1582 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1583 {
1584 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1585 }
1586 
task_pid_vnr(struct task_struct * tsk)1587 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1588 {
1589 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1590 }
1591 
1592 
task_tgid_nr(struct task_struct * tsk)1593 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1594 {
1595 	return tsk->tgid;
1596 }
1597 
1598 /**
1599  * pid_alive - check that a task structure is not stale
1600  * @p: Task structure to be checked.
1601  *
1602  * Test if a process is not yet dead (at most zombie state)
1603  * If pid_alive fails, then pointers within the task structure
1604  * can be stale and must not be dereferenced.
1605  *
1606  * Return: 1 if the process is alive. 0 otherwise.
1607  */
pid_alive(const struct task_struct * p)1608 static inline int pid_alive(const struct task_struct *p)
1609 {
1610 	return p->thread_pid != NULL;
1611 }
1612 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1613 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1614 {
1615 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1616 }
1617 
task_pgrp_vnr(struct task_struct * tsk)1618 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1619 {
1620 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1621 }
1622 
1623 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1624 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1625 {
1626 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1627 }
1628 
task_session_vnr(struct task_struct * tsk)1629 static inline pid_t task_session_vnr(struct task_struct *tsk)
1630 {
1631 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1632 }
1633 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1634 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1635 {
1636 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1637 }
1638 
task_tgid_vnr(struct task_struct * tsk)1639 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1640 {
1641 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1642 }
1643 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1644 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1645 {
1646 	pid_t pid = 0;
1647 
1648 	rcu_read_lock();
1649 	if (pid_alive(tsk))
1650 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1651 	rcu_read_unlock();
1652 
1653 	return pid;
1654 }
1655 
task_ppid_nr(const struct task_struct * tsk)1656 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1657 {
1658 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1659 }
1660 
1661 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1662 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1663 {
1664 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1665 }
1666 
1667 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1668 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1669 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1670 static inline unsigned int __task_state_index(unsigned int tsk_state,
1671 					      unsigned int tsk_exit_state)
1672 {
1673 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1674 
1675 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1676 
1677 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1678 		state = TASK_REPORT_IDLE;
1679 
1680 	/*
1681 	 * We're lying here, but rather than expose a completely new task state
1682 	 * to userspace, we can make this appear as if the task has gone through
1683 	 * a regular rt_mutex_lock() call.
1684 	 */
1685 	if (tsk_state & TASK_RTLOCK_WAIT)
1686 		state = TASK_UNINTERRUPTIBLE;
1687 
1688 	return fls(state);
1689 }
1690 
task_state_index(struct task_struct * tsk)1691 static inline unsigned int task_state_index(struct task_struct *tsk)
1692 {
1693 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1694 }
1695 
task_index_to_char(unsigned int state)1696 static inline char task_index_to_char(unsigned int state)
1697 {
1698 	static const char state_char[] = "RSDTtXZPI";
1699 
1700 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1701 
1702 	return state_char[state];
1703 }
1704 
task_state_to_char(struct task_struct * tsk)1705 static inline char task_state_to_char(struct task_struct *tsk)
1706 {
1707 	return task_index_to_char(task_state_index(tsk));
1708 }
1709 
1710 /**
1711  * is_global_init - check if a task structure is init. Since init
1712  * is free to have sub-threads we need to check tgid.
1713  * @tsk: Task structure to be checked.
1714  *
1715  * Check if a task structure is the first user space task the kernel created.
1716  *
1717  * Return: 1 if the task structure is init. 0 otherwise.
1718  */
is_global_init(struct task_struct * tsk)1719 static inline int is_global_init(struct task_struct *tsk)
1720 {
1721 	return task_tgid_nr(tsk) == 1;
1722 }
1723 
1724 extern struct pid *cad_pid;
1725 
1726 /*
1727  * Per process flags
1728  */
1729 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1730 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1731 #define PF_EXITING		0x00000004	/* Getting shut down */
1732 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1733 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1734 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1735 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1736 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1737 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1738 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1739 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1740 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1741 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1742 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1743 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1744 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1745 #define PF__HOLE__00010000	0x00010000
1746 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1747 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1748 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1749 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1750 						 * I am cleaning dirty pages from some other bdi. */
1751 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1752 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1753 #define PF__HOLE__00800000	0x00800000
1754 #define PF__HOLE__01000000	0x01000000
1755 #define PF__HOLE__02000000	0x02000000
1756 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1757 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1758 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1759 #define PF__HOLE__20000000	0x20000000
1760 #define PF__HOLE__40000000	0x40000000
1761 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1762 
1763 /*
1764  * Only the _current_ task can read/write to tsk->flags, but other
1765  * tasks can access tsk->flags in readonly mode for example
1766  * with tsk_used_math (like during threaded core dumping).
1767  * There is however an exception to this rule during ptrace
1768  * or during fork: the ptracer task is allowed to write to the
1769  * child->flags of its traced child (same goes for fork, the parent
1770  * can write to the child->flags), because we're guaranteed the
1771  * child is not running and in turn not changing child->flags
1772  * at the same time the parent does it.
1773  */
1774 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1775 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1776 #define clear_used_math()			clear_stopped_child_used_math(current)
1777 #define set_used_math()				set_stopped_child_used_math(current)
1778 
1779 #define conditional_stopped_child_used_math(condition, child) \
1780 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1781 
1782 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1783 
1784 #define copy_to_stopped_child_used_math(child) \
1785 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1786 
1787 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1788 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1789 #define used_math()				tsk_used_math(current)
1790 
is_percpu_thread(void)1791 static __always_inline bool is_percpu_thread(void)
1792 {
1793 #ifdef CONFIG_SMP
1794 	return (current->flags & PF_NO_SETAFFINITY) &&
1795 		(current->nr_cpus_allowed  == 1);
1796 #else
1797 	return true;
1798 #endif
1799 }
1800 
1801 /* Per-process atomic flags. */
1802 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1803 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1804 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1805 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1806 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1807 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1808 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1809 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1810 
1811 #define TASK_PFA_TEST(name, func)					\
1812 	static inline bool task_##func(struct task_struct *p)		\
1813 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1814 
1815 #define TASK_PFA_SET(name, func)					\
1816 	static inline void task_set_##func(struct task_struct *p)	\
1817 	{ set_bit(PFA_##name, &p->atomic_flags); }
1818 
1819 #define TASK_PFA_CLEAR(name, func)					\
1820 	static inline void task_clear_##func(struct task_struct *p)	\
1821 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1822 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1823 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1824 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1825 
1826 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1827 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1828 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1829 
1830 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1831 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1832 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1833 
1834 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1835 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1836 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1837 
1838 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1839 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1840 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1841 
1842 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1843 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1844 
1845 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1846 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1847 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1848 
1849 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1850 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1851 
1852 static inline void
1853 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1854 {
1855 	current->flags &= ~flags;
1856 	current->flags |= orig_flags & flags;
1857 }
1858 
1859 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1860 extern int task_can_attach(struct task_struct *p);
1861 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1862 extern void dl_bw_free(int cpu, u64 dl_bw);
1863 #ifdef CONFIG_SMP
1864 
1865 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1866 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1867 
1868 /**
1869  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1870  * @p: the task
1871  * @new_mask: CPU affinity mask
1872  *
1873  * Return: zero if successful, or a negative error code
1874  */
1875 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1876 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1877 extern void release_user_cpus_ptr(struct task_struct *p);
1878 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1879 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1880 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1881 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1882 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1883 {
1884 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1885 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1886 {
1887 	if (!cpumask_test_cpu(0, new_mask))
1888 		return -EINVAL;
1889 	return 0;
1890 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1891 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1892 {
1893 	if (src->user_cpus_ptr)
1894 		return -EINVAL;
1895 	return 0;
1896 }
release_user_cpus_ptr(struct task_struct * p)1897 static inline void release_user_cpus_ptr(struct task_struct *p)
1898 {
1899 	WARN_ON(p->user_cpus_ptr);
1900 }
1901 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1902 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1903 {
1904 	return 0;
1905 }
1906 #endif
1907 
1908 extern int yield_to(struct task_struct *p, bool preempt);
1909 extern void set_user_nice(struct task_struct *p, long nice);
1910 extern int task_prio(const struct task_struct *p);
1911 
1912 /**
1913  * task_nice - return the nice value of a given task.
1914  * @p: the task in question.
1915  *
1916  * Return: The nice value [ -20 ... 0 ... 19 ].
1917  */
task_nice(const struct task_struct * p)1918 static inline int task_nice(const struct task_struct *p)
1919 {
1920 	return PRIO_TO_NICE((p)->static_prio);
1921 }
1922 
1923 extern int can_nice(const struct task_struct *p, const int nice);
1924 extern int task_curr(const struct task_struct *p);
1925 extern int idle_cpu(int cpu);
1926 extern int available_idle_cpu(int cpu);
1927 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1928 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1929 extern void sched_set_fifo(struct task_struct *p);
1930 extern void sched_set_fifo_low(struct task_struct *p);
1931 extern void sched_set_normal(struct task_struct *p, int nice);
1932 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1933 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1934 extern struct task_struct *idle_task(int cpu);
1935 
1936 /**
1937  * is_idle_task - is the specified task an idle task?
1938  * @p: the task in question.
1939  *
1940  * Return: 1 if @p is an idle task. 0 otherwise.
1941  */
is_idle_task(const struct task_struct * p)1942 static __always_inline bool is_idle_task(const struct task_struct *p)
1943 {
1944 	return !!(p->flags & PF_IDLE);
1945 }
1946 
1947 extern struct task_struct *curr_task(int cpu);
1948 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1949 
1950 void yield(void);
1951 
1952 union thread_union {
1953 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1954 	struct task_struct task;
1955 #endif
1956 #ifndef CONFIG_THREAD_INFO_IN_TASK
1957 	struct thread_info thread_info;
1958 #endif
1959 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1960 };
1961 
1962 #ifndef CONFIG_THREAD_INFO_IN_TASK
1963 extern struct thread_info init_thread_info;
1964 #endif
1965 
1966 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1967 
1968 #ifdef CONFIG_THREAD_INFO_IN_TASK
1969 # define task_thread_info(task)	(&(task)->thread_info)
1970 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1971 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1972 #endif
1973 
1974 /*
1975  * find a task by one of its numerical ids
1976  *
1977  * find_task_by_pid_ns():
1978  *      finds a task by its pid in the specified namespace
1979  * find_task_by_vpid():
1980  *      finds a task by its virtual pid
1981  *
1982  * see also find_vpid() etc in include/linux/pid.h
1983  */
1984 
1985 extern struct task_struct *find_task_by_vpid(pid_t nr);
1986 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1987 
1988 /*
1989  * find a task by its virtual pid and get the task struct
1990  */
1991 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1992 
1993 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1994 extern int wake_up_process(struct task_struct *tsk);
1995 extern void wake_up_new_task(struct task_struct *tsk);
1996 
1997 #ifdef CONFIG_SMP
1998 extern void kick_process(struct task_struct *tsk);
1999 #else
kick_process(struct task_struct * tsk)2000 static inline void kick_process(struct task_struct *tsk) { }
2001 #endif
2002 
2003 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2004 
set_task_comm(struct task_struct * tsk,const char * from)2005 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2006 {
2007 	__set_task_comm(tsk, from, false);
2008 }
2009 
2010 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2011 #define get_task_comm(buf, tsk) ({			\
2012 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
2013 	__get_task_comm(buf, sizeof(buf), tsk);		\
2014 })
2015 
2016 #ifdef CONFIG_SMP
scheduler_ipi(void)2017 static __always_inline void scheduler_ipi(void)
2018 {
2019 	/*
2020 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2021 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2022 	 * this IPI.
2023 	 */
2024 	preempt_fold_need_resched();
2025 }
2026 #else
scheduler_ipi(void)2027 static inline void scheduler_ipi(void) { }
2028 #endif
2029 
2030 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2031 
2032 /*
2033  * Set thread flags in other task's structures.
2034  * See asm/thread_info.h for TIF_xxxx flags available:
2035  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2036 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2037 {
2038 	set_ti_thread_flag(task_thread_info(tsk), flag);
2039 }
2040 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2041 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2042 {
2043 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2044 }
2045 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2046 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2047 					  bool value)
2048 {
2049 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2050 }
2051 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2052 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2053 {
2054 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2055 }
2056 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2057 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2058 {
2059 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2060 }
2061 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2062 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2063 {
2064 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2065 }
2066 
set_tsk_need_resched(struct task_struct * tsk)2067 static inline void set_tsk_need_resched(struct task_struct *tsk)
2068 {
2069 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2070 }
2071 
clear_tsk_need_resched(struct task_struct * tsk)2072 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2073 {
2074 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2075 }
2076 
test_tsk_need_resched(struct task_struct * tsk)2077 static inline int test_tsk_need_resched(struct task_struct *tsk)
2078 {
2079 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2080 }
2081 
2082 /*
2083  * cond_resched() and cond_resched_lock(): latency reduction via
2084  * explicit rescheduling in places that are safe. The return
2085  * value indicates whether a reschedule was done in fact.
2086  * cond_resched_lock() will drop the spinlock before scheduling,
2087  */
2088 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2089 extern int __cond_resched(void);
2090 
2091 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2092 
2093 void sched_dynamic_klp_enable(void);
2094 void sched_dynamic_klp_disable(void);
2095 
2096 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2097 
_cond_resched(void)2098 static __always_inline int _cond_resched(void)
2099 {
2100 	return static_call_mod(cond_resched)();
2101 }
2102 
2103 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2104 
2105 extern int dynamic_cond_resched(void);
2106 
_cond_resched(void)2107 static __always_inline int _cond_resched(void)
2108 {
2109 	return dynamic_cond_resched();
2110 }
2111 
2112 #else /* !CONFIG_PREEMPTION */
2113 
_cond_resched(void)2114 static inline int _cond_resched(void)
2115 {
2116 	klp_sched_try_switch();
2117 	return __cond_resched();
2118 }
2119 
2120 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2121 
2122 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2123 
_cond_resched(void)2124 static inline int _cond_resched(void)
2125 {
2126 	klp_sched_try_switch();
2127 	return 0;
2128 }
2129 
2130 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2131 
2132 #define cond_resched() ({			\
2133 	__might_resched(__FILE__, __LINE__, 0);	\
2134 	_cond_resched();			\
2135 })
2136 
2137 extern int __cond_resched_lock(spinlock_t *lock);
2138 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2139 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2140 
2141 #define MIGHT_RESCHED_RCU_SHIFT		8
2142 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2143 
2144 #ifndef CONFIG_PREEMPT_RT
2145 /*
2146  * Non RT kernels have an elevated preempt count due to the held lock,
2147  * but are not allowed to be inside a RCU read side critical section
2148  */
2149 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2150 #else
2151 /*
2152  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2153  * cond_resched*lock() has to take that into account because it checks for
2154  * preempt_count() and rcu_preempt_depth().
2155  */
2156 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2157 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2158 #endif
2159 
2160 #define cond_resched_lock(lock) ({						\
2161 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2162 	__cond_resched_lock(lock);						\
2163 })
2164 
2165 #define cond_resched_rwlock_read(lock) ({					\
2166 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2167 	__cond_resched_rwlock_read(lock);					\
2168 })
2169 
2170 #define cond_resched_rwlock_write(lock) ({					\
2171 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2172 	__cond_resched_rwlock_write(lock);					\
2173 })
2174 
cond_resched_rcu(void)2175 static inline void cond_resched_rcu(void)
2176 {
2177 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2178 	rcu_read_unlock();
2179 	cond_resched();
2180 	rcu_read_lock();
2181 #endif
2182 }
2183 
2184 #ifdef CONFIG_PREEMPT_DYNAMIC
2185 
2186 extern bool preempt_model_none(void);
2187 extern bool preempt_model_voluntary(void);
2188 extern bool preempt_model_full(void);
2189 
2190 #else
2191 
preempt_model_none(void)2192 static inline bool preempt_model_none(void)
2193 {
2194 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2195 }
preempt_model_voluntary(void)2196 static inline bool preempt_model_voluntary(void)
2197 {
2198 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2199 }
preempt_model_full(void)2200 static inline bool preempt_model_full(void)
2201 {
2202 	return IS_ENABLED(CONFIG_PREEMPT);
2203 }
2204 
2205 #endif
2206 
preempt_model_rt(void)2207 static inline bool preempt_model_rt(void)
2208 {
2209 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2210 }
2211 
2212 /*
2213  * Does the preemption model allow non-cooperative preemption?
2214  *
2215  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2216  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2217  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2218  * PREEMPT_NONE model.
2219  */
preempt_model_preemptible(void)2220 static inline bool preempt_model_preemptible(void)
2221 {
2222 	return preempt_model_full() || preempt_model_rt();
2223 }
2224 
2225 /*
2226  * Does a critical section need to be broken due to another
2227  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2228  * but a general need for low latency)
2229  */
spin_needbreak(spinlock_t * lock)2230 static inline int spin_needbreak(spinlock_t *lock)
2231 {
2232 #ifdef CONFIG_PREEMPTION
2233 	return spin_is_contended(lock);
2234 #else
2235 	return 0;
2236 #endif
2237 }
2238 
2239 /*
2240  * Check if a rwlock is contended.
2241  * Returns non-zero if there is another task waiting on the rwlock.
2242  * Returns zero if the lock is not contended or the system / underlying
2243  * rwlock implementation does not support contention detection.
2244  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2245  * for low latency.
2246  */
rwlock_needbreak(rwlock_t * lock)2247 static inline int rwlock_needbreak(rwlock_t *lock)
2248 {
2249 #ifdef CONFIG_PREEMPTION
2250 	return rwlock_is_contended(lock);
2251 #else
2252 	return 0;
2253 #endif
2254 }
2255 
need_resched(void)2256 static __always_inline bool need_resched(void)
2257 {
2258 	return unlikely(tif_need_resched());
2259 }
2260 
2261 /*
2262  * Wrappers for p->thread_info->cpu access. No-op on UP.
2263  */
2264 #ifdef CONFIG_SMP
2265 
task_cpu(const struct task_struct * p)2266 static inline unsigned int task_cpu(const struct task_struct *p)
2267 {
2268 	return READ_ONCE(task_thread_info(p)->cpu);
2269 }
2270 
2271 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2272 
2273 #else
2274 
task_cpu(const struct task_struct * p)2275 static inline unsigned int task_cpu(const struct task_struct *p)
2276 {
2277 	return 0;
2278 }
2279 
set_task_cpu(struct task_struct * p,unsigned int cpu)2280 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2281 {
2282 }
2283 
2284 #endif /* CONFIG_SMP */
2285 
2286 extern bool sched_task_on_rq(struct task_struct *p);
2287 extern unsigned long get_wchan(struct task_struct *p);
2288 extern struct task_struct *cpu_curr_snapshot(int cpu);
2289 
2290 /*
2291  * In order to reduce various lock holder preemption latencies provide an
2292  * interface to see if a vCPU is currently running or not.
2293  *
2294  * This allows us to terminate optimistic spin loops and block, analogous to
2295  * the native optimistic spin heuristic of testing if the lock owner task is
2296  * running or not.
2297  */
2298 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2299 static inline bool vcpu_is_preempted(int cpu)
2300 {
2301 	return false;
2302 }
2303 #endif
2304 
2305 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2306 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2307 
2308 #ifndef TASK_SIZE_OF
2309 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2310 #endif
2311 
2312 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2313 static inline bool owner_on_cpu(struct task_struct *owner)
2314 {
2315 	/*
2316 	 * As lock holder preemption issue, we both skip spinning if
2317 	 * task is not on cpu or its cpu is preempted
2318 	 */
2319 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2320 }
2321 
2322 /* Returns effective CPU energy utilization, as seen by the scheduler */
2323 unsigned long sched_cpu_util(int cpu);
2324 #endif /* CONFIG_SMP */
2325 
2326 #ifdef CONFIG_RSEQ
2327 
2328 /*
2329  * Map the event mask on the user-space ABI enum rseq_cs_flags
2330  * for direct mask checks.
2331  */
2332 enum rseq_event_mask_bits {
2333 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2334 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2335 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2336 };
2337 
2338 enum rseq_event_mask {
2339 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2340 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2341 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2342 };
2343 
rseq_set_notify_resume(struct task_struct * t)2344 static inline void rseq_set_notify_resume(struct task_struct *t)
2345 {
2346 	if (t->rseq)
2347 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2348 }
2349 
2350 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2351 
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2352 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2353 					     struct pt_regs *regs)
2354 {
2355 	if (current->rseq)
2356 		__rseq_handle_notify_resume(ksig, regs);
2357 }
2358 
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2359 static inline void rseq_signal_deliver(struct ksignal *ksig,
2360 				       struct pt_regs *regs)
2361 {
2362 	preempt_disable();
2363 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2364 	preempt_enable();
2365 	rseq_handle_notify_resume(ksig, regs);
2366 }
2367 
2368 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2369 static inline void rseq_preempt(struct task_struct *t)
2370 {
2371 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2372 	rseq_set_notify_resume(t);
2373 }
2374 
2375 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2376 static inline void rseq_migrate(struct task_struct *t)
2377 {
2378 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2379 	rseq_set_notify_resume(t);
2380 }
2381 
2382 /*
2383  * If parent process has a registered restartable sequences area, the
2384  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2385  */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2386 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2387 {
2388 	if (clone_flags & CLONE_VM) {
2389 		t->rseq = NULL;
2390 		t->rseq_len = 0;
2391 		t->rseq_sig = 0;
2392 		t->rseq_event_mask = 0;
2393 	} else {
2394 		t->rseq = current->rseq;
2395 		t->rseq_len = current->rseq_len;
2396 		t->rseq_sig = current->rseq_sig;
2397 		t->rseq_event_mask = current->rseq_event_mask;
2398 	}
2399 }
2400 
rseq_execve(struct task_struct * t)2401 static inline void rseq_execve(struct task_struct *t)
2402 {
2403 	t->rseq = NULL;
2404 	t->rseq_len = 0;
2405 	t->rseq_sig = 0;
2406 	t->rseq_event_mask = 0;
2407 }
2408 
2409 #else
2410 
rseq_set_notify_resume(struct task_struct * t)2411 static inline void rseq_set_notify_resume(struct task_struct *t)
2412 {
2413 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2414 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2415 					     struct pt_regs *regs)
2416 {
2417 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2418 static inline void rseq_signal_deliver(struct ksignal *ksig,
2419 				       struct pt_regs *regs)
2420 {
2421 }
rseq_preempt(struct task_struct * t)2422 static inline void rseq_preempt(struct task_struct *t)
2423 {
2424 }
rseq_migrate(struct task_struct * t)2425 static inline void rseq_migrate(struct task_struct *t)
2426 {
2427 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2428 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2429 {
2430 }
rseq_execve(struct task_struct * t)2431 static inline void rseq_execve(struct task_struct *t)
2432 {
2433 }
2434 
2435 #endif
2436 
2437 #ifdef CONFIG_DEBUG_RSEQ
2438 
2439 void rseq_syscall(struct pt_regs *regs);
2440 
2441 #else
2442 
rseq_syscall(struct pt_regs * regs)2443 static inline void rseq_syscall(struct pt_regs *regs)
2444 {
2445 }
2446 
2447 #endif
2448 
2449 #ifdef CONFIG_SCHED_CORE
2450 extern void sched_core_free(struct task_struct *tsk);
2451 extern void sched_core_fork(struct task_struct *p);
2452 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2453 				unsigned long uaddr);
2454 extern int sched_core_idle_cpu(int cpu);
2455 #else
sched_core_free(struct task_struct * tsk)2456 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2457 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2458 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2459 #endif
2460 
2461 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2462 
2463 #endif
2464