1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <linux/rw_hint.h>
28 #include <crypto/hash.h>
29
30 #include <linux/fscrypt.h>
31 #include <linux/fsverity.h>
32
33 struct pagevec;
34
35 #ifdef CONFIG_F2FS_CHECK_FS
36 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
37 #else
38 #define f2fs_bug_on(sbi, condition) \
39 do { \
40 if (WARN_ON(condition)) \
41 set_sbi_flag(sbi, SBI_NEED_FSCK); \
42 } while (0)
43 #endif
44
45 enum {
46 FAULT_KMALLOC,
47 FAULT_KVMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_PAGE_GET,
50 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
51 FAULT_ALLOC_NID,
52 FAULT_ORPHAN,
53 FAULT_BLOCK,
54 FAULT_DIR_DEPTH,
55 FAULT_EVICT_INODE,
56 FAULT_TRUNCATE,
57 FAULT_READ_IO,
58 FAULT_CHECKPOINT,
59 FAULT_DISCARD,
60 FAULT_WRITE_IO,
61 FAULT_SLAB_ALLOC,
62 FAULT_DQUOT_INIT,
63 FAULT_LOCK_OP,
64 FAULT_BLKADDR_VALIDITY,
65 FAULT_BLKADDR_CONSISTENCE,
66 FAULT_NO_SEGMENT,
67 FAULT_MAX,
68 };
69
70 #ifdef CONFIG_F2FS_FAULT_INJECTION
71 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
72
73 struct f2fs_fault_info {
74 atomic_t inject_ops;
75 int inject_rate;
76 unsigned int inject_type;
77 };
78
79 extern const char *f2fs_fault_name[FAULT_MAX];
80 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
81
82 /* maximum retry count for injected failure */
83 #define DEFAULT_FAILURE_RETRY_COUNT 8
84 #else
85 #define DEFAULT_FAILURE_RETRY_COUNT 1
86 #endif
87
88 /*
89 * For mount options
90 */
91 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
92 #define F2FS_MOUNT_DISCARD 0x00000002
93 #define F2FS_MOUNT_NOHEAP 0x00000004
94 #define F2FS_MOUNT_XATTR_USER 0x00000008
95 #define F2FS_MOUNT_POSIX_ACL 0x00000010
96 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
97 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
98 #define F2FS_MOUNT_INLINE_DATA 0x00000080
99 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
100 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
101 #define F2FS_MOUNT_NOBARRIER 0x00000400
102 #define F2FS_MOUNT_FASTBOOT 0x00000800
103 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
104 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
105 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
106 #define F2FS_MOUNT_USRQUOTA 0x00008000
107 #define F2FS_MOUNT_GRPQUOTA 0x00010000
108 #define F2FS_MOUNT_PRJQUOTA 0x00020000
109 #define F2FS_MOUNT_QUOTA 0x00040000
110 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
111 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
112 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
113 #define F2FS_MOUNT_NORECOVERY 0x00400000
114 #define F2FS_MOUNT_ATGC 0x00800000
115 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
116 #define F2FS_MOUNT_GC_MERGE 0x02000000
117 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
118 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
119
120 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
121 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
122 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
123 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
124
125 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
126 typecheck(unsigned long long, b) && \
127 ((long long)((a) - (b)) > 0))
128
129 typedef u32 block_t; /*
130 * should not change u32, since it is the on-disk block
131 * address format, __le32.
132 */
133 typedef u32 nid_t;
134
135 #define COMPRESS_EXT_NUM 16
136
137 /*
138 * An implementation of an rwsem that is explicitly unfair to readers. This
139 * prevents priority inversion when a low-priority reader acquires the read lock
140 * while sleeping on the write lock but the write lock is needed by
141 * higher-priority clients.
142 */
143
144 struct f2fs_rwsem {
145 struct rw_semaphore internal_rwsem;
146 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
147 wait_queue_head_t read_waiters;
148 #endif
149 };
150
151 struct f2fs_mount_info {
152 unsigned int opt;
153 block_t root_reserved_blocks; /* root reserved blocks */
154 kuid_t s_resuid; /* reserved blocks for uid */
155 kgid_t s_resgid; /* reserved blocks for gid */
156 int active_logs; /* # of active logs */
157 int inline_xattr_size; /* inline xattr size */
158 #ifdef CONFIG_F2FS_FAULT_INJECTION
159 struct f2fs_fault_info fault_info; /* For fault injection */
160 #endif
161 #ifdef CONFIG_QUOTA
162 /* Names of quota files with journalled quota */
163 char *s_qf_names[MAXQUOTAS];
164 int s_jquota_fmt; /* Format of quota to use */
165 #endif
166 /* For which write hints are passed down to block layer */
167 int alloc_mode; /* segment allocation policy */
168 int fsync_mode; /* fsync policy */
169 int fs_mode; /* fs mode: LFS or ADAPTIVE */
170 int bggc_mode; /* bggc mode: off, on or sync */
171 int memory_mode; /* memory mode */
172 int errors; /* errors parameter */
173 int discard_unit; /*
174 * discard command's offset/size should
175 * be aligned to this unit: block,
176 * segment or section
177 */
178 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
179 block_t unusable_cap_perc; /* percentage for cap */
180 block_t unusable_cap; /* Amount of space allowed to be
181 * unusable when disabling checkpoint
182 */
183
184 /* For compression */
185 unsigned char compress_algorithm; /* algorithm type */
186 unsigned char compress_log_size; /* cluster log size */
187 unsigned char compress_level; /* compress level */
188 bool compress_chksum; /* compressed data chksum */
189 unsigned char compress_ext_cnt; /* extension count */
190 unsigned char nocompress_ext_cnt; /* nocompress extension count */
191 int compress_mode; /* compression mode */
192 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
193 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
194 };
195
196 #define F2FS_FEATURE_ENCRYPT 0x00000001
197 #define F2FS_FEATURE_BLKZONED 0x00000002
198 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
199 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
200 #define F2FS_FEATURE_PRJQUOTA 0x00000010
201 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
202 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
203 #define F2FS_FEATURE_QUOTA_INO 0x00000080
204 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
205 #define F2FS_FEATURE_LOST_FOUND 0x00000200
206 #define F2FS_FEATURE_VERITY 0x00000400
207 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
208 #define F2FS_FEATURE_CASEFOLD 0x00001000
209 #define F2FS_FEATURE_COMPRESSION 0x00002000
210 #define F2FS_FEATURE_RO 0x00004000
211
212 #define __F2FS_HAS_FEATURE(raw_super, mask) \
213 ((raw_super->feature & cpu_to_le32(mask)) != 0)
214 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
215
216 /*
217 * Default values for user and/or group using reserved blocks
218 */
219 #define F2FS_DEF_RESUID 0
220 #define F2FS_DEF_RESGID 0
221
222 /*
223 * For checkpoint manager
224 */
225 enum {
226 NAT_BITMAP,
227 SIT_BITMAP
228 };
229
230 #define CP_UMOUNT 0x00000001
231 #define CP_FASTBOOT 0x00000002
232 #define CP_SYNC 0x00000004
233 #define CP_RECOVERY 0x00000008
234 #define CP_DISCARD 0x00000010
235 #define CP_TRIMMED 0x00000020
236 #define CP_PAUSE 0x00000040
237 #define CP_RESIZE 0x00000080
238
239 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
240 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
241 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
242 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
243 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
244 #define DEF_CP_INTERVAL 60 /* 60 secs */
245 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
246 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
247 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
248 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
249
250 struct cp_control {
251 int reason;
252 __u64 trim_start;
253 __u64 trim_end;
254 __u64 trim_minlen;
255 };
256
257 /*
258 * indicate meta/data type
259 */
260 enum {
261 META_CP,
262 META_NAT,
263 META_SIT,
264 META_SSA,
265 META_MAX,
266 META_POR,
267 DATA_GENERIC, /* check range only */
268 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
269 DATA_GENERIC_ENHANCE_READ, /*
270 * strong check on range and segment
271 * bitmap but no warning due to race
272 * condition of read on truncated area
273 * by extent_cache
274 */
275 DATA_GENERIC_ENHANCE_UPDATE, /*
276 * strong check on range and segment
277 * bitmap for update case
278 */
279 META_GENERIC,
280 };
281
282 /* for the list of ino */
283 enum {
284 ORPHAN_INO, /* for orphan ino list */
285 APPEND_INO, /* for append ino list */
286 UPDATE_INO, /* for update ino list */
287 TRANS_DIR_INO, /* for transactions dir ino list */
288 FLUSH_INO, /* for multiple device flushing */
289 MAX_INO_ENTRY, /* max. list */
290 };
291
292 struct ino_entry {
293 struct list_head list; /* list head */
294 nid_t ino; /* inode number */
295 unsigned int dirty_device; /* dirty device bitmap */
296 };
297
298 /* for the list of inodes to be GCed */
299 struct inode_entry {
300 struct list_head list; /* list head */
301 struct inode *inode; /* vfs inode pointer */
302 };
303
304 struct fsync_node_entry {
305 struct list_head list; /* list head */
306 struct page *page; /* warm node page pointer */
307 unsigned int seq_id; /* sequence id */
308 };
309
310 struct ckpt_req {
311 struct completion wait; /* completion for checkpoint done */
312 struct llist_node llnode; /* llist_node to be linked in wait queue */
313 int ret; /* return code of checkpoint */
314 ktime_t queue_time; /* request queued time */
315 };
316
317 struct ckpt_req_control {
318 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
319 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
320 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
321 atomic_t issued_ckpt; /* # of actually issued ckpts */
322 atomic_t total_ckpt; /* # of total ckpts */
323 atomic_t queued_ckpt; /* # of queued ckpts */
324 struct llist_head issue_list; /* list for command issue */
325 spinlock_t stat_lock; /* lock for below checkpoint time stats */
326 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
327 unsigned int peak_time; /* peak wait time in msec until now */
328 };
329
330 /* for the bitmap indicate blocks to be discarded */
331 struct discard_entry {
332 struct list_head list; /* list head */
333 block_t start_blkaddr; /* start blockaddr of current segment */
334 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
335 };
336
337 /* minimum discard granularity, unit: block count */
338 #define MIN_DISCARD_GRANULARITY 1
339 /* default discard granularity of inner discard thread, unit: block count */
340 #define DEFAULT_DISCARD_GRANULARITY 16
341 /* default maximum discard granularity of ordered discard, unit: block count */
342 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
343
344 /* max discard pend list number */
345 #define MAX_PLIST_NUM 512
346 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
347 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
348
349 enum {
350 D_PREP, /* initial */
351 D_PARTIAL, /* partially submitted */
352 D_SUBMIT, /* all submitted */
353 D_DONE, /* finished */
354 };
355
356 struct discard_info {
357 block_t lstart; /* logical start address */
358 block_t len; /* length */
359 block_t start; /* actual start address in dev */
360 };
361
362 struct discard_cmd {
363 struct rb_node rb_node; /* rb node located in rb-tree */
364 struct discard_info di; /* discard info */
365 struct list_head list; /* command list */
366 struct completion wait; /* compleation */
367 struct block_device *bdev; /* bdev */
368 unsigned short ref; /* reference count */
369 unsigned char state; /* state */
370 unsigned char queued; /* queued discard */
371 int error; /* bio error */
372 spinlock_t lock; /* for state/bio_ref updating */
373 unsigned short bio_ref; /* bio reference count */
374 };
375
376 enum {
377 DPOLICY_BG,
378 DPOLICY_FORCE,
379 DPOLICY_FSTRIM,
380 DPOLICY_UMOUNT,
381 MAX_DPOLICY,
382 };
383
384 enum {
385 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
386 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
387 DPOLICY_IO_AWARE_MAX,
388 };
389
390 struct discard_policy {
391 int type; /* type of discard */
392 unsigned int min_interval; /* used for candidates exist */
393 unsigned int mid_interval; /* used for device busy */
394 unsigned int max_interval; /* used for candidates not exist */
395 unsigned int max_requests; /* # of discards issued per round */
396 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
397 bool io_aware; /* issue discard in idle time */
398 bool sync; /* submit discard with REQ_SYNC flag */
399 bool ordered; /* issue discard by lba order */
400 bool timeout; /* discard timeout for put_super */
401 unsigned int granularity; /* discard granularity */
402 };
403
404 struct discard_cmd_control {
405 struct task_struct *f2fs_issue_discard; /* discard thread */
406 struct list_head entry_list; /* 4KB discard entry list */
407 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
408 struct list_head wait_list; /* store on-flushing entries */
409 struct list_head fstrim_list; /* in-flight discard from fstrim */
410 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
411 struct mutex cmd_lock;
412 unsigned int nr_discards; /* # of discards in the list */
413 unsigned int max_discards; /* max. discards to be issued */
414 unsigned int max_discard_request; /* max. discard request per round */
415 unsigned int min_discard_issue_time; /* min. interval between discard issue */
416 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
417 unsigned int max_discard_issue_time; /* max. interval between discard issue */
418 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
419 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
420 unsigned int discard_granularity; /* discard granularity */
421 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
422 unsigned int discard_io_aware; /* io_aware policy */
423 unsigned int undiscard_blks; /* # of undiscard blocks */
424 unsigned int next_pos; /* next discard position */
425 atomic_t issued_discard; /* # of issued discard */
426 atomic_t queued_discard; /* # of queued discard */
427 atomic_t discard_cmd_cnt; /* # of cached cmd count */
428 struct rb_root_cached root; /* root of discard rb-tree */
429 bool rbtree_check; /* config for consistence check */
430 bool discard_wake; /* to wake up discard thread */
431 };
432
433 /* for the list of fsync inodes, used only during recovery */
434 struct fsync_inode_entry {
435 struct list_head list; /* list head */
436 struct inode *inode; /* vfs inode pointer */
437 block_t blkaddr; /* block address locating the last fsync */
438 block_t last_dentry; /* block address locating the last dentry */
439 };
440
441 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
442 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
443
444 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
445 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
446 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
447 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
448
449 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
450 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
451
update_nats_in_cursum(struct f2fs_journal * journal,int i)452 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
453 {
454 int before = nats_in_cursum(journal);
455
456 journal->n_nats = cpu_to_le16(before + i);
457 return before;
458 }
459
update_sits_in_cursum(struct f2fs_journal * journal,int i)460 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
461 {
462 int before = sits_in_cursum(journal);
463
464 journal->n_sits = cpu_to_le16(before + i);
465 return before;
466 }
467
__has_cursum_space(struct f2fs_journal * journal,int size,int type)468 static inline bool __has_cursum_space(struct f2fs_journal *journal,
469 int size, int type)
470 {
471 if (type == NAT_JOURNAL)
472 return size <= MAX_NAT_JENTRIES(journal);
473 return size <= MAX_SIT_JENTRIES(journal);
474 }
475
476 /* for inline stuff */
477 #define DEF_INLINE_RESERVED_SIZE 1
478 static inline int get_extra_isize(struct inode *inode);
479 static inline int get_inline_xattr_addrs(struct inode *inode);
480 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
481 (CUR_ADDRS_PER_INODE(inode) - \
482 get_inline_xattr_addrs(inode) - \
483 DEF_INLINE_RESERVED_SIZE))
484
485 /* for inline dir */
486 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
487 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
488 BITS_PER_BYTE + 1))
489 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
490 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
491 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
492 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
493 NR_INLINE_DENTRY(inode) + \
494 INLINE_DENTRY_BITMAP_SIZE(inode)))
495
496 /*
497 * For INODE and NODE manager
498 */
499 /* for directory operations */
500
501 struct f2fs_filename {
502 /*
503 * The filename the user specified. This is NULL for some
504 * filesystem-internal operations, e.g. converting an inline directory
505 * to a non-inline one, or roll-forward recovering an encrypted dentry.
506 */
507 const struct qstr *usr_fname;
508
509 /*
510 * The on-disk filename. For encrypted directories, this is encrypted.
511 * This may be NULL for lookups in an encrypted dir without the key.
512 */
513 struct fscrypt_str disk_name;
514
515 /* The dirhash of this filename */
516 f2fs_hash_t hash;
517
518 #ifdef CONFIG_FS_ENCRYPTION
519 /*
520 * For lookups in encrypted directories: either the buffer backing
521 * disk_name, or a buffer that holds the decoded no-key name.
522 */
523 struct fscrypt_str crypto_buf;
524 #endif
525 #if IS_ENABLED(CONFIG_UNICODE)
526 /*
527 * For casefolded directories: the casefolded name, but it's left NULL
528 * if the original name is not valid Unicode, if the original name is
529 * "." or "..", if the directory is both casefolded and encrypted and
530 * its encryption key is unavailable, or if the filesystem is doing an
531 * internal operation where usr_fname is also NULL. In all these cases
532 * we fall back to treating the name as an opaque byte sequence.
533 */
534 struct fscrypt_str cf_name;
535 #endif
536 };
537
538 struct f2fs_dentry_ptr {
539 struct inode *inode;
540 void *bitmap;
541 struct f2fs_dir_entry *dentry;
542 __u8 (*filename)[F2FS_SLOT_LEN];
543 int max;
544 int nr_bitmap;
545 };
546
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)547 static inline void make_dentry_ptr_block(struct inode *inode,
548 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
549 {
550 d->inode = inode;
551 d->max = NR_DENTRY_IN_BLOCK;
552 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
553 d->bitmap = t->dentry_bitmap;
554 d->dentry = t->dentry;
555 d->filename = t->filename;
556 }
557
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)558 static inline void make_dentry_ptr_inline(struct inode *inode,
559 struct f2fs_dentry_ptr *d, void *t)
560 {
561 int entry_cnt = NR_INLINE_DENTRY(inode);
562 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
563 int reserved_size = INLINE_RESERVED_SIZE(inode);
564
565 d->inode = inode;
566 d->max = entry_cnt;
567 d->nr_bitmap = bitmap_size;
568 d->bitmap = t;
569 d->dentry = t + bitmap_size + reserved_size;
570 d->filename = t + bitmap_size + reserved_size +
571 SIZE_OF_DIR_ENTRY * entry_cnt;
572 }
573
574 /*
575 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
576 * as its node offset to distinguish from index node blocks.
577 * But some bits are used to mark the node block.
578 */
579 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
580 >> OFFSET_BIT_SHIFT)
581 enum {
582 ALLOC_NODE, /* allocate a new node page if needed */
583 LOOKUP_NODE, /* look up a node without readahead */
584 LOOKUP_NODE_RA, /*
585 * look up a node with readahead called
586 * by get_data_block.
587 */
588 };
589
590 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
591
592 /* congestion wait timeout value, default: 20ms */
593 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
594
595 /* maximum retry quota flush count */
596 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
597
598 /* maximum retry of EIO'ed page */
599 #define MAX_RETRY_PAGE_EIO 100
600
601 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
602
603 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
604
605 /* dirty segments threshold for triggering CP */
606 #define DEFAULT_DIRTY_THRESHOLD 4
607
608 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
609 #define RECOVERY_MIN_RA_BLOCKS 1
610
611 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
612
613 /* for in-memory extent cache entry */
614 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
615
616 /* number of extent info in extent cache we try to shrink */
617 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
618
619 /* number of age extent info in extent cache we try to shrink */
620 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
621 #define LAST_AGE_WEIGHT 30
622 #define SAME_AGE_REGION 1024
623
624 /*
625 * Define data block with age less than 1GB as hot data
626 * define data block with age less than 10GB but more than 1GB as warm data
627 */
628 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
629 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
630
631 /* extent cache type */
632 enum extent_type {
633 EX_READ,
634 EX_BLOCK_AGE,
635 NR_EXTENT_CACHES,
636 };
637
638 struct extent_info {
639 unsigned int fofs; /* start offset in a file */
640 unsigned int len; /* length of the extent */
641 union {
642 /* read extent_cache */
643 struct {
644 /* start block address of the extent */
645 block_t blk;
646 #ifdef CONFIG_F2FS_FS_COMPRESSION
647 /* physical extent length of compressed blocks */
648 unsigned int c_len;
649 #endif
650 };
651 /* block age extent_cache */
652 struct {
653 /* block age of the extent */
654 unsigned long long age;
655 /* last total blocks allocated */
656 unsigned long long last_blocks;
657 };
658 };
659 };
660
661 struct extent_node {
662 struct rb_node rb_node; /* rb node located in rb-tree */
663 struct extent_info ei; /* extent info */
664 struct list_head list; /* node in global extent list of sbi */
665 struct extent_tree *et; /* extent tree pointer */
666 };
667
668 struct extent_tree {
669 nid_t ino; /* inode number */
670 enum extent_type type; /* keep the extent tree type */
671 struct rb_root_cached root; /* root of extent info rb-tree */
672 struct extent_node *cached_en; /* recently accessed extent node */
673 struct list_head list; /* to be used by sbi->zombie_list */
674 rwlock_t lock; /* protect extent info rb-tree */
675 atomic_t node_cnt; /* # of extent node in rb-tree*/
676 bool largest_updated; /* largest extent updated */
677 struct extent_info largest; /* largest cached extent for EX_READ */
678 };
679
680 struct extent_tree_info {
681 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
682 struct mutex extent_tree_lock; /* locking extent radix tree */
683 struct list_head extent_list; /* lru list for shrinker */
684 spinlock_t extent_lock; /* locking extent lru list */
685 atomic_t total_ext_tree; /* extent tree count */
686 struct list_head zombie_list; /* extent zombie tree list */
687 atomic_t total_zombie_tree; /* extent zombie tree count */
688 atomic_t total_ext_node; /* extent info count */
689 };
690
691 /*
692 * State of block returned by f2fs_map_blocks.
693 */
694 #define F2FS_MAP_NEW (1U << 0)
695 #define F2FS_MAP_MAPPED (1U << 1)
696 #define F2FS_MAP_DELALLOC (1U << 2)
697 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
698 F2FS_MAP_DELALLOC)
699
700 struct f2fs_map_blocks {
701 struct block_device *m_bdev; /* for multi-device dio */
702 block_t m_pblk;
703 block_t m_lblk;
704 unsigned int m_len;
705 unsigned int m_flags;
706 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
707 pgoff_t *m_next_extent; /* point to next possible extent */
708 int m_seg_type;
709 bool m_may_create; /* indicate it is from write path */
710 bool m_multidev_dio; /* indicate it allows multi-device dio */
711 };
712
713 /* for flag in get_data_block */
714 enum {
715 F2FS_GET_BLOCK_DEFAULT,
716 F2FS_GET_BLOCK_FIEMAP,
717 F2FS_GET_BLOCK_BMAP,
718 F2FS_GET_BLOCK_DIO,
719 F2FS_GET_BLOCK_PRE_DIO,
720 F2FS_GET_BLOCK_PRE_AIO,
721 F2FS_GET_BLOCK_PRECACHE,
722 };
723
724 /*
725 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
726 */
727 #define FADVISE_COLD_BIT 0x01
728 #define FADVISE_LOST_PINO_BIT 0x02
729 #define FADVISE_ENCRYPT_BIT 0x04
730 #define FADVISE_ENC_NAME_BIT 0x08
731 #define FADVISE_KEEP_SIZE_BIT 0x10
732 #define FADVISE_HOT_BIT 0x20
733 #define FADVISE_VERITY_BIT 0x40
734 #define FADVISE_TRUNC_BIT 0x80
735
736 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
737
738 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
739 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
740 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
741
742 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
743 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
744 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
745
746 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
747 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
748
749 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
750 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
751
752 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
753 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
754
755 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
756 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
757 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
758
759 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
760 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
761
762 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
763 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
764 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
765
766 #define DEF_DIR_LEVEL 0
767
768 /* used for f2fs_inode_info->flags */
769 enum {
770 FI_NEW_INODE, /* indicate newly allocated inode */
771 FI_DIRTY_INODE, /* indicate inode is dirty or not */
772 FI_AUTO_RECOVER, /* indicate inode is recoverable */
773 FI_DIRTY_DIR, /* indicate directory has dirty pages */
774 FI_INC_LINK, /* need to increment i_nlink */
775 FI_ACL_MODE, /* indicate acl mode */
776 FI_NO_ALLOC, /* should not allocate any blocks */
777 FI_FREE_NID, /* free allocated nide */
778 FI_NO_EXTENT, /* not to use the extent cache */
779 FI_INLINE_XATTR, /* used for inline xattr */
780 FI_INLINE_DATA, /* used for inline data*/
781 FI_INLINE_DENTRY, /* used for inline dentry */
782 FI_APPEND_WRITE, /* inode has appended data */
783 FI_UPDATE_WRITE, /* inode has in-place-update data */
784 FI_NEED_IPU, /* used for ipu per file */
785 FI_ATOMIC_FILE, /* indicate atomic file */
786 FI_DATA_EXIST, /* indicate data exists */
787 FI_INLINE_DOTS, /* indicate inline dot dentries */
788 FI_SKIP_WRITES, /* should skip data page writeback */
789 FI_OPU_WRITE, /* used for opu per file */
790 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
791 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
792 FI_HOT_DATA, /* indicate file is hot */
793 FI_EXTRA_ATTR, /* indicate file has extra attribute */
794 FI_PROJ_INHERIT, /* indicate file inherits projectid */
795 FI_PIN_FILE, /* indicate file should not be gced */
796 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
797 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
798 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
799 FI_MMAP_FILE, /* indicate file was mmapped */
800 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
801 FI_COMPRESS_RELEASED, /* compressed blocks were released */
802 FI_ALIGNED_WRITE, /* enable aligned write */
803 FI_COW_FILE, /* indicate COW file */
804 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
805 FI_ATOMIC_REPLACE, /* indicate atomic replace */
806 FI_OPENED_FILE, /* indicate file has been opened */
807 FI_MAX, /* max flag, never be used */
808 };
809
810 struct f2fs_inode_info {
811 struct inode vfs_inode; /* serve a vfs inode */
812 unsigned long i_flags; /* keep an inode flags for ioctl */
813 unsigned char i_advise; /* use to give file attribute hints */
814 unsigned char i_dir_level; /* use for dentry level for large dir */
815 union {
816 unsigned int i_current_depth; /* only for directory depth */
817 unsigned short i_gc_failures; /* for gc failure statistic */
818 };
819 unsigned int i_pino; /* parent inode number */
820 umode_t i_acl_mode; /* keep file acl mode temporarily */
821
822 /* Use below internally in f2fs*/
823 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
824 struct f2fs_rwsem i_sem; /* protect fi info */
825 atomic_t dirty_pages; /* # of dirty pages */
826 f2fs_hash_t chash; /* hash value of given file name */
827 unsigned int clevel; /* maximum level of given file name */
828 struct task_struct *task; /* lookup and create consistency */
829 struct task_struct *cp_task; /* separate cp/wb IO stats*/
830 struct task_struct *wb_task; /* indicate inode is in context of writeback */
831 nid_t i_xattr_nid; /* node id that contains xattrs */
832 loff_t last_disk_size; /* lastly written file size */
833 spinlock_t i_size_lock; /* protect last_disk_size */
834
835 #ifdef CONFIG_QUOTA
836 struct dquot __rcu *i_dquot[MAXQUOTAS];
837
838 /* quota space reservation, managed internally by quota code */
839 qsize_t i_reserved_quota;
840 #endif
841 struct list_head dirty_list; /* dirty list for dirs and files */
842 struct list_head gdirty_list; /* linked in global dirty list */
843 struct task_struct *atomic_write_task; /* store atomic write task */
844 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
845 /* cached extent_tree entry */
846 union {
847 struct inode *cow_inode; /* copy-on-write inode for atomic write */
848 struct inode *atomic_inode;
849 /* point to atomic_inode, available only for cow_inode */
850 };
851
852 /* avoid racing between foreground op and gc */
853 struct f2fs_rwsem i_gc_rwsem[2];
854 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
855
856 int i_extra_isize; /* size of extra space located in i_addr */
857 kprojid_t i_projid; /* id for project quota */
858 int i_inline_xattr_size; /* inline xattr size */
859 struct timespec64 i_crtime; /* inode creation time */
860 struct timespec64 i_disk_time[3];/* inode disk times */
861
862 /* for file compress */
863 atomic_t i_compr_blocks; /* # of compressed blocks */
864 unsigned char i_compress_algorithm; /* algorithm type */
865 unsigned char i_log_cluster_size; /* log of cluster size */
866 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
867 unsigned char i_compress_flag; /* compress flag */
868 unsigned int i_cluster_size; /* cluster size */
869
870 unsigned int atomic_write_cnt;
871 loff_t original_i_size; /* original i_size before atomic write */
872 };
873
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)874 static inline void get_read_extent_info(struct extent_info *ext,
875 struct f2fs_extent *i_ext)
876 {
877 ext->fofs = le32_to_cpu(i_ext->fofs);
878 ext->blk = le32_to_cpu(i_ext->blk);
879 ext->len = le32_to_cpu(i_ext->len);
880 }
881
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)882 static inline void set_raw_read_extent(struct extent_info *ext,
883 struct f2fs_extent *i_ext)
884 {
885 i_ext->fofs = cpu_to_le32(ext->fofs);
886 i_ext->blk = cpu_to_le32(ext->blk);
887 i_ext->len = cpu_to_le32(ext->len);
888 }
889
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)890 static inline bool __is_discard_mergeable(struct discard_info *back,
891 struct discard_info *front, unsigned int max_len)
892 {
893 return (back->lstart + back->len == front->lstart) &&
894 (back->len + front->len <= max_len);
895 }
896
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)897 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
898 struct discard_info *back, unsigned int max_len)
899 {
900 return __is_discard_mergeable(back, cur, max_len);
901 }
902
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)903 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
904 struct discard_info *front, unsigned int max_len)
905 {
906 return __is_discard_mergeable(cur, front, max_len);
907 }
908
909 /*
910 * For free nid management
911 */
912 enum nid_state {
913 FREE_NID, /* newly added to free nid list */
914 PREALLOC_NID, /* it is preallocated */
915 MAX_NID_STATE,
916 };
917
918 enum nat_state {
919 TOTAL_NAT,
920 DIRTY_NAT,
921 RECLAIMABLE_NAT,
922 MAX_NAT_STATE,
923 };
924
925 struct f2fs_nm_info {
926 block_t nat_blkaddr; /* base disk address of NAT */
927 nid_t max_nid; /* maximum possible node ids */
928 nid_t available_nids; /* # of available node ids */
929 nid_t next_scan_nid; /* the next nid to be scanned */
930 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
931 unsigned int ram_thresh; /* control the memory footprint */
932 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
933 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
934
935 /* NAT cache management */
936 struct radix_tree_root nat_root;/* root of the nat entry cache */
937 struct radix_tree_root nat_set_root;/* root of the nat set cache */
938 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
939 struct list_head nat_entries; /* cached nat entry list (clean) */
940 spinlock_t nat_list_lock; /* protect clean nat entry list */
941 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
942 unsigned int nat_blocks; /* # of nat blocks */
943
944 /* free node ids management */
945 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
946 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
947 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
948 spinlock_t nid_list_lock; /* protect nid lists ops */
949 struct mutex build_lock; /* lock for build free nids */
950 unsigned char **free_nid_bitmap;
951 unsigned char *nat_block_bitmap;
952 unsigned short *free_nid_count; /* free nid count of NAT block */
953
954 /* for checkpoint */
955 char *nat_bitmap; /* NAT bitmap pointer */
956
957 unsigned int nat_bits_blocks; /* # of nat bits blocks */
958 unsigned char *nat_bits; /* NAT bits blocks */
959 unsigned char *full_nat_bits; /* full NAT pages */
960 unsigned char *empty_nat_bits; /* empty NAT pages */
961 #ifdef CONFIG_F2FS_CHECK_FS
962 char *nat_bitmap_mir; /* NAT bitmap mirror */
963 #endif
964 int bitmap_size; /* bitmap size */
965 };
966
967 /*
968 * this structure is used as one of function parameters.
969 * all the information are dedicated to a given direct node block determined
970 * by the data offset in a file.
971 */
972 struct dnode_of_data {
973 struct inode *inode; /* vfs inode pointer */
974 struct page *inode_page; /* its inode page, NULL is possible */
975 struct page *node_page; /* cached direct node page */
976 nid_t nid; /* node id of the direct node block */
977 unsigned int ofs_in_node; /* data offset in the node page */
978 bool inode_page_locked; /* inode page is locked or not */
979 bool node_changed; /* is node block changed */
980 char cur_level; /* level of hole node page */
981 char max_level; /* level of current page located */
982 block_t data_blkaddr; /* block address of the node block */
983 };
984
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)985 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
986 struct page *ipage, struct page *npage, nid_t nid)
987 {
988 memset(dn, 0, sizeof(*dn));
989 dn->inode = inode;
990 dn->inode_page = ipage;
991 dn->node_page = npage;
992 dn->nid = nid;
993 }
994
995 /*
996 * For SIT manager
997 *
998 * By default, there are 6 active log areas across the whole main area.
999 * When considering hot and cold data separation to reduce cleaning overhead,
1000 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1001 * respectively.
1002 * In the current design, you should not change the numbers intentionally.
1003 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1004 * logs individually according to the underlying devices. (default: 6)
1005 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1006 * data and 8 for node logs.
1007 */
1008 #define NR_CURSEG_DATA_TYPE (3)
1009 #define NR_CURSEG_NODE_TYPE (3)
1010 #define NR_CURSEG_INMEM_TYPE (2)
1011 #define NR_CURSEG_RO_TYPE (2)
1012 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1013 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1014
1015 enum {
1016 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1017 CURSEG_WARM_DATA, /* data blocks */
1018 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1019 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1020 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1021 CURSEG_COLD_NODE, /* indirect node blocks */
1022 NR_PERSISTENT_LOG, /* number of persistent log */
1023 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1024 /* pinned file that needs consecutive block address */
1025 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1026 NO_CHECK_TYPE, /* number of persistent & inmem log */
1027 };
1028
1029 struct flush_cmd {
1030 struct completion wait;
1031 struct llist_node llnode;
1032 nid_t ino;
1033 int ret;
1034 };
1035
1036 struct flush_cmd_control {
1037 struct task_struct *f2fs_issue_flush; /* flush thread */
1038 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1039 atomic_t issued_flush; /* # of issued flushes */
1040 atomic_t queued_flush; /* # of queued flushes */
1041 struct llist_head issue_list; /* list for command issue */
1042 struct llist_node *dispatch_list; /* list for command dispatch */
1043 };
1044
1045 struct f2fs_sm_info {
1046 struct sit_info *sit_info; /* whole segment information */
1047 struct free_segmap_info *free_info; /* free segment information */
1048 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1049 struct curseg_info *curseg_array; /* active segment information */
1050
1051 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1052
1053 block_t seg0_blkaddr; /* block address of 0'th segment */
1054 block_t main_blkaddr; /* start block address of main area */
1055 block_t ssa_blkaddr; /* start block address of SSA area */
1056
1057 unsigned int segment_count; /* total # of segments */
1058 unsigned int main_segments; /* # of segments in main area */
1059 unsigned int reserved_segments; /* # of reserved segments */
1060 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1061 unsigned int ovp_segments; /* # of overprovision segments */
1062
1063 /* a threshold to reclaim prefree segments */
1064 unsigned int rec_prefree_segments;
1065
1066 struct list_head sit_entry_set; /* sit entry set list */
1067
1068 unsigned int ipu_policy; /* in-place-update policy */
1069 unsigned int min_ipu_util; /* in-place-update threshold */
1070 unsigned int min_fsync_blocks; /* threshold for fsync */
1071 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1072 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1073 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1074
1075 /* for flush command control */
1076 struct flush_cmd_control *fcc_info;
1077
1078 /* for discard command control */
1079 struct discard_cmd_control *dcc_info;
1080 };
1081
1082 /*
1083 * For superblock
1084 */
1085 /*
1086 * COUNT_TYPE for monitoring
1087 *
1088 * f2fs monitors the number of several block types such as on-writeback,
1089 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1090 */
1091 #define WB_DATA_TYPE(p, f) \
1092 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1093 enum count_type {
1094 F2FS_DIRTY_DENTS,
1095 F2FS_DIRTY_DATA,
1096 F2FS_DIRTY_QDATA,
1097 F2FS_DIRTY_NODES,
1098 F2FS_DIRTY_META,
1099 F2FS_DIRTY_IMETA,
1100 F2FS_WB_CP_DATA,
1101 F2FS_WB_DATA,
1102 F2FS_RD_DATA,
1103 F2FS_RD_NODE,
1104 F2FS_RD_META,
1105 F2FS_DIO_WRITE,
1106 F2FS_DIO_READ,
1107 NR_COUNT_TYPE,
1108 };
1109
1110 /*
1111 * The below are the page types of bios used in submit_bio().
1112 * The available types are:
1113 * DATA User data pages. It operates as async mode.
1114 * NODE Node pages. It operates as async mode.
1115 * META FS metadata pages such as SIT, NAT, CP.
1116 * NR_PAGE_TYPE The number of page types.
1117 * META_FLUSH Make sure the previous pages are written
1118 * with waiting the bio's completion
1119 * ... Only can be used with META.
1120 */
1121 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1122 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1123 enum page_type {
1124 DATA = 0,
1125 NODE = 1, /* should not change this */
1126 META,
1127 NR_PAGE_TYPE,
1128 META_FLUSH,
1129 IPU, /* the below types are used by tracepoints only. */
1130 OPU,
1131 };
1132
1133 enum temp_type {
1134 HOT = 0, /* must be zero for meta bio */
1135 WARM,
1136 COLD,
1137 NR_TEMP_TYPE,
1138 };
1139
1140 enum need_lock_type {
1141 LOCK_REQ = 0,
1142 LOCK_DONE,
1143 LOCK_RETRY,
1144 };
1145
1146 enum cp_reason_type {
1147 CP_NO_NEEDED,
1148 CP_NON_REGULAR,
1149 CP_COMPRESSED,
1150 CP_HARDLINK,
1151 CP_SB_NEED_CP,
1152 CP_WRONG_PINO,
1153 CP_NO_SPC_ROLL,
1154 CP_NODE_NEED_CP,
1155 CP_FASTBOOT_MODE,
1156 CP_SPEC_LOG_NUM,
1157 CP_RECOVER_DIR,
1158 };
1159
1160 enum iostat_type {
1161 /* WRITE IO */
1162 APP_DIRECT_IO, /* app direct write IOs */
1163 APP_BUFFERED_IO, /* app buffered write IOs */
1164 APP_WRITE_IO, /* app write IOs */
1165 APP_MAPPED_IO, /* app mapped IOs */
1166 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1167 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1168 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1169 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1170 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1171 FS_META_IO, /* meta IOs from kworker/reclaimer */
1172 FS_GC_DATA_IO, /* data IOs from forground gc */
1173 FS_GC_NODE_IO, /* node IOs from forground gc */
1174 FS_CP_DATA_IO, /* data IOs from checkpoint */
1175 FS_CP_NODE_IO, /* node IOs from checkpoint */
1176 FS_CP_META_IO, /* meta IOs from checkpoint */
1177
1178 /* READ IO */
1179 APP_DIRECT_READ_IO, /* app direct read IOs */
1180 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1181 APP_READ_IO, /* app read IOs */
1182 APP_MAPPED_READ_IO, /* app mapped read IOs */
1183 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1184 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1185 FS_DATA_READ_IO, /* data read IOs */
1186 FS_GDATA_READ_IO, /* data read IOs from background gc */
1187 FS_CDATA_READ_IO, /* compressed data read IOs */
1188 FS_NODE_READ_IO, /* node read IOs */
1189 FS_META_READ_IO, /* meta read IOs */
1190
1191 /* other */
1192 FS_DISCARD_IO, /* discard */
1193 FS_FLUSH_IO, /* flush */
1194 FS_ZONE_RESET_IO, /* zone reset */
1195 NR_IO_TYPE,
1196 };
1197
1198 struct f2fs_io_info {
1199 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1200 nid_t ino; /* inode number */
1201 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1202 enum temp_type temp; /* contains HOT/WARM/COLD */
1203 enum req_op op; /* contains REQ_OP_ */
1204 blk_opf_t op_flags; /* req_flag_bits */
1205 block_t new_blkaddr; /* new block address to be written */
1206 block_t old_blkaddr; /* old block address before Cow */
1207 struct page *page; /* page to be written */
1208 struct page *encrypted_page; /* encrypted page */
1209 struct page *compressed_page; /* compressed page */
1210 struct list_head list; /* serialize IOs */
1211 unsigned int compr_blocks; /* # of compressed block addresses */
1212 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1213 unsigned int version:8; /* version of the node */
1214 unsigned int submitted:1; /* indicate IO submission */
1215 unsigned int in_list:1; /* indicate fio is in io_list */
1216 unsigned int is_por:1; /* indicate IO is from recovery or not */
1217 unsigned int encrypted:1; /* indicate file is encrypted */
1218 unsigned int meta_gc:1; /* require meta inode GC */
1219 enum iostat_type io_type; /* io type */
1220 struct writeback_control *io_wbc; /* writeback control */
1221 struct bio **bio; /* bio for ipu */
1222 sector_t *last_block; /* last block number in bio */
1223 };
1224
1225 struct bio_entry {
1226 struct bio *bio;
1227 struct list_head list;
1228 };
1229
1230 #define is_read_io(rw) ((rw) == READ)
1231 struct f2fs_bio_info {
1232 struct f2fs_sb_info *sbi; /* f2fs superblock */
1233 struct bio *bio; /* bios to merge */
1234 sector_t last_block_in_bio; /* last block number */
1235 struct f2fs_io_info fio; /* store buffered io info. */
1236 #ifdef CONFIG_BLK_DEV_ZONED
1237 struct completion zone_wait; /* condition value for the previous open zone to close */
1238 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1239 void *bi_private; /* previous bi_private for pending bio */
1240 #endif
1241 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1242 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1243 struct list_head io_list; /* track fios */
1244 struct list_head bio_list; /* bio entry list head */
1245 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1246 };
1247
1248 #define FDEV(i) (sbi->devs[i])
1249 #define RDEV(i) (raw_super->devs[i])
1250 struct f2fs_dev_info {
1251 struct block_device *bdev;
1252 char path[MAX_PATH_LEN];
1253 unsigned int total_segments;
1254 block_t start_blk;
1255 block_t end_blk;
1256 #ifdef CONFIG_BLK_DEV_ZONED
1257 unsigned int nr_blkz; /* Total number of zones */
1258 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1259 #endif
1260 };
1261
1262 enum inode_type {
1263 DIR_INODE, /* for dirty dir inode */
1264 FILE_INODE, /* for dirty regular/symlink inode */
1265 DIRTY_META, /* for all dirtied inode metadata */
1266 NR_INODE_TYPE,
1267 };
1268
1269 /* for inner inode cache management */
1270 struct inode_management {
1271 struct radix_tree_root ino_root; /* ino entry array */
1272 spinlock_t ino_lock; /* for ino entry lock */
1273 struct list_head ino_list; /* inode list head */
1274 unsigned long ino_num; /* number of entries */
1275 };
1276
1277 /* for GC_AT */
1278 struct atgc_management {
1279 bool atgc_enabled; /* ATGC is enabled or not */
1280 struct rb_root_cached root; /* root of victim rb-tree */
1281 struct list_head victim_list; /* linked with all victim entries */
1282 unsigned int victim_count; /* victim count in rb-tree */
1283 unsigned int candidate_ratio; /* candidate ratio */
1284 unsigned int max_candidate_count; /* max candidate count */
1285 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1286 unsigned long long age_threshold; /* age threshold */
1287 };
1288
1289 struct f2fs_gc_control {
1290 unsigned int victim_segno; /* target victim segment number */
1291 int init_gc_type; /* FG_GC or BG_GC */
1292 bool no_bg_gc; /* check the space and stop bg_gc */
1293 bool should_migrate_blocks; /* should migrate blocks */
1294 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1295 unsigned int nr_free_secs; /* # of free sections to do GC */
1296 };
1297
1298 /*
1299 * For s_flag in struct f2fs_sb_info
1300 * Modification on enum should be synchronized with s_flag array
1301 */
1302 enum {
1303 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1304 SBI_IS_CLOSE, /* specify unmounting */
1305 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1306 SBI_POR_DOING, /* recovery is doing or not */
1307 SBI_NEED_SB_WRITE, /* need to recover superblock */
1308 SBI_NEED_CP, /* need to checkpoint */
1309 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1310 SBI_IS_RECOVERED, /* recovered orphan/data */
1311 SBI_CP_DISABLED, /* CP was disabled last mount */
1312 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1313 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1314 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1315 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1316 SBI_IS_RESIZEFS, /* resizefs is in process */
1317 SBI_IS_FREEZING, /* freezefs is in process */
1318 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1319 MAX_SBI_FLAG,
1320 };
1321
1322 enum {
1323 CP_TIME,
1324 REQ_TIME,
1325 DISCARD_TIME,
1326 GC_TIME,
1327 DISABLE_TIME,
1328 UMOUNT_DISCARD_TIMEOUT,
1329 MAX_TIME,
1330 };
1331
1332 /* Note that you need to keep synchronization with this gc_mode_names array */
1333 enum {
1334 GC_NORMAL,
1335 GC_IDLE_CB,
1336 GC_IDLE_GREEDY,
1337 GC_IDLE_AT,
1338 GC_URGENT_HIGH,
1339 GC_URGENT_LOW,
1340 GC_URGENT_MID,
1341 MAX_GC_MODE,
1342 };
1343
1344 enum {
1345 BGGC_MODE_ON, /* background gc is on */
1346 BGGC_MODE_OFF, /* background gc is off */
1347 BGGC_MODE_SYNC, /*
1348 * background gc is on, migrating blocks
1349 * like foreground gc
1350 */
1351 };
1352
1353 enum {
1354 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1355 FS_MODE_LFS, /* use lfs allocation only */
1356 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1357 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1358 };
1359
1360 enum {
1361 ALLOC_MODE_DEFAULT, /* stay default */
1362 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1363 };
1364
1365 enum fsync_mode {
1366 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1367 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1368 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1369 };
1370
1371 enum {
1372 COMPR_MODE_FS, /*
1373 * automatically compress compression
1374 * enabled files
1375 */
1376 COMPR_MODE_USER, /*
1377 * automatical compression is disabled.
1378 * user can control the file compression
1379 * using ioctls
1380 */
1381 };
1382
1383 enum {
1384 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1385 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1386 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1387 };
1388
1389 enum {
1390 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1391 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1392 };
1393
1394 enum errors_option {
1395 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1396 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1397 MOUNT_ERRORS_PANIC, /* panic on errors */
1398 };
1399
1400 enum {
1401 BACKGROUND,
1402 FOREGROUND,
1403 MAX_CALL_TYPE,
1404 TOTAL_CALL = FOREGROUND,
1405 };
1406
1407 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1408 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1409 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1410
1411 /*
1412 * Layout of f2fs page.private:
1413 *
1414 * Layout A: lowest bit should be 1
1415 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1416 * bit 0 PAGE_PRIVATE_NOT_POINTER
1417 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1418 * bit 2 PAGE_PRIVATE_INLINE_INODE
1419 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1420 * bit 4- f2fs private data
1421 *
1422 * Layout B: lowest bit should be 0
1423 * page.private is a wrapped pointer.
1424 */
1425 enum {
1426 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1427 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1428 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1429 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1430 PAGE_PRIVATE_MAX
1431 };
1432
1433 /* For compression */
1434 enum compress_algorithm_type {
1435 COMPRESS_LZO,
1436 COMPRESS_LZ4,
1437 COMPRESS_ZSTD,
1438 COMPRESS_LZORLE,
1439 COMPRESS_MAX,
1440 };
1441
1442 enum compress_flag {
1443 COMPRESS_CHKSUM,
1444 COMPRESS_MAX_FLAG,
1445 };
1446
1447 #define COMPRESS_WATERMARK 20
1448 #define COMPRESS_PERCENT 20
1449
1450 #define COMPRESS_DATA_RESERVED_SIZE 4
1451 struct compress_data {
1452 __le32 clen; /* compressed data size */
1453 __le32 chksum; /* compressed data chksum */
1454 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1455 u8 cdata[]; /* compressed data */
1456 };
1457
1458 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1459
1460 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1461
1462 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1463
1464 #define COMPRESS_LEVEL_OFFSET 8
1465
1466 /* compress context */
1467 struct compress_ctx {
1468 struct inode *inode; /* inode the context belong to */
1469 pgoff_t cluster_idx; /* cluster index number */
1470 unsigned int cluster_size; /* page count in cluster */
1471 unsigned int log_cluster_size; /* log of cluster size */
1472 struct page **rpages; /* pages store raw data in cluster */
1473 unsigned int nr_rpages; /* total page number in rpages */
1474 struct page **cpages; /* pages store compressed data in cluster */
1475 unsigned int nr_cpages; /* total page number in cpages */
1476 unsigned int valid_nr_cpages; /* valid page number in cpages */
1477 void *rbuf; /* virtual mapped address on rpages */
1478 struct compress_data *cbuf; /* virtual mapped address on cpages */
1479 size_t rlen; /* valid data length in rbuf */
1480 size_t clen; /* valid data length in cbuf */
1481 void *private; /* payload buffer for specified compression algorithm */
1482 void *private2; /* extra payload buffer */
1483 };
1484
1485 /* compress context for write IO path */
1486 struct compress_io_ctx {
1487 u32 magic; /* magic number to indicate page is compressed */
1488 struct inode *inode; /* inode the context belong to */
1489 struct page **rpages; /* pages store raw data in cluster */
1490 unsigned int nr_rpages; /* total page number in rpages */
1491 atomic_t pending_pages; /* in-flight compressed page count */
1492 };
1493
1494 /* Context for decompressing one cluster on the read IO path */
1495 struct decompress_io_ctx {
1496 u32 magic; /* magic number to indicate page is compressed */
1497 struct inode *inode; /* inode the context belong to */
1498 pgoff_t cluster_idx; /* cluster index number */
1499 unsigned int cluster_size; /* page count in cluster */
1500 unsigned int log_cluster_size; /* log of cluster size */
1501 struct page **rpages; /* pages store raw data in cluster */
1502 unsigned int nr_rpages; /* total page number in rpages */
1503 struct page **cpages; /* pages store compressed data in cluster */
1504 unsigned int nr_cpages; /* total page number in cpages */
1505 struct page **tpages; /* temp pages to pad holes in cluster */
1506 void *rbuf; /* virtual mapped address on rpages */
1507 struct compress_data *cbuf; /* virtual mapped address on cpages */
1508 size_t rlen; /* valid data length in rbuf */
1509 size_t clen; /* valid data length in cbuf */
1510
1511 /*
1512 * The number of compressed pages remaining to be read in this cluster.
1513 * This is initially nr_cpages. It is decremented by 1 each time a page
1514 * has been read (or failed to be read). When it reaches 0, the cluster
1515 * is decompressed (or an error is reported).
1516 *
1517 * If an error occurs before all the pages have been submitted for I/O,
1518 * then this will never reach 0. In this case the I/O submitter is
1519 * responsible for calling f2fs_decompress_end_io() instead.
1520 */
1521 atomic_t remaining_pages;
1522
1523 /*
1524 * Number of references to this decompress_io_ctx.
1525 *
1526 * One reference is held for I/O completion. This reference is dropped
1527 * after the pagecache pages are updated and unlocked -- either after
1528 * decompression (and verity if enabled), or after an error.
1529 *
1530 * In addition, each compressed page holds a reference while it is in a
1531 * bio. These references are necessary prevent compressed pages from
1532 * being freed while they are still in a bio.
1533 */
1534 refcount_t refcnt;
1535
1536 bool failed; /* IO error occurred before decompression? */
1537 bool need_verity; /* need fs-verity verification after decompression? */
1538 void *private; /* payload buffer for specified decompression algorithm */
1539 void *private2; /* extra payload buffer */
1540 struct work_struct verity_work; /* work to verify the decompressed pages */
1541 struct work_struct free_work; /* work for late free this structure itself */
1542 };
1543
1544 #define NULL_CLUSTER ((unsigned int)(~0))
1545 #define MIN_COMPRESS_LOG_SIZE 2
1546 #define MAX_COMPRESS_LOG_SIZE 8
1547 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1548
1549 struct f2fs_sb_info {
1550 struct super_block *sb; /* pointer to VFS super block */
1551 struct proc_dir_entry *s_proc; /* proc entry */
1552 struct f2fs_super_block *raw_super; /* raw super block pointer */
1553 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1554 int valid_super_block; /* valid super block no */
1555 unsigned long s_flag; /* flags for sbi */
1556 struct mutex writepages; /* mutex for writepages() */
1557
1558 #ifdef CONFIG_BLK_DEV_ZONED
1559 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1560 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1561 #endif
1562
1563 /* for node-related operations */
1564 struct f2fs_nm_info *nm_info; /* node manager */
1565 struct inode *node_inode; /* cache node blocks */
1566
1567 /* for segment-related operations */
1568 struct f2fs_sm_info *sm_info; /* segment manager */
1569
1570 /* for bio operations */
1571 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1572 /* keep migration IO order for LFS mode */
1573 struct f2fs_rwsem io_order_lock;
1574 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1575 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1576
1577 /* for checkpoint */
1578 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1579 int cur_cp_pack; /* remain current cp pack */
1580 spinlock_t cp_lock; /* for flag in ckpt */
1581 struct inode *meta_inode; /* cache meta blocks */
1582 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1583 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1584 struct f2fs_rwsem node_write; /* locking node writes */
1585 struct f2fs_rwsem node_change; /* locking node change */
1586 wait_queue_head_t cp_wait;
1587 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1588 long interval_time[MAX_TIME]; /* to store thresholds */
1589 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1590
1591 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1592
1593 spinlock_t fsync_node_lock; /* for node entry lock */
1594 struct list_head fsync_node_list; /* node list head */
1595 unsigned int fsync_seg_id; /* sequence id */
1596 unsigned int fsync_node_num; /* number of node entries */
1597
1598 /* for orphan inode, use 0'th array */
1599 unsigned int max_orphans; /* max orphan inodes */
1600
1601 /* for inode management */
1602 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1603 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1604 struct mutex flush_lock; /* for flush exclusion */
1605
1606 /* for extent tree cache */
1607 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1608 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1609
1610 /* The threshold used for hot and warm data seperation*/
1611 unsigned int hot_data_age_threshold;
1612 unsigned int warm_data_age_threshold;
1613 unsigned int last_age_weight;
1614
1615 /* basic filesystem units */
1616 unsigned int log_sectors_per_block; /* log2 sectors per block */
1617 unsigned int log_blocksize; /* log2 block size */
1618 unsigned int blocksize; /* block size */
1619 unsigned int root_ino_num; /* root inode number*/
1620 unsigned int node_ino_num; /* node inode number*/
1621 unsigned int meta_ino_num; /* meta inode number*/
1622 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1623 unsigned int blocks_per_seg; /* blocks per segment */
1624 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1625 unsigned int segs_per_sec; /* segments per section */
1626 unsigned int secs_per_zone; /* sections per zone */
1627 unsigned int total_sections; /* total section count */
1628 unsigned int total_node_count; /* total node block count */
1629 unsigned int total_valid_node_count; /* valid node block count */
1630 int dir_level; /* directory level */
1631 bool readdir_ra; /* readahead inode in readdir */
1632 u64 max_io_bytes; /* max io bytes to merge IOs */
1633
1634 block_t user_block_count; /* # of user blocks */
1635 block_t total_valid_block_count; /* # of valid blocks */
1636 block_t discard_blks; /* discard command candidats */
1637 block_t last_valid_block_count; /* for recovery */
1638 block_t reserved_blocks; /* configurable reserved blocks */
1639 block_t current_reserved_blocks; /* current reserved blocks */
1640
1641 /* Additional tracking for no checkpoint mode */
1642 block_t unusable_block_count; /* # of blocks saved by last cp */
1643
1644 unsigned int nquota_files; /* # of quota sysfile */
1645 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1646
1647 /* # of pages, see count_type */
1648 atomic_t nr_pages[NR_COUNT_TYPE];
1649 /* # of allocated blocks */
1650 struct percpu_counter alloc_valid_block_count;
1651 /* # of node block writes as roll forward recovery */
1652 struct percpu_counter rf_node_block_count;
1653
1654 /* writeback control */
1655 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1656
1657 /* valid inode count */
1658 struct percpu_counter total_valid_inode_count;
1659
1660 struct f2fs_mount_info mount_opt; /* mount options */
1661
1662 /* for cleaning operations */
1663 struct f2fs_rwsem gc_lock; /*
1664 * semaphore for GC, avoid
1665 * race between GC and GC or CP
1666 */
1667 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1668 struct atgc_management am; /* atgc management */
1669 unsigned int cur_victim_sec; /* current victim section num */
1670 unsigned int gc_mode; /* current GC state */
1671 unsigned int next_victim_seg[2]; /* next segment in victim section */
1672 spinlock_t gc_remaining_trials_lock;
1673 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1674 unsigned int gc_remaining_trials;
1675
1676 /* for skip statistic */
1677 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1678
1679 /* threshold for gc trials on pinned files */
1680 unsigned short gc_pin_file_threshold;
1681 struct f2fs_rwsem pin_sem;
1682
1683 /* maximum # of trials to find a victim segment for SSR and GC */
1684 unsigned int max_victim_search;
1685 /* migration granularity of garbage collection, unit: segment */
1686 unsigned int migration_granularity;
1687
1688 /*
1689 * for stat information.
1690 * one is for the LFS mode, and the other is for the SSR mode.
1691 */
1692 #ifdef CONFIG_F2FS_STAT_FS
1693 struct f2fs_stat_info *stat_info; /* FS status information */
1694 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1695 unsigned int segment_count[2]; /* # of allocated segments */
1696 unsigned int block_count[2]; /* # of allocated blocks */
1697 atomic_t inplace_count; /* # of inplace update */
1698 /* # of lookup extent cache */
1699 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1700 /* # of hit rbtree extent node */
1701 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1702 /* # of hit cached extent node */
1703 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1704 /* # of hit largest extent node in read extent cache */
1705 atomic64_t read_hit_largest;
1706 atomic_t inline_xattr; /* # of inline_xattr inodes */
1707 atomic_t inline_inode; /* # of inline_data inodes */
1708 atomic_t inline_dir; /* # of inline_dentry inodes */
1709 atomic_t compr_inode; /* # of compressed inodes */
1710 atomic64_t compr_blocks; /* # of compressed blocks */
1711 atomic_t swapfile_inode; /* # of swapfile inodes */
1712 atomic_t atomic_files; /* # of opened atomic file */
1713 atomic_t max_aw_cnt; /* max # of atomic writes */
1714 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1715 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1716 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1717 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1718 #endif
1719 spinlock_t stat_lock; /* lock for stat operations */
1720
1721 /* to attach REQ_META|REQ_FUA flags */
1722 unsigned int data_io_flag;
1723 unsigned int node_io_flag;
1724
1725 /* For sysfs support */
1726 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1727 struct completion s_kobj_unregister;
1728
1729 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1730 struct completion s_stat_kobj_unregister;
1731
1732 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1733 struct completion s_feature_list_kobj_unregister;
1734
1735 /* For shrinker support */
1736 struct list_head s_list;
1737 struct mutex umount_mutex;
1738 unsigned int shrinker_run_no;
1739
1740 /* For multi devices */
1741 int s_ndevs; /* number of devices */
1742 struct f2fs_dev_info *devs; /* for device list */
1743 unsigned int dirty_device; /* for checkpoint data flush */
1744 spinlock_t dev_lock; /* protect dirty_device */
1745 bool aligned_blksize; /* all devices has the same logical blksize */
1746
1747 /* For write statistics */
1748 u64 sectors_written_start;
1749 u64 kbytes_written;
1750
1751 /* Reference to checksum algorithm driver via cryptoapi */
1752 struct crypto_shash *s_chksum_driver;
1753
1754 /* Precomputed FS UUID checksum for seeding other checksums */
1755 __u32 s_chksum_seed;
1756
1757 struct workqueue_struct *post_read_wq; /* post read workqueue */
1758
1759 /*
1760 * If we are in irq context, let's update error information into
1761 * on-disk superblock in the work.
1762 */
1763 struct work_struct s_error_work;
1764 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1765 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1766 spinlock_t error_lock; /* protect errors/stop_reason array */
1767 bool error_dirty; /* errors of sb is dirty */
1768
1769 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1770 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1771
1772 /* For reclaimed segs statistics per each GC mode */
1773 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1774 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1775
1776 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1777
1778 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1779 int max_fragment_hole; /* max hole size for block fragmentation mode */
1780
1781 /* For atomic write statistics */
1782 atomic64_t current_atomic_write;
1783 s64 peak_atomic_write;
1784 u64 committed_atomic_block;
1785 u64 revoked_atomic_block;
1786
1787 #ifdef CONFIG_F2FS_FS_COMPRESSION
1788 struct kmem_cache *page_array_slab; /* page array entry */
1789 unsigned int page_array_slab_size; /* default page array slab size */
1790
1791 /* For runtime compression statistics */
1792 u64 compr_written_block;
1793 u64 compr_saved_block;
1794 u32 compr_new_inode;
1795
1796 /* For compressed block cache */
1797 struct inode *compress_inode; /* cache compressed blocks */
1798 unsigned int compress_percent; /* cache page percentage */
1799 unsigned int compress_watermark; /* cache page watermark */
1800 atomic_t compress_page_hit; /* cache hit count */
1801 #endif
1802
1803 #ifdef CONFIG_F2FS_IOSTAT
1804 /* For app/fs IO statistics */
1805 spinlock_t iostat_lock;
1806 unsigned long long iostat_count[NR_IO_TYPE];
1807 unsigned long long iostat_bytes[NR_IO_TYPE];
1808 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1809 bool iostat_enable;
1810 unsigned long iostat_next_period;
1811 unsigned int iostat_period_ms;
1812
1813 /* For io latency related statistics info in one iostat period */
1814 spinlock_t iostat_lat_lock;
1815 struct iostat_lat_info *iostat_io_lat;
1816 #endif
1817 };
1818
1819 /* Definitions to access f2fs_sb_info */
1820 #define SEGS_TO_BLKS(sbi, segs) \
1821 ((segs) << (sbi)->log_blocks_per_seg)
1822 #define BLKS_TO_SEGS(sbi, blks) \
1823 ((blks) >> (sbi)->log_blocks_per_seg)
1824
1825 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1826 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1827 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1828
1829 __printf(3, 4)
1830 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1831
1832 #define f2fs_err(sbi, fmt, ...) \
1833 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1834 #define f2fs_warn(sbi, fmt, ...) \
1835 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1836 #define f2fs_notice(sbi, fmt, ...) \
1837 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1838 #define f2fs_info(sbi, fmt, ...) \
1839 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1840 #define f2fs_debug(sbi, fmt, ...) \
1841 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1842
1843 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1844 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1845 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1846 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1847 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1848 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1849
1850 #ifdef CONFIG_F2FS_FAULT_INJECTION
1851 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1852 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1853 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1854 const char *func, const char *parent_func)
1855 {
1856 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1857
1858 if (!ffi->inject_rate)
1859 return false;
1860
1861 if (!IS_FAULT_SET(ffi, type))
1862 return false;
1863
1864 atomic_inc(&ffi->inject_ops);
1865 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1866 atomic_set(&ffi->inject_ops, 0);
1867 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1868 f2fs_fault_name[type], func, parent_func);
1869 return true;
1870 }
1871 return false;
1872 }
1873 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1874 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1875 {
1876 return false;
1877 }
1878 #endif
1879
1880 /*
1881 * Test if the mounted volume is a multi-device volume.
1882 * - For a single regular disk volume, sbi->s_ndevs is 0.
1883 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1884 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1885 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1886 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1887 {
1888 return sbi->s_ndevs > 1;
1889 }
1890
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1891 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1892 {
1893 unsigned long now = jiffies;
1894
1895 sbi->last_time[type] = now;
1896
1897 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1898 if (type == REQ_TIME) {
1899 sbi->last_time[DISCARD_TIME] = now;
1900 sbi->last_time[GC_TIME] = now;
1901 }
1902 }
1903
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1904 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1905 {
1906 unsigned long interval = sbi->interval_time[type] * HZ;
1907
1908 return time_after(jiffies, sbi->last_time[type] + interval);
1909 }
1910
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1911 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1912 int type)
1913 {
1914 unsigned long interval = sbi->interval_time[type] * HZ;
1915 unsigned int wait_ms = 0;
1916 long delta;
1917
1918 delta = (sbi->last_time[type] + interval) - jiffies;
1919 if (delta > 0)
1920 wait_ms = jiffies_to_msecs(delta);
1921
1922 return wait_ms;
1923 }
1924
1925 /*
1926 * Inline functions
1927 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1928 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1929 const void *address, unsigned int length)
1930 {
1931 struct {
1932 struct shash_desc shash;
1933 char ctx[4];
1934 } desc;
1935 int err;
1936
1937 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1938
1939 desc.shash.tfm = sbi->s_chksum_driver;
1940 *(u32 *)desc.ctx = crc;
1941
1942 err = crypto_shash_update(&desc.shash, address, length);
1943 BUG_ON(err);
1944
1945 return *(u32 *)desc.ctx;
1946 }
1947
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1948 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1949 unsigned int length)
1950 {
1951 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1952 }
1953
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1954 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1955 void *buf, size_t buf_size)
1956 {
1957 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1958 }
1959
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1960 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1961 const void *address, unsigned int length)
1962 {
1963 return __f2fs_crc32(sbi, crc, address, length);
1964 }
1965
F2FS_I(struct inode * inode)1966 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1967 {
1968 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1969 }
1970
F2FS_SB(struct super_block * sb)1971 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1972 {
1973 return sb->s_fs_info;
1974 }
1975
F2FS_I_SB(struct inode * inode)1976 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1977 {
1978 return F2FS_SB(inode->i_sb);
1979 }
1980
F2FS_M_SB(struct address_space * mapping)1981 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1982 {
1983 return F2FS_I_SB(mapping->host);
1984 }
1985
F2FS_P_SB(struct page * page)1986 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1987 {
1988 return F2FS_M_SB(page_file_mapping(page));
1989 }
1990
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1991 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1992 {
1993 return (struct f2fs_super_block *)(sbi->raw_super);
1994 }
1995
F2FS_CKPT(struct f2fs_sb_info * sbi)1996 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1997 {
1998 return (struct f2fs_checkpoint *)(sbi->ckpt);
1999 }
2000
F2FS_NODE(struct page * page)2001 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2002 {
2003 return (struct f2fs_node *)page_address(page);
2004 }
2005
F2FS_INODE(struct page * page)2006 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2007 {
2008 return &((struct f2fs_node *)page_address(page))->i;
2009 }
2010
NM_I(struct f2fs_sb_info * sbi)2011 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2012 {
2013 return (struct f2fs_nm_info *)(sbi->nm_info);
2014 }
2015
SM_I(struct f2fs_sb_info * sbi)2016 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2017 {
2018 return (struct f2fs_sm_info *)(sbi->sm_info);
2019 }
2020
SIT_I(struct f2fs_sb_info * sbi)2021 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2022 {
2023 return (struct sit_info *)(SM_I(sbi)->sit_info);
2024 }
2025
FREE_I(struct f2fs_sb_info * sbi)2026 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2027 {
2028 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2029 }
2030
DIRTY_I(struct f2fs_sb_info * sbi)2031 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2032 {
2033 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2034 }
2035
META_MAPPING(struct f2fs_sb_info * sbi)2036 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2037 {
2038 return sbi->meta_inode->i_mapping;
2039 }
2040
NODE_MAPPING(struct f2fs_sb_info * sbi)2041 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2042 {
2043 return sbi->node_inode->i_mapping;
2044 }
2045
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2046 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2047 {
2048 return test_bit(type, &sbi->s_flag);
2049 }
2050
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2051 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2052 {
2053 set_bit(type, &sbi->s_flag);
2054 }
2055
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2056 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2057 {
2058 clear_bit(type, &sbi->s_flag);
2059 }
2060
cur_cp_version(struct f2fs_checkpoint * cp)2061 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2062 {
2063 return le64_to_cpu(cp->checkpoint_ver);
2064 }
2065
f2fs_qf_ino(struct super_block * sb,int type)2066 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2067 {
2068 if (type < F2FS_MAX_QUOTAS)
2069 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2070 return 0;
2071 }
2072
cur_cp_crc(struct f2fs_checkpoint * cp)2073 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2074 {
2075 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2076 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2077 }
2078
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2079 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2080 {
2081 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2082
2083 return ckpt_flags & f;
2084 }
2085
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2086 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2087 {
2088 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2089 }
2090
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2091 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2092 {
2093 unsigned int ckpt_flags;
2094
2095 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2096 ckpt_flags |= f;
2097 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2098 }
2099
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2100 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2101 {
2102 unsigned long flags;
2103
2104 spin_lock_irqsave(&sbi->cp_lock, flags);
2105 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2106 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2107 }
2108
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2109 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2110 {
2111 unsigned int ckpt_flags;
2112
2113 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2114 ckpt_flags &= (~f);
2115 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2116 }
2117
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2118 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2119 {
2120 unsigned long flags;
2121
2122 spin_lock_irqsave(&sbi->cp_lock, flags);
2123 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2124 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2125 }
2126
2127 #define init_f2fs_rwsem(sem) \
2128 do { \
2129 static struct lock_class_key __key; \
2130 \
2131 __init_f2fs_rwsem((sem), #sem, &__key); \
2132 } while (0)
2133
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2134 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2135 const char *sem_name, struct lock_class_key *key)
2136 {
2137 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2139 init_waitqueue_head(&sem->read_waiters);
2140 #endif
2141 }
2142
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2143 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2144 {
2145 return rwsem_is_locked(&sem->internal_rwsem);
2146 }
2147
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2148 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2149 {
2150 return rwsem_is_contended(&sem->internal_rwsem);
2151 }
2152
f2fs_down_read(struct f2fs_rwsem * sem)2153 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2154 {
2155 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2156 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2157 #else
2158 down_read(&sem->internal_rwsem);
2159 #endif
2160 }
2161
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2162 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2163 {
2164 return down_read_trylock(&sem->internal_rwsem);
2165 }
2166
f2fs_up_read(struct f2fs_rwsem * sem)2167 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2168 {
2169 up_read(&sem->internal_rwsem);
2170 }
2171
f2fs_down_write(struct f2fs_rwsem * sem)2172 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2173 {
2174 down_write(&sem->internal_rwsem);
2175 }
2176
2177 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2178 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2179 {
2180 down_read_nested(&sem->internal_rwsem, subclass);
2181 }
2182
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2183 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2184 {
2185 down_write_nested(&sem->internal_rwsem, subclass);
2186 }
2187 #else
2188 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2189 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2190 #endif
2191
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2192 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2193 {
2194 return down_write_trylock(&sem->internal_rwsem);
2195 }
2196
f2fs_up_write(struct f2fs_rwsem * sem)2197 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2198 {
2199 up_write(&sem->internal_rwsem);
2200 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2201 wake_up_all(&sem->read_waiters);
2202 #endif
2203 }
2204
f2fs_lock_op(struct f2fs_sb_info * sbi)2205 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2206 {
2207 f2fs_down_read(&sbi->cp_rwsem);
2208 }
2209
f2fs_trylock_op(struct f2fs_sb_info * sbi)2210 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2211 {
2212 if (time_to_inject(sbi, FAULT_LOCK_OP))
2213 return 0;
2214 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2215 }
2216
f2fs_unlock_op(struct f2fs_sb_info * sbi)2217 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2218 {
2219 f2fs_up_read(&sbi->cp_rwsem);
2220 }
2221
f2fs_lock_all(struct f2fs_sb_info * sbi)2222 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2223 {
2224 f2fs_down_write(&sbi->cp_rwsem);
2225 }
2226
f2fs_unlock_all(struct f2fs_sb_info * sbi)2227 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2228 {
2229 f2fs_up_write(&sbi->cp_rwsem);
2230 }
2231
__get_cp_reason(struct f2fs_sb_info * sbi)2232 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2233 {
2234 int reason = CP_SYNC;
2235
2236 if (test_opt(sbi, FASTBOOT))
2237 reason = CP_FASTBOOT;
2238 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2239 reason = CP_UMOUNT;
2240 return reason;
2241 }
2242
__remain_node_summaries(int reason)2243 static inline bool __remain_node_summaries(int reason)
2244 {
2245 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2246 }
2247
__exist_node_summaries(struct f2fs_sb_info * sbi)2248 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2249 {
2250 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2251 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2252 }
2253
2254 /*
2255 * Check whether the inode has blocks or not
2256 */
F2FS_HAS_BLOCKS(struct inode * inode)2257 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2258 {
2259 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2260
2261 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2262 }
2263
f2fs_has_xattr_block(unsigned int ofs)2264 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2265 {
2266 return ofs == XATTR_NODE_OFFSET;
2267 }
2268
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2269 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2270 struct inode *inode, bool cap)
2271 {
2272 if (!inode)
2273 return true;
2274 if (!test_opt(sbi, RESERVE_ROOT))
2275 return false;
2276 if (IS_NOQUOTA(inode))
2277 return true;
2278 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2279 return true;
2280 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2281 in_group_p(F2FS_OPTION(sbi).s_resgid))
2282 return true;
2283 if (cap && capable(CAP_SYS_RESOURCE))
2284 return true;
2285 return false;
2286 }
2287
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2288 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2289 struct inode *inode, bool cap)
2290 {
2291 block_t avail_user_block_count;
2292
2293 avail_user_block_count = sbi->user_block_count -
2294 sbi->current_reserved_blocks;
2295
2296 if (!__allow_reserved_blocks(sbi, inode, cap))
2297 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2298
2299 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2300 if (avail_user_block_count > sbi->unusable_block_count)
2301 avail_user_block_count -= sbi->unusable_block_count;
2302 else
2303 avail_user_block_count = 0;
2304 }
2305
2306 return avail_user_block_count;
2307 }
2308
2309 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2310 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2311 struct inode *inode, blkcnt_t *count, bool partial)
2312 {
2313 long long diff = 0, release = 0;
2314 block_t avail_user_block_count;
2315 int ret;
2316
2317 ret = dquot_reserve_block(inode, *count);
2318 if (ret)
2319 return ret;
2320
2321 if (time_to_inject(sbi, FAULT_BLOCK)) {
2322 release = *count;
2323 goto release_quota;
2324 }
2325
2326 /*
2327 * let's increase this in prior to actual block count change in order
2328 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2329 */
2330 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2331
2332 spin_lock(&sbi->stat_lock);
2333
2334 avail_user_block_count = get_available_block_count(sbi, inode, true);
2335 diff = (long long)sbi->total_valid_block_count + *count -
2336 avail_user_block_count;
2337 if (unlikely(diff > 0)) {
2338 if (!partial) {
2339 spin_unlock(&sbi->stat_lock);
2340 release = *count;
2341 goto enospc;
2342 }
2343 if (diff > *count)
2344 diff = *count;
2345 *count -= diff;
2346 release = diff;
2347 if (!*count) {
2348 spin_unlock(&sbi->stat_lock);
2349 goto enospc;
2350 }
2351 }
2352 sbi->total_valid_block_count += (block_t)(*count);
2353
2354 spin_unlock(&sbi->stat_lock);
2355
2356 if (unlikely(release)) {
2357 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2358 dquot_release_reservation_block(inode, release);
2359 }
2360 f2fs_i_blocks_write(inode, *count, true, true);
2361 return 0;
2362
2363 enospc:
2364 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2365 release_quota:
2366 dquot_release_reservation_block(inode, release);
2367 return -ENOSPC;
2368 }
2369
2370 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2371 static inline bool page_private_##name(struct page *page) \
2372 { \
2373 return PagePrivate(page) && \
2374 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2375 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2376 }
2377
2378 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2379 static inline void set_page_private_##name(struct page *page) \
2380 { \
2381 if (!PagePrivate(page)) \
2382 attach_page_private(page, (void *)0); \
2383 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2384 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2385 }
2386
2387 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2388 static inline void clear_page_private_##name(struct page *page) \
2389 { \
2390 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2391 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2392 detach_page_private(page); \
2393 }
2394
2395 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2396 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2397 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2398
2399 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2400 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2401 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2402
2403 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2404 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2405 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2406
get_page_private_data(struct page * page)2407 static inline unsigned long get_page_private_data(struct page *page)
2408 {
2409 unsigned long data = page_private(page);
2410
2411 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2412 return 0;
2413 return data >> PAGE_PRIVATE_MAX;
2414 }
2415
set_page_private_data(struct page * page,unsigned long data)2416 static inline void set_page_private_data(struct page *page, unsigned long data)
2417 {
2418 if (!PagePrivate(page))
2419 attach_page_private(page, (void *)0);
2420 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2421 page_private(page) |= data << PAGE_PRIVATE_MAX;
2422 }
2423
clear_page_private_data(struct page * page)2424 static inline void clear_page_private_data(struct page *page)
2425 {
2426 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2427 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2428 detach_page_private(page);
2429 }
2430
clear_page_private_all(struct page * page)2431 static inline void clear_page_private_all(struct page *page)
2432 {
2433 clear_page_private_data(page);
2434 clear_page_private_reference(page);
2435 clear_page_private_gcing(page);
2436 clear_page_private_inline(page);
2437
2438 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2439 }
2440
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2441 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2442 struct inode *inode,
2443 block_t count)
2444 {
2445 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2446
2447 spin_lock(&sbi->stat_lock);
2448 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2449 sbi->total_valid_block_count -= (block_t)count;
2450 if (sbi->reserved_blocks &&
2451 sbi->current_reserved_blocks < sbi->reserved_blocks)
2452 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2453 sbi->current_reserved_blocks + count);
2454 spin_unlock(&sbi->stat_lock);
2455 if (unlikely(inode->i_blocks < sectors)) {
2456 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2457 inode->i_ino,
2458 (unsigned long long)inode->i_blocks,
2459 (unsigned long long)sectors);
2460 set_sbi_flag(sbi, SBI_NEED_FSCK);
2461 return;
2462 }
2463 f2fs_i_blocks_write(inode, count, false, true);
2464 }
2465
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2466 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2467 {
2468 atomic_inc(&sbi->nr_pages[count_type]);
2469
2470 if (count_type == F2FS_DIRTY_DENTS ||
2471 count_type == F2FS_DIRTY_NODES ||
2472 count_type == F2FS_DIRTY_META ||
2473 count_type == F2FS_DIRTY_QDATA ||
2474 count_type == F2FS_DIRTY_IMETA)
2475 set_sbi_flag(sbi, SBI_IS_DIRTY);
2476 }
2477
inode_inc_dirty_pages(struct inode * inode)2478 static inline void inode_inc_dirty_pages(struct inode *inode)
2479 {
2480 atomic_inc(&F2FS_I(inode)->dirty_pages);
2481 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2482 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2483 if (IS_NOQUOTA(inode))
2484 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2485 }
2486
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2487 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2488 {
2489 atomic_dec(&sbi->nr_pages[count_type]);
2490 }
2491
inode_dec_dirty_pages(struct inode * inode)2492 static inline void inode_dec_dirty_pages(struct inode *inode)
2493 {
2494 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2495 !S_ISLNK(inode->i_mode))
2496 return;
2497
2498 atomic_dec(&F2FS_I(inode)->dirty_pages);
2499 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2500 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2501 if (IS_NOQUOTA(inode))
2502 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2503 }
2504
inc_atomic_write_cnt(struct inode * inode)2505 static inline void inc_atomic_write_cnt(struct inode *inode)
2506 {
2507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2508 struct f2fs_inode_info *fi = F2FS_I(inode);
2509 u64 current_write;
2510
2511 fi->atomic_write_cnt++;
2512 atomic64_inc(&sbi->current_atomic_write);
2513 current_write = atomic64_read(&sbi->current_atomic_write);
2514 if (current_write > sbi->peak_atomic_write)
2515 sbi->peak_atomic_write = current_write;
2516 }
2517
release_atomic_write_cnt(struct inode * inode)2518 static inline void release_atomic_write_cnt(struct inode *inode)
2519 {
2520 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2521 struct f2fs_inode_info *fi = F2FS_I(inode);
2522
2523 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2524 fi->atomic_write_cnt = 0;
2525 }
2526
get_pages(struct f2fs_sb_info * sbi,int count_type)2527 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2528 {
2529 return atomic_read(&sbi->nr_pages[count_type]);
2530 }
2531
get_dirty_pages(struct inode * inode)2532 static inline int get_dirty_pages(struct inode *inode)
2533 {
2534 return atomic_read(&F2FS_I(inode)->dirty_pages);
2535 }
2536
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2537 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2538 {
2539 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2540 BLKS_PER_SEC(sbi));
2541 }
2542
valid_user_blocks(struct f2fs_sb_info * sbi)2543 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2544 {
2545 return sbi->total_valid_block_count;
2546 }
2547
discard_blocks(struct f2fs_sb_info * sbi)2548 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2549 {
2550 return sbi->discard_blks;
2551 }
2552
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2553 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2554 {
2555 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2556
2557 /* return NAT or SIT bitmap */
2558 if (flag == NAT_BITMAP)
2559 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2560 else if (flag == SIT_BITMAP)
2561 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2562
2563 return 0;
2564 }
2565
__cp_payload(struct f2fs_sb_info * sbi)2566 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2567 {
2568 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2569 }
2570
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2571 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2572 {
2573 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2574 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2575 int offset;
2576
2577 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2578 offset = (flag == SIT_BITMAP) ?
2579 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2580 /*
2581 * if large_nat_bitmap feature is enabled, leave checksum
2582 * protection for all nat/sit bitmaps.
2583 */
2584 return tmp_ptr + offset + sizeof(__le32);
2585 }
2586
2587 if (__cp_payload(sbi) > 0) {
2588 if (flag == NAT_BITMAP)
2589 return tmp_ptr;
2590 else
2591 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2592 } else {
2593 offset = (flag == NAT_BITMAP) ?
2594 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2595 return tmp_ptr + offset;
2596 }
2597 }
2598
__start_cp_addr(struct f2fs_sb_info * sbi)2599 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2600 {
2601 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2602
2603 if (sbi->cur_cp_pack == 2)
2604 start_addr += BLKS_PER_SEG(sbi);
2605 return start_addr;
2606 }
2607
__start_cp_next_addr(struct f2fs_sb_info * sbi)2608 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2609 {
2610 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2611
2612 if (sbi->cur_cp_pack == 1)
2613 start_addr += BLKS_PER_SEG(sbi);
2614 return start_addr;
2615 }
2616
__set_cp_next_pack(struct f2fs_sb_info * sbi)2617 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2618 {
2619 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2620 }
2621
__start_sum_addr(struct f2fs_sb_info * sbi)2622 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2623 {
2624 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2625 }
2626
2627 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2628 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2629 struct inode *inode, bool is_inode)
2630 {
2631 block_t valid_block_count;
2632 unsigned int valid_node_count;
2633 unsigned int avail_user_block_count;
2634 int err;
2635
2636 if (is_inode) {
2637 if (inode) {
2638 err = dquot_alloc_inode(inode);
2639 if (err)
2640 return err;
2641 }
2642 } else {
2643 err = dquot_reserve_block(inode, 1);
2644 if (err)
2645 return err;
2646 }
2647
2648 if (time_to_inject(sbi, FAULT_BLOCK))
2649 goto enospc;
2650
2651 spin_lock(&sbi->stat_lock);
2652
2653 valid_block_count = sbi->total_valid_block_count + 1;
2654 avail_user_block_count = get_available_block_count(sbi, inode, false);
2655
2656 if (unlikely(valid_block_count > avail_user_block_count)) {
2657 spin_unlock(&sbi->stat_lock);
2658 goto enospc;
2659 }
2660
2661 valid_node_count = sbi->total_valid_node_count + 1;
2662 if (unlikely(valid_node_count > sbi->total_node_count)) {
2663 spin_unlock(&sbi->stat_lock);
2664 goto enospc;
2665 }
2666
2667 sbi->total_valid_node_count++;
2668 sbi->total_valid_block_count++;
2669 spin_unlock(&sbi->stat_lock);
2670
2671 if (inode) {
2672 if (is_inode)
2673 f2fs_mark_inode_dirty_sync(inode, true);
2674 else
2675 f2fs_i_blocks_write(inode, 1, true, true);
2676 }
2677
2678 percpu_counter_inc(&sbi->alloc_valid_block_count);
2679 return 0;
2680
2681 enospc:
2682 if (is_inode) {
2683 if (inode)
2684 dquot_free_inode(inode);
2685 } else {
2686 dquot_release_reservation_block(inode, 1);
2687 }
2688 return -ENOSPC;
2689 }
2690
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2691 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2692 struct inode *inode, bool is_inode)
2693 {
2694 spin_lock(&sbi->stat_lock);
2695
2696 if (unlikely(!sbi->total_valid_block_count ||
2697 !sbi->total_valid_node_count)) {
2698 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2699 sbi->total_valid_block_count,
2700 sbi->total_valid_node_count);
2701 set_sbi_flag(sbi, SBI_NEED_FSCK);
2702 } else {
2703 sbi->total_valid_block_count--;
2704 sbi->total_valid_node_count--;
2705 }
2706
2707 if (sbi->reserved_blocks &&
2708 sbi->current_reserved_blocks < sbi->reserved_blocks)
2709 sbi->current_reserved_blocks++;
2710
2711 spin_unlock(&sbi->stat_lock);
2712
2713 if (is_inode) {
2714 dquot_free_inode(inode);
2715 } else {
2716 if (unlikely(inode->i_blocks == 0)) {
2717 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2718 inode->i_ino,
2719 (unsigned long long)inode->i_blocks);
2720 set_sbi_flag(sbi, SBI_NEED_FSCK);
2721 return;
2722 }
2723 f2fs_i_blocks_write(inode, 1, false, true);
2724 }
2725 }
2726
valid_node_count(struct f2fs_sb_info * sbi)2727 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2728 {
2729 return sbi->total_valid_node_count;
2730 }
2731
inc_valid_inode_count(struct f2fs_sb_info * sbi)2732 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2733 {
2734 percpu_counter_inc(&sbi->total_valid_inode_count);
2735 }
2736
dec_valid_inode_count(struct f2fs_sb_info * sbi)2737 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2738 {
2739 percpu_counter_dec(&sbi->total_valid_inode_count);
2740 }
2741
valid_inode_count(struct f2fs_sb_info * sbi)2742 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2743 {
2744 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2745 }
2746
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2747 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2748 pgoff_t index, bool for_write)
2749 {
2750 struct page *page;
2751 unsigned int flags;
2752
2753 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2754 if (!for_write)
2755 page = find_get_page_flags(mapping, index,
2756 FGP_LOCK | FGP_ACCESSED);
2757 else
2758 page = find_lock_page(mapping, index);
2759 if (page)
2760 return page;
2761
2762 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2763 return NULL;
2764 }
2765
2766 if (!for_write)
2767 return grab_cache_page(mapping, index);
2768
2769 flags = memalloc_nofs_save();
2770 page = grab_cache_page_write_begin(mapping, index);
2771 memalloc_nofs_restore(flags);
2772
2773 return page;
2774 }
2775
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2776 static inline struct page *f2fs_pagecache_get_page(
2777 struct address_space *mapping, pgoff_t index,
2778 fgf_t fgp_flags, gfp_t gfp_mask)
2779 {
2780 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2781 return NULL;
2782
2783 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2784 }
2785
f2fs_put_page(struct page * page,int unlock)2786 static inline void f2fs_put_page(struct page *page, int unlock)
2787 {
2788 if (!page)
2789 return;
2790
2791 if (unlock) {
2792 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2793 unlock_page(page);
2794 }
2795 put_page(page);
2796 }
2797
f2fs_put_dnode(struct dnode_of_data * dn)2798 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2799 {
2800 if (dn->node_page)
2801 f2fs_put_page(dn->node_page, 1);
2802 if (dn->inode_page && dn->node_page != dn->inode_page)
2803 f2fs_put_page(dn->inode_page, 0);
2804 dn->node_page = NULL;
2805 dn->inode_page = NULL;
2806 }
2807
f2fs_kmem_cache_create(const char * name,size_t size)2808 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2809 size_t size)
2810 {
2811 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2812 }
2813
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2814 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2815 gfp_t flags)
2816 {
2817 void *entry;
2818
2819 entry = kmem_cache_alloc(cachep, flags);
2820 if (!entry)
2821 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2822 return entry;
2823 }
2824
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2825 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2826 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2827 {
2828 if (nofail)
2829 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2830
2831 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2832 return NULL;
2833
2834 return kmem_cache_alloc(cachep, flags);
2835 }
2836
is_inflight_io(struct f2fs_sb_info * sbi,int type)2837 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2838 {
2839 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2840 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2841 get_pages(sbi, F2FS_WB_CP_DATA) ||
2842 get_pages(sbi, F2FS_DIO_READ) ||
2843 get_pages(sbi, F2FS_DIO_WRITE))
2844 return true;
2845
2846 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2847 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2848 return true;
2849
2850 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2851 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2852 return true;
2853 return false;
2854 }
2855
is_idle(struct f2fs_sb_info * sbi,int type)2856 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2857 {
2858 if (sbi->gc_mode == GC_URGENT_HIGH)
2859 return true;
2860
2861 if (is_inflight_io(sbi, type))
2862 return false;
2863
2864 if (sbi->gc_mode == GC_URGENT_MID)
2865 return true;
2866
2867 if (sbi->gc_mode == GC_URGENT_LOW &&
2868 (type == DISCARD_TIME || type == GC_TIME))
2869 return true;
2870
2871 return f2fs_time_over(sbi, type);
2872 }
2873
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2874 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2875 unsigned long index, void *item)
2876 {
2877 while (radix_tree_insert(root, index, item))
2878 cond_resched();
2879 }
2880
2881 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2882
IS_INODE(struct page * page)2883 static inline bool IS_INODE(struct page *page)
2884 {
2885 struct f2fs_node *p = F2FS_NODE(page);
2886
2887 return RAW_IS_INODE(p);
2888 }
2889
offset_in_addr(struct f2fs_inode * i)2890 static inline int offset_in_addr(struct f2fs_inode *i)
2891 {
2892 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2893 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2894 }
2895
blkaddr_in_node(struct f2fs_node * node)2896 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2897 {
2898 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2899 }
2900
2901 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2902 static inline block_t data_blkaddr(struct inode *inode,
2903 struct page *node_page, unsigned int offset)
2904 {
2905 struct f2fs_node *raw_node;
2906 __le32 *addr_array;
2907 int base = 0;
2908 bool is_inode = IS_INODE(node_page);
2909
2910 raw_node = F2FS_NODE(node_page);
2911
2912 if (is_inode) {
2913 if (!inode)
2914 /* from GC path only */
2915 base = offset_in_addr(&raw_node->i);
2916 else if (f2fs_has_extra_attr(inode))
2917 base = get_extra_isize(inode);
2918 }
2919
2920 addr_array = blkaddr_in_node(raw_node);
2921 return le32_to_cpu(addr_array[base + offset]);
2922 }
2923
f2fs_data_blkaddr(struct dnode_of_data * dn)2924 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2925 {
2926 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2927 }
2928
f2fs_test_bit(unsigned int nr,char * addr)2929 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2930 {
2931 int mask;
2932
2933 addr += (nr >> 3);
2934 mask = BIT(7 - (nr & 0x07));
2935 return mask & *addr;
2936 }
2937
f2fs_set_bit(unsigned int nr,char * addr)2938 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2939 {
2940 int mask;
2941
2942 addr += (nr >> 3);
2943 mask = BIT(7 - (nr & 0x07));
2944 *addr |= mask;
2945 }
2946
f2fs_clear_bit(unsigned int nr,char * addr)2947 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2948 {
2949 int mask;
2950
2951 addr += (nr >> 3);
2952 mask = BIT(7 - (nr & 0x07));
2953 *addr &= ~mask;
2954 }
2955
f2fs_test_and_set_bit(unsigned int nr,char * addr)2956 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2957 {
2958 int mask;
2959 int ret;
2960
2961 addr += (nr >> 3);
2962 mask = BIT(7 - (nr & 0x07));
2963 ret = mask & *addr;
2964 *addr |= mask;
2965 return ret;
2966 }
2967
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2968 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2969 {
2970 int mask;
2971 int ret;
2972
2973 addr += (nr >> 3);
2974 mask = BIT(7 - (nr & 0x07));
2975 ret = mask & *addr;
2976 *addr &= ~mask;
2977 return ret;
2978 }
2979
f2fs_change_bit(unsigned int nr,char * addr)2980 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2981 {
2982 int mask;
2983
2984 addr += (nr >> 3);
2985 mask = BIT(7 - (nr & 0x07));
2986 *addr ^= mask;
2987 }
2988
2989 /*
2990 * On-disk inode flags (f2fs_inode::i_flags)
2991 */
2992 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2993 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2994 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2995 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2996 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2997 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2998 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2999 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3000 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3001 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3002 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3003
3004 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3005
3006 /* Flags that should be inherited by new inodes from their parent. */
3007 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3008 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3009 F2FS_CASEFOLD_FL)
3010
3011 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3012 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3013 F2FS_CASEFOLD_FL))
3014
3015 /* Flags that are appropriate for non-directories/regular files. */
3016 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3017
f2fs_mask_flags(umode_t mode,__u32 flags)3018 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3019 {
3020 if (S_ISDIR(mode))
3021 return flags;
3022 else if (S_ISREG(mode))
3023 return flags & F2FS_REG_FLMASK;
3024 else
3025 return flags & F2FS_OTHER_FLMASK;
3026 }
3027
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3028 static inline void __mark_inode_dirty_flag(struct inode *inode,
3029 int flag, bool set)
3030 {
3031 switch (flag) {
3032 case FI_INLINE_XATTR:
3033 case FI_INLINE_DATA:
3034 case FI_INLINE_DENTRY:
3035 case FI_NEW_INODE:
3036 if (set)
3037 return;
3038 fallthrough;
3039 case FI_DATA_EXIST:
3040 case FI_INLINE_DOTS:
3041 case FI_PIN_FILE:
3042 case FI_COMPRESS_RELEASED:
3043 case FI_ATOMIC_COMMITTED:
3044 f2fs_mark_inode_dirty_sync(inode, true);
3045 }
3046 }
3047
set_inode_flag(struct inode * inode,int flag)3048 static inline void set_inode_flag(struct inode *inode, int flag)
3049 {
3050 set_bit(flag, F2FS_I(inode)->flags);
3051 __mark_inode_dirty_flag(inode, flag, true);
3052 }
3053
is_inode_flag_set(struct inode * inode,int flag)3054 static inline int is_inode_flag_set(struct inode *inode, int flag)
3055 {
3056 return test_bit(flag, F2FS_I(inode)->flags);
3057 }
3058
clear_inode_flag(struct inode * inode,int flag)3059 static inline void clear_inode_flag(struct inode *inode, int flag)
3060 {
3061 clear_bit(flag, F2FS_I(inode)->flags);
3062 __mark_inode_dirty_flag(inode, flag, false);
3063 }
3064
f2fs_verity_in_progress(struct inode * inode)3065 static inline bool f2fs_verity_in_progress(struct inode *inode)
3066 {
3067 return IS_ENABLED(CONFIG_FS_VERITY) &&
3068 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3069 }
3070
set_acl_inode(struct inode * inode,umode_t mode)3071 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3072 {
3073 F2FS_I(inode)->i_acl_mode = mode;
3074 set_inode_flag(inode, FI_ACL_MODE);
3075 f2fs_mark_inode_dirty_sync(inode, false);
3076 }
3077
f2fs_i_links_write(struct inode * inode,bool inc)3078 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3079 {
3080 if (inc)
3081 inc_nlink(inode);
3082 else
3083 drop_nlink(inode);
3084 f2fs_mark_inode_dirty_sync(inode, true);
3085 }
3086
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3087 static inline void f2fs_i_blocks_write(struct inode *inode,
3088 block_t diff, bool add, bool claim)
3089 {
3090 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3091 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3092
3093 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3094 if (add) {
3095 if (claim)
3096 dquot_claim_block(inode, diff);
3097 else
3098 dquot_alloc_block_nofail(inode, diff);
3099 } else {
3100 dquot_free_block(inode, diff);
3101 }
3102
3103 f2fs_mark_inode_dirty_sync(inode, true);
3104 if (clean || recover)
3105 set_inode_flag(inode, FI_AUTO_RECOVER);
3106 }
3107
3108 static inline bool f2fs_is_atomic_file(struct inode *inode);
3109
f2fs_i_size_write(struct inode * inode,loff_t i_size)3110 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3111 {
3112 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3113 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3114
3115 if (i_size_read(inode) == i_size)
3116 return;
3117
3118 i_size_write(inode, i_size);
3119
3120 if (f2fs_is_atomic_file(inode))
3121 return;
3122
3123 f2fs_mark_inode_dirty_sync(inode, true);
3124 if (clean || recover)
3125 set_inode_flag(inode, FI_AUTO_RECOVER);
3126 }
3127
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3128 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3129 {
3130 F2FS_I(inode)->i_current_depth = depth;
3131 f2fs_mark_inode_dirty_sync(inode, true);
3132 }
3133
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3134 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3135 unsigned int count)
3136 {
3137 F2FS_I(inode)->i_gc_failures = count;
3138 f2fs_mark_inode_dirty_sync(inode, true);
3139 }
3140
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3141 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3142 {
3143 F2FS_I(inode)->i_xattr_nid = xnid;
3144 f2fs_mark_inode_dirty_sync(inode, true);
3145 }
3146
f2fs_i_pino_write(struct inode * inode,nid_t pino)3147 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3148 {
3149 F2FS_I(inode)->i_pino = pino;
3150 f2fs_mark_inode_dirty_sync(inode, true);
3151 }
3152
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3153 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3154 {
3155 struct f2fs_inode_info *fi = F2FS_I(inode);
3156
3157 if (ri->i_inline & F2FS_INLINE_XATTR)
3158 set_bit(FI_INLINE_XATTR, fi->flags);
3159 if (ri->i_inline & F2FS_INLINE_DATA)
3160 set_bit(FI_INLINE_DATA, fi->flags);
3161 if (ri->i_inline & F2FS_INLINE_DENTRY)
3162 set_bit(FI_INLINE_DENTRY, fi->flags);
3163 if (ri->i_inline & F2FS_DATA_EXIST)
3164 set_bit(FI_DATA_EXIST, fi->flags);
3165 if (ri->i_inline & F2FS_INLINE_DOTS)
3166 set_bit(FI_INLINE_DOTS, fi->flags);
3167 if (ri->i_inline & F2FS_EXTRA_ATTR)
3168 set_bit(FI_EXTRA_ATTR, fi->flags);
3169 if (ri->i_inline & F2FS_PIN_FILE)
3170 set_bit(FI_PIN_FILE, fi->flags);
3171 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3172 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3173 }
3174
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3175 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3176 {
3177 ri->i_inline = 0;
3178
3179 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3180 ri->i_inline |= F2FS_INLINE_XATTR;
3181 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3182 ri->i_inline |= F2FS_INLINE_DATA;
3183 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3184 ri->i_inline |= F2FS_INLINE_DENTRY;
3185 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3186 ri->i_inline |= F2FS_DATA_EXIST;
3187 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3188 ri->i_inline |= F2FS_INLINE_DOTS;
3189 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3190 ri->i_inline |= F2FS_EXTRA_ATTR;
3191 if (is_inode_flag_set(inode, FI_PIN_FILE))
3192 ri->i_inline |= F2FS_PIN_FILE;
3193 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3194 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3195 }
3196
f2fs_has_extra_attr(struct inode * inode)3197 static inline int f2fs_has_extra_attr(struct inode *inode)
3198 {
3199 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3200 }
3201
f2fs_has_inline_xattr(struct inode * inode)3202 static inline int f2fs_has_inline_xattr(struct inode *inode)
3203 {
3204 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3205 }
3206
f2fs_compressed_file(struct inode * inode)3207 static inline int f2fs_compressed_file(struct inode *inode)
3208 {
3209 return S_ISREG(inode->i_mode) &&
3210 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3211 }
3212
f2fs_need_compress_data(struct inode * inode)3213 static inline bool f2fs_need_compress_data(struct inode *inode)
3214 {
3215 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3216
3217 if (!f2fs_compressed_file(inode))
3218 return false;
3219
3220 if (compress_mode == COMPR_MODE_FS)
3221 return true;
3222 else if (compress_mode == COMPR_MODE_USER &&
3223 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3224 return true;
3225
3226 return false;
3227 }
3228
addrs_per_page(struct inode * inode,bool is_inode)3229 static inline unsigned int addrs_per_page(struct inode *inode,
3230 bool is_inode)
3231 {
3232 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3233 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3234
3235 if (f2fs_compressed_file(inode))
3236 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3237 return addrs;
3238 }
3239
inline_xattr_addr(struct inode * inode,struct page * page)3240 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3241 {
3242 struct f2fs_inode *ri = F2FS_INODE(page);
3243
3244 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3245 get_inline_xattr_addrs(inode)]);
3246 }
3247
inline_xattr_size(struct inode * inode)3248 static inline int inline_xattr_size(struct inode *inode)
3249 {
3250 if (f2fs_has_inline_xattr(inode))
3251 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3252 return 0;
3253 }
3254
3255 /*
3256 * Notice: check inline_data flag without inode page lock is unsafe.
3257 * It could change at any time by f2fs_convert_inline_page().
3258 */
f2fs_has_inline_data(struct inode * inode)3259 static inline int f2fs_has_inline_data(struct inode *inode)
3260 {
3261 return is_inode_flag_set(inode, FI_INLINE_DATA);
3262 }
3263
f2fs_exist_data(struct inode * inode)3264 static inline int f2fs_exist_data(struct inode *inode)
3265 {
3266 return is_inode_flag_set(inode, FI_DATA_EXIST);
3267 }
3268
f2fs_has_inline_dots(struct inode * inode)3269 static inline int f2fs_has_inline_dots(struct inode *inode)
3270 {
3271 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3272 }
3273
f2fs_is_mmap_file(struct inode * inode)3274 static inline int f2fs_is_mmap_file(struct inode *inode)
3275 {
3276 return is_inode_flag_set(inode, FI_MMAP_FILE);
3277 }
3278
f2fs_is_pinned_file(struct inode * inode)3279 static inline bool f2fs_is_pinned_file(struct inode *inode)
3280 {
3281 return is_inode_flag_set(inode, FI_PIN_FILE);
3282 }
3283
f2fs_is_atomic_file(struct inode * inode)3284 static inline bool f2fs_is_atomic_file(struct inode *inode)
3285 {
3286 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3287 }
3288
f2fs_is_cow_file(struct inode * inode)3289 static inline bool f2fs_is_cow_file(struct inode *inode)
3290 {
3291 return is_inode_flag_set(inode, FI_COW_FILE);
3292 }
3293
3294 static inline __le32 *get_dnode_addr(struct inode *inode,
3295 struct page *node_page);
inline_data_addr(struct inode * inode,struct page * page)3296 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3297 {
3298 __le32 *addr = get_dnode_addr(inode, page);
3299
3300 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3301 }
3302
f2fs_has_inline_dentry(struct inode * inode)3303 static inline int f2fs_has_inline_dentry(struct inode *inode)
3304 {
3305 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3306 }
3307
is_file(struct inode * inode,int type)3308 static inline int is_file(struct inode *inode, int type)
3309 {
3310 return F2FS_I(inode)->i_advise & type;
3311 }
3312
set_file(struct inode * inode,int type)3313 static inline void set_file(struct inode *inode, int type)
3314 {
3315 if (is_file(inode, type))
3316 return;
3317 F2FS_I(inode)->i_advise |= type;
3318 f2fs_mark_inode_dirty_sync(inode, true);
3319 }
3320
clear_file(struct inode * inode,int type)3321 static inline void clear_file(struct inode *inode, int type)
3322 {
3323 if (!is_file(inode, type))
3324 return;
3325 F2FS_I(inode)->i_advise &= ~type;
3326 f2fs_mark_inode_dirty_sync(inode, true);
3327 }
3328
f2fs_is_time_consistent(struct inode * inode)3329 static inline bool f2fs_is_time_consistent(struct inode *inode)
3330 {
3331 struct timespec64 ctime = inode_get_ctime(inode);
3332
3333 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3334 return false;
3335 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime))
3336 return false;
3337 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3338 return false;
3339 return true;
3340 }
3341
f2fs_skip_inode_update(struct inode * inode,int dsync)3342 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3343 {
3344 bool ret;
3345
3346 if (dsync) {
3347 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3348
3349 spin_lock(&sbi->inode_lock[DIRTY_META]);
3350 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3351 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3352 return ret;
3353 }
3354 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3355 file_keep_isize(inode) ||
3356 i_size_read(inode) & ~PAGE_MASK)
3357 return false;
3358
3359 if (!f2fs_is_time_consistent(inode))
3360 return false;
3361
3362 spin_lock(&F2FS_I(inode)->i_size_lock);
3363 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3364 spin_unlock(&F2FS_I(inode)->i_size_lock);
3365
3366 return ret;
3367 }
3368
f2fs_readonly(struct super_block * sb)3369 static inline bool f2fs_readonly(struct super_block *sb)
3370 {
3371 return sb_rdonly(sb);
3372 }
3373
f2fs_cp_error(struct f2fs_sb_info * sbi)3374 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3375 {
3376 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3377 }
3378
is_dot_dotdot(const u8 * name,size_t len)3379 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3380 {
3381 if (len == 1 && name[0] == '.')
3382 return true;
3383
3384 if (len == 2 && name[0] == '.' && name[1] == '.')
3385 return true;
3386
3387 return false;
3388 }
3389
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3390 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3391 size_t size, gfp_t flags)
3392 {
3393 if (time_to_inject(sbi, FAULT_KMALLOC))
3394 return NULL;
3395
3396 return kmalloc(size, flags);
3397 }
3398
f2fs_getname(struct f2fs_sb_info * sbi)3399 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3400 {
3401 if (time_to_inject(sbi, FAULT_KMALLOC))
3402 return NULL;
3403
3404 return __getname();
3405 }
3406
f2fs_putname(char * buf)3407 static inline void f2fs_putname(char *buf)
3408 {
3409 __putname(buf);
3410 }
3411
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3412 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3413 size_t size, gfp_t flags)
3414 {
3415 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3416 }
3417
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3418 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3419 size_t size, gfp_t flags)
3420 {
3421 if (time_to_inject(sbi, FAULT_KVMALLOC))
3422 return NULL;
3423
3424 return kvmalloc(size, flags);
3425 }
3426
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3427 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3428 size_t size, gfp_t flags)
3429 {
3430 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3431 }
3432
get_extra_isize(struct inode * inode)3433 static inline int get_extra_isize(struct inode *inode)
3434 {
3435 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3436 }
3437
get_inline_xattr_addrs(struct inode * inode)3438 static inline int get_inline_xattr_addrs(struct inode *inode)
3439 {
3440 return F2FS_I(inode)->i_inline_xattr_size;
3441 }
3442
get_dnode_addr(struct inode * inode,struct page * node_page)3443 static inline __le32 *get_dnode_addr(struct inode *inode,
3444 struct page *node_page)
3445 {
3446 int base = 0;
3447
3448 if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3449 base = get_extra_isize(inode);
3450
3451 return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3452 }
3453
3454 #define f2fs_get_inode_mode(i) \
3455 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3456 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3457
3458 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3459
3460 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3461 (offsetof(struct f2fs_inode, i_extra_end) - \
3462 offsetof(struct f2fs_inode, i_extra_isize)) \
3463
3464 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3465 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3466 ((offsetof(typeof(*(f2fs_inode)), field) + \
3467 sizeof((f2fs_inode)->field)) \
3468 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3469
3470 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3471
3472 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3473
3474 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3475 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3476 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3477 block_t blkaddr, int type)
3478 {
3479 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3480 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3481 blkaddr, type);
3482 }
3483
__is_valid_data_blkaddr(block_t blkaddr)3484 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3485 {
3486 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3487 blkaddr == COMPRESS_ADDR)
3488 return false;
3489 return true;
3490 }
3491
3492 /*
3493 * file.c
3494 */
3495 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3496 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3497 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3498 int f2fs_truncate(struct inode *inode);
3499 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3500 struct kstat *stat, u32 request_mask, unsigned int flags);
3501 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3502 struct iattr *attr);
3503 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3504 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3505 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3506 bool readonly);
3507 int f2fs_precache_extents(struct inode *inode);
3508 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3509 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3510 struct dentry *dentry, struct fileattr *fa);
3511 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3512 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3513 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3514 int f2fs_pin_file_control(struct inode *inode, bool inc);
3515
3516 /*
3517 * inode.c
3518 */
3519 void f2fs_set_inode_flags(struct inode *inode);
3520 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3521 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3522 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3523 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3524 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3525 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3526 void f2fs_update_inode_page(struct inode *inode);
3527 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3528 void f2fs_evict_inode(struct inode *inode);
3529 void f2fs_handle_failed_inode(struct inode *inode);
3530
3531 /*
3532 * namei.c
3533 */
3534 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3535 bool hot, bool set);
3536 struct dentry *f2fs_get_parent(struct dentry *child);
3537 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3538 struct inode **new_inode);
3539
3540 /*
3541 * dir.c
3542 */
3543 int f2fs_init_casefolded_name(const struct inode *dir,
3544 struct f2fs_filename *fname);
3545 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3546 int lookup, struct f2fs_filename *fname);
3547 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3548 struct f2fs_filename *fname);
3549 void f2fs_free_filename(struct f2fs_filename *fname);
3550 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3551 const struct f2fs_filename *fname, int *max_slots);
3552 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3553 unsigned int start_pos, struct fscrypt_str *fstr);
3554 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3555 struct f2fs_dentry_ptr *d);
3556 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3557 const struct f2fs_filename *fname, struct page *dpage);
3558 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3559 unsigned int current_depth);
3560 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3561 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3562 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3563 const struct f2fs_filename *fname,
3564 struct page **res_page);
3565 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3566 const struct qstr *child, struct page **res_page);
3567 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3568 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3569 struct page **page);
3570 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3571 struct page *page, struct inode *inode);
3572 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3573 const struct f2fs_filename *fname);
3574 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3575 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3576 unsigned int bit_pos);
3577 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3578 struct inode *inode, nid_t ino, umode_t mode);
3579 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3580 struct inode *inode, nid_t ino, umode_t mode);
3581 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3582 struct inode *inode, nid_t ino, umode_t mode);
3583 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3584 struct inode *dir, struct inode *inode);
3585 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3586 struct f2fs_filename *fname);
3587 bool f2fs_empty_dir(struct inode *dir);
3588
f2fs_add_link(struct dentry * dentry,struct inode * inode)3589 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3590 {
3591 if (fscrypt_is_nokey_name(dentry))
3592 return -ENOKEY;
3593 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3594 inode, inode->i_ino, inode->i_mode);
3595 }
3596
3597 /*
3598 * super.c
3599 */
3600 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3601 void f2fs_inode_synced(struct inode *inode);
3602 int f2fs_dquot_initialize(struct inode *inode);
3603 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3604 int f2fs_quota_sync(struct super_block *sb, int type);
3605 loff_t max_file_blocks(struct inode *inode);
3606 void f2fs_quota_off_umount(struct super_block *sb);
3607 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3608 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3609 bool irq_context);
3610 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3611 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3612 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3613 int f2fs_sync_fs(struct super_block *sb, int sync);
3614 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3615
3616 /*
3617 * hash.c
3618 */
3619 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3620
3621 /*
3622 * node.c
3623 */
3624 struct node_info;
3625
3626 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3627 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3628 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3629 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3630 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3631 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3632 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3633 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3634 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3635 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3636 struct node_info *ni, bool checkpoint_context);
3637 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3638 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3639 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3640 int f2fs_truncate_xattr_node(struct inode *inode);
3641 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3642 unsigned int seq_id);
3643 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3644 int f2fs_remove_inode_page(struct inode *inode);
3645 struct page *f2fs_new_inode_page(struct inode *inode);
3646 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3647 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3648 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3649 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3650 int f2fs_move_node_page(struct page *node_page, int gc_type);
3651 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3652 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3653 struct writeback_control *wbc, bool atomic,
3654 unsigned int *seq_id);
3655 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3656 struct writeback_control *wbc,
3657 bool do_balance, enum iostat_type io_type);
3658 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3659 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3660 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3661 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3662 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3663 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3664 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3665 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3666 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3667 unsigned int segno, struct f2fs_summary_block *sum);
3668 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3669 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3670 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3671 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3672 int __init f2fs_create_node_manager_caches(void);
3673 void f2fs_destroy_node_manager_caches(void);
3674
3675 /*
3676 * segment.c
3677 */
3678 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3679 int f2fs_commit_atomic_write(struct inode *inode);
3680 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3681 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3682 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3683 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3684 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3685 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3686 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3687 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3688 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3689 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3690 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3691 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3692 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3693 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3694 struct cp_control *cpc);
3695 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3696 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3697 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3698 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3699 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3700 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3701 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3702 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3703 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3704 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3705 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3706 unsigned int start, unsigned int end);
3707 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3708 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3709 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3710 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3711 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3712 struct cp_control *cpc);
3713 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3714 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3715 block_t blk_addr);
3716 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3717 enum iostat_type io_type);
3718 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3719 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3720 struct f2fs_io_info *fio);
3721 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3722 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3723 block_t old_blkaddr, block_t new_blkaddr,
3724 bool recover_curseg, bool recover_newaddr,
3725 bool from_gc);
3726 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3727 block_t old_addr, block_t new_addr,
3728 unsigned char version, bool recover_curseg,
3729 bool recover_newaddr);
3730 int f2fs_get_segment_temp(int seg_type);
3731 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3732 block_t old_blkaddr, block_t *new_blkaddr,
3733 struct f2fs_summary *sum, int type,
3734 struct f2fs_io_info *fio);
3735 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3736 block_t blkaddr, unsigned int blkcnt);
3737 void f2fs_wait_on_page_writeback(struct page *page,
3738 enum page_type type, bool ordered, bool locked);
3739 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3740 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3741 block_t len);
3742 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3743 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3744 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3745 unsigned int val, int alloc);
3746 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3747 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3748 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3749 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3750 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3751 int __init f2fs_create_segment_manager_caches(void);
3752 void f2fs_destroy_segment_manager_caches(void);
3753 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3754 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3755 enum page_type type, enum temp_type temp);
3756 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3757 unsigned int segno);
3758 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3759 unsigned int segno);
3760
3761 #define DEF_FRAGMENT_SIZE 4
3762 #define MIN_FRAGMENT_SIZE 1
3763 #define MAX_FRAGMENT_SIZE 512
3764
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3765 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3766 {
3767 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3768 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3769 }
3770
3771 /*
3772 * checkpoint.c
3773 */
3774 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3775 unsigned char reason);
3776 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3777 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3778 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3779 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3780 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3781 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3782 block_t blkaddr, int type);
3783 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3784 block_t blkaddr, int type);
3785 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3786 int type, bool sync);
3787 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3788 unsigned int ra_blocks);
3789 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3790 long nr_to_write, enum iostat_type io_type);
3791 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3792 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3793 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3794 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3795 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3796 unsigned int devidx, int type);
3797 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3798 unsigned int devidx, int type);
3799 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3800 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3801 void f2fs_add_orphan_inode(struct inode *inode);
3802 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3803 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3804 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3805 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3806 void f2fs_remove_dirty_inode(struct inode *inode);
3807 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3808 bool from_cp);
3809 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3810 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3811 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3812 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3813 int __init f2fs_create_checkpoint_caches(void);
3814 void f2fs_destroy_checkpoint_caches(void);
3815 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3816 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3817 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3818 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3819
3820 /*
3821 * data.c
3822 */
3823 int __init f2fs_init_bioset(void);
3824 void f2fs_destroy_bioset(void);
3825 bool f2fs_is_cp_guaranteed(struct page *page);
3826 int f2fs_init_bio_entry_cache(void);
3827 void f2fs_destroy_bio_entry_cache(void);
3828 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3829 enum page_type type);
3830 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3831 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3832 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3833 struct inode *inode, struct page *page,
3834 nid_t ino, enum page_type type);
3835 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3836 struct bio **bio, struct page *page);
3837 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3838 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3839 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3840 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3841 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3842 block_t blk_addr, sector_t *sector);
3843 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3844 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3845 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3846 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3847 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3848 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3849 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3850 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3851 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3852 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3853 pgoff_t *next_pgofs);
3854 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3855 bool for_write);
3856 struct page *f2fs_get_new_data_page(struct inode *inode,
3857 struct page *ipage, pgoff_t index, bool new_i_size);
3858 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3859 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3860 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3861 u64 start, u64 len);
3862 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3863 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3864 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3865 int f2fs_write_single_data_page(struct page *page, int *submitted,
3866 struct bio **bio, sector_t *last_block,
3867 struct writeback_control *wbc,
3868 enum iostat_type io_type,
3869 int compr_blocks, bool allow_balance);
3870 void f2fs_write_failed(struct inode *inode, loff_t to);
3871 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3872 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3873 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3874 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3875 int f2fs_init_post_read_processing(void);
3876 void f2fs_destroy_post_read_processing(void);
3877 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3878 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3879 extern const struct iomap_ops f2fs_iomap_ops;
3880
3881 /*
3882 * gc.c
3883 */
3884 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3885 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3886 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3887 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3888 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3889 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3890 unsigned int start_seg, unsigned int end_seg,
3891 bool dry_run, unsigned int dry_run_sections);
3892 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3893 int __init f2fs_create_garbage_collection_cache(void);
3894 void f2fs_destroy_garbage_collection_cache(void);
3895 /* victim selection function for cleaning and SSR */
3896 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3897 int gc_type, int type, char alloc_mode,
3898 unsigned long long age);
3899
3900 /*
3901 * recovery.c
3902 */
3903 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3904 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3905 int __init f2fs_create_recovery_cache(void);
3906 void f2fs_destroy_recovery_cache(void);
3907
3908 /*
3909 * debug.c
3910 */
3911 #ifdef CONFIG_F2FS_STAT_FS
3912 struct f2fs_stat_info {
3913 struct list_head stat_list;
3914 struct f2fs_sb_info *sbi;
3915 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3916 int main_area_segs, main_area_sections, main_area_zones;
3917 unsigned long long hit_cached[NR_EXTENT_CACHES];
3918 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3919 unsigned long long total_ext[NR_EXTENT_CACHES];
3920 unsigned long long hit_total[NR_EXTENT_CACHES];
3921 int ext_tree[NR_EXTENT_CACHES];
3922 int zombie_tree[NR_EXTENT_CACHES];
3923 int ext_node[NR_EXTENT_CACHES];
3924 /* to count memory footprint */
3925 unsigned long long ext_mem[NR_EXTENT_CACHES];
3926 /* for read extent cache */
3927 unsigned long long hit_largest;
3928 /* for block age extent cache */
3929 unsigned long long allocated_data_blocks;
3930 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3931 int ndirty_data, ndirty_qdata;
3932 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3933 int nats, dirty_nats, sits, dirty_sits;
3934 int free_nids, avail_nids, alloc_nids;
3935 int total_count, utilization;
3936 int nr_wb_cp_data, nr_wb_data;
3937 int nr_rd_data, nr_rd_node, nr_rd_meta;
3938 int nr_dio_read, nr_dio_write;
3939 unsigned int io_skip_bggc, other_skip_bggc;
3940 int nr_flushing, nr_flushed, flush_list_empty;
3941 int nr_discarding, nr_discarded;
3942 int nr_discard_cmd;
3943 unsigned int undiscard_blks;
3944 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3945 unsigned int cur_ckpt_time, peak_ckpt_time;
3946 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3947 int compr_inode, swapfile_inode;
3948 unsigned long long compr_blocks;
3949 int aw_cnt, max_aw_cnt;
3950 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3951 unsigned int bimodal, avg_vblocks;
3952 int util_free, util_valid, util_invalid;
3953 int rsvd_segs, overp_segs;
3954 int dirty_count, node_pages, meta_pages, compress_pages;
3955 int compress_page_hit;
3956 int prefree_count, free_segs, free_secs;
3957 int cp_call_count[MAX_CALL_TYPE], cp_count;
3958 int gc_call_count[MAX_CALL_TYPE];
3959 int gc_segs[2][2];
3960 int gc_secs[2][2];
3961 int tot_blks, data_blks, node_blks;
3962 int bg_data_blks, bg_node_blks;
3963 int curseg[NR_CURSEG_TYPE];
3964 int cursec[NR_CURSEG_TYPE];
3965 int curzone[NR_CURSEG_TYPE];
3966 unsigned int dirty_seg[NR_CURSEG_TYPE];
3967 unsigned int full_seg[NR_CURSEG_TYPE];
3968 unsigned int valid_blks[NR_CURSEG_TYPE];
3969
3970 unsigned int meta_count[META_MAX];
3971 unsigned int segment_count[2];
3972 unsigned int block_count[2];
3973 unsigned int inplace_count;
3974 unsigned long long base_mem, cache_mem, page_mem;
3975 };
3976
F2FS_STAT(struct f2fs_sb_info * sbi)3977 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3978 {
3979 return (struct f2fs_stat_info *)sbi->stat_info;
3980 }
3981
3982 #define stat_inc_cp_call_count(sbi, foreground) \
3983 atomic_inc(&sbi->cp_call_count[(foreground)])
3984 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++)
3985 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3986 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3987 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3988 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3989 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
3990 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3991 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3992 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
3993 #define stat_inc_inline_xattr(inode) \
3994 do { \
3995 if (f2fs_has_inline_xattr(inode)) \
3996 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3997 } while (0)
3998 #define stat_dec_inline_xattr(inode) \
3999 do { \
4000 if (f2fs_has_inline_xattr(inode)) \
4001 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4002 } while (0)
4003 #define stat_inc_inline_inode(inode) \
4004 do { \
4005 if (f2fs_has_inline_data(inode)) \
4006 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4007 } while (0)
4008 #define stat_dec_inline_inode(inode) \
4009 do { \
4010 if (f2fs_has_inline_data(inode)) \
4011 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4012 } while (0)
4013 #define stat_inc_inline_dir(inode) \
4014 do { \
4015 if (f2fs_has_inline_dentry(inode)) \
4016 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4017 } while (0)
4018 #define stat_dec_inline_dir(inode) \
4019 do { \
4020 if (f2fs_has_inline_dentry(inode)) \
4021 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4022 } while (0)
4023 #define stat_inc_compr_inode(inode) \
4024 do { \
4025 if (f2fs_compressed_file(inode)) \
4026 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4027 } while (0)
4028 #define stat_dec_compr_inode(inode) \
4029 do { \
4030 if (f2fs_compressed_file(inode)) \
4031 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4032 } while (0)
4033 #define stat_add_compr_blocks(inode, blocks) \
4034 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4035 #define stat_sub_compr_blocks(inode, blocks) \
4036 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4037 #define stat_inc_swapfile_inode(inode) \
4038 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4039 #define stat_dec_swapfile_inode(inode) \
4040 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4041 #define stat_inc_atomic_inode(inode) \
4042 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4043 #define stat_dec_atomic_inode(inode) \
4044 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4045 #define stat_inc_meta_count(sbi, blkaddr) \
4046 do { \
4047 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4048 atomic_inc(&(sbi)->meta_count[META_CP]); \
4049 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4050 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4051 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4052 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4053 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4054 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4055 } while (0)
4056 #define stat_inc_seg_type(sbi, curseg) \
4057 ((sbi)->segment_count[(curseg)->alloc_type]++)
4058 #define stat_inc_block_count(sbi, curseg) \
4059 ((sbi)->block_count[(curseg)->alloc_type]++)
4060 #define stat_inc_inplace_blocks(sbi) \
4061 (atomic_inc(&(sbi)->inplace_count))
4062 #define stat_update_max_atomic_write(inode) \
4063 do { \
4064 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4065 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4066 if (cur > max) \
4067 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4068 } while (0)
4069 #define stat_inc_gc_call_count(sbi, foreground) \
4070 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4071 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4072 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4073 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4074 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4075
4076 #define stat_inc_tot_blk_count(si, blks) \
4077 ((si)->tot_blks += (blks))
4078
4079 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4080 do { \
4081 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4082 stat_inc_tot_blk_count(si, blks); \
4083 si->data_blks += (blks); \
4084 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4085 } while (0)
4086
4087 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4088 do { \
4089 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4090 stat_inc_tot_blk_count(si, blks); \
4091 si->node_blks += (blks); \
4092 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4093 } while (0)
4094
4095 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4096 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4097 void __init f2fs_create_root_stats(void);
4098 void f2fs_destroy_root_stats(void);
4099 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4100 #else
4101 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4102 #define stat_inc_cp_count(sbi) do { } while (0)
4103 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4104 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4105 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4106 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4107 #define stat_inc_total_hit(sbi, type) do { } while (0)
4108 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4109 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4110 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4111 #define stat_inc_inline_xattr(inode) do { } while (0)
4112 #define stat_dec_inline_xattr(inode) do { } while (0)
4113 #define stat_inc_inline_inode(inode) do { } while (0)
4114 #define stat_dec_inline_inode(inode) do { } while (0)
4115 #define stat_inc_inline_dir(inode) do { } while (0)
4116 #define stat_dec_inline_dir(inode) do { } while (0)
4117 #define stat_inc_compr_inode(inode) do { } while (0)
4118 #define stat_dec_compr_inode(inode) do { } while (0)
4119 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4120 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4121 #define stat_inc_swapfile_inode(inode) do { } while (0)
4122 #define stat_dec_swapfile_inode(inode) do { } while (0)
4123 #define stat_inc_atomic_inode(inode) do { } while (0)
4124 #define stat_dec_atomic_inode(inode) do { } while (0)
4125 #define stat_update_max_atomic_write(inode) do { } while (0)
4126 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4127 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4128 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4129 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4130 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4131 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4132 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4133 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4134 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4135 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4136
f2fs_build_stats(struct f2fs_sb_info * sbi)4137 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4138 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4139 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4140 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4141 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4142 #endif
4143
4144 extern const struct file_operations f2fs_dir_operations;
4145 extern const struct file_operations f2fs_file_operations;
4146 extern const struct inode_operations f2fs_file_inode_operations;
4147 extern const struct address_space_operations f2fs_dblock_aops;
4148 extern const struct address_space_operations f2fs_node_aops;
4149 extern const struct address_space_operations f2fs_meta_aops;
4150 extern const struct inode_operations f2fs_dir_inode_operations;
4151 extern const struct inode_operations f2fs_symlink_inode_operations;
4152 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4153 extern const struct inode_operations f2fs_special_inode_operations;
4154 extern struct kmem_cache *f2fs_inode_entry_slab;
4155
4156 /*
4157 * inline.c
4158 */
4159 bool f2fs_may_inline_data(struct inode *inode);
4160 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4161 bool f2fs_may_inline_dentry(struct inode *inode);
4162 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4163 void f2fs_truncate_inline_inode(struct inode *inode,
4164 struct page *ipage, u64 from);
4165 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4166 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4167 int f2fs_convert_inline_inode(struct inode *inode);
4168 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4169 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4170 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4171 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4172 const struct f2fs_filename *fname,
4173 struct page **res_page);
4174 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4175 struct page *ipage);
4176 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4177 struct inode *inode, nid_t ino, umode_t mode);
4178 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4179 struct page *page, struct inode *dir,
4180 struct inode *inode);
4181 bool f2fs_empty_inline_dir(struct inode *dir);
4182 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4183 struct fscrypt_str *fstr);
4184 int f2fs_inline_data_fiemap(struct inode *inode,
4185 struct fiemap_extent_info *fieinfo,
4186 __u64 start, __u64 len);
4187
4188 /*
4189 * shrinker.c
4190 */
4191 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4192 struct shrink_control *sc);
4193 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4194 struct shrink_control *sc);
4195 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4196 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4197
4198 /*
4199 * extent_cache.c
4200 */
4201 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4202 void f2fs_init_extent_tree(struct inode *inode);
4203 void f2fs_drop_extent_tree(struct inode *inode);
4204 void f2fs_destroy_extent_node(struct inode *inode);
4205 void f2fs_destroy_extent_tree(struct inode *inode);
4206 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4207 int __init f2fs_create_extent_cache(void);
4208 void f2fs_destroy_extent_cache(void);
4209
4210 /* read extent cache ops */
4211 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4212 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4213 struct extent_info *ei);
4214 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4215 block_t *blkaddr);
4216 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4217 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4218 pgoff_t fofs, block_t blkaddr, unsigned int len);
4219 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4220 int nr_shrink);
4221
4222 /* block age extent cache ops */
4223 void f2fs_init_age_extent_tree(struct inode *inode);
4224 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4225 struct extent_info *ei);
4226 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4227 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4228 pgoff_t fofs, unsigned int len);
4229 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4230 int nr_shrink);
4231
4232 /*
4233 * sysfs.c
4234 */
4235 #define MIN_RA_MUL 2
4236 #define MAX_RA_MUL 256
4237
4238 int __init f2fs_init_sysfs(void);
4239 void f2fs_exit_sysfs(void);
4240 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4241 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4242
4243 /* verity.c */
4244 extern const struct fsverity_operations f2fs_verityops;
4245
4246 /*
4247 * crypto support
4248 */
f2fs_encrypted_file(struct inode * inode)4249 static inline bool f2fs_encrypted_file(struct inode *inode)
4250 {
4251 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4252 }
4253
f2fs_set_encrypted_inode(struct inode * inode)4254 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4255 {
4256 #ifdef CONFIG_FS_ENCRYPTION
4257 file_set_encrypt(inode);
4258 f2fs_set_inode_flags(inode);
4259 #endif
4260 }
4261
4262 /*
4263 * Returns true if the reads of the inode's data need to undergo some
4264 * postprocessing step, like decryption or authenticity verification.
4265 */
f2fs_post_read_required(struct inode * inode)4266 static inline bool f2fs_post_read_required(struct inode *inode)
4267 {
4268 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4269 f2fs_compressed_file(inode);
4270 }
4271
f2fs_used_in_atomic_write(struct inode * inode)4272 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4273 {
4274 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4275 }
4276
f2fs_meta_inode_gc_required(struct inode * inode)4277 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4278 {
4279 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4280 }
4281
4282 /*
4283 * compress.c
4284 */
4285 #ifdef CONFIG_F2FS_FS_COMPRESSION
4286 bool f2fs_is_compressed_page(struct page *page);
4287 struct page *f2fs_compress_control_page(struct page *page);
4288 int f2fs_prepare_compress_overwrite(struct inode *inode,
4289 struct page **pagep, pgoff_t index, void **fsdata);
4290 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4291 pgoff_t index, unsigned copied);
4292 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4293 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4294 bool f2fs_is_compress_backend_ready(struct inode *inode);
4295 bool f2fs_is_compress_level_valid(int alg, int lvl);
4296 int __init f2fs_init_compress_mempool(void);
4297 void f2fs_destroy_compress_mempool(void);
4298 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4299 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4300 block_t blkaddr, bool in_task);
4301 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4302 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4303 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4304 int index, int nr_pages, bool uptodate);
4305 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4306 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4307 int f2fs_write_multi_pages(struct compress_ctx *cc,
4308 int *submitted,
4309 struct writeback_control *wbc,
4310 enum iostat_type io_type);
4311 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4312 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4313 pgoff_t fofs, block_t blkaddr,
4314 unsigned int llen, unsigned int c_len);
4315 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4316 unsigned nr_pages, sector_t *last_block_in_bio,
4317 struct readahead_control *rac, bool for_write);
4318 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4319 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4320 bool in_task);
4321 void f2fs_put_page_dic(struct page *page, bool in_task);
4322 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4323 unsigned int ofs_in_node);
4324 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4325 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4326 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4327 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4328 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4329 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4330 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4331 int __init f2fs_init_compress_cache(void);
4332 void f2fs_destroy_compress_cache(void);
4333 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4334 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4335 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4336 nid_t ino, block_t blkaddr);
4337 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4338 block_t blkaddr);
4339 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4340 #define inc_compr_inode_stat(inode) \
4341 do { \
4342 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4343 sbi->compr_new_inode++; \
4344 } while (0)
4345 #define add_compr_block_stat(inode, blocks) \
4346 do { \
4347 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4348 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4349 sbi->compr_written_block += blocks; \
4350 sbi->compr_saved_block += diff; \
4351 } while (0)
4352 #else
f2fs_is_compressed_page(struct page * page)4353 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4354 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4355 {
4356 if (!f2fs_compressed_file(inode))
4357 return true;
4358 /* not support compression */
4359 return false;
4360 }
f2fs_is_compress_level_valid(int alg,int lvl)4361 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4362 static inline struct page *f2fs_compress_control_page(struct page *page)
4363 {
4364 WARN_ON_ONCE(1);
4365 return ERR_PTR(-EINVAL);
4366 }
f2fs_init_compress_mempool(void)4367 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4368 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4369 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4370 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4371 static inline void f2fs_end_read_compressed_page(struct page *page,
4372 bool failed, block_t blkaddr, bool in_task)
4373 {
4374 WARN_ON_ONCE(1);
4375 }
f2fs_put_page_dic(struct page * page,bool in_task)4376 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4377 {
4378 WARN_ON_ONCE(1);
4379 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4380 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4381 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4382 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4383 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4384 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4385 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4386 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4387 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4388 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4389 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4390 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4391 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4392 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4393 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4394 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4395 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4396 nid_t ino) { }
4397 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4398 static inline void f2fs_update_read_extent_tree_range_compressed(
4399 struct inode *inode,
4400 pgoff_t fofs, block_t blkaddr,
4401 unsigned int llen, unsigned int c_len) { }
4402 #endif
4403
set_compress_context(struct inode * inode)4404 static inline int set_compress_context(struct inode *inode)
4405 {
4406 #ifdef CONFIG_F2FS_FS_COMPRESSION
4407 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4408 struct f2fs_inode_info *fi = F2FS_I(inode);
4409
4410 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4411 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4412 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4413 BIT(COMPRESS_CHKSUM) : 0;
4414 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4415 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4416 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4417 F2FS_OPTION(sbi).compress_level)
4418 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4419 fi->i_flags |= F2FS_COMPR_FL;
4420 set_inode_flag(inode, FI_COMPRESSED_FILE);
4421 stat_inc_compr_inode(inode);
4422 inc_compr_inode_stat(inode);
4423 f2fs_mark_inode_dirty_sync(inode, true);
4424 return 0;
4425 #else
4426 return -EOPNOTSUPP;
4427 #endif
4428 }
4429
f2fs_disable_compressed_file(struct inode * inode)4430 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4431 {
4432 struct f2fs_inode_info *fi = F2FS_I(inode);
4433
4434 f2fs_down_write(&fi->i_sem);
4435
4436 if (!f2fs_compressed_file(inode)) {
4437 f2fs_up_write(&fi->i_sem);
4438 return true;
4439 }
4440 if (f2fs_is_mmap_file(inode) ||
4441 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4442 f2fs_up_write(&fi->i_sem);
4443 return false;
4444 }
4445
4446 fi->i_flags &= ~F2FS_COMPR_FL;
4447 stat_dec_compr_inode(inode);
4448 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4449 f2fs_mark_inode_dirty_sync(inode, true);
4450
4451 f2fs_up_write(&fi->i_sem);
4452 return true;
4453 }
4454
4455 #define F2FS_FEATURE_FUNCS(name, flagname) \
4456 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4457 { \
4458 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4459 }
4460
4461 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4462 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4463 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4464 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4465 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4466 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4467 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4468 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4469 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4470 F2FS_FEATURE_FUNCS(verity, VERITY);
4471 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4472 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4473 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4474 F2FS_FEATURE_FUNCS(readonly, RO);
4475
4476 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4477 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4478 block_t blkaddr)
4479 {
4480 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4481
4482 return test_bit(zno, FDEV(devi).blkz_seq);
4483 }
4484 #endif
4485
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4486 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4487 struct block_device *bdev)
4488 {
4489 int i;
4490
4491 if (!f2fs_is_multi_device(sbi))
4492 return 0;
4493
4494 for (i = 0; i < sbi->s_ndevs; i++)
4495 if (FDEV(i).bdev == bdev)
4496 return i;
4497
4498 WARN_ON(1);
4499 return -1;
4500 }
4501
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4502 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4503 {
4504 return f2fs_sb_has_blkzoned(sbi);
4505 }
4506
f2fs_bdev_support_discard(struct block_device * bdev)4507 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4508 {
4509 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4510 }
4511
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4512 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4513 {
4514 int i;
4515
4516 if (!f2fs_is_multi_device(sbi))
4517 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4518
4519 for (i = 0; i < sbi->s_ndevs; i++)
4520 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4521 return true;
4522 return false;
4523 }
4524
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4525 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4526 {
4527 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4528 f2fs_hw_should_discard(sbi);
4529 }
4530
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4531 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4532 {
4533 int i;
4534
4535 if (!f2fs_is_multi_device(sbi))
4536 return bdev_read_only(sbi->sb->s_bdev);
4537
4538 for (i = 0; i < sbi->s_ndevs; i++)
4539 if (bdev_read_only(FDEV(i).bdev))
4540 return true;
4541 return false;
4542 }
4543
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4544 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4545 {
4546 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4547 }
4548
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4549 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4550 {
4551 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4552 }
4553
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4554 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4555 block_t blkaddr)
4556 {
4557 if (f2fs_sb_has_blkzoned(sbi)) {
4558 int devi = f2fs_target_device_index(sbi, blkaddr);
4559
4560 return !bdev_is_zoned(FDEV(devi).bdev);
4561 }
4562 return true;
4563 }
4564
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4565 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4566 {
4567 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4568 }
4569
f2fs_may_compress(struct inode * inode)4570 static inline bool f2fs_may_compress(struct inode *inode)
4571 {
4572 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4573 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4574 f2fs_is_mmap_file(inode))
4575 return false;
4576 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4577 }
4578
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4579 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4580 u64 blocks, bool add)
4581 {
4582 struct f2fs_inode_info *fi = F2FS_I(inode);
4583 int diff = fi->i_cluster_size - blocks;
4584
4585 /* don't update i_compr_blocks if saved blocks were released */
4586 if (!add && !atomic_read(&fi->i_compr_blocks))
4587 return;
4588
4589 if (add) {
4590 atomic_add(diff, &fi->i_compr_blocks);
4591 stat_add_compr_blocks(inode, diff);
4592 } else {
4593 atomic_sub(diff, &fi->i_compr_blocks);
4594 stat_sub_compr_blocks(inode, diff);
4595 }
4596 f2fs_mark_inode_dirty_sync(inode, true);
4597 }
4598
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4599 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4600 int flag)
4601 {
4602 if (!f2fs_is_multi_device(sbi))
4603 return false;
4604 if (flag != F2FS_GET_BLOCK_DIO)
4605 return false;
4606 return sbi->aligned_blksize;
4607 }
4608
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4609 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4610 {
4611 return fsverity_active(inode) &&
4612 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4613 }
4614
4615 #ifdef CONFIG_F2FS_FAULT_INJECTION
4616 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4617 unsigned long type);
4618 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4619 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4620 unsigned long rate, unsigned long type)
4621 {
4622 return 0;
4623 }
4624 #endif
4625
is_journalled_quota(struct f2fs_sb_info * sbi)4626 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4627 {
4628 #ifdef CONFIG_QUOTA
4629 if (f2fs_sb_has_quota_ino(sbi))
4630 return true;
4631 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4632 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4633 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4634 return true;
4635 #endif
4636 return false;
4637 }
4638
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4639 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4640 {
4641 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4642 }
4643
f2fs_io_schedule_timeout(long timeout)4644 static inline void f2fs_io_schedule_timeout(long timeout)
4645 {
4646 set_current_state(TASK_UNINTERRUPTIBLE);
4647 io_schedule_timeout(timeout);
4648 }
4649
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4650 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4651 enum page_type type)
4652 {
4653 if (unlikely(f2fs_cp_error(sbi)))
4654 return;
4655
4656 if (ofs == sbi->page_eio_ofs[type]) {
4657 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4658 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4659 } else {
4660 sbi->page_eio_ofs[type] = ofs;
4661 sbi->page_eio_cnt[type] = 0;
4662 }
4663 }
4664
f2fs_is_readonly(struct f2fs_sb_info * sbi)4665 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4666 {
4667 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4668 }
4669
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4670 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4671 block_t blkaddr, unsigned int cnt)
4672 {
4673 bool need_submit = false;
4674 int i = 0;
4675
4676 do {
4677 struct page *page;
4678
4679 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4680 if (page) {
4681 if (folio_test_writeback(page_folio(page)))
4682 need_submit = true;
4683 f2fs_put_page(page, 0);
4684 }
4685 } while (++i < cnt && !need_submit);
4686
4687 if (need_submit)
4688 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4689 NULL, 0, DATA);
4690
4691 truncate_inode_pages_range(META_MAPPING(sbi),
4692 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4693 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4694 }
4695
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr)4696 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4697 block_t blkaddr)
4698 {
4699 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4700 f2fs_invalidate_compress_page(sbi, blkaddr);
4701 }
4702
4703 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4704 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4705
4706 #endif /* _LINUX_F2FS_H */
4707