• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_hypercalls.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_nested.h>
28 #include <asm/sigcontext.h>
29 
30 #include "trace.h"
31 
32 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
33 	KVM_GENERIC_VM_STATS(),
34 	STATS_DESC_ICOUNTER(VM, protected_hyp_mem),
35 	STATS_DESC_ICOUNTER(VM, protected_shared_mem),
36 	STATS_DESC_ICOUNTER(VM, protected_pgtable_mem),
37 };
38 
39 const struct kvm_stats_header kvm_vm_stats_header = {
40 	.name_size = KVM_STATS_NAME_SIZE,
41 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
42 	.id_offset =  sizeof(struct kvm_stats_header),
43 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
44 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
45 		       sizeof(kvm_vm_stats_desc),
46 };
47 
48 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
49 	KVM_GENERIC_VCPU_STATS(),
50 	STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
51 	STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
52 	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
53 	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
54 	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
55 	STATS_DESC_COUNTER(VCPU, signal_exits),
56 	STATS_DESC_COUNTER(VCPU, exits)
57 };
58 
59 const struct kvm_stats_header kvm_vcpu_stats_header = {
60 	.name_size = KVM_STATS_NAME_SIZE,
61 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
62 	.id_offset = sizeof(struct kvm_stats_header),
63 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
64 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
65 		       sizeof(kvm_vcpu_stats_desc),
66 };
67 
core_reg_offset_is_vreg(u64 off)68 static bool core_reg_offset_is_vreg(u64 off)
69 {
70 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
71 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
72 }
73 
core_reg_offset_from_id(u64 id)74 static u64 core_reg_offset_from_id(u64 id)
75 {
76 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
77 }
78 
core_reg_size_from_offset(const struct kvm_vcpu * vcpu,u64 off)79 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
80 {
81 	int size;
82 
83 	switch (off) {
84 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
85 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
86 	case KVM_REG_ARM_CORE_REG(regs.sp):
87 	case KVM_REG_ARM_CORE_REG(regs.pc):
88 	case KVM_REG_ARM_CORE_REG(regs.pstate):
89 	case KVM_REG_ARM_CORE_REG(sp_el1):
90 	case KVM_REG_ARM_CORE_REG(elr_el1):
91 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
92 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
93 		size = sizeof(__u64);
94 		break;
95 
96 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
97 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
98 		size = sizeof(__uint128_t);
99 		break;
100 
101 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
102 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
103 		size = sizeof(__u32);
104 		break;
105 
106 	default:
107 		return -EINVAL;
108 	}
109 
110 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
111 		return -EINVAL;
112 
113 	/*
114 	 * The KVM_REG_ARM64_SVE regs must be used instead of
115 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
116 	 * SVE-enabled vcpus:
117 	 */
118 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
119 		return -EINVAL;
120 
121 	return size;
122 }
123 
core_reg_addr(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)124 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
125 {
126 	u64 off = core_reg_offset_from_id(reg->id);
127 	int size = core_reg_size_from_offset(vcpu, off);
128 
129 	if (size < 0)
130 		return NULL;
131 
132 	if (KVM_REG_SIZE(reg->id) != size)
133 		return NULL;
134 
135 	switch (off) {
136 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
137 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
138 		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
139 		off /= 2;
140 		return &vcpu->arch.ctxt.regs.regs[off];
141 
142 	case KVM_REG_ARM_CORE_REG(regs.sp):
143 		return &vcpu->arch.ctxt.regs.sp;
144 
145 	case KVM_REG_ARM_CORE_REG(regs.pc):
146 		return &vcpu->arch.ctxt.regs.pc;
147 
148 	case KVM_REG_ARM_CORE_REG(regs.pstate):
149 		return &vcpu->arch.ctxt.regs.pstate;
150 
151 	case KVM_REG_ARM_CORE_REG(sp_el1):
152 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
153 
154 	case KVM_REG_ARM_CORE_REG(elr_el1):
155 		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
156 
157 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
158 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
159 
160 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
161 		return &vcpu->arch.ctxt.spsr_abt;
162 
163 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
164 		return &vcpu->arch.ctxt.spsr_und;
165 
166 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
167 		return &vcpu->arch.ctxt.spsr_irq;
168 
169 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
170 		return &vcpu->arch.ctxt.spsr_fiq;
171 
172 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
173 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
174 		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
175 		off /= 4;
176 		return &vcpu->arch.ctxt.fp_regs.vregs[off];
177 
178 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
179 		return &vcpu->arch.ctxt.fp_regs.fpsr;
180 
181 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
182 		return &vcpu->arch.ctxt.fp_regs.fpcr;
183 
184 	default:
185 		return NULL;
186 	}
187 }
188 
get_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)189 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
190 {
191 	/*
192 	 * Because the kvm_regs structure is a mix of 32, 64 and
193 	 * 128bit fields, we index it as if it was a 32bit
194 	 * array. Hence below, nr_regs is the number of entries, and
195 	 * off the index in the "array".
196 	 */
197 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
198 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
199 	void *addr;
200 	u32 off;
201 
202 	/* Our ID is an index into the kvm_regs struct. */
203 	off = core_reg_offset_from_id(reg->id);
204 	if (off >= nr_regs ||
205 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
206 		return -ENOENT;
207 
208 	addr = core_reg_addr(vcpu, reg);
209 	if (!addr)
210 		return -EINVAL;
211 
212 	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
213 		return -EFAULT;
214 
215 	return 0;
216 }
217 
set_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)218 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
219 {
220 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
221 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
222 	__uint128_t tmp;
223 	void *valp = &tmp, *addr;
224 	u64 off;
225 	int err = 0;
226 
227 	/* Our ID is an index into the kvm_regs struct. */
228 	off = core_reg_offset_from_id(reg->id);
229 	if (off >= nr_regs ||
230 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
231 		return -ENOENT;
232 
233 	addr = core_reg_addr(vcpu, reg);
234 	if (!addr)
235 		return -EINVAL;
236 
237 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
238 		return -EINVAL;
239 
240 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
241 		err = -EFAULT;
242 		goto out;
243 	}
244 
245 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
246 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
247 		switch (mode) {
248 		case PSR_AA32_MODE_USR:
249 			if (!kvm_supports_32bit_el0())
250 				return -EINVAL;
251 			break;
252 		case PSR_AA32_MODE_FIQ:
253 		case PSR_AA32_MODE_IRQ:
254 		case PSR_AA32_MODE_SVC:
255 		case PSR_AA32_MODE_ABT:
256 		case PSR_AA32_MODE_UND:
257 		case PSR_AA32_MODE_SYS:
258 			if (!vcpu_el1_is_32bit(vcpu))
259 				return -EINVAL;
260 			break;
261 		case PSR_MODE_EL2h:
262 		case PSR_MODE_EL2t:
263 			if (!vcpu_has_nv(vcpu))
264 				return -EINVAL;
265 			fallthrough;
266 		case PSR_MODE_EL0t:
267 		case PSR_MODE_EL1t:
268 		case PSR_MODE_EL1h:
269 			if (vcpu_el1_is_32bit(vcpu))
270 				return -EINVAL;
271 			break;
272 		default:
273 			err = -EINVAL;
274 			goto out;
275 		}
276 	}
277 
278 	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
279 
280 	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
281 		int i, nr_reg;
282 
283 		switch (*vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK) {
284 		/*
285 		 * Either we are dealing with user mode, and only the
286 		 * first 15 registers (+ PC) must be narrowed to 32bit.
287 		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
288 		 */
289 		case PSR_AA32_MODE_USR:
290 		case PSR_AA32_MODE_SYS:
291 			nr_reg = 15;
292 			break;
293 
294 		/*
295 		 * Otherwise, this is a privileged mode, and *all* the
296 		 * registers must be narrowed to 32bit.
297 		 */
298 		default:
299 			nr_reg = 31;
300 			break;
301 		}
302 
303 		for (i = 0; i < nr_reg; i++)
304 			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
305 
306 		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
307 	}
308 out:
309 	return err;
310 }
311 
312 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
313 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
314 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
315 
get_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)316 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
317 {
318 	unsigned int max_vq, vq;
319 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
320 
321 	if (!vcpu_has_sve(vcpu))
322 		return -ENOENT;
323 
324 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
325 		return -EINVAL;
326 
327 	memset(vqs, 0, sizeof(vqs));
328 
329 	max_vq = vcpu_sve_max_vq(vcpu);
330 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
331 		if (sve_vq_available(vq))
332 			vqs[vq_word(vq)] |= vq_mask(vq);
333 
334 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
335 		return -EFAULT;
336 
337 	return 0;
338 }
339 
set_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)340 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
341 {
342 	unsigned int max_vq, vq;
343 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
344 
345 	if (!vcpu_has_sve(vcpu))
346 		return -ENOENT;
347 
348 	if (kvm_arm_vcpu_sve_finalized(vcpu))
349 		return -EPERM; /* too late! */
350 
351 	if (WARN_ON(vcpu->arch.sve_state))
352 		return -EINVAL;
353 
354 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
355 		return -EFAULT;
356 
357 	max_vq = 0;
358 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
359 		if (vq_present(vqs, vq))
360 			max_vq = vq;
361 
362 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
363 		return -EINVAL;
364 
365 	/*
366 	 * Vector lengths supported by the host can't currently be
367 	 * hidden from the guest individually: instead we can only set a
368 	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
369 	 * lengths match the set requested exactly up to the requested
370 	 * maximum:
371 	 */
372 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
373 		if (vq_present(vqs, vq) != sve_vq_available(vq))
374 			return -EINVAL;
375 
376 	/* Can't run with no vector lengths at all: */
377 	if (max_vq < SVE_VQ_MIN)
378 		return -EINVAL;
379 
380 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
381 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
382 
383 	return 0;
384 }
385 
386 #define SVE_REG_SLICE_SHIFT	0
387 #define SVE_REG_SLICE_BITS	5
388 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
389 #define SVE_REG_ID_BITS		5
390 
391 #define SVE_REG_SLICE_MASK					\
392 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
393 		SVE_REG_SLICE_SHIFT)
394 #define SVE_REG_ID_MASK							\
395 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
396 
397 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
398 
399 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
400 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
401 
402 /*
403  * Number of register slices required to cover each whole SVE register.
404  * NOTE: Only the first slice every exists, for now.
405  * If you are tempted to modify this, you must also rework sve_reg_to_region()
406  * to match:
407  */
408 #define vcpu_sve_slices(vcpu) 1
409 
410 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
411 struct sve_state_reg_region {
412 	unsigned int koffset;	/* offset into sve_state in kernel memory */
413 	unsigned int klen;	/* length in kernel memory */
414 	unsigned int upad;	/* extra trailing padding in user memory */
415 };
416 
417 /*
418  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
419  * register copy
420  */
sve_reg_to_region(struct sve_state_reg_region * region,struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)421 static int sve_reg_to_region(struct sve_state_reg_region *region,
422 			     struct kvm_vcpu *vcpu,
423 			     const struct kvm_one_reg *reg)
424 {
425 	/* reg ID ranges for Z- registers */
426 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
427 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
428 						       SVE_NUM_SLICES - 1);
429 
430 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
431 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
432 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
433 
434 	unsigned int vq;
435 	unsigned int reg_num;
436 
437 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
438 	unsigned int maxlen; /* Maximum permitted length */
439 
440 	size_t sve_state_size;
441 
442 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
443 							SVE_NUM_SLICES - 1);
444 
445 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
446 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
447 
448 	/* Verify that we match the UAPI header: */
449 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
450 
451 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
452 
453 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
454 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
455 			return -ENOENT;
456 
457 		vq = vcpu_sve_max_vq(vcpu);
458 
459 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
460 				SVE_SIG_REGS_OFFSET;
461 		reqlen = KVM_SVE_ZREG_SIZE;
462 		maxlen = SVE_SIG_ZREG_SIZE(vq);
463 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
464 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
465 			return -ENOENT;
466 
467 		vq = vcpu_sve_max_vq(vcpu);
468 
469 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
470 				SVE_SIG_REGS_OFFSET;
471 		reqlen = KVM_SVE_PREG_SIZE;
472 		maxlen = SVE_SIG_PREG_SIZE(vq);
473 	} else {
474 		return -EINVAL;
475 	}
476 
477 	sve_state_size = vcpu_sve_state_size(vcpu);
478 	if (WARN_ON(!sve_state_size))
479 		return -EINVAL;
480 
481 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
482 	region->klen = min(maxlen, reqlen);
483 	region->upad = reqlen - region->klen;
484 
485 	return 0;
486 }
487 
get_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)488 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
489 {
490 	int ret;
491 	struct sve_state_reg_region region;
492 	char __user *uptr = (char __user *)reg->addr;
493 
494 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
495 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
496 		return get_sve_vls(vcpu, reg);
497 
498 	/* Try to interpret reg ID as an architectural SVE register... */
499 	ret = sve_reg_to_region(&region, vcpu, reg);
500 	if (ret)
501 		return ret;
502 
503 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
504 		return -EPERM;
505 
506 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
507 			 region.klen) ||
508 	    clear_user(uptr + region.klen, region.upad))
509 		return -EFAULT;
510 
511 	return 0;
512 }
513 
set_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)514 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
515 {
516 	int ret;
517 	struct sve_state_reg_region region;
518 	const char __user *uptr = (const char __user *)reg->addr;
519 
520 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
521 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
522 		return set_sve_vls(vcpu, reg);
523 
524 	/* Try to interpret reg ID as an architectural SVE register... */
525 	ret = sve_reg_to_region(&region, vcpu, reg);
526 	if (ret)
527 		return ret;
528 
529 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
530 		return -EPERM;
531 
532 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
533 			   region.klen))
534 		return -EFAULT;
535 
536 	return 0;
537 }
538 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)539 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
540 {
541 	return -EINVAL;
542 }
543 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)544 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
545 {
546 	return -EINVAL;
547 }
548 
copy_core_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)549 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
550 				 u64 __user *uindices)
551 {
552 	unsigned int i;
553 	int n = 0;
554 
555 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
556 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
557 		int size = core_reg_size_from_offset(vcpu, i);
558 
559 		if (size < 0)
560 			continue;
561 
562 		switch (size) {
563 		case sizeof(__u32):
564 			reg |= KVM_REG_SIZE_U32;
565 			break;
566 
567 		case sizeof(__u64):
568 			reg |= KVM_REG_SIZE_U64;
569 			break;
570 
571 		case sizeof(__uint128_t):
572 			reg |= KVM_REG_SIZE_U128;
573 			break;
574 
575 		default:
576 			WARN_ON(1);
577 			continue;
578 		}
579 
580 		if (uindices) {
581 			if (put_user(reg, uindices))
582 				return -EFAULT;
583 			uindices++;
584 		}
585 
586 		n++;
587 	}
588 
589 	return n;
590 }
591 
num_core_regs(const struct kvm_vcpu * vcpu)592 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
593 {
594 	return copy_core_reg_indices(vcpu, NULL);
595 }
596 
597 static const u64 timer_reg_list[] = {
598 	KVM_REG_ARM_TIMER_CTL,
599 	KVM_REG_ARM_TIMER_CNT,
600 	KVM_REG_ARM_TIMER_CVAL,
601 	KVM_REG_ARM_PTIMER_CTL,
602 	KVM_REG_ARM_PTIMER_CNT,
603 	KVM_REG_ARM_PTIMER_CVAL,
604 };
605 
606 #define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
607 
is_timer_reg(u64 index)608 static bool is_timer_reg(u64 index)
609 {
610 	switch (index) {
611 	case KVM_REG_ARM_TIMER_CTL:
612 	case KVM_REG_ARM_TIMER_CNT:
613 	case KVM_REG_ARM_TIMER_CVAL:
614 	case KVM_REG_ARM_PTIMER_CTL:
615 	case KVM_REG_ARM_PTIMER_CNT:
616 	case KVM_REG_ARM_PTIMER_CVAL:
617 		return true;
618 	}
619 	return false;
620 }
621 
copy_timer_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)622 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
623 {
624 	for (int i = 0; i < NUM_TIMER_REGS; i++) {
625 		if (put_user(timer_reg_list[i], uindices))
626 			return -EFAULT;
627 		uindices++;
628 	}
629 
630 	return 0;
631 }
632 
set_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)633 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
634 {
635 	void __user *uaddr = (void __user *)(long)reg->addr;
636 	u64 val;
637 	int ret;
638 
639 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
640 	if (ret != 0)
641 		return -EFAULT;
642 
643 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
644 }
645 
get_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)646 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
647 {
648 	void __user *uaddr = (void __user *)(long)reg->addr;
649 	u64 val;
650 
651 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
652 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
653 }
654 
num_sve_regs(const struct kvm_vcpu * vcpu)655 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
656 {
657 	const unsigned int slices = vcpu_sve_slices(vcpu);
658 
659 	if (!vcpu_has_sve(vcpu))
660 		return 0;
661 
662 	/* Policed by KVM_GET_REG_LIST: */
663 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
664 
665 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
666 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
667 }
668 
copy_sve_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)669 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
670 				u64 __user *uindices)
671 {
672 	const unsigned int slices = vcpu_sve_slices(vcpu);
673 	u64 reg;
674 	unsigned int i, n;
675 	int num_regs = 0;
676 
677 	if (!vcpu_has_sve(vcpu))
678 		return 0;
679 
680 	/* Policed by KVM_GET_REG_LIST: */
681 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
682 
683 	/*
684 	 * Enumerate this first, so that userspace can save/restore in
685 	 * the order reported by KVM_GET_REG_LIST:
686 	 */
687 	reg = KVM_REG_ARM64_SVE_VLS;
688 	if (put_user(reg, uindices++))
689 		return -EFAULT;
690 	++num_regs;
691 
692 	for (i = 0; i < slices; i++) {
693 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
694 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
695 			if (put_user(reg, uindices++))
696 				return -EFAULT;
697 			num_regs++;
698 		}
699 
700 		for (n = 0; n < SVE_NUM_PREGS; n++) {
701 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
702 			if (put_user(reg, uindices++))
703 				return -EFAULT;
704 			num_regs++;
705 		}
706 
707 		reg = KVM_REG_ARM64_SVE_FFR(i);
708 		if (put_user(reg, uindices++))
709 			return -EFAULT;
710 		num_regs++;
711 	}
712 
713 	return num_regs;
714 }
715 
716 /**
717  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
718  *
719  * This is for all registers.
720  */
kvm_arm_num_regs(struct kvm_vcpu * vcpu)721 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
722 {
723 	unsigned long res = 0;
724 
725 	res += num_core_regs(vcpu);
726 	res += num_sve_regs(vcpu);
727 	res += kvm_arm_num_sys_reg_descs(vcpu);
728 	res += kvm_arm_get_fw_num_regs(vcpu);
729 	res += NUM_TIMER_REGS;
730 
731 	return res;
732 }
733 
734 /**
735  * kvm_arm_copy_reg_indices - get indices of all registers.
736  *
737  * We do core registers right here, then we append system regs.
738  */
kvm_arm_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)739 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
740 {
741 	int ret;
742 
743 	ret = copy_core_reg_indices(vcpu, uindices);
744 	if (ret < 0)
745 		return ret;
746 	uindices += ret;
747 
748 	ret = copy_sve_reg_indices(vcpu, uindices);
749 	if (ret < 0)
750 		return ret;
751 	uindices += ret;
752 
753 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
754 	if (ret < 0)
755 		return ret;
756 	uindices += kvm_arm_get_fw_num_regs(vcpu);
757 
758 	ret = copy_timer_indices(vcpu, uindices);
759 	if (ret < 0)
760 		return ret;
761 	uindices += NUM_TIMER_REGS;
762 
763 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
764 }
765 
kvm_arm_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)766 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
767 {
768 	/* We currently use nothing arch-specific in upper 32 bits */
769 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
770 		return -EINVAL;
771 
772 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
773 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
774 	case KVM_REG_ARM_FW:
775 	case KVM_REG_ARM_FW_FEAT_BMAP:
776 		return kvm_arm_get_fw_reg(vcpu, reg);
777 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
778 	}
779 
780 	if (is_timer_reg(reg->id))
781 		return get_timer_reg(vcpu, reg);
782 
783 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
784 }
785 
kvm_arm_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)786 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
787 {
788 	/* We currently use nothing arch-specific in upper 32 bits */
789 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
790 		return -EINVAL;
791 
792 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
793 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
794 	case KVM_REG_ARM_FW:
795 	case KVM_REG_ARM_FW_FEAT_BMAP:
796 		return kvm_arm_set_fw_reg(vcpu, reg);
797 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
798 	}
799 
800 	if (is_timer_reg(reg->id))
801 		return set_timer_reg(vcpu, reg);
802 
803 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
804 }
805 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)806 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
807 				  struct kvm_sregs *sregs)
808 {
809 	return -EINVAL;
810 }
811 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)812 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
813 				  struct kvm_sregs *sregs)
814 {
815 	return -EINVAL;
816 }
817 
__kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)818 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
819 			      struct kvm_vcpu_events *events)
820 {
821 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
822 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
823 
824 	if (events->exception.serror_pending && events->exception.serror_has_esr)
825 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
826 
827 	/*
828 	 * We never return a pending ext_dabt here because we deliver it to
829 	 * the virtual CPU directly when setting the event and it's no longer
830 	 * 'pending' at this point.
831 	 */
832 
833 	return 0;
834 }
835 
__kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)836 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
837 			      struct kvm_vcpu_events *events)
838 {
839 	bool serror_pending = events->exception.serror_pending;
840 	bool has_esr = events->exception.serror_has_esr;
841 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
842 
843 	if (serror_pending && has_esr) {
844 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
845 			return -EINVAL;
846 
847 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
848 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
849 		else
850 			return -EINVAL;
851 	} else if (serror_pending) {
852 		kvm_inject_vabt(vcpu);
853 	}
854 
855 	if (ext_dabt_pending)
856 		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
857 
858 	return 0;
859 }
860 
kvm_target_cpu(void)861 u32 __attribute_const__ kvm_target_cpu(void)
862 {
863 	unsigned long implementor = read_cpuid_implementor();
864 	unsigned long part_number = read_cpuid_part_number();
865 
866 	switch (implementor) {
867 	case ARM_CPU_IMP_ARM:
868 		switch (part_number) {
869 		case ARM_CPU_PART_AEM_V8:
870 			return KVM_ARM_TARGET_AEM_V8;
871 		case ARM_CPU_PART_FOUNDATION:
872 			return KVM_ARM_TARGET_FOUNDATION_V8;
873 		case ARM_CPU_PART_CORTEX_A53:
874 			return KVM_ARM_TARGET_CORTEX_A53;
875 		case ARM_CPU_PART_CORTEX_A57:
876 			return KVM_ARM_TARGET_CORTEX_A57;
877 		}
878 		break;
879 	case ARM_CPU_IMP_APM:
880 		switch (part_number) {
881 		case APM_CPU_PART_XGENE:
882 			return KVM_ARM_TARGET_XGENE_POTENZA;
883 		}
884 		break;
885 	}
886 
887 	/* Return a default generic target */
888 	return KVM_ARM_TARGET_GENERIC_V8;
889 }
890 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)891 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
892 {
893 	return -EINVAL;
894 }
895 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)896 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
897 {
898 	return -EINVAL;
899 }
900 
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)901 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
902 				  struct kvm_translation *tr)
903 {
904 	return -EINVAL;
905 }
906 
907 /**
908  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
909  * @kvm:	pointer to the KVM struct
910  * @kvm_guest_debug: the ioctl data buffer
911  *
912  * This sets up and enables the VM for guest debugging. Userspace
913  * passes in a control flag to enable different debug types and
914  * potentially other architecture specific information in the rest of
915  * the structure.
916  */
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)917 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
918 					struct kvm_guest_debug *dbg)
919 {
920 	int ret = 0;
921 
922 	trace_kvm_set_guest_debug(vcpu, dbg->control);
923 
924 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
925 		ret = -EINVAL;
926 		goto out;
927 	}
928 
929 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
930 		vcpu->guest_debug = dbg->control;
931 
932 		/* Hardware assisted Break and Watch points */
933 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
934 			vcpu->arch.external_debug_state = dbg->arch;
935 		}
936 
937 	} else {
938 		/* If not enabled clear all flags */
939 		vcpu->guest_debug = 0;
940 		vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
941 	}
942 
943 out:
944 	return ret;
945 }
946 
kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)947 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
948 			       struct kvm_device_attr *attr)
949 {
950 	int ret;
951 
952 	switch (attr->group) {
953 	case KVM_ARM_VCPU_PMU_V3_CTRL:
954 		mutex_lock(&vcpu->kvm->arch.config_lock);
955 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
956 		mutex_unlock(&vcpu->kvm->arch.config_lock);
957 		break;
958 	case KVM_ARM_VCPU_TIMER_CTRL:
959 		ret = kvm_arm_timer_set_attr(vcpu, attr);
960 		break;
961 	case KVM_ARM_VCPU_PVTIME_CTRL:
962 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
963 		break;
964 	default:
965 		ret = -ENXIO;
966 		break;
967 	}
968 
969 	return ret;
970 }
971 
kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)972 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
973 			       struct kvm_device_attr *attr)
974 {
975 	int ret;
976 
977 	switch (attr->group) {
978 	case KVM_ARM_VCPU_PMU_V3_CTRL:
979 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
980 		break;
981 	case KVM_ARM_VCPU_TIMER_CTRL:
982 		ret = kvm_arm_timer_get_attr(vcpu, attr);
983 		break;
984 	case KVM_ARM_VCPU_PVTIME_CTRL:
985 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
986 		break;
987 	default:
988 		ret = -ENXIO;
989 		break;
990 	}
991 
992 	return ret;
993 }
994 
kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)995 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
996 			       struct kvm_device_attr *attr)
997 {
998 	int ret;
999 
1000 	switch (attr->group) {
1001 	case KVM_ARM_VCPU_PMU_V3_CTRL:
1002 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1003 		break;
1004 	case KVM_ARM_VCPU_TIMER_CTRL:
1005 		ret = kvm_arm_timer_has_attr(vcpu, attr);
1006 		break;
1007 	case KVM_ARM_VCPU_PVTIME_CTRL:
1008 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1009 		break;
1010 	default:
1011 		ret = -ENXIO;
1012 		break;
1013 	}
1014 
1015 	return ret;
1016 }
1017 
kvm_vm_ioctl_mte_copy_tags(struct kvm * kvm,struct kvm_arm_copy_mte_tags * copy_tags)1018 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1019 			       struct kvm_arm_copy_mte_tags *copy_tags)
1020 {
1021 	gpa_t guest_ipa = copy_tags->guest_ipa;
1022 	size_t length = copy_tags->length;
1023 	void __user *tags = copy_tags->addr;
1024 	gpa_t gfn;
1025 	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1026 	int ret = 0;
1027 
1028 	if (!kvm_has_mte(kvm))
1029 		return -EINVAL;
1030 
1031 	if (copy_tags->reserved[0] || copy_tags->reserved[1])
1032 		return -EINVAL;
1033 
1034 	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1035 		return -EINVAL;
1036 
1037 	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1038 		return -EINVAL;
1039 
1040 	/* Lengths above INT_MAX cannot be represented in the return value */
1041 	if (length > INT_MAX)
1042 		return -EINVAL;
1043 
1044 	gfn = gpa_to_gfn(guest_ipa);
1045 
1046 	mutex_lock(&kvm->slots_lock);
1047 
1048 	while (length > 0) {
1049 		kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1050 		void *maddr;
1051 		unsigned long num_tags;
1052 		struct page *page;
1053 
1054 		if (is_error_noslot_pfn(pfn)) {
1055 			ret = -EFAULT;
1056 			goto out;
1057 		}
1058 
1059 		page = pfn_to_online_page(pfn);
1060 		if (!page) {
1061 			/* Reject ZONE_DEVICE memory */
1062 			ret = -EFAULT;
1063 			goto out;
1064 		}
1065 		maddr = page_address(page);
1066 
1067 		if (!write) {
1068 			if (page_mte_tagged(page))
1069 				num_tags = mte_copy_tags_to_user(tags, maddr,
1070 							MTE_GRANULES_PER_PAGE);
1071 			else
1072 				/* No tags in memory, so write zeros */
1073 				num_tags = MTE_GRANULES_PER_PAGE -
1074 					clear_user(tags, MTE_GRANULES_PER_PAGE);
1075 			kvm_release_pfn_clean(pfn);
1076 		} else {
1077 			/*
1078 			 * Only locking to serialise with a concurrent
1079 			 * __set_ptes() in the VMM but still overriding the
1080 			 * tags, hence ignoring the return value.
1081 			 */
1082 			try_page_mte_tagging(page);
1083 			num_tags = mte_copy_tags_from_user(maddr, tags,
1084 							MTE_GRANULES_PER_PAGE);
1085 
1086 			/* uaccess failed, don't leave stale tags */
1087 			if (num_tags != MTE_GRANULES_PER_PAGE)
1088 				mte_clear_page_tags(maddr);
1089 			set_page_mte_tagged(page);
1090 
1091 			kvm_release_pfn_dirty(pfn);
1092 		}
1093 
1094 		if (num_tags != MTE_GRANULES_PER_PAGE) {
1095 			ret = -EFAULT;
1096 			goto out;
1097 		}
1098 
1099 		gfn++;
1100 		tags += num_tags;
1101 		length -= PAGE_SIZE;
1102 	}
1103 
1104 out:
1105 	mutex_unlock(&kvm->slots_lock);
1106 	/* If some data has been copied report the number of bytes copied */
1107 	if (length != copy_tags->length)
1108 		return copy_tags->length - length;
1109 	return ret;
1110 }
1111