1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/mmu.h>
13 #include <asm/cpufeature.h>
14
15 /*
16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17 * "negative" addresses. This makes it impossible to directly share
18 * mappings with the kernel.
19 *
20 * Instead, give the HYP mode its own VA region at a fixed offset from
21 * the kernel by just masking the top bits (which are all ones for a
22 * kernel address). We need to find out how many bits to mask.
23 *
24 * We want to build a set of page tables that cover both parts of the
25 * idmap (the trampoline page used to initialize EL2), and our normal
26 * runtime VA space, at the same time.
27 *
28 * Given that the kernel uses VA_BITS for its entire address space,
29 * and that half of that space (VA_BITS - 1) is used for the linear
30 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31 *
32 * The main question is "Within the VA_BITS space, does EL2 use the
33 * top or the bottom half of that space to shadow the kernel's linear
34 * mapping?". As we need to idmap the trampoline page, this is
35 * determined by the range in which this page lives.
36 *
37 * If the page is in the bottom half, we have to use the top half. If
38 * the page is in the top half, we have to use the bottom half:
39 *
40 * T = __pa_symbol(__hyp_idmap_text_start)
41 * if (T & BIT(VA_BITS - 1))
42 * HYP_VA_MIN = 0 //idmap in upper half
43 * else
44 * HYP_VA_MIN = 1 << (VA_BITS - 1)
45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46 *
47 * When using VHE, there are no separate hyp mappings and all KVM
48 * functionality is already mapped as part of the main kernel
49 * mappings, and none of this applies in that case.
50 */
51
52 #ifdef __ASSEMBLY__
53
54 #include <asm/alternative.h>
55
56 /*
57 * Convert a kernel VA into a HYP VA.
58 * reg: VA to be converted.
59 *
60 * The actual code generation takes place in kvm_update_va_mask, and
61 * the instructions below are only there to reserve the space and
62 * perform the register allocation (kvm_update_va_mask uses the
63 * specific registers encoded in the instructions).
64 */
65 .macro kern_hyp_va reg
66 #ifndef __KVM_VHE_HYPERVISOR__
67 alternative_cb ARM64_ALWAYS_SYSTEM, kvm_update_va_mask
68 and \reg, \reg, #1 /* mask with va_mask */
69 ror \reg, \reg, #1 /* rotate to the first tag bit */
70 add \reg, \reg, #0 /* insert the low 12 bits of the tag */
71 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
72 ror \reg, \reg, #63 /* rotate back */
73 alternative_cb_end
74 #endif
75 .endm
76
77 /*
78 * Convert a hypervisor VA to a PA
79 * reg: hypervisor address to be converted in place
80 * tmp: temporary register
81 */
82 .macro hyp_pa reg, tmp
83 ldr_l \tmp, hyp_physvirt_offset
84 add \reg, \reg, \tmp
85 .endm
86
87 /*
88 * Convert a hypervisor VA to a kernel image address
89 * reg: hypervisor address to be converted in place
90 * tmp: temporary register
91 *
92 * The actual code generation takes place in kvm_get_kimage_voffset, and
93 * the instructions below are only there to reserve the space and
94 * perform the register allocation (kvm_get_kimage_voffset uses the
95 * specific registers encoded in the instructions).
96 */
97 .macro hyp_kimg_va reg, tmp
98 /* Convert hyp VA -> PA. */
99 hyp_pa \reg, \tmp
100
101 /* Load kimage_voffset. */
102 alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset
103 movz \tmp, #0
104 movk \tmp, #0, lsl #16
105 movk \tmp, #0, lsl #32
106 movk \tmp, #0, lsl #48
107 alternative_cb_end
108
109 /* Convert PA -> kimg VA. */
110 add \reg, \reg, \tmp
111 .endm
112
113 #else
114
115 #include <linux/pgtable.h>
116 #include <asm/pgalloc.h>
117 #include <asm/cache.h>
118 #include <asm/cacheflush.h>
119 #include <asm/mmu_context.h>
120 #include <asm/kvm_emulate.h>
121 #include <asm/kvm_host.h>
122 #include <asm/kvm_pkvm_module.h>
123
124 void kvm_update_va_mask(struct alt_instr *alt,
125 __le32 *origptr, __le32 *updptr, int nr_inst);
126 void kvm_compute_layout(void);
127 void kvm_apply_hyp_relocations(void);
128
129 #define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset)
130
__kern_hyp_va(unsigned long v)131 static __always_inline unsigned long __kern_hyp_va(unsigned long v)
132 {
133 #ifndef __KVM_VHE_HYPERVISOR__
134 if (!is_ttbr1_addr(v))
135 return v;
136
137 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
138 "ror %0, %0, #1\n"
139 "add %0, %0, #0\n"
140 "add %0, %0, #0, lsl 12\n"
141 "ror %0, %0, #63\n",
142 ARM64_ALWAYS_SYSTEM,
143 kvm_update_va_mask)
144 : "+r" (v));
145 #endif
146 return v;
147 }
148
149 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
150
151 /*
152 * We currently support using a VM-specified IPA size. For backward
153 * compatibility, the default IPA size is fixed to 40bits.
154 */
155 #define KVM_PHYS_SHIFT (40)
156
157 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
158 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
159 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
160
161 #include <asm/kvm_pgtable.h>
162 #include <asm/stage2_pgtable.h>
163
164 int kvm_share_hyp(void *from, void *to);
165 void kvm_unshare_hyp(void *from, void *to);
166 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
167 int __create_hyp_mappings(unsigned long start, unsigned long size,
168 unsigned long phys, enum kvm_pgtable_prot prot);
169 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr);
170 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
171 void __iomem **kaddr,
172 void __iomem **haddr);
173 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
174 void **haddr);
175 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr);
176 void __init free_hyp_pgds(void);
177
178 void stage2_unmap_vm(struct kvm *kvm);
179 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type);
180 void kvm_uninit_stage2_mmu(struct kvm *kvm);
181 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
182 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
183 phys_addr_t pa, unsigned long size, bool writable);
184
185 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
186 int pkvm_mem_abort_range(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, size_t size);
187
188 phys_addr_t kvm_mmu_get_httbr(void);
189 phys_addr_t kvm_get_idmap_vector(void);
190 int __init kvm_mmu_init(u32 *hyp_va_bits);
191
__kvm_vector_slot2addr(void * base,enum arm64_hyp_spectre_vector slot)192 static inline void *__kvm_vector_slot2addr(void *base,
193 enum arm64_hyp_spectre_vector slot)
194 {
195 int idx = slot - (slot != HYP_VECTOR_DIRECT);
196
197 return base + (idx * SZ_2K);
198 }
199
200 struct kvm;
201
202 #define kvm_flush_dcache_to_poc(a, l) do { \
203 unsigned long __a = (unsigned long)(a); \
204 unsigned long __l = (unsigned long)(l); \
205 \
206 if (__l) \
207 dcache_clean_inval_poc(__a, __a + __l); \
208 } while (0)
209
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)210 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
211 {
212 u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C;
213 int reg;
214
215 if (vcpu_is_el2(vcpu))
216 reg = SCTLR_EL2;
217 else
218 reg = SCTLR_EL1;
219
220 return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits;
221 }
222
__clean_dcache_guest_page(void * va,size_t size)223 static inline void __clean_dcache_guest_page(void *va, size_t size)
224 {
225 /*
226 * With FWB, we ensure that the guest always accesses memory using
227 * cacheable attributes, and we don't have to clean to PoC when
228 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
229 * PoU is not required either in this case.
230 */
231 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
232 return;
233
234 kvm_flush_dcache_to_poc(va, size);
235 }
236
__invalidate_icache_guest_page(void * va,size_t size)237 static inline void __invalidate_icache_guest_page(void *va, size_t size)
238 {
239 if (icache_is_aliasing()) {
240 /* any kind of VIPT cache */
241 icache_inval_all_pou();
242 } else if (read_sysreg(CurrentEL) != CurrentEL_EL1 ||
243 !icache_is_vpipt()) {
244 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
245 icache_inval_pou((unsigned long)va, (unsigned long)va + size);
246 }
247 }
248
249 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
250 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
251
kvm_get_vmid_bits(void)252 static inline unsigned int kvm_get_vmid_bits(void)
253 {
254 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
255
256 return get_vmid_bits(reg);
257 }
258
259 /*
260 * We are not in the kvm->srcu critical section most of the time, so we take
261 * the SRCU read lock here. Since we copy the data from the user page, we
262 * can immediately drop the lock again.
263 */
kvm_read_guest_lock(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)264 static inline int kvm_read_guest_lock(struct kvm *kvm,
265 gpa_t gpa, void *data, unsigned long len)
266 {
267 int srcu_idx = srcu_read_lock(&kvm->srcu);
268 int ret = kvm_read_guest(kvm, gpa, data, len);
269
270 srcu_read_unlock(&kvm->srcu, srcu_idx);
271
272 return ret;
273 }
274
kvm_write_guest_lock(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)275 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
276 const void *data, unsigned long len)
277 {
278 int srcu_idx = srcu_read_lock(&kvm->srcu);
279 int ret = kvm_write_guest(kvm, gpa, data, len);
280
281 srcu_read_unlock(&kvm->srcu, srcu_idx);
282
283 return ret;
284 }
285
286 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
287
288 /*
289 * When this is (directly or indirectly) used on the TLB invalidation
290 * path, we rely on a previously issued DSB so that page table updates
291 * and VMID reads are correctly ordered.
292 */
kvm_get_vttbr(struct kvm_s2_mmu * mmu)293 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
294 {
295 struct kvm_vmid *vmid = &mmu->vmid;
296 u64 vmid_field, baddr;
297 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
298
299 baddr = mmu->pgd_phys;
300 vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT;
301 vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits);
302 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
303 }
304
305 /*
306 * Must be called from hyp code running at EL2 with an updated VTTBR
307 * and interrupts disabled.
308 */
__load_stage2(struct kvm_s2_mmu * mmu,struct kvm_arch * arch)309 static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu,
310 struct kvm_arch *arch)
311 {
312 write_sysreg(arch->vtcr, vtcr_el2);
313 write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
314
315 /*
316 * ARM errata 1165522 and 1530923 require the actual execution of the
317 * above before we can switch to the EL1/EL0 translation regime used by
318 * the guest.
319 */
320 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
321 }
322
kvm_s2_mmu_to_kvm(struct kvm_s2_mmu * mmu)323 static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
324 {
325 return container_of(mmu->arch, struct kvm, arch);
326 }
327 #endif /* __ASSEMBLY__ */
328 #endif /* __ARM64_KVM_MMU_H__ */
329