1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 struct mptcp_sock msk;
35 struct ipv6_pinfo np;
36 };
37 #endif
38
39 enum {
40 MPTCP_CMSG_TS = BIT(0),
41 MPTCP_CMSG_INQ = BIT(1),
42 };
43
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 return READ_ONCE(msk->wnd_end);
56 }
57
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 if (sk->sk_prot == &tcpv6_prot)
62 return &inet6_stream_ops;
63 #endif
64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 return &inet_stream_ops;
66 }
67
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 struct mptcp_subflow_context *subflow;
71 struct sock *sk = (struct sock *)msk;
72 struct socket *ssock;
73 int err;
74
75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 if (err)
77 return err;
78
79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 WRITE_ONCE(msk->first, ssock->sk);
81 subflow = mptcp_subflow_ctx(ssock->sk);
82 list_add(&subflow->node, &msk->conn_list);
83 sock_hold(ssock->sk);
84 subflow->request_mptcp = 1;
85 subflow->subflow_id = msk->subflow_id++;
86
87 /* This is the first subflow, always with id 0 */
88 WRITE_ONCE(subflow->local_id, 0);
89 mptcp_sock_graft(msk->first, sk->sk_socket);
90 iput(SOCK_INODE(ssock));
91
92 return 0;
93 }
94
95 /* If the MPC handshake is not started, returns the first subflow,
96 * eventually allocating it.
97 */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 struct sock *sk = (struct sock *)msk;
101 int ret;
102
103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 return ERR_PTR(-EINVAL);
105
106 if (!msk->first) {
107 ret = __mptcp_socket_create(msk);
108 if (ret)
109 return ERR_PTR(ret);
110
111 mptcp_sockopt_sync(msk, msk->first);
112 }
113
114 return msk->first;
115 }
116
mptcp_drop(struct sock * sk,struct sk_buff * skb)117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 sk_drops_add(sk, skb);
120 __kfree_skb(skb);
121 }
122
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
124 {
125 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
126 mptcp_sk(sk)->rmem_fwd_alloc + size);
127 }
128
mptcp_rmem_charge(struct sock * sk,int size)129 static void mptcp_rmem_charge(struct sock *sk, int size)
130 {
131 mptcp_rmem_fwd_alloc_add(sk, -size);
132 }
133
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
135 struct sk_buff *from)
136 {
137 bool fragstolen;
138 int delta;
139
140 if (MPTCP_SKB_CB(from)->offset ||
141 !skb_try_coalesce(to, from, &fragstolen, &delta))
142 return false;
143
144 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
145 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
146 to->len, MPTCP_SKB_CB(from)->end_seq);
147 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
148
149 /* note the fwd memory can reach a negative value after accounting
150 * for the delta, but the later skb free will restore a non
151 * negative one
152 */
153 atomic_add(delta, &sk->sk_rmem_alloc);
154 mptcp_rmem_charge(sk, delta);
155 kfree_skb_partial(from, fragstolen);
156
157 return true;
158 }
159
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)160 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
161 struct sk_buff *from)
162 {
163 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
164 return false;
165
166 return mptcp_try_coalesce((struct sock *)msk, to, from);
167 }
168
__mptcp_rmem_reclaim(struct sock * sk,int amount)169 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
170 {
171 amount >>= PAGE_SHIFT;
172 mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
173 __sk_mem_reduce_allocated(sk, amount);
174 }
175
mptcp_rmem_uncharge(struct sock * sk,int size)176 static void mptcp_rmem_uncharge(struct sock *sk, int size)
177 {
178 struct mptcp_sock *msk = mptcp_sk(sk);
179 int reclaimable;
180
181 mptcp_rmem_fwd_alloc_add(sk, size);
182 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
183
184 /* see sk_mem_uncharge() for the rationale behind the following schema */
185 if (unlikely(reclaimable >= PAGE_SIZE))
186 __mptcp_rmem_reclaim(sk, reclaimable);
187 }
188
mptcp_rfree(struct sk_buff * skb)189 static void mptcp_rfree(struct sk_buff *skb)
190 {
191 unsigned int len = skb->truesize;
192 struct sock *sk = skb->sk;
193
194 atomic_sub(len, &sk->sk_rmem_alloc);
195 mptcp_rmem_uncharge(sk, len);
196 }
197
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)198 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
199 {
200 skb_orphan(skb);
201 skb->sk = sk;
202 skb->destructor = mptcp_rfree;
203 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
204 mptcp_rmem_charge(sk, skb->truesize);
205 }
206
207 /* "inspired" by tcp_data_queue_ofo(), main differences:
208 * - use mptcp seqs
209 * - don't cope with sacks
210 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)211 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
212 {
213 struct sock *sk = (struct sock *)msk;
214 struct rb_node **p, *parent;
215 u64 seq, end_seq, max_seq;
216 struct sk_buff *skb1;
217
218 seq = MPTCP_SKB_CB(skb)->map_seq;
219 end_seq = MPTCP_SKB_CB(skb)->end_seq;
220 max_seq = atomic64_read(&msk->rcv_wnd_sent);
221
222 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
223 RB_EMPTY_ROOT(&msk->out_of_order_queue));
224 if (after64(end_seq, max_seq)) {
225 /* out of window */
226 mptcp_drop(sk, skb);
227 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
228 (unsigned long long)end_seq - (unsigned long)max_seq,
229 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
230 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
231 return;
232 }
233
234 p = &msk->out_of_order_queue.rb_node;
235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
236 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
237 rb_link_node(&skb->rbnode, NULL, p);
238 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
239 msk->ooo_last_skb = skb;
240 goto end;
241 }
242
243 /* with 2 subflows, adding at end of ooo queue is quite likely
244 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
245 */
246 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
249 return;
250 }
251
252 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
253 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
255 parent = &msk->ooo_last_skb->rbnode;
256 p = &parent->rb_right;
257 goto insert;
258 }
259
260 /* Find place to insert this segment. Handle overlaps on the way. */
261 parent = NULL;
262 while (*p) {
263 parent = *p;
264 skb1 = rb_to_skb(parent);
265 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
266 p = &parent->rb_left;
267 continue;
268 }
269 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
270 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
271 /* All the bits are present. Drop. */
272 mptcp_drop(sk, skb);
273 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
274 return;
275 }
276 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
277 /* partial overlap:
278 * | skb |
279 * | skb1 |
280 * continue traversing
281 */
282 } else {
283 /* skb's seq == skb1's seq and skb covers skb1.
284 * Replace skb1 with skb.
285 */
286 rb_replace_node(&skb1->rbnode, &skb->rbnode,
287 &msk->out_of_order_queue);
288 mptcp_drop(sk, skb1);
289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
290 goto merge_right;
291 }
292 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
293 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
294 return;
295 }
296 p = &parent->rb_right;
297 }
298
299 insert:
300 /* Insert segment into RB tree. */
301 rb_link_node(&skb->rbnode, parent, p);
302 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
303
304 merge_right:
305 /* Remove other segments covered by skb. */
306 while ((skb1 = skb_rb_next(skb)) != NULL) {
307 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
308 break;
309 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
310 mptcp_drop(sk, skb1);
311 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
312 }
313 /* If there is no skb after us, we are the last_skb ! */
314 if (!skb1)
315 msk->ooo_last_skb = skb;
316
317 end:
318 skb_condense(skb);
319 mptcp_set_owner_r(skb, sk);
320 }
321
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)322 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
323 {
324 struct mptcp_sock *msk = mptcp_sk(sk);
325 int amt, amount;
326
327 if (size <= msk->rmem_fwd_alloc)
328 return true;
329
330 size -= msk->rmem_fwd_alloc;
331 amt = sk_mem_pages(size);
332 amount = amt << PAGE_SHIFT;
333 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
334 return false;
335
336 mptcp_rmem_fwd_alloc_add(sk, amount);
337 return true;
338 }
339
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
341 struct sk_buff *skb, unsigned int offset,
342 size_t copy_len)
343 {
344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
345 struct sock *sk = (struct sock *)msk;
346 struct sk_buff *tail;
347 bool has_rxtstamp;
348
349 __skb_unlink(skb, &ssk->sk_receive_queue);
350
351 skb_ext_reset(skb);
352 skb_orphan(skb);
353
354 /* try to fetch required memory from subflow */
355 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
356 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
357 goto drop;
358 }
359
360 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
361
362 /* the skb map_seq accounts for the skb offset:
363 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
364 * value
365 */
366 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
367 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
368 MPTCP_SKB_CB(skb)->offset = offset;
369 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
370
371 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
372 /* in sequence */
373 msk->bytes_received += copy_len;
374 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
375 tail = skb_peek_tail(&sk->sk_receive_queue);
376 if (tail && mptcp_try_coalesce(sk, tail, skb))
377 return true;
378
379 mptcp_set_owner_r(skb, sk);
380 __skb_queue_tail(&sk->sk_receive_queue, skb);
381 return true;
382 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
383 mptcp_data_queue_ofo(msk, skb);
384 return false;
385 }
386
387 /* old data, keep it simple and drop the whole pkt, sender
388 * will retransmit as needed, if needed.
389 */
390 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
391 drop:
392 mptcp_drop(sk, skb);
393 return false;
394 }
395
mptcp_stop_rtx_timer(struct sock * sk)396 static void mptcp_stop_rtx_timer(struct sock *sk)
397 {
398 struct inet_connection_sock *icsk = inet_csk(sk);
399
400 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
401 mptcp_sk(sk)->timer_ival = 0;
402 }
403
mptcp_close_wake_up(struct sock * sk)404 static void mptcp_close_wake_up(struct sock *sk)
405 {
406 if (sock_flag(sk, SOCK_DEAD))
407 return;
408
409 sk->sk_state_change(sk);
410 if (sk->sk_shutdown == SHUTDOWN_MASK ||
411 sk->sk_state == TCP_CLOSE)
412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
413 else
414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
415 }
416
mptcp_pending_data_fin_ack(struct sock * sk)417 static bool mptcp_pending_data_fin_ack(struct sock *sk)
418 {
419 struct mptcp_sock *msk = mptcp_sk(sk);
420
421 return ((1 << sk->sk_state) &
422 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
423 msk->write_seq == READ_ONCE(msk->snd_una);
424 }
425
mptcp_check_data_fin_ack(struct sock * sk)426 static void mptcp_check_data_fin_ack(struct sock *sk)
427 {
428 struct mptcp_sock *msk = mptcp_sk(sk);
429
430 /* Look for an acknowledged DATA_FIN */
431 if (mptcp_pending_data_fin_ack(sk)) {
432 WRITE_ONCE(msk->snd_data_fin_enable, 0);
433
434 switch (sk->sk_state) {
435 case TCP_FIN_WAIT1:
436 mptcp_set_state(sk, TCP_FIN_WAIT2);
437 break;
438 case TCP_CLOSING:
439 case TCP_LAST_ACK:
440 mptcp_set_state(sk, TCP_CLOSE);
441 break;
442 }
443
444 mptcp_close_wake_up(sk);
445 }
446 }
447
mptcp_pending_data_fin(struct sock * sk,u64 * seq)448 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
449 {
450 struct mptcp_sock *msk = mptcp_sk(sk);
451
452 if (READ_ONCE(msk->rcv_data_fin) &&
453 ((1 << sk->sk_state) &
454 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
455 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
456
457 if (msk->ack_seq == rcv_data_fin_seq) {
458 if (seq)
459 *seq = rcv_data_fin_seq;
460
461 return true;
462 }
463 }
464
465 return false;
466 }
467
mptcp_set_datafin_timeout(struct sock * sk)468 static void mptcp_set_datafin_timeout(struct sock *sk)
469 {
470 struct inet_connection_sock *icsk = inet_csk(sk);
471 u32 retransmits;
472
473 retransmits = min_t(u32, icsk->icsk_retransmits,
474 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
475
476 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
477 }
478
__mptcp_set_timeout(struct sock * sk,long tout)479 static void __mptcp_set_timeout(struct sock *sk, long tout)
480 {
481 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
482 }
483
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)484 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
485 {
486 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
487
488 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
489 inet_csk(ssk)->icsk_timeout - jiffies : 0;
490 }
491
mptcp_set_timeout(struct sock * sk)492 static void mptcp_set_timeout(struct sock *sk)
493 {
494 struct mptcp_subflow_context *subflow;
495 long tout = 0;
496
497 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
498 tout = max(tout, mptcp_timeout_from_subflow(subflow));
499 __mptcp_set_timeout(sk, tout);
500 }
501
tcp_can_send_ack(const struct sock * ssk)502 static inline bool tcp_can_send_ack(const struct sock *ssk)
503 {
504 return !((1 << inet_sk_state_load(ssk)) &
505 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
506 }
507
__mptcp_subflow_send_ack(struct sock * ssk)508 void __mptcp_subflow_send_ack(struct sock *ssk)
509 {
510 if (tcp_can_send_ack(ssk))
511 tcp_send_ack(ssk);
512 }
513
mptcp_subflow_send_ack(struct sock * ssk)514 static void mptcp_subflow_send_ack(struct sock *ssk)
515 {
516 bool slow;
517
518 slow = lock_sock_fast(ssk);
519 __mptcp_subflow_send_ack(ssk);
520 unlock_sock_fast(ssk, slow);
521 }
522
mptcp_send_ack(struct mptcp_sock * msk)523 static void mptcp_send_ack(struct mptcp_sock *msk)
524 {
525 struct mptcp_subflow_context *subflow;
526
527 mptcp_for_each_subflow(msk, subflow)
528 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
529 }
530
mptcp_subflow_cleanup_rbuf(struct sock * ssk)531 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
532 {
533 bool slow;
534
535 slow = lock_sock_fast(ssk);
536 if (tcp_can_send_ack(ssk))
537 tcp_cleanup_rbuf(ssk, 1);
538 unlock_sock_fast(ssk, slow);
539 }
540
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)541 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
542 {
543 const struct inet_connection_sock *icsk = inet_csk(ssk);
544 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
545 const struct tcp_sock *tp = tcp_sk(ssk);
546
547 return (ack_pending & ICSK_ACK_SCHED) &&
548 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
549 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
550 (rx_empty && ack_pending &
551 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
552 }
553
mptcp_cleanup_rbuf(struct mptcp_sock * msk)554 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
555 {
556 int old_space = READ_ONCE(msk->old_wspace);
557 struct mptcp_subflow_context *subflow;
558 struct sock *sk = (struct sock *)msk;
559 int space = __mptcp_space(sk);
560 bool cleanup, rx_empty;
561
562 cleanup = (space > 0) && (space >= (old_space << 1));
563 rx_empty = !__mptcp_rmem(sk);
564
565 mptcp_for_each_subflow(msk, subflow) {
566 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
567
568 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
569 mptcp_subflow_cleanup_rbuf(ssk);
570 }
571 }
572
mptcp_check_data_fin(struct sock * sk)573 static bool mptcp_check_data_fin(struct sock *sk)
574 {
575 struct mptcp_sock *msk = mptcp_sk(sk);
576 u64 rcv_data_fin_seq;
577 bool ret = false;
578
579 /* Need to ack a DATA_FIN received from a peer while this side
580 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
581 * msk->rcv_data_fin was set when parsing the incoming options
582 * at the subflow level and the msk lock was not held, so this
583 * is the first opportunity to act on the DATA_FIN and change
584 * the msk state.
585 *
586 * If we are caught up to the sequence number of the incoming
587 * DATA_FIN, send the DATA_ACK now and do state transition. If
588 * not caught up, do nothing and let the recv code send DATA_ACK
589 * when catching up.
590 */
591
592 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
593 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
594 WRITE_ONCE(msk->rcv_data_fin, 0);
595
596 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
597 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
598
599 switch (sk->sk_state) {
600 case TCP_ESTABLISHED:
601 mptcp_set_state(sk, TCP_CLOSE_WAIT);
602 break;
603 case TCP_FIN_WAIT1:
604 mptcp_set_state(sk, TCP_CLOSING);
605 break;
606 case TCP_FIN_WAIT2:
607 mptcp_set_state(sk, TCP_CLOSE);
608 break;
609 default:
610 /* Other states not expected */
611 WARN_ON_ONCE(1);
612 break;
613 }
614
615 ret = true;
616 if (!__mptcp_check_fallback(msk))
617 mptcp_send_ack(msk);
618 mptcp_close_wake_up(sk);
619 }
620 return ret;
621 }
622
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)623 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
624 struct sock *ssk,
625 unsigned int *bytes)
626 {
627 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
628 struct sock *sk = (struct sock *)msk;
629 unsigned int moved = 0;
630 bool more_data_avail;
631 struct tcp_sock *tp;
632 bool done = false;
633 int sk_rbuf;
634
635 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
636
637 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
638 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
639
640 if (unlikely(ssk_rbuf > sk_rbuf)) {
641 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
642 sk_rbuf = ssk_rbuf;
643 }
644 }
645
646 pr_debug("msk=%p ssk=%p", msk, ssk);
647 tp = tcp_sk(ssk);
648 do {
649 u32 map_remaining, offset;
650 u32 seq = tp->copied_seq;
651 struct sk_buff *skb;
652 bool fin;
653
654 /* try to move as much data as available */
655 map_remaining = subflow->map_data_len -
656 mptcp_subflow_get_map_offset(subflow);
657
658 skb = skb_peek(&ssk->sk_receive_queue);
659 if (!skb) {
660 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
661 * a different CPU can have already processed the pending
662 * data, stop here or we can enter an infinite loop
663 */
664 if (!moved)
665 done = true;
666 break;
667 }
668
669 if (__mptcp_check_fallback(msk)) {
670 /* Under fallback skbs have no MPTCP extension and TCP could
671 * collapse them between the dummy map creation and the
672 * current dequeue. Be sure to adjust the map size.
673 */
674 map_remaining = skb->len;
675 subflow->map_data_len = skb->len;
676 }
677
678 offset = seq - TCP_SKB_CB(skb)->seq;
679 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
680 if (fin) {
681 done = true;
682 seq++;
683 }
684
685 if (offset < skb->len) {
686 size_t len = skb->len - offset;
687
688 if (tp->urg_data)
689 done = true;
690
691 if (__mptcp_move_skb(msk, ssk, skb, offset, len))
692 moved += len;
693 seq += len;
694
695 if (WARN_ON_ONCE(map_remaining < len))
696 break;
697 } else {
698 WARN_ON_ONCE(!fin);
699 sk_eat_skb(ssk, skb);
700 done = true;
701 }
702
703 WRITE_ONCE(tp->copied_seq, seq);
704 more_data_avail = mptcp_subflow_data_available(ssk);
705
706 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
707 done = true;
708 break;
709 }
710 } while (more_data_avail);
711
712 *bytes += moved;
713 return done;
714 }
715
__mptcp_ofo_queue(struct mptcp_sock * msk)716 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
717 {
718 struct sock *sk = (struct sock *)msk;
719 struct sk_buff *skb, *tail;
720 bool moved = false;
721 struct rb_node *p;
722 u64 end_seq;
723
724 p = rb_first(&msk->out_of_order_queue);
725 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
726 while (p) {
727 skb = rb_to_skb(p);
728 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
729 break;
730
731 p = rb_next(p);
732 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
733
734 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
735 msk->ack_seq))) {
736 mptcp_drop(sk, skb);
737 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
738 continue;
739 }
740
741 end_seq = MPTCP_SKB_CB(skb)->end_seq;
742 tail = skb_peek_tail(&sk->sk_receive_queue);
743 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
744 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
745
746 /* skip overlapping data, if any */
747 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
748 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
749 delta);
750 MPTCP_SKB_CB(skb)->offset += delta;
751 MPTCP_SKB_CB(skb)->map_seq += delta;
752 __skb_queue_tail(&sk->sk_receive_queue, skb);
753 }
754 msk->bytes_received += end_seq - msk->ack_seq;
755 msk->ack_seq = end_seq;
756 moved = true;
757 }
758 return moved;
759 }
760
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)761 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
762 {
763 int err = sock_error(ssk);
764 int ssk_state;
765
766 if (!err)
767 return false;
768
769 /* only propagate errors on fallen-back sockets or
770 * on MPC connect
771 */
772 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
773 return false;
774
775 /* We need to propagate only transition to CLOSE state.
776 * Orphaned socket will see such state change via
777 * subflow_sched_work_if_closed() and that path will properly
778 * destroy the msk as needed.
779 */
780 ssk_state = inet_sk_state_load(ssk);
781 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
782 mptcp_set_state(sk, ssk_state);
783 WRITE_ONCE(sk->sk_err, -err);
784
785 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
786 smp_wmb();
787 sk_error_report(sk);
788 return true;
789 }
790
__mptcp_error_report(struct sock * sk)791 void __mptcp_error_report(struct sock *sk)
792 {
793 struct mptcp_subflow_context *subflow;
794 struct mptcp_sock *msk = mptcp_sk(sk);
795
796 mptcp_for_each_subflow(msk, subflow)
797 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
798 break;
799 }
800
801 /* In most cases we will be able to lock the mptcp socket. If its already
802 * owned, we need to defer to the work queue to avoid ABBA deadlock.
803 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)804 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
805 {
806 struct sock *sk = (struct sock *)msk;
807 unsigned int moved = 0;
808
809 __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
810 __mptcp_ofo_queue(msk);
811 if (unlikely(ssk->sk_err)) {
812 if (!sock_owned_by_user(sk))
813 __mptcp_error_report(sk);
814 else
815 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
816 }
817
818 /* If the moves have caught up with the DATA_FIN sequence number
819 * it's time to ack the DATA_FIN and change socket state, but
820 * this is not a good place to change state. Let the workqueue
821 * do it.
822 */
823 if (mptcp_pending_data_fin(sk, NULL))
824 mptcp_schedule_work(sk);
825 return moved > 0;
826 }
827
mptcp_data_ready(struct sock * sk,struct sock * ssk)828 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
829 {
830 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
831 struct mptcp_sock *msk = mptcp_sk(sk);
832 int sk_rbuf, ssk_rbuf;
833
834 /* The peer can send data while we are shutting down this
835 * subflow at msk destruction time, but we must avoid enqueuing
836 * more data to the msk receive queue
837 */
838 if (unlikely(subflow->disposable))
839 return;
840
841 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
842 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
843 if (unlikely(ssk_rbuf > sk_rbuf))
844 sk_rbuf = ssk_rbuf;
845
846 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
847 if (__mptcp_rmem(sk) > sk_rbuf)
848 return;
849
850 /* Wake-up the reader only for in-sequence data */
851 mptcp_data_lock(sk);
852 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
853 sk->sk_data_ready(sk);
854 mptcp_data_unlock(sk);
855 }
856
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)857 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
858 {
859 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
860 WRITE_ONCE(msk->allow_infinite_fallback, false);
861 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
862 }
863
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)864 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
865 {
866 struct sock *sk = (struct sock *)msk;
867
868 if (sk->sk_state != TCP_ESTABLISHED)
869 return false;
870
871 /* attach to msk socket only after we are sure we will deal with it
872 * at close time
873 */
874 if (sk->sk_socket && !ssk->sk_socket)
875 mptcp_sock_graft(ssk, sk->sk_socket);
876
877 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
878 mptcp_sockopt_sync_locked(msk, ssk);
879 mptcp_subflow_joined(msk, ssk);
880 mptcp_stop_tout_timer(sk);
881 __mptcp_propagate_sndbuf(sk, ssk);
882 return true;
883 }
884
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)885 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
886 {
887 struct mptcp_subflow_context *tmp, *subflow;
888 struct mptcp_sock *msk = mptcp_sk(sk);
889
890 list_for_each_entry_safe(subflow, tmp, join_list, node) {
891 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
892 bool slow = lock_sock_fast(ssk);
893
894 list_move_tail(&subflow->node, &msk->conn_list);
895 if (!__mptcp_finish_join(msk, ssk))
896 mptcp_subflow_reset(ssk);
897 unlock_sock_fast(ssk, slow);
898 }
899 }
900
mptcp_rtx_timer_pending(struct sock * sk)901 static bool mptcp_rtx_timer_pending(struct sock *sk)
902 {
903 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
904 }
905
mptcp_reset_rtx_timer(struct sock * sk)906 static void mptcp_reset_rtx_timer(struct sock *sk)
907 {
908 struct inet_connection_sock *icsk = inet_csk(sk);
909 unsigned long tout;
910
911 /* prevent rescheduling on close */
912 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
913 return;
914
915 tout = mptcp_sk(sk)->timer_ival;
916 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
917 }
918
mptcp_schedule_work(struct sock * sk)919 bool mptcp_schedule_work(struct sock *sk)
920 {
921 if (inet_sk_state_load(sk) != TCP_CLOSE &&
922 schedule_work(&mptcp_sk(sk)->work)) {
923 /* each subflow already holds a reference to the sk, and the
924 * workqueue is invoked by a subflow, so sk can't go away here.
925 */
926 sock_hold(sk);
927 return true;
928 }
929 return false;
930 }
931
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
933 {
934 struct mptcp_subflow_context *subflow;
935
936 msk_owned_by_me(msk);
937
938 mptcp_for_each_subflow(msk, subflow) {
939 if (READ_ONCE(subflow->data_avail))
940 return mptcp_subflow_tcp_sock(subflow);
941 }
942
943 return NULL;
944 }
945
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)946 static bool mptcp_skb_can_collapse_to(u64 write_seq,
947 const struct sk_buff *skb,
948 const struct mptcp_ext *mpext)
949 {
950 if (!tcp_skb_can_collapse_to(skb))
951 return false;
952
953 /* can collapse only if MPTCP level sequence is in order and this
954 * mapping has not been xmitted yet
955 */
956 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
957 !mpext->frozen;
958 }
959
960 /* we can append data to the given data frag if:
961 * - there is space available in the backing page_frag
962 * - the data frag tail matches the current page_frag free offset
963 * - the data frag end sequence number matches the current write seq
964 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)965 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
966 const struct page_frag *pfrag,
967 const struct mptcp_data_frag *df)
968 {
969 return df && pfrag->page == df->page &&
970 pfrag->size - pfrag->offset > 0 &&
971 pfrag->offset == (df->offset + df->data_len) &&
972 df->data_seq + df->data_len == msk->write_seq;
973 }
974
dfrag_uncharge(struct sock * sk,int len)975 static void dfrag_uncharge(struct sock *sk, int len)
976 {
977 sk_mem_uncharge(sk, len);
978 sk_wmem_queued_add(sk, -len);
979 }
980
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)981 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
982 {
983 int len = dfrag->data_len + dfrag->overhead;
984
985 list_del(&dfrag->list);
986 dfrag_uncharge(sk, len);
987 put_page(dfrag->page);
988 }
989
__mptcp_clean_una(struct sock * sk)990 static void __mptcp_clean_una(struct sock *sk)
991 {
992 struct mptcp_sock *msk = mptcp_sk(sk);
993 struct mptcp_data_frag *dtmp, *dfrag;
994 u64 snd_una;
995
996 snd_una = msk->snd_una;
997 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
998 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
999 break;
1000
1001 if (unlikely(dfrag == msk->first_pending)) {
1002 /* in recovery mode can see ack after the current snd head */
1003 if (WARN_ON_ONCE(!msk->recovery))
1004 break;
1005
1006 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1007 }
1008
1009 dfrag_clear(sk, dfrag);
1010 }
1011
1012 dfrag = mptcp_rtx_head(sk);
1013 if (dfrag && after64(snd_una, dfrag->data_seq)) {
1014 u64 delta = snd_una - dfrag->data_seq;
1015
1016 /* prevent wrap around in recovery mode */
1017 if (unlikely(delta > dfrag->already_sent)) {
1018 if (WARN_ON_ONCE(!msk->recovery))
1019 goto out;
1020 if (WARN_ON_ONCE(delta > dfrag->data_len))
1021 goto out;
1022 dfrag->already_sent += delta - dfrag->already_sent;
1023 }
1024
1025 dfrag->data_seq += delta;
1026 dfrag->offset += delta;
1027 dfrag->data_len -= delta;
1028 dfrag->already_sent -= delta;
1029
1030 dfrag_uncharge(sk, delta);
1031 }
1032
1033 /* all retransmitted data acked, recovery completed */
1034 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1035 msk->recovery = false;
1036
1037 out:
1038 if (snd_una == READ_ONCE(msk->snd_nxt) &&
1039 snd_una == READ_ONCE(msk->write_seq)) {
1040 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1041 mptcp_stop_rtx_timer(sk);
1042 } else {
1043 mptcp_reset_rtx_timer(sk);
1044 }
1045 }
1046
__mptcp_clean_una_wakeup(struct sock * sk)1047 static void __mptcp_clean_una_wakeup(struct sock *sk)
1048 {
1049 lockdep_assert_held_once(&sk->sk_lock.slock);
1050
1051 __mptcp_clean_una(sk);
1052 mptcp_write_space(sk);
1053 }
1054
mptcp_clean_una_wakeup(struct sock * sk)1055 static void mptcp_clean_una_wakeup(struct sock *sk)
1056 {
1057 mptcp_data_lock(sk);
1058 __mptcp_clean_una_wakeup(sk);
1059 mptcp_data_unlock(sk);
1060 }
1061
mptcp_enter_memory_pressure(struct sock * sk)1062 static void mptcp_enter_memory_pressure(struct sock *sk)
1063 {
1064 struct mptcp_subflow_context *subflow;
1065 struct mptcp_sock *msk = mptcp_sk(sk);
1066 bool first = true;
1067
1068 mptcp_for_each_subflow(msk, subflow) {
1069 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1070
1071 if (first)
1072 tcp_enter_memory_pressure(ssk);
1073 sk_stream_moderate_sndbuf(ssk);
1074
1075 first = false;
1076 }
1077 __mptcp_sync_sndbuf(sk);
1078 }
1079
1080 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1081 * data
1082 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1083 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1084 {
1085 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1086 pfrag, sk->sk_allocation)))
1087 return true;
1088
1089 mptcp_enter_memory_pressure(sk);
1090 return false;
1091 }
1092
1093 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1094 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1095 int orig_offset)
1096 {
1097 int offset = ALIGN(orig_offset, sizeof(long));
1098 struct mptcp_data_frag *dfrag;
1099
1100 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1101 dfrag->data_len = 0;
1102 dfrag->data_seq = msk->write_seq;
1103 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1104 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1105 dfrag->already_sent = 0;
1106 dfrag->page = pfrag->page;
1107
1108 return dfrag;
1109 }
1110
1111 struct mptcp_sendmsg_info {
1112 int mss_now;
1113 int size_goal;
1114 u16 limit;
1115 u16 sent;
1116 unsigned int flags;
1117 bool data_lock_held;
1118 };
1119
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1120 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1121 u64 data_seq, int avail_size)
1122 {
1123 u64 window_end = mptcp_wnd_end(msk);
1124 u64 mptcp_snd_wnd;
1125
1126 if (__mptcp_check_fallback(msk))
1127 return avail_size;
1128
1129 mptcp_snd_wnd = window_end - data_seq;
1130 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1131
1132 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1133 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1134 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1135 }
1136
1137 return avail_size;
1138 }
1139
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1140 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1141 {
1142 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1143
1144 if (!mpext)
1145 return false;
1146 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1147 return true;
1148 }
1149
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1150 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1151 {
1152 struct sk_buff *skb;
1153
1154 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1155 if (likely(skb)) {
1156 if (likely(__mptcp_add_ext(skb, gfp))) {
1157 skb_reserve(skb, MAX_TCP_HEADER);
1158 skb->ip_summed = CHECKSUM_PARTIAL;
1159 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1160 return skb;
1161 }
1162 __kfree_skb(skb);
1163 } else {
1164 mptcp_enter_memory_pressure(sk);
1165 }
1166 return NULL;
1167 }
1168
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1169 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1170 {
1171 struct sk_buff *skb;
1172
1173 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1174 if (!skb)
1175 return NULL;
1176
1177 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1178 tcp_skb_entail(ssk, skb);
1179 return skb;
1180 }
1181 tcp_skb_tsorted_anchor_cleanup(skb);
1182 kfree_skb(skb);
1183 return NULL;
1184 }
1185
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1186 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1187 {
1188 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1189
1190 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1191 }
1192
1193 /* note: this always recompute the csum on the whole skb, even
1194 * if we just appended a single frag. More status info needed
1195 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1196 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1197 {
1198 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1199 __wsum csum = ~csum_unfold(mpext->csum);
1200 int offset = skb->len - added;
1201
1202 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1203 }
1204
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1205 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1206 struct sock *ssk,
1207 struct mptcp_ext *mpext)
1208 {
1209 if (!mpext)
1210 return;
1211
1212 mpext->infinite_map = 1;
1213 mpext->data_len = 0;
1214
1215 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1216 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1217 pr_fallback(msk);
1218 mptcp_do_fallback(ssk);
1219 }
1220
1221 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1222
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1223 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1224 struct mptcp_data_frag *dfrag,
1225 struct mptcp_sendmsg_info *info)
1226 {
1227 u64 data_seq = dfrag->data_seq + info->sent;
1228 int offset = dfrag->offset + info->sent;
1229 struct mptcp_sock *msk = mptcp_sk(sk);
1230 bool zero_window_probe = false;
1231 struct mptcp_ext *mpext = NULL;
1232 bool can_coalesce = false;
1233 bool reuse_skb = true;
1234 struct sk_buff *skb;
1235 size_t copy;
1236 int i;
1237
1238 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1239 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1240
1241 if (WARN_ON_ONCE(info->sent > info->limit ||
1242 info->limit > dfrag->data_len))
1243 return 0;
1244
1245 if (unlikely(!__tcp_can_send(ssk)))
1246 return -EAGAIN;
1247
1248 /* compute send limit */
1249 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1250 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1251 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1252 copy = info->size_goal;
1253
1254 skb = tcp_write_queue_tail(ssk);
1255 if (skb && copy > skb->len) {
1256 /* Limit the write to the size available in the
1257 * current skb, if any, so that we create at most a new skb.
1258 * Explicitly tells TCP internals to avoid collapsing on later
1259 * queue management operation, to avoid breaking the ext <->
1260 * SSN association set here
1261 */
1262 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1263 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1264 TCP_SKB_CB(skb)->eor = 1;
1265 tcp_mark_push(tcp_sk(ssk), skb);
1266 goto alloc_skb;
1267 }
1268
1269 i = skb_shinfo(skb)->nr_frags;
1270 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1271 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1272 tcp_mark_push(tcp_sk(ssk), skb);
1273 goto alloc_skb;
1274 }
1275
1276 copy -= skb->len;
1277 } else {
1278 alloc_skb:
1279 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1280 if (!skb)
1281 return -ENOMEM;
1282
1283 i = skb_shinfo(skb)->nr_frags;
1284 reuse_skb = false;
1285 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1286 }
1287
1288 /* Zero window and all data acked? Probe. */
1289 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1290 if (copy == 0) {
1291 u64 snd_una = READ_ONCE(msk->snd_una);
1292
1293 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1294 tcp_remove_empty_skb(ssk);
1295 return 0;
1296 }
1297
1298 zero_window_probe = true;
1299 data_seq = snd_una - 1;
1300 copy = 1;
1301 }
1302
1303 copy = min_t(size_t, copy, info->limit - info->sent);
1304 if (!sk_wmem_schedule(ssk, copy)) {
1305 tcp_remove_empty_skb(ssk);
1306 return -ENOMEM;
1307 }
1308
1309 if (can_coalesce) {
1310 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1311 } else {
1312 get_page(dfrag->page);
1313 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1314 }
1315
1316 skb->len += copy;
1317 skb->data_len += copy;
1318 skb->truesize += copy;
1319 sk_wmem_queued_add(ssk, copy);
1320 sk_mem_charge(ssk, copy);
1321 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1322 TCP_SKB_CB(skb)->end_seq += copy;
1323 tcp_skb_pcount_set(skb, 0);
1324
1325 /* on skb reuse we just need to update the DSS len */
1326 if (reuse_skb) {
1327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1328 mpext->data_len += copy;
1329 goto out;
1330 }
1331
1332 memset(mpext, 0, sizeof(*mpext));
1333 mpext->data_seq = data_seq;
1334 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1335 mpext->data_len = copy;
1336 mpext->use_map = 1;
1337 mpext->dsn64 = 1;
1338
1339 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1340 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1341 mpext->dsn64);
1342
1343 if (zero_window_probe) {
1344 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1345 mpext->frozen = 1;
1346 if (READ_ONCE(msk->csum_enabled))
1347 mptcp_update_data_checksum(skb, copy);
1348 tcp_push_pending_frames(ssk);
1349 return 0;
1350 }
1351 out:
1352 if (READ_ONCE(msk->csum_enabled))
1353 mptcp_update_data_checksum(skb, copy);
1354 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1355 mptcp_update_infinite_map(msk, ssk, mpext);
1356 trace_mptcp_sendmsg_frag(mpext);
1357 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1358 return copy;
1359 }
1360
1361 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1362 sizeof(struct tcphdr) - \
1363 MAX_TCP_OPTION_SPACE - \
1364 sizeof(struct ipv6hdr) - \
1365 sizeof(struct frag_hdr))
1366
1367 struct subflow_send_info {
1368 struct sock *ssk;
1369 u64 linger_time;
1370 };
1371
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1372 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1373 {
1374 if (!subflow->stale)
1375 return;
1376
1377 subflow->stale = 0;
1378 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1379 }
1380
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1381 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1382 {
1383 if (unlikely(subflow->stale)) {
1384 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1385
1386 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1387 return false;
1388
1389 mptcp_subflow_set_active(subflow);
1390 }
1391 return __mptcp_subflow_active(subflow);
1392 }
1393
1394 #define SSK_MODE_ACTIVE 0
1395 #define SSK_MODE_BACKUP 1
1396 #define SSK_MODE_MAX 2
1397
1398 /* implement the mptcp packet scheduler;
1399 * returns the subflow that will transmit the next DSS
1400 * additionally updates the rtx timeout
1401 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1402 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1403 {
1404 struct subflow_send_info send_info[SSK_MODE_MAX];
1405 struct mptcp_subflow_context *subflow;
1406 struct sock *sk = (struct sock *)msk;
1407 u32 pace, burst, wmem;
1408 int i, nr_active = 0;
1409 struct sock *ssk;
1410 u64 linger_time;
1411 long tout = 0;
1412
1413 /* pick the subflow with the lower wmem/wspace ratio */
1414 for (i = 0; i < SSK_MODE_MAX; ++i) {
1415 send_info[i].ssk = NULL;
1416 send_info[i].linger_time = -1;
1417 }
1418
1419 mptcp_for_each_subflow(msk, subflow) {
1420 bool backup = subflow->backup || subflow->request_bkup;
1421
1422 trace_mptcp_subflow_get_send(subflow);
1423 ssk = mptcp_subflow_tcp_sock(subflow);
1424 if (!mptcp_subflow_active(subflow))
1425 continue;
1426
1427 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1428 nr_active += !backup;
1429 pace = subflow->avg_pacing_rate;
1430 if (unlikely(!pace)) {
1431 /* init pacing rate from socket */
1432 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1433 pace = subflow->avg_pacing_rate;
1434 if (!pace)
1435 continue;
1436 }
1437
1438 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1439 if (linger_time < send_info[backup].linger_time) {
1440 send_info[backup].ssk = ssk;
1441 send_info[backup].linger_time = linger_time;
1442 }
1443 }
1444 __mptcp_set_timeout(sk, tout);
1445
1446 /* pick the best backup if no other subflow is active */
1447 if (!nr_active)
1448 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1449
1450 /* According to the blest algorithm, to avoid HoL blocking for the
1451 * faster flow, we need to:
1452 * - estimate the faster flow linger time
1453 * - use the above to estimate the amount of byte transferred
1454 * by the faster flow
1455 * - check that the amount of queued data is greter than the above,
1456 * otherwise do not use the picked, slower, subflow
1457 * We select the subflow with the shorter estimated time to flush
1458 * the queued mem, which basically ensure the above. We just need
1459 * to check that subflow has a non empty cwin.
1460 */
1461 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1462 if (!ssk || !sk_stream_memory_free(ssk))
1463 return NULL;
1464
1465 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1466 wmem = READ_ONCE(ssk->sk_wmem_queued);
1467 if (!burst)
1468 return ssk;
1469
1470 subflow = mptcp_subflow_ctx(ssk);
1471 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1472 READ_ONCE(ssk->sk_pacing_rate) * burst,
1473 burst + wmem);
1474 msk->snd_burst = burst;
1475 return ssk;
1476 }
1477
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1478 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1479 {
1480 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1481 release_sock(ssk);
1482 }
1483
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1484 static void mptcp_update_post_push(struct mptcp_sock *msk,
1485 struct mptcp_data_frag *dfrag,
1486 u32 sent)
1487 {
1488 u64 snd_nxt_new = dfrag->data_seq;
1489
1490 dfrag->already_sent += sent;
1491
1492 msk->snd_burst -= sent;
1493
1494 snd_nxt_new += dfrag->already_sent;
1495
1496 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1497 * is recovering after a failover. In that event, this re-sends
1498 * old segments.
1499 *
1500 * Thus compute snd_nxt_new candidate based on
1501 * the dfrag->data_seq that was sent and the data
1502 * that has been handed to the subflow for transmission
1503 * and skip update in case it was old dfrag.
1504 */
1505 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1506 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1507 msk->snd_nxt = snd_nxt_new;
1508 }
1509 }
1510
mptcp_check_and_set_pending(struct sock * sk)1511 void mptcp_check_and_set_pending(struct sock *sk)
1512 {
1513 if (mptcp_send_head(sk)) {
1514 mptcp_data_lock(sk);
1515 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1516 mptcp_data_unlock(sk);
1517 }
1518 }
1519
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1520 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1521 struct mptcp_sendmsg_info *info)
1522 {
1523 struct mptcp_sock *msk = mptcp_sk(sk);
1524 struct mptcp_data_frag *dfrag;
1525 int len, copied = 0, err = 0;
1526
1527 while ((dfrag = mptcp_send_head(sk))) {
1528 info->sent = dfrag->already_sent;
1529 info->limit = dfrag->data_len;
1530 len = dfrag->data_len - dfrag->already_sent;
1531 while (len > 0) {
1532 int ret = 0;
1533
1534 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1535 if (ret <= 0) {
1536 err = copied ? : ret;
1537 goto out;
1538 }
1539
1540 info->sent += ret;
1541 copied += ret;
1542 len -= ret;
1543
1544 mptcp_update_post_push(msk, dfrag, ret);
1545 }
1546 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1547
1548 if (msk->snd_burst <= 0 ||
1549 !sk_stream_memory_free(ssk) ||
1550 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1551 err = copied;
1552 goto out;
1553 }
1554 mptcp_set_timeout(sk);
1555 }
1556 err = copied;
1557
1558 out:
1559 return err;
1560 }
1561
__mptcp_push_pending(struct sock * sk,unsigned int flags)1562 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1563 {
1564 struct sock *prev_ssk = NULL, *ssk = NULL;
1565 struct mptcp_sock *msk = mptcp_sk(sk);
1566 struct mptcp_sendmsg_info info = {
1567 .flags = flags,
1568 };
1569 bool do_check_data_fin = false;
1570 int push_count = 1;
1571
1572 while (mptcp_send_head(sk) && (push_count > 0)) {
1573 struct mptcp_subflow_context *subflow;
1574 int ret = 0;
1575
1576 if (mptcp_sched_get_send(msk))
1577 break;
1578
1579 push_count = 0;
1580
1581 mptcp_for_each_subflow(msk, subflow) {
1582 if (READ_ONCE(subflow->scheduled)) {
1583 mptcp_subflow_set_scheduled(subflow, false);
1584
1585 prev_ssk = ssk;
1586 ssk = mptcp_subflow_tcp_sock(subflow);
1587 if (ssk != prev_ssk) {
1588 /* First check. If the ssk has changed since
1589 * the last round, release prev_ssk
1590 */
1591 if (prev_ssk)
1592 mptcp_push_release(prev_ssk, &info);
1593
1594 /* Need to lock the new subflow only if different
1595 * from the previous one, otherwise we are still
1596 * helding the relevant lock
1597 */
1598 lock_sock(ssk);
1599 }
1600
1601 push_count++;
1602
1603 ret = __subflow_push_pending(sk, ssk, &info);
1604 if (ret <= 0) {
1605 if (ret != -EAGAIN ||
1606 (1 << ssk->sk_state) &
1607 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1608 push_count--;
1609 continue;
1610 }
1611 do_check_data_fin = true;
1612 }
1613 }
1614 }
1615
1616 /* at this point we held the socket lock for the last subflow we used */
1617 if (ssk)
1618 mptcp_push_release(ssk, &info);
1619
1620 /* ensure the rtx timer is running */
1621 if (!mptcp_rtx_timer_pending(sk))
1622 mptcp_reset_rtx_timer(sk);
1623 if (do_check_data_fin)
1624 mptcp_check_send_data_fin(sk);
1625 }
1626
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1627 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1628 {
1629 struct mptcp_sock *msk = mptcp_sk(sk);
1630 struct mptcp_sendmsg_info info = {
1631 .data_lock_held = true,
1632 };
1633 bool keep_pushing = true;
1634 struct sock *xmit_ssk;
1635 int copied = 0;
1636
1637 info.flags = 0;
1638 while (mptcp_send_head(sk) && keep_pushing) {
1639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1640 int ret = 0;
1641
1642 /* check for a different subflow usage only after
1643 * spooling the first chunk of data
1644 */
1645 if (first) {
1646 mptcp_subflow_set_scheduled(subflow, false);
1647 ret = __subflow_push_pending(sk, ssk, &info);
1648 first = false;
1649 if (ret <= 0)
1650 break;
1651 copied += ret;
1652 continue;
1653 }
1654
1655 if (mptcp_sched_get_send(msk))
1656 goto out;
1657
1658 if (READ_ONCE(subflow->scheduled)) {
1659 mptcp_subflow_set_scheduled(subflow, false);
1660 ret = __subflow_push_pending(sk, ssk, &info);
1661 if (ret <= 0)
1662 keep_pushing = false;
1663 copied += ret;
1664 }
1665
1666 mptcp_for_each_subflow(msk, subflow) {
1667 if (READ_ONCE(subflow->scheduled)) {
1668 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1669 if (xmit_ssk != ssk) {
1670 mptcp_subflow_delegate(subflow,
1671 MPTCP_DELEGATE_SEND);
1672 keep_pushing = false;
1673 }
1674 }
1675 }
1676 }
1677
1678 out:
1679 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1680 * not going to flush it via release_sock()
1681 */
1682 if (copied) {
1683 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1684 info.size_goal);
1685 if (!mptcp_rtx_timer_pending(sk))
1686 mptcp_reset_rtx_timer(sk);
1687
1688 if (msk->snd_data_fin_enable &&
1689 msk->snd_nxt + 1 == msk->write_seq)
1690 mptcp_schedule_work(sk);
1691 }
1692 }
1693
mptcp_set_nospace(struct sock * sk)1694 static void mptcp_set_nospace(struct sock *sk)
1695 {
1696 /* enable autotune */
1697 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1698
1699 /* will be cleared on avail space */
1700 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1701 }
1702
1703 static int mptcp_disconnect(struct sock *sk, int flags);
1704
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1705 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1706 size_t len, int *copied_syn)
1707 {
1708 unsigned int saved_flags = msg->msg_flags;
1709 struct mptcp_sock *msk = mptcp_sk(sk);
1710 struct sock *ssk;
1711 int ret;
1712
1713 /* on flags based fastopen the mptcp is supposed to create the
1714 * first subflow right now. Otherwise we are in the defer_connect
1715 * path, and the first subflow must be already present.
1716 * Since the defer_connect flag is cleared after the first succsful
1717 * fastopen attempt, no need to check for additional subflow status.
1718 */
1719 if (msg->msg_flags & MSG_FASTOPEN) {
1720 ssk = __mptcp_nmpc_sk(msk);
1721 if (IS_ERR(ssk))
1722 return PTR_ERR(ssk);
1723 }
1724 if (!msk->first)
1725 return -EINVAL;
1726
1727 ssk = msk->first;
1728
1729 lock_sock(ssk);
1730 msg->msg_flags |= MSG_DONTWAIT;
1731 msk->fastopening = 1;
1732 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1733 msk->fastopening = 0;
1734 msg->msg_flags = saved_flags;
1735 release_sock(ssk);
1736
1737 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1738 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1739 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1740 msg->msg_namelen, msg->msg_flags, 1);
1741
1742 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1743 * case of any error, except timeout or signal
1744 */
1745 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1746 *copied_syn = 0;
1747 } else if (ret && ret != -EINPROGRESS) {
1748 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1749 * __inet_stream_connect() can fail, due to looking check,
1750 * see mptcp_disconnect().
1751 * Attempt it again outside the problematic scope.
1752 */
1753 if (!mptcp_disconnect(sk, 0))
1754 sk->sk_socket->state = SS_UNCONNECTED;
1755 }
1756 inet_clear_bit(DEFER_CONNECT, sk);
1757
1758 return ret;
1759 }
1760
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1761 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1762 {
1763 struct mptcp_sock *msk = mptcp_sk(sk);
1764 struct page_frag *pfrag;
1765 size_t copied = 0;
1766 int ret = 0;
1767 long timeo;
1768
1769 /* silently ignore everything else */
1770 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1771
1772 lock_sock(sk);
1773
1774 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1775 msg->msg_flags & MSG_FASTOPEN)) {
1776 int copied_syn = 0;
1777
1778 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1779 copied += copied_syn;
1780 if (ret == -EINPROGRESS && copied_syn > 0)
1781 goto out;
1782 else if (ret)
1783 goto do_error;
1784 }
1785
1786 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1787
1788 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1789 ret = sk_stream_wait_connect(sk, &timeo);
1790 if (ret)
1791 goto do_error;
1792 }
1793
1794 ret = -EPIPE;
1795 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1796 goto do_error;
1797
1798 pfrag = sk_page_frag(sk);
1799
1800 while (msg_data_left(msg)) {
1801 int total_ts, frag_truesize = 0;
1802 struct mptcp_data_frag *dfrag;
1803 bool dfrag_collapsed;
1804 size_t psize, offset;
1805
1806 /* reuse tail pfrag, if possible, or carve a new one from the
1807 * page allocator
1808 */
1809 dfrag = mptcp_pending_tail(sk);
1810 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1811 if (!dfrag_collapsed) {
1812 if (!sk_stream_memory_free(sk))
1813 goto wait_for_memory;
1814
1815 if (!mptcp_page_frag_refill(sk, pfrag))
1816 goto wait_for_memory;
1817
1818 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1819 frag_truesize = dfrag->overhead;
1820 }
1821
1822 /* we do not bound vs wspace, to allow a single packet.
1823 * memory accounting will prevent execessive memory usage
1824 * anyway
1825 */
1826 offset = dfrag->offset + dfrag->data_len;
1827 psize = pfrag->size - offset;
1828 psize = min_t(size_t, psize, msg_data_left(msg));
1829 total_ts = psize + frag_truesize;
1830
1831 if (!sk_wmem_schedule(sk, total_ts))
1832 goto wait_for_memory;
1833
1834 if (copy_page_from_iter(dfrag->page, offset, psize,
1835 &msg->msg_iter) != psize) {
1836 ret = -EFAULT;
1837 goto do_error;
1838 }
1839
1840 /* data successfully copied into the write queue */
1841 sk_forward_alloc_add(sk, -total_ts);
1842 copied += psize;
1843 dfrag->data_len += psize;
1844 frag_truesize += psize;
1845 pfrag->offset += frag_truesize;
1846 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1847
1848 /* charge data on mptcp pending queue to the msk socket
1849 * Note: we charge such data both to sk and ssk
1850 */
1851 sk_wmem_queued_add(sk, frag_truesize);
1852 if (!dfrag_collapsed) {
1853 get_page(dfrag->page);
1854 list_add_tail(&dfrag->list, &msk->rtx_queue);
1855 if (!msk->first_pending)
1856 WRITE_ONCE(msk->first_pending, dfrag);
1857 }
1858 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1859 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1860 !dfrag_collapsed);
1861
1862 continue;
1863
1864 wait_for_memory:
1865 mptcp_set_nospace(sk);
1866 __mptcp_push_pending(sk, msg->msg_flags);
1867 ret = sk_stream_wait_memory(sk, &timeo);
1868 if (ret)
1869 goto do_error;
1870 }
1871
1872 if (copied)
1873 __mptcp_push_pending(sk, msg->msg_flags);
1874
1875 out:
1876 release_sock(sk);
1877 return copied;
1878
1879 do_error:
1880 if (copied)
1881 goto out;
1882
1883 copied = sk_stream_error(sk, msg->msg_flags, ret);
1884 goto out;
1885 }
1886
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1887 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1888 struct msghdr *msg,
1889 size_t len, int flags,
1890 struct scm_timestamping_internal *tss,
1891 int *cmsg_flags)
1892 {
1893 struct sk_buff *skb, *tmp;
1894 int copied = 0;
1895
1896 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1897 u32 offset = MPTCP_SKB_CB(skb)->offset;
1898 u32 data_len = skb->len - offset;
1899 u32 count = min_t(size_t, len - copied, data_len);
1900 int err;
1901
1902 if (!(flags & MSG_TRUNC)) {
1903 err = skb_copy_datagram_msg(skb, offset, msg, count);
1904 if (unlikely(err < 0)) {
1905 if (!copied)
1906 return err;
1907 break;
1908 }
1909 }
1910
1911 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1912 tcp_update_recv_tstamps(skb, tss);
1913 *cmsg_flags |= MPTCP_CMSG_TS;
1914 }
1915
1916 copied += count;
1917
1918 if (count < data_len) {
1919 if (!(flags & MSG_PEEK)) {
1920 MPTCP_SKB_CB(skb)->offset += count;
1921 MPTCP_SKB_CB(skb)->map_seq += count;
1922 msk->bytes_consumed += count;
1923 }
1924 break;
1925 }
1926
1927 if (!(flags & MSG_PEEK)) {
1928 /* we will bulk release the skb memory later */
1929 skb->destructor = NULL;
1930 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1931 __skb_unlink(skb, &msk->receive_queue);
1932 __kfree_skb(skb);
1933 msk->bytes_consumed += count;
1934 }
1935
1936 if (copied >= len)
1937 break;
1938 }
1939
1940 return copied;
1941 }
1942
1943 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1944 *
1945 * Only difference: Use highest rtt estimate of the subflows in use.
1946 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1947 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1948 {
1949 struct mptcp_subflow_context *subflow;
1950 struct sock *sk = (struct sock *)msk;
1951 u8 scaling_ratio = U8_MAX;
1952 u32 time, advmss = 1;
1953 u64 rtt_us, mstamp;
1954
1955 msk_owned_by_me(msk);
1956
1957 if (copied <= 0)
1958 return;
1959
1960 if (!msk->rcvspace_init)
1961 mptcp_rcv_space_init(msk, msk->first);
1962
1963 msk->rcvq_space.copied += copied;
1964
1965 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1966 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1967
1968 rtt_us = msk->rcvq_space.rtt_us;
1969 if (rtt_us && time < (rtt_us >> 3))
1970 return;
1971
1972 rtt_us = 0;
1973 mptcp_for_each_subflow(msk, subflow) {
1974 const struct tcp_sock *tp;
1975 u64 sf_rtt_us;
1976 u32 sf_advmss;
1977
1978 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1979
1980 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1981 sf_advmss = READ_ONCE(tp->advmss);
1982
1983 rtt_us = max(sf_rtt_us, rtt_us);
1984 advmss = max(sf_advmss, advmss);
1985 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1986 }
1987
1988 msk->rcvq_space.rtt_us = rtt_us;
1989 msk->scaling_ratio = scaling_ratio;
1990 if (time < (rtt_us >> 3) || rtt_us == 0)
1991 return;
1992
1993 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1994 goto new_measure;
1995
1996 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1997 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1998 u64 rcvwin, grow;
1999 int rcvbuf;
2000
2001 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2002
2003 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2004
2005 do_div(grow, msk->rcvq_space.space);
2006 rcvwin += (grow << 1);
2007
2008 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2009 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2010
2011 if (rcvbuf > sk->sk_rcvbuf) {
2012 u32 window_clamp;
2013
2014 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2015 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2016
2017 /* Make subflows follow along. If we do not do this, we
2018 * get drops at subflow level if skbs can't be moved to
2019 * the mptcp rx queue fast enough (announced rcv_win can
2020 * exceed ssk->sk_rcvbuf).
2021 */
2022 mptcp_for_each_subflow(msk, subflow) {
2023 struct sock *ssk;
2024 bool slow;
2025
2026 ssk = mptcp_subflow_tcp_sock(subflow);
2027 slow = lock_sock_fast(ssk);
2028 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2029 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2030 tcp_cleanup_rbuf(ssk, 1);
2031 unlock_sock_fast(ssk, slow);
2032 }
2033 }
2034 }
2035
2036 msk->rcvq_space.space = msk->rcvq_space.copied;
2037 new_measure:
2038 msk->rcvq_space.copied = 0;
2039 msk->rcvq_space.time = mstamp;
2040 }
2041
__mptcp_update_rmem(struct sock * sk)2042 static void __mptcp_update_rmem(struct sock *sk)
2043 {
2044 struct mptcp_sock *msk = mptcp_sk(sk);
2045
2046 if (!msk->rmem_released)
2047 return;
2048
2049 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2050 mptcp_rmem_uncharge(sk, msk->rmem_released);
2051 WRITE_ONCE(msk->rmem_released, 0);
2052 }
2053
__mptcp_splice_receive_queue(struct sock * sk)2054 static void __mptcp_splice_receive_queue(struct sock *sk)
2055 {
2056 struct mptcp_sock *msk = mptcp_sk(sk);
2057
2058 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2059 }
2060
__mptcp_move_skbs(struct mptcp_sock * msk)2061 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2062 {
2063 struct sock *sk = (struct sock *)msk;
2064 unsigned int moved = 0;
2065 bool ret, done;
2066
2067 do {
2068 struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2069 bool slowpath;
2070
2071 /* we can have data pending in the subflows only if the msk
2072 * receive buffer was full at subflow_data_ready() time,
2073 * that is an unlikely slow path.
2074 */
2075 if (likely(!ssk))
2076 break;
2077
2078 slowpath = lock_sock_fast(ssk);
2079 mptcp_data_lock(sk);
2080 __mptcp_update_rmem(sk);
2081 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2082 mptcp_data_unlock(sk);
2083
2084 if (unlikely(ssk->sk_err))
2085 __mptcp_error_report(sk);
2086 unlock_sock_fast(ssk, slowpath);
2087 } while (!done);
2088
2089 /* acquire the data lock only if some input data is pending */
2090 ret = moved > 0;
2091 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2092 !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2093 mptcp_data_lock(sk);
2094 __mptcp_update_rmem(sk);
2095 ret |= __mptcp_ofo_queue(msk);
2096 __mptcp_splice_receive_queue(sk);
2097 mptcp_data_unlock(sk);
2098 }
2099 if (ret)
2100 mptcp_check_data_fin((struct sock *)msk);
2101 return !skb_queue_empty(&msk->receive_queue);
2102 }
2103
mptcp_inq_hint(const struct sock * sk)2104 static unsigned int mptcp_inq_hint(const struct sock *sk)
2105 {
2106 const struct mptcp_sock *msk = mptcp_sk(sk);
2107 const struct sk_buff *skb;
2108
2109 skb = skb_peek(&msk->receive_queue);
2110 if (skb) {
2111 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2112
2113 if (hint_val >= INT_MAX)
2114 return INT_MAX;
2115
2116 return (unsigned int)hint_val;
2117 }
2118
2119 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2120 return 1;
2121
2122 return 0;
2123 }
2124
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2125 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2126 int flags, int *addr_len)
2127 {
2128 struct mptcp_sock *msk = mptcp_sk(sk);
2129 struct scm_timestamping_internal tss;
2130 int copied = 0, cmsg_flags = 0;
2131 int target;
2132 long timeo;
2133
2134 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2135 if (unlikely(flags & MSG_ERRQUEUE))
2136 return inet_recv_error(sk, msg, len, addr_len);
2137
2138 lock_sock(sk);
2139 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2140 copied = -ENOTCONN;
2141 goto out_err;
2142 }
2143
2144 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2145
2146 len = min_t(size_t, len, INT_MAX);
2147 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2148
2149 if (unlikely(msk->recvmsg_inq))
2150 cmsg_flags = MPTCP_CMSG_INQ;
2151
2152 while (copied < len) {
2153 int bytes_read;
2154
2155 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2156 if (unlikely(bytes_read < 0)) {
2157 if (!copied)
2158 copied = bytes_read;
2159 goto out_err;
2160 }
2161
2162 copied += bytes_read;
2163
2164 /* be sure to advertise window change */
2165 mptcp_cleanup_rbuf(msk);
2166
2167 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2168 continue;
2169
2170 /* only the master socket status is relevant here. The exit
2171 * conditions mirror closely tcp_recvmsg()
2172 */
2173 if (copied >= target)
2174 break;
2175
2176 if (copied) {
2177 if (sk->sk_err ||
2178 sk->sk_state == TCP_CLOSE ||
2179 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2180 !timeo ||
2181 signal_pending(current))
2182 break;
2183 } else {
2184 if (sk->sk_err) {
2185 copied = sock_error(sk);
2186 break;
2187 }
2188
2189 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2190 /* race breaker: the shutdown could be after the
2191 * previous receive queue check
2192 */
2193 if (__mptcp_move_skbs(msk))
2194 continue;
2195 break;
2196 }
2197
2198 if (sk->sk_state == TCP_CLOSE) {
2199 copied = -ENOTCONN;
2200 break;
2201 }
2202
2203 if (!timeo) {
2204 copied = -EAGAIN;
2205 break;
2206 }
2207
2208 if (signal_pending(current)) {
2209 copied = sock_intr_errno(timeo);
2210 break;
2211 }
2212 }
2213
2214 pr_debug("block timeout %ld", timeo);
2215 sk_wait_data(sk, &timeo, NULL);
2216 }
2217
2218 out_err:
2219 if (cmsg_flags && copied >= 0) {
2220 if (cmsg_flags & MPTCP_CMSG_TS)
2221 tcp_recv_timestamp(msg, sk, &tss);
2222
2223 if (cmsg_flags & MPTCP_CMSG_INQ) {
2224 unsigned int inq = mptcp_inq_hint(sk);
2225
2226 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2227 }
2228 }
2229
2230 pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2231 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2232 skb_queue_empty(&msk->receive_queue), copied);
2233 if (!(flags & MSG_PEEK))
2234 mptcp_rcv_space_adjust(msk, copied);
2235
2236 release_sock(sk);
2237 return copied;
2238 }
2239
mptcp_retransmit_timer(struct timer_list * t)2240 static void mptcp_retransmit_timer(struct timer_list *t)
2241 {
2242 struct inet_connection_sock *icsk = from_timer(icsk, t,
2243 icsk_retransmit_timer);
2244 struct sock *sk = &icsk->icsk_inet.sk;
2245 struct mptcp_sock *msk = mptcp_sk(sk);
2246
2247 bh_lock_sock(sk);
2248 if (!sock_owned_by_user(sk)) {
2249 /* we need a process context to retransmit */
2250 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2251 mptcp_schedule_work(sk);
2252 } else {
2253 /* delegate our work to tcp_release_cb() */
2254 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2255 }
2256 bh_unlock_sock(sk);
2257 sock_put(sk);
2258 }
2259
mptcp_tout_timer(struct timer_list * t)2260 static void mptcp_tout_timer(struct timer_list *t)
2261 {
2262 struct sock *sk = from_timer(sk, t, sk_timer);
2263
2264 mptcp_schedule_work(sk);
2265 sock_put(sk);
2266 }
2267
2268 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2269 * level.
2270 *
2271 * A backup subflow is returned only if that is the only kind available.
2272 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2273 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2274 {
2275 struct sock *backup = NULL, *pick = NULL;
2276 struct mptcp_subflow_context *subflow;
2277 int min_stale_count = INT_MAX;
2278
2279 mptcp_for_each_subflow(msk, subflow) {
2280 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2281
2282 if (!__mptcp_subflow_active(subflow))
2283 continue;
2284
2285 /* still data outstanding at TCP level? skip this */
2286 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2287 mptcp_pm_subflow_chk_stale(msk, ssk);
2288 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2289 continue;
2290 }
2291
2292 if (subflow->backup) {
2293 if (!backup)
2294 backup = ssk;
2295 continue;
2296 }
2297
2298 if (!pick)
2299 pick = ssk;
2300 }
2301
2302 if (pick)
2303 return pick;
2304
2305 /* use backup only if there are no progresses anywhere */
2306 return min_stale_count > 1 ? backup : NULL;
2307 }
2308
__mptcp_retransmit_pending_data(struct sock * sk)2309 bool __mptcp_retransmit_pending_data(struct sock *sk)
2310 {
2311 struct mptcp_data_frag *cur, *rtx_head;
2312 struct mptcp_sock *msk = mptcp_sk(sk);
2313
2314 if (__mptcp_check_fallback(msk))
2315 return false;
2316
2317 /* the closing socket has some data untransmitted and/or unacked:
2318 * some data in the mptcp rtx queue has not really xmitted yet.
2319 * keep it simple and re-inject the whole mptcp level rtx queue
2320 */
2321 mptcp_data_lock(sk);
2322 __mptcp_clean_una_wakeup(sk);
2323 rtx_head = mptcp_rtx_head(sk);
2324 if (!rtx_head) {
2325 mptcp_data_unlock(sk);
2326 return false;
2327 }
2328
2329 msk->recovery_snd_nxt = msk->snd_nxt;
2330 msk->recovery = true;
2331 mptcp_data_unlock(sk);
2332
2333 msk->first_pending = rtx_head;
2334 msk->snd_burst = 0;
2335
2336 /* be sure to clear the "sent status" on all re-injected fragments */
2337 list_for_each_entry(cur, &msk->rtx_queue, list) {
2338 if (!cur->already_sent)
2339 break;
2340 cur->already_sent = 0;
2341 }
2342
2343 return true;
2344 }
2345
2346 /* flags for __mptcp_close_ssk() */
2347 #define MPTCP_CF_PUSH BIT(1)
2348 #define MPTCP_CF_FASTCLOSE BIT(2)
2349
2350 /* be sure to send a reset only if the caller asked for it, also
2351 * clean completely the subflow status when the subflow reaches
2352 * TCP_CLOSE state
2353 */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2354 static void __mptcp_subflow_disconnect(struct sock *ssk,
2355 struct mptcp_subflow_context *subflow,
2356 unsigned int flags)
2357 {
2358 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2359 (flags & MPTCP_CF_FASTCLOSE)) {
2360 /* The MPTCP code never wait on the subflow sockets, TCP-level
2361 * disconnect should never fail
2362 */
2363 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2364 mptcp_subflow_ctx_reset(subflow);
2365 } else {
2366 tcp_shutdown(ssk, SEND_SHUTDOWN);
2367 }
2368 }
2369
2370 /* subflow sockets can be either outgoing (connect) or incoming
2371 * (accept).
2372 *
2373 * Outgoing subflows use in-kernel sockets.
2374 * Incoming subflows do not have their own 'struct socket' allocated,
2375 * so we need to use tcp_close() after detaching them from the mptcp
2376 * parent socket.
2377 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2378 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2379 struct mptcp_subflow_context *subflow,
2380 unsigned int flags)
2381 {
2382 struct mptcp_sock *msk = mptcp_sk(sk);
2383 bool dispose_it, need_push = false;
2384
2385 /* If the first subflow moved to a close state before accept, e.g. due
2386 * to an incoming reset or listener shutdown, the subflow socket is
2387 * already deleted by inet_child_forget() and the mptcp socket can't
2388 * survive too.
2389 */
2390 if (msk->in_accept_queue && msk->first == ssk &&
2391 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2392 /* ensure later check in mptcp_worker() will dispose the msk */
2393 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2394 sock_set_flag(sk, SOCK_DEAD);
2395 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2396 mptcp_subflow_drop_ctx(ssk);
2397 goto out_release;
2398 }
2399
2400 dispose_it = msk->free_first || ssk != msk->first;
2401 if (dispose_it)
2402 list_del(&subflow->node);
2403
2404 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2405
2406 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2407 /* be sure to force the tcp_close path
2408 * to generate the egress reset
2409 */
2410 ssk->sk_lingertime = 0;
2411 sock_set_flag(ssk, SOCK_LINGER);
2412 subflow->send_fastclose = 1;
2413 }
2414
2415 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2416 if (!dispose_it) {
2417 __mptcp_subflow_disconnect(ssk, subflow, flags);
2418 release_sock(ssk);
2419
2420 goto out;
2421 }
2422
2423 subflow->disposable = 1;
2424
2425 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2426 * the ssk has been already destroyed, we just need to release the
2427 * reference owned by msk;
2428 */
2429 if (!inet_csk(ssk)->icsk_ulp_ops) {
2430 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2431 kfree_rcu(subflow, rcu);
2432 } else {
2433 /* otherwise tcp will dispose of the ssk and subflow ctx */
2434 __tcp_close(ssk, 0);
2435
2436 /* close acquired an extra ref */
2437 __sock_put(ssk);
2438 }
2439
2440 out_release:
2441 __mptcp_subflow_error_report(sk, ssk);
2442 release_sock(ssk);
2443
2444 sock_put(ssk);
2445
2446 if (ssk == msk->first)
2447 WRITE_ONCE(msk->first, NULL);
2448
2449 out:
2450 __mptcp_sync_sndbuf(sk);
2451 if (need_push)
2452 __mptcp_push_pending(sk, 0);
2453
2454 /* Catch every 'all subflows closed' scenario, including peers silently
2455 * closing them, e.g. due to timeout.
2456 * For established sockets, allow an additional timeout before closing,
2457 * as the protocol can still create more subflows.
2458 */
2459 if (list_is_singular(&msk->conn_list) && msk->first &&
2460 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2461 if (sk->sk_state != TCP_ESTABLISHED ||
2462 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2463 mptcp_set_state(sk, TCP_CLOSE);
2464 mptcp_close_wake_up(sk);
2465 } else {
2466 mptcp_start_tout_timer(sk);
2467 }
2468 }
2469 }
2470
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2471 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2472 struct mptcp_subflow_context *subflow)
2473 {
2474 if (sk->sk_state == TCP_ESTABLISHED)
2475 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2476
2477 /* subflow aborted before reaching the fully_established status
2478 * attempt the creation of the next subflow
2479 */
2480 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2481
2482 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2483 }
2484
mptcp_sync_mss(struct sock * sk,u32 pmtu)2485 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2486 {
2487 return 0;
2488 }
2489
__mptcp_close_subflow(struct sock * sk)2490 static void __mptcp_close_subflow(struct sock *sk)
2491 {
2492 struct mptcp_subflow_context *subflow, *tmp;
2493 struct mptcp_sock *msk = mptcp_sk(sk);
2494
2495 might_sleep();
2496
2497 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2498 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2499
2500 if (inet_sk_state_load(ssk) != TCP_CLOSE)
2501 continue;
2502
2503 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2504 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2505 continue;
2506
2507 mptcp_close_ssk(sk, ssk, subflow);
2508 }
2509
2510 }
2511
mptcp_close_tout_expired(const struct sock * sk)2512 static bool mptcp_close_tout_expired(const struct sock *sk)
2513 {
2514 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2515 sk->sk_state == TCP_CLOSE)
2516 return false;
2517
2518 return time_after32(tcp_jiffies32,
2519 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2520 }
2521
mptcp_check_fastclose(struct mptcp_sock * msk)2522 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2523 {
2524 struct mptcp_subflow_context *subflow, *tmp;
2525 struct sock *sk = (struct sock *)msk;
2526
2527 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2528 return;
2529
2530 mptcp_token_destroy(msk);
2531
2532 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2533 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2534 bool slow;
2535
2536 slow = lock_sock_fast(tcp_sk);
2537 if (tcp_sk->sk_state != TCP_CLOSE) {
2538 tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2539 tcp_set_state(tcp_sk, TCP_CLOSE);
2540 }
2541 unlock_sock_fast(tcp_sk, slow);
2542 }
2543
2544 /* Mirror the tcp_reset() error propagation */
2545 switch (sk->sk_state) {
2546 case TCP_SYN_SENT:
2547 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2548 break;
2549 case TCP_CLOSE_WAIT:
2550 WRITE_ONCE(sk->sk_err, EPIPE);
2551 break;
2552 case TCP_CLOSE:
2553 return;
2554 default:
2555 WRITE_ONCE(sk->sk_err, ECONNRESET);
2556 }
2557
2558 mptcp_set_state(sk, TCP_CLOSE);
2559 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2560 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2561 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2562
2563 /* the calling mptcp_worker will properly destroy the socket */
2564 if (sock_flag(sk, SOCK_DEAD))
2565 return;
2566
2567 sk->sk_state_change(sk);
2568 sk_error_report(sk);
2569 }
2570
__mptcp_retrans(struct sock * sk)2571 static void __mptcp_retrans(struct sock *sk)
2572 {
2573 struct mptcp_sock *msk = mptcp_sk(sk);
2574 struct mptcp_subflow_context *subflow;
2575 struct mptcp_sendmsg_info info = {};
2576 struct mptcp_data_frag *dfrag;
2577 struct sock *ssk;
2578 int ret, err;
2579 u16 len = 0;
2580
2581 mptcp_clean_una_wakeup(sk);
2582
2583 /* first check ssk: need to kick "stale" logic */
2584 err = mptcp_sched_get_retrans(msk);
2585 dfrag = mptcp_rtx_head(sk);
2586 if (!dfrag) {
2587 if (mptcp_data_fin_enabled(msk)) {
2588 struct inet_connection_sock *icsk = inet_csk(sk);
2589
2590 icsk->icsk_retransmits++;
2591 mptcp_set_datafin_timeout(sk);
2592 mptcp_send_ack(msk);
2593
2594 goto reset_timer;
2595 }
2596
2597 if (!mptcp_send_head(sk))
2598 return;
2599
2600 goto reset_timer;
2601 }
2602
2603 if (err)
2604 goto reset_timer;
2605
2606 mptcp_for_each_subflow(msk, subflow) {
2607 if (READ_ONCE(subflow->scheduled)) {
2608 u16 copied = 0;
2609
2610 mptcp_subflow_set_scheduled(subflow, false);
2611
2612 ssk = mptcp_subflow_tcp_sock(subflow);
2613
2614 lock_sock(ssk);
2615
2616 /* limit retransmission to the bytes already sent on some subflows */
2617 info.sent = 0;
2618 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2619 dfrag->already_sent;
2620 while (info.sent < info.limit) {
2621 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2622 if (ret <= 0)
2623 break;
2624
2625 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2626 copied += ret;
2627 info.sent += ret;
2628 }
2629 if (copied) {
2630 len = max(copied, len);
2631 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2632 info.size_goal);
2633 WRITE_ONCE(msk->allow_infinite_fallback, false);
2634 }
2635
2636 release_sock(ssk);
2637 }
2638 }
2639
2640 msk->bytes_retrans += len;
2641 dfrag->already_sent = max(dfrag->already_sent, len);
2642
2643 reset_timer:
2644 mptcp_check_and_set_pending(sk);
2645
2646 if (!mptcp_rtx_timer_pending(sk))
2647 mptcp_reset_rtx_timer(sk);
2648 }
2649
2650 /* schedule the timeout timer for the relevant event: either close timeout
2651 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2652 */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2653 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2654 {
2655 struct sock *sk = (struct sock *)msk;
2656 unsigned long timeout, close_timeout;
2657
2658 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2659 return;
2660
2661 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2662 TCP_TIMEWAIT_LEN;
2663
2664 /* the close timeout takes precedence on the fail one, and here at least one of
2665 * them is active
2666 */
2667 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2668
2669 sk_reset_timer(sk, &sk->sk_timer, timeout);
2670 }
2671
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2672 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2673 {
2674 struct sock *ssk = msk->first;
2675 bool slow;
2676
2677 if (!ssk)
2678 return;
2679
2680 pr_debug("MP_FAIL doesn't respond, reset the subflow");
2681
2682 slow = lock_sock_fast(ssk);
2683 mptcp_subflow_reset(ssk);
2684 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2685 unlock_sock_fast(ssk, slow);
2686 }
2687
mptcp_do_fastclose(struct sock * sk)2688 static void mptcp_do_fastclose(struct sock *sk)
2689 {
2690 struct mptcp_subflow_context *subflow, *tmp;
2691 struct mptcp_sock *msk = mptcp_sk(sk);
2692
2693 mptcp_set_state(sk, TCP_CLOSE);
2694 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2695 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2696 subflow, MPTCP_CF_FASTCLOSE);
2697 }
2698
mptcp_worker(struct work_struct * work)2699 static void mptcp_worker(struct work_struct *work)
2700 {
2701 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2702 struct sock *sk = (struct sock *)msk;
2703 unsigned long fail_tout;
2704 int state;
2705
2706 lock_sock(sk);
2707 state = sk->sk_state;
2708 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2709 goto unlock;
2710
2711 mptcp_check_fastclose(msk);
2712
2713 mptcp_pm_nl_work(msk);
2714
2715 mptcp_check_send_data_fin(sk);
2716 mptcp_check_data_fin_ack(sk);
2717 mptcp_check_data_fin(sk);
2718
2719 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2720 __mptcp_close_subflow(sk);
2721
2722 if (mptcp_close_tout_expired(sk)) {
2723 mptcp_do_fastclose(sk);
2724 mptcp_close_wake_up(sk);
2725 }
2726
2727 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2728 __mptcp_destroy_sock(sk);
2729 goto unlock;
2730 }
2731
2732 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2733 __mptcp_retrans(sk);
2734
2735 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2736 if (fail_tout && time_after(jiffies, fail_tout))
2737 mptcp_mp_fail_no_response(msk);
2738
2739 unlock:
2740 release_sock(sk);
2741 sock_put(sk);
2742 }
2743
__mptcp_init_sock(struct sock * sk)2744 static void __mptcp_init_sock(struct sock *sk)
2745 {
2746 struct mptcp_sock *msk = mptcp_sk(sk);
2747
2748 INIT_LIST_HEAD(&msk->conn_list);
2749 INIT_LIST_HEAD(&msk->join_list);
2750 INIT_LIST_HEAD(&msk->rtx_queue);
2751 INIT_WORK(&msk->work, mptcp_worker);
2752 __skb_queue_head_init(&msk->receive_queue);
2753 msk->out_of_order_queue = RB_ROOT;
2754 msk->first_pending = NULL;
2755 msk->rmem_fwd_alloc = 0;
2756 WRITE_ONCE(msk->rmem_released, 0);
2757 msk->timer_ival = TCP_RTO_MIN;
2758 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2759
2760 WRITE_ONCE(msk->first, NULL);
2761 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2762 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2763 WRITE_ONCE(msk->allow_infinite_fallback, true);
2764 msk->recovery = false;
2765 msk->subflow_id = 1;
2766
2767 mptcp_pm_data_init(msk);
2768
2769 /* re-use the csk retrans timer for MPTCP-level retrans */
2770 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2771 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2772 }
2773
mptcp_ca_reset(struct sock * sk)2774 static void mptcp_ca_reset(struct sock *sk)
2775 {
2776 struct inet_connection_sock *icsk = inet_csk(sk);
2777
2778 tcp_assign_congestion_control(sk);
2779 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2780
2781 /* no need to keep a reference to the ops, the name will suffice */
2782 tcp_cleanup_congestion_control(sk);
2783 icsk->icsk_ca_ops = NULL;
2784 }
2785
mptcp_init_sock(struct sock * sk)2786 static int mptcp_init_sock(struct sock *sk)
2787 {
2788 struct net *net = sock_net(sk);
2789 int ret;
2790
2791 __mptcp_init_sock(sk);
2792
2793 if (!mptcp_is_enabled(net))
2794 return -ENOPROTOOPT;
2795
2796 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2797 return -ENOMEM;
2798
2799 ret = mptcp_init_sched(mptcp_sk(sk),
2800 mptcp_sched_find(mptcp_get_scheduler(net)));
2801 if (ret)
2802 return ret;
2803
2804 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2805
2806 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2807 * propagate the correct value
2808 */
2809 mptcp_ca_reset(sk);
2810
2811 sk_sockets_allocated_inc(sk);
2812 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2813 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2814
2815 return 0;
2816 }
2817
__mptcp_clear_xmit(struct sock * sk)2818 static void __mptcp_clear_xmit(struct sock *sk)
2819 {
2820 struct mptcp_sock *msk = mptcp_sk(sk);
2821 struct mptcp_data_frag *dtmp, *dfrag;
2822
2823 WRITE_ONCE(msk->first_pending, NULL);
2824 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2825 dfrag_clear(sk, dfrag);
2826 }
2827
mptcp_cancel_work(struct sock * sk)2828 void mptcp_cancel_work(struct sock *sk)
2829 {
2830 struct mptcp_sock *msk = mptcp_sk(sk);
2831
2832 if (cancel_work_sync(&msk->work))
2833 __sock_put(sk);
2834 }
2835
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2836 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2837 {
2838 lock_sock(ssk);
2839
2840 switch (ssk->sk_state) {
2841 case TCP_LISTEN:
2842 if (!(how & RCV_SHUTDOWN))
2843 break;
2844 fallthrough;
2845 case TCP_SYN_SENT:
2846 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2847 break;
2848 default:
2849 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2850 pr_debug("Fallback");
2851 ssk->sk_shutdown |= how;
2852 tcp_shutdown(ssk, how);
2853
2854 /* simulate the data_fin ack reception to let the state
2855 * machine move forward
2856 */
2857 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2858 mptcp_schedule_work(sk);
2859 } else {
2860 pr_debug("Sending DATA_FIN on subflow %p", ssk);
2861 tcp_send_ack(ssk);
2862 if (!mptcp_rtx_timer_pending(sk))
2863 mptcp_reset_rtx_timer(sk);
2864 }
2865 break;
2866 }
2867
2868 release_sock(ssk);
2869 }
2870
mptcp_set_state(struct sock * sk,int state)2871 void mptcp_set_state(struct sock *sk, int state)
2872 {
2873 int oldstate = sk->sk_state;
2874
2875 switch (state) {
2876 case TCP_ESTABLISHED:
2877 if (oldstate != TCP_ESTABLISHED)
2878 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2879 break;
2880 case TCP_CLOSE_WAIT:
2881 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2882 * MPTCP "accepted" sockets will be created later on. So no
2883 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2884 */
2885 break;
2886 default:
2887 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2888 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2889 }
2890
2891 inet_sk_state_store(sk, state);
2892 }
2893
2894 static const unsigned char new_state[16] = {
2895 /* current state: new state: action: */
2896 [0 /* (Invalid) */] = TCP_CLOSE,
2897 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2898 [TCP_SYN_SENT] = TCP_CLOSE,
2899 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2900 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2901 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2902 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2903 [TCP_CLOSE] = TCP_CLOSE,
2904 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2905 [TCP_LAST_ACK] = TCP_LAST_ACK,
2906 [TCP_LISTEN] = TCP_CLOSE,
2907 [TCP_CLOSING] = TCP_CLOSING,
2908 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2909 };
2910
mptcp_close_state(struct sock * sk)2911 static int mptcp_close_state(struct sock *sk)
2912 {
2913 int next = (int)new_state[sk->sk_state];
2914 int ns = next & TCP_STATE_MASK;
2915
2916 mptcp_set_state(sk, ns);
2917
2918 return next & TCP_ACTION_FIN;
2919 }
2920
mptcp_check_send_data_fin(struct sock * sk)2921 static void mptcp_check_send_data_fin(struct sock *sk)
2922 {
2923 struct mptcp_subflow_context *subflow;
2924 struct mptcp_sock *msk = mptcp_sk(sk);
2925
2926 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2927 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2928 msk->snd_nxt, msk->write_seq);
2929
2930 /* we still need to enqueue subflows or not really shutting down,
2931 * skip this
2932 */
2933 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2934 mptcp_send_head(sk))
2935 return;
2936
2937 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2938
2939 mptcp_for_each_subflow(msk, subflow) {
2940 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2941
2942 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2943 }
2944 }
2945
__mptcp_wr_shutdown(struct sock * sk)2946 static void __mptcp_wr_shutdown(struct sock *sk)
2947 {
2948 struct mptcp_sock *msk = mptcp_sk(sk);
2949
2950 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2951 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2952 !!mptcp_send_head(sk));
2953
2954 /* will be ignored by fallback sockets */
2955 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2956 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2957
2958 mptcp_check_send_data_fin(sk);
2959 }
2960
__mptcp_destroy_sock(struct sock * sk)2961 static void __mptcp_destroy_sock(struct sock *sk)
2962 {
2963 struct mptcp_sock *msk = mptcp_sk(sk);
2964
2965 pr_debug("msk=%p", msk);
2966
2967 might_sleep();
2968
2969 mptcp_stop_rtx_timer(sk);
2970 sk_stop_timer(sk, &sk->sk_timer);
2971 msk->pm.status = 0;
2972 mptcp_release_sched(msk);
2973
2974 sk->sk_prot->destroy(sk);
2975
2976 WARN_ON_ONCE(msk->rmem_fwd_alloc);
2977 WARN_ON_ONCE(msk->rmem_released);
2978 sk_stream_kill_queues(sk);
2979 xfrm_sk_free_policy(sk);
2980
2981 sock_put(sk);
2982 }
2983
__mptcp_unaccepted_force_close(struct sock * sk)2984 void __mptcp_unaccepted_force_close(struct sock *sk)
2985 {
2986 sock_set_flag(sk, SOCK_DEAD);
2987 mptcp_do_fastclose(sk);
2988 __mptcp_destroy_sock(sk);
2989 }
2990
mptcp_check_readable(struct sock * sk)2991 static __poll_t mptcp_check_readable(struct sock *sk)
2992 {
2993 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2994 }
2995
mptcp_check_listen_stop(struct sock * sk)2996 static void mptcp_check_listen_stop(struct sock *sk)
2997 {
2998 struct sock *ssk;
2999
3000 if (inet_sk_state_load(sk) != TCP_LISTEN)
3001 return;
3002
3003 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3004 ssk = mptcp_sk(sk)->first;
3005 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3006 return;
3007
3008 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3009 tcp_set_state(ssk, TCP_CLOSE);
3010 mptcp_subflow_queue_clean(sk, ssk);
3011 inet_csk_listen_stop(ssk);
3012 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3013 release_sock(ssk);
3014 }
3015
__mptcp_close(struct sock * sk,long timeout)3016 bool __mptcp_close(struct sock *sk, long timeout)
3017 {
3018 struct mptcp_subflow_context *subflow;
3019 struct mptcp_sock *msk = mptcp_sk(sk);
3020 bool do_cancel_work = false;
3021 int subflows_alive = 0;
3022
3023 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3024
3025 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3026 mptcp_check_listen_stop(sk);
3027 mptcp_set_state(sk, TCP_CLOSE);
3028 goto cleanup;
3029 }
3030
3031 if (mptcp_data_avail(msk) || timeout < 0) {
3032 /* If the msk has read data, or the caller explicitly ask it,
3033 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3034 */
3035 mptcp_do_fastclose(sk);
3036 timeout = 0;
3037 } else if (mptcp_close_state(sk)) {
3038 __mptcp_wr_shutdown(sk);
3039 }
3040
3041 sk_stream_wait_close(sk, timeout);
3042
3043 cleanup:
3044 /* orphan all the subflows */
3045 mptcp_for_each_subflow(msk, subflow) {
3046 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3047 bool slow = lock_sock_fast_nested(ssk);
3048
3049 subflows_alive += ssk->sk_state != TCP_CLOSE;
3050
3051 /* since the close timeout takes precedence on the fail one,
3052 * cancel the latter
3053 */
3054 if (ssk == msk->first)
3055 subflow->fail_tout = 0;
3056
3057 /* detach from the parent socket, but allow data_ready to
3058 * push incoming data into the mptcp stack, to properly ack it
3059 */
3060 ssk->sk_socket = NULL;
3061 ssk->sk_wq = NULL;
3062 unlock_sock_fast(ssk, slow);
3063 }
3064 sock_orphan(sk);
3065
3066 /* all the subflows are closed, only timeout can change the msk
3067 * state, let's not keep resources busy for no reasons
3068 */
3069 if (subflows_alive == 0)
3070 mptcp_set_state(sk, TCP_CLOSE);
3071
3072 sock_hold(sk);
3073 pr_debug("msk=%p state=%d", sk, sk->sk_state);
3074 if (msk->token)
3075 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3076
3077 if (sk->sk_state == TCP_CLOSE) {
3078 __mptcp_destroy_sock(sk);
3079 do_cancel_work = true;
3080 } else {
3081 mptcp_start_tout_timer(sk);
3082 }
3083
3084 return do_cancel_work;
3085 }
3086
mptcp_close(struct sock * sk,long timeout)3087 static void mptcp_close(struct sock *sk, long timeout)
3088 {
3089 bool do_cancel_work;
3090
3091 lock_sock(sk);
3092
3093 do_cancel_work = __mptcp_close(sk, timeout);
3094 release_sock(sk);
3095 if (do_cancel_work)
3096 mptcp_cancel_work(sk);
3097
3098 sock_put(sk);
3099 }
3100
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3101 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3102 {
3103 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3104 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3105 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3106
3107 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3108 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3109
3110 if (msk6 && ssk6) {
3111 msk6->saddr = ssk6->saddr;
3112 msk6->flow_label = ssk6->flow_label;
3113 }
3114 #endif
3115
3116 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3117 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3118 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3119 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3120 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3121 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3122 }
3123
mptcp_disconnect(struct sock * sk,int flags)3124 static int mptcp_disconnect(struct sock *sk, int flags)
3125 {
3126 struct mptcp_sock *msk = mptcp_sk(sk);
3127
3128 /* We are on the fastopen error path. We can't call straight into the
3129 * subflows cleanup code due to lock nesting (we are already under
3130 * msk->firstsocket lock).
3131 */
3132 if (msk->fastopening)
3133 return -EBUSY;
3134
3135 mptcp_check_listen_stop(sk);
3136 mptcp_set_state(sk, TCP_CLOSE);
3137
3138 mptcp_stop_rtx_timer(sk);
3139 mptcp_stop_tout_timer(sk);
3140
3141 if (msk->token)
3142 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3143
3144 /* msk->subflow is still intact, the following will not free the first
3145 * subflow
3146 */
3147 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3148 WRITE_ONCE(msk->flags, 0);
3149 msk->cb_flags = 0;
3150 msk->recovery = false;
3151 msk->can_ack = false;
3152 msk->fully_established = false;
3153 msk->rcv_data_fin = false;
3154 msk->snd_data_fin_enable = false;
3155 msk->rcv_fastclose = false;
3156 msk->use_64bit_ack = false;
3157 msk->bytes_consumed = 0;
3158 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3159 mptcp_pm_data_reset(msk);
3160 mptcp_ca_reset(sk);
3161 msk->bytes_acked = 0;
3162 msk->bytes_received = 0;
3163 msk->bytes_sent = 0;
3164 msk->bytes_retrans = 0;
3165 msk->rcvspace_init = 0;
3166
3167 WRITE_ONCE(sk->sk_shutdown, 0);
3168 sk_error_report(sk);
3169 return 0;
3170 }
3171
3172 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3173 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3174 {
3175 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3176
3177 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3178 }
3179
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3180 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3181 {
3182 const struct ipv6_pinfo *np = inet6_sk(sk);
3183 struct ipv6_txoptions *opt;
3184 struct ipv6_pinfo *newnp;
3185
3186 newnp = inet6_sk(newsk);
3187
3188 rcu_read_lock();
3189 opt = rcu_dereference(np->opt);
3190 if (opt) {
3191 opt = ipv6_dup_options(newsk, opt);
3192 if (!opt)
3193 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3194 }
3195 RCU_INIT_POINTER(newnp->opt, opt);
3196 rcu_read_unlock();
3197 }
3198 #endif
3199
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3200 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3201 {
3202 struct ip_options_rcu *inet_opt, *newopt = NULL;
3203 const struct inet_sock *inet = inet_sk(sk);
3204 struct inet_sock *newinet;
3205
3206 newinet = inet_sk(newsk);
3207
3208 rcu_read_lock();
3209 inet_opt = rcu_dereference(inet->inet_opt);
3210 if (inet_opt) {
3211 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3212 inet_opt->opt.optlen, GFP_ATOMIC);
3213 if (newopt)
3214 memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3215 inet_opt->opt.optlen);
3216 else
3217 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3218 }
3219 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3220 rcu_read_unlock();
3221 }
3222
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3223 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3224 const struct mptcp_options_received *mp_opt,
3225 struct sock *ssk,
3226 struct request_sock *req)
3227 {
3228 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3229 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3230 struct mptcp_subflow_context *subflow;
3231 struct mptcp_sock *msk;
3232
3233 if (!nsk)
3234 return NULL;
3235
3236 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3237 if (nsk->sk_family == AF_INET6)
3238 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3239 #endif
3240
3241 __mptcp_init_sock(nsk);
3242
3243 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3244 if (nsk->sk_family == AF_INET6)
3245 mptcp_copy_ip6_options(nsk, sk);
3246 else
3247 #endif
3248 mptcp_copy_ip_options(nsk, sk);
3249
3250 msk = mptcp_sk(nsk);
3251 msk->local_key = subflow_req->local_key;
3252 msk->token = subflow_req->token;
3253 msk->in_accept_queue = 1;
3254 WRITE_ONCE(msk->fully_established, false);
3255 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3256 WRITE_ONCE(msk->csum_enabled, true);
3257
3258 msk->write_seq = subflow_req->idsn + 1;
3259 msk->snd_nxt = msk->write_seq;
3260 msk->snd_una = msk->write_seq;
3261 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd;
3262 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3263 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3264
3265 /* passive msk is created after the first/MPC subflow */
3266 msk->subflow_id = 2;
3267
3268 sock_reset_flag(nsk, SOCK_RCU_FREE);
3269 security_inet_csk_clone(nsk, req);
3270
3271 /* this can't race with mptcp_close(), as the msk is
3272 * not yet exposted to user-space
3273 */
3274 mptcp_set_state(nsk, TCP_ESTABLISHED);
3275
3276 /* The msk maintain a ref to each subflow in the connections list */
3277 WRITE_ONCE(msk->first, ssk);
3278 subflow = mptcp_subflow_ctx(ssk);
3279 list_add(&subflow->node, &msk->conn_list);
3280 sock_hold(ssk);
3281
3282 /* new mpc subflow takes ownership of the newly
3283 * created mptcp socket
3284 */
3285 mptcp_token_accept(subflow_req, msk);
3286
3287 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3288 * uses the correct data
3289 */
3290 mptcp_copy_inaddrs(nsk, ssk);
3291 __mptcp_propagate_sndbuf(nsk, ssk);
3292
3293 mptcp_rcv_space_init(msk, ssk);
3294
3295 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3296 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3297 bh_unlock_sock(nsk);
3298
3299 /* note: the newly allocated socket refcount is 2 now */
3300 return nsk;
3301 }
3302
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3303 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3304 {
3305 const struct tcp_sock *tp = tcp_sk(ssk);
3306
3307 msk->rcvspace_init = 1;
3308 msk->rcvq_space.copied = 0;
3309 msk->rcvq_space.rtt_us = 0;
3310
3311 msk->rcvq_space.time = tp->tcp_mstamp;
3312
3313 /* initial rcv_space offering made to peer */
3314 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3315 TCP_INIT_CWND * tp->advmss);
3316 if (msk->rcvq_space.space == 0)
3317 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3318 }
3319
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3320 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3321 {
3322 struct mptcp_subflow_context *subflow, *tmp;
3323 struct sock *sk = (struct sock *)msk;
3324
3325 __mptcp_clear_xmit(sk);
3326
3327 /* join list will be eventually flushed (with rst) at sock lock release time */
3328 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3329 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3330
3331 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3332 mptcp_data_lock(sk);
3333 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3334 __skb_queue_purge(&sk->sk_receive_queue);
3335 skb_rbtree_purge(&msk->out_of_order_queue);
3336 mptcp_data_unlock(sk);
3337
3338 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3339 * inet_sock_destruct() will dispose it
3340 */
3341 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3342 WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3343 mptcp_token_destroy(msk);
3344 mptcp_pm_free_anno_list(msk);
3345 mptcp_free_local_addr_list(msk);
3346 }
3347
mptcp_destroy(struct sock * sk)3348 static void mptcp_destroy(struct sock *sk)
3349 {
3350 struct mptcp_sock *msk = mptcp_sk(sk);
3351
3352 /* allow the following to close even the initial subflow */
3353 msk->free_first = 1;
3354 mptcp_destroy_common(msk, 0);
3355 sk_sockets_allocated_dec(sk);
3356 }
3357
__mptcp_data_acked(struct sock * sk)3358 void __mptcp_data_acked(struct sock *sk)
3359 {
3360 if (!sock_owned_by_user(sk))
3361 __mptcp_clean_una(sk);
3362 else
3363 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3364
3365 if (mptcp_pending_data_fin_ack(sk))
3366 mptcp_schedule_work(sk);
3367 }
3368
__mptcp_check_push(struct sock * sk,struct sock * ssk)3369 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3370 {
3371 if (!mptcp_send_head(sk))
3372 return;
3373
3374 if (!sock_owned_by_user(sk))
3375 __mptcp_subflow_push_pending(sk, ssk, false);
3376 else
3377 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3378 }
3379
3380 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3381 BIT(MPTCP_RETRANSMIT) | \
3382 BIT(MPTCP_FLUSH_JOIN_LIST))
3383
3384 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3385 static void mptcp_release_cb(struct sock *sk)
3386 __must_hold(&sk->sk_lock.slock)
3387 {
3388 struct mptcp_sock *msk = mptcp_sk(sk);
3389
3390 for (;;) {
3391 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3392 struct list_head join_list;
3393
3394 if (!flags)
3395 break;
3396
3397 INIT_LIST_HEAD(&join_list);
3398 list_splice_init(&msk->join_list, &join_list);
3399
3400 /* the following actions acquire the subflow socket lock
3401 *
3402 * 1) can't be invoked in atomic scope
3403 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3404 * datapath acquires the msk socket spinlock while helding
3405 * the subflow socket lock
3406 */
3407 msk->cb_flags &= ~flags;
3408 spin_unlock_bh(&sk->sk_lock.slock);
3409
3410 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3411 __mptcp_flush_join_list(sk, &join_list);
3412 if (flags & BIT(MPTCP_PUSH_PENDING))
3413 __mptcp_push_pending(sk, 0);
3414 if (flags & BIT(MPTCP_RETRANSMIT))
3415 __mptcp_retrans(sk);
3416
3417 cond_resched();
3418 spin_lock_bh(&sk->sk_lock.slock);
3419 }
3420
3421 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3422 __mptcp_clean_una_wakeup(sk);
3423 if (unlikely(msk->cb_flags)) {
3424 /* be sure to sync the msk state before taking actions
3425 * depending on sk_state (MPTCP_ERROR_REPORT)
3426 * On sk release avoid actions depending on the first subflow
3427 */
3428 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3429 __mptcp_sync_state(sk, msk->pending_state);
3430 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3431 __mptcp_error_report(sk);
3432 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3433 __mptcp_sync_sndbuf(sk);
3434 }
3435
3436 __mptcp_update_rmem(sk);
3437 }
3438
3439 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3440 * TCP can't schedule delack timer before the subflow is fully established.
3441 * MPTCP uses the delack timer to do 3rd ack retransmissions
3442 */
schedule_3rdack_retransmission(struct sock * ssk)3443 static void schedule_3rdack_retransmission(struct sock *ssk)
3444 {
3445 struct inet_connection_sock *icsk = inet_csk(ssk);
3446 struct tcp_sock *tp = tcp_sk(ssk);
3447 unsigned long timeout;
3448
3449 if (mptcp_subflow_ctx(ssk)->fully_established)
3450 return;
3451
3452 /* reschedule with a timeout above RTT, as we must look only for drop */
3453 if (tp->srtt_us)
3454 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3455 else
3456 timeout = TCP_TIMEOUT_INIT;
3457 timeout += jiffies;
3458
3459 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3460 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3461 icsk->icsk_ack.timeout = timeout;
3462 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3463 }
3464
mptcp_subflow_process_delegated(struct sock * ssk,long status)3465 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3466 {
3467 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3468 struct sock *sk = subflow->conn;
3469
3470 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3471 mptcp_data_lock(sk);
3472 if (!sock_owned_by_user(sk))
3473 __mptcp_subflow_push_pending(sk, ssk, true);
3474 else
3475 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3476 mptcp_data_unlock(sk);
3477 }
3478 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3479 mptcp_data_lock(sk);
3480 if (!sock_owned_by_user(sk))
3481 __mptcp_sync_sndbuf(sk);
3482 else
3483 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3484 mptcp_data_unlock(sk);
3485 }
3486 if (status & BIT(MPTCP_DELEGATE_ACK))
3487 schedule_3rdack_retransmission(ssk);
3488 }
3489
mptcp_hash(struct sock * sk)3490 static int mptcp_hash(struct sock *sk)
3491 {
3492 /* should never be called,
3493 * we hash the TCP subflows not the master socket
3494 */
3495 WARN_ON_ONCE(1);
3496 return 0;
3497 }
3498
mptcp_unhash(struct sock * sk)3499 static void mptcp_unhash(struct sock *sk)
3500 {
3501 /* called from sk_common_release(), but nothing to do here */
3502 }
3503
mptcp_get_port(struct sock * sk,unsigned short snum)3504 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3505 {
3506 struct mptcp_sock *msk = mptcp_sk(sk);
3507
3508 pr_debug("msk=%p, ssk=%p", msk, msk->first);
3509 if (WARN_ON_ONCE(!msk->first))
3510 return -EINVAL;
3511
3512 return inet_csk_get_port(msk->first, snum);
3513 }
3514
mptcp_finish_connect(struct sock * ssk)3515 void mptcp_finish_connect(struct sock *ssk)
3516 {
3517 struct mptcp_subflow_context *subflow;
3518 struct mptcp_sock *msk;
3519 struct sock *sk;
3520
3521 subflow = mptcp_subflow_ctx(ssk);
3522 sk = subflow->conn;
3523 msk = mptcp_sk(sk);
3524
3525 pr_debug("msk=%p, token=%u", sk, subflow->token);
3526
3527 subflow->map_seq = subflow->iasn;
3528 subflow->map_subflow_seq = 1;
3529
3530 /* the socket is not connected yet, no msk/subflow ops can access/race
3531 * accessing the field below
3532 */
3533 WRITE_ONCE(msk->local_key, subflow->local_key);
3534
3535 mptcp_pm_new_connection(msk, ssk, 0);
3536 }
3537
mptcp_sock_graft(struct sock * sk,struct socket * parent)3538 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3539 {
3540 write_lock_bh(&sk->sk_callback_lock);
3541 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3542 sk_set_socket(sk, parent);
3543 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3544 write_unlock_bh(&sk->sk_callback_lock);
3545 }
3546
mptcp_finish_join(struct sock * ssk)3547 bool mptcp_finish_join(struct sock *ssk)
3548 {
3549 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3550 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3551 struct sock *parent = (void *)msk;
3552 bool ret = true;
3553
3554 pr_debug("msk=%p, subflow=%p", msk, subflow);
3555
3556 /* mptcp socket already closing? */
3557 if (!mptcp_is_fully_established(parent)) {
3558 subflow->reset_reason = MPTCP_RST_EMPTCP;
3559 return false;
3560 }
3561
3562 /* active subflow, already present inside the conn_list */
3563 if (!list_empty(&subflow->node)) {
3564 mptcp_subflow_joined(msk, ssk);
3565 mptcp_propagate_sndbuf(parent, ssk);
3566 return true;
3567 }
3568
3569 if (!mptcp_pm_allow_new_subflow(msk))
3570 goto err_prohibited;
3571
3572 /* If we can't acquire msk socket lock here, let the release callback
3573 * handle it
3574 */
3575 mptcp_data_lock(parent);
3576 if (!sock_owned_by_user(parent)) {
3577 ret = __mptcp_finish_join(msk, ssk);
3578 if (ret) {
3579 sock_hold(ssk);
3580 list_add_tail(&subflow->node, &msk->conn_list);
3581 }
3582 } else {
3583 sock_hold(ssk);
3584 list_add_tail(&subflow->node, &msk->join_list);
3585 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3586 }
3587 mptcp_data_unlock(parent);
3588
3589 if (!ret) {
3590 err_prohibited:
3591 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3592 return false;
3593 }
3594
3595 return true;
3596 }
3597
mptcp_shutdown(struct sock * sk,int how)3598 static void mptcp_shutdown(struct sock *sk, int how)
3599 {
3600 pr_debug("sk=%p, how=%d", sk, how);
3601
3602 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3603 __mptcp_wr_shutdown(sk);
3604 }
3605
mptcp_forward_alloc_get(const struct sock * sk)3606 static int mptcp_forward_alloc_get(const struct sock *sk)
3607 {
3608 return READ_ONCE(sk->sk_forward_alloc) +
3609 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3610 }
3611
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3612 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3613 {
3614 const struct sock *sk = (void *)msk;
3615 u64 delta;
3616
3617 if (sk->sk_state == TCP_LISTEN)
3618 return -EINVAL;
3619
3620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3621 return 0;
3622
3623 delta = msk->write_seq - v;
3624 if (__mptcp_check_fallback(msk) && msk->first) {
3625 struct tcp_sock *tp = tcp_sk(msk->first);
3626
3627 /* the first subflow is disconnected after close - see
3628 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3629 * so ignore that status, too.
3630 */
3631 if (!((1 << msk->first->sk_state) &
3632 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3633 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3634 }
3635 if (delta > INT_MAX)
3636 delta = INT_MAX;
3637
3638 return (int)delta;
3639 }
3640
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3641 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3642 {
3643 struct mptcp_sock *msk = mptcp_sk(sk);
3644 bool slow;
3645
3646 switch (cmd) {
3647 case SIOCINQ:
3648 if (sk->sk_state == TCP_LISTEN)
3649 return -EINVAL;
3650
3651 lock_sock(sk);
3652 __mptcp_move_skbs(msk);
3653 *karg = mptcp_inq_hint(sk);
3654 release_sock(sk);
3655 break;
3656 case SIOCOUTQ:
3657 slow = lock_sock_fast(sk);
3658 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3659 unlock_sock_fast(sk, slow);
3660 break;
3661 case SIOCOUTQNSD:
3662 slow = lock_sock_fast(sk);
3663 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3664 unlock_sock_fast(sk, slow);
3665 break;
3666 default:
3667 return -ENOIOCTLCMD;
3668 }
3669
3670 return 0;
3671 }
3672
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3673 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3674 struct mptcp_subflow_context *subflow)
3675 {
3676 subflow->request_mptcp = 0;
3677 __mptcp_do_fallback(msk);
3678 }
3679
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3680 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3681 {
3682 struct mptcp_subflow_context *subflow;
3683 struct mptcp_sock *msk = mptcp_sk(sk);
3684 int err = -EINVAL;
3685 struct sock *ssk;
3686
3687 ssk = __mptcp_nmpc_sk(msk);
3688 if (IS_ERR(ssk))
3689 return PTR_ERR(ssk);
3690
3691 mptcp_set_state(sk, TCP_SYN_SENT);
3692 subflow = mptcp_subflow_ctx(ssk);
3693 #ifdef CONFIG_TCP_MD5SIG
3694 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3695 * TCP option space.
3696 */
3697 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3698 mptcp_subflow_early_fallback(msk, subflow);
3699 #endif
3700 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3701 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3702 mptcp_subflow_early_fallback(msk, subflow);
3703 }
3704
3705 WRITE_ONCE(msk->write_seq, subflow->idsn);
3706 WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3707 WRITE_ONCE(msk->snd_una, subflow->idsn);
3708 if (likely(!__mptcp_check_fallback(msk)))
3709 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3710
3711 /* if reaching here via the fastopen/sendmsg path, the caller already
3712 * acquired the subflow socket lock, too.
3713 */
3714 if (!msk->fastopening)
3715 lock_sock(ssk);
3716
3717 /* the following mirrors closely a very small chunk of code from
3718 * __inet_stream_connect()
3719 */
3720 if (ssk->sk_state != TCP_CLOSE)
3721 goto out;
3722
3723 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3724 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3725 if (err)
3726 goto out;
3727 }
3728
3729 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3730 if (err < 0)
3731 goto out;
3732
3733 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3734
3735 out:
3736 if (!msk->fastopening)
3737 release_sock(ssk);
3738
3739 /* on successful connect, the msk state will be moved to established by
3740 * subflow_finish_connect()
3741 */
3742 if (unlikely(err)) {
3743 /* avoid leaving a dangling token in an unconnected socket */
3744 mptcp_token_destroy(msk);
3745 mptcp_set_state(sk, TCP_CLOSE);
3746 return err;
3747 }
3748
3749 mptcp_copy_inaddrs(sk, ssk);
3750 return 0;
3751 }
3752
3753 static struct proto mptcp_prot = {
3754 .name = "MPTCP",
3755 .owner = THIS_MODULE,
3756 .init = mptcp_init_sock,
3757 .connect = mptcp_connect,
3758 .disconnect = mptcp_disconnect,
3759 .close = mptcp_close,
3760 .setsockopt = mptcp_setsockopt,
3761 .getsockopt = mptcp_getsockopt,
3762 .shutdown = mptcp_shutdown,
3763 .destroy = mptcp_destroy,
3764 .sendmsg = mptcp_sendmsg,
3765 .ioctl = mptcp_ioctl,
3766 .recvmsg = mptcp_recvmsg,
3767 .release_cb = mptcp_release_cb,
3768 .hash = mptcp_hash,
3769 .unhash = mptcp_unhash,
3770 .get_port = mptcp_get_port,
3771 .forward_alloc_get = mptcp_forward_alloc_get,
3772 .sockets_allocated = &mptcp_sockets_allocated,
3773
3774 .memory_allocated = &tcp_memory_allocated,
3775 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3776
3777 .memory_pressure = &tcp_memory_pressure,
3778 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3779 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3780 .sysctl_mem = sysctl_tcp_mem,
3781 .obj_size = sizeof(struct mptcp_sock),
3782 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3783 .no_autobind = true,
3784 };
3785
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3786 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3787 {
3788 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3789 struct sock *ssk, *sk = sock->sk;
3790 int err = -EINVAL;
3791
3792 lock_sock(sk);
3793 ssk = __mptcp_nmpc_sk(msk);
3794 if (IS_ERR(ssk)) {
3795 err = PTR_ERR(ssk);
3796 goto unlock;
3797 }
3798
3799 if (sk->sk_family == AF_INET)
3800 err = inet_bind_sk(ssk, uaddr, addr_len);
3801 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3802 else if (sk->sk_family == AF_INET6)
3803 err = inet6_bind_sk(ssk, uaddr, addr_len);
3804 #endif
3805 if (!err)
3806 mptcp_copy_inaddrs(sk, ssk);
3807
3808 unlock:
3809 release_sock(sk);
3810 return err;
3811 }
3812
mptcp_listen(struct socket * sock,int backlog)3813 static int mptcp_listen(struct socket *sock, int backlog)
3814 {
3815 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3816 struct sock *sk = sock->sk;
3817 struct sock *ssk;
3818 int err;
3819
3820 pr_debug("msk=%p", msk);
3821
3822 lock_sock(sk);
3823
3824 err = -EINVAL;
3825 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3826 goto unlock;
3827
3828 ssk = __mptcp_nmpc_sk(msk);
3829 if (IS_ERR(ssk)) {
3830 err = PTR_ERR(ssk);
3831 goto unlock;
3832 }
3833
3834 mptcp_set_state(sk, TCP_LISTEN);
3835 sock_set_flag(sk, SOCK_RCU_FREE);
3836
3837 lock_sock(ssk);
3838 err = __inet_listen_sk(ssk, backlog);
3839 release_sock(ssk);
3840 mptcp_set_state(sk, inet_sk_state_load(ssk));
3841
3842 if (!err) {
3843 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3844 mptcp_copy_inaddrs(sk, ssk);
3845 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3846 }
3847
3848 unlock:
3849 release_sock(sk);
3850 return err;
3851 }
3852
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3853 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3854 int flags, bool kern)
3855 {
3856 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3857 struct sock *ssk, *newsk;
3858 int err;
3859
3860 pr_debug("msk=%p", msk);
3861
3862 /* Buggy applications can call accept on socket states other then LISTEN
3863 * but no need to allocate the first subflow just to error out.
3864 */
3865 ssk = READ_ONCE(msk->first);
3866 if (!ssk)
3867 return -EINVAL;
3868
3869 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3870 newsk = inet_csk_accept(ssk, flags, &err, kern);
3871 if (!newsk)
3872 return err;
3873
3874 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3875 if (sk_is_mptcp(newsk)) {
3876 struct mptcp_subflow_context *subflow;
3877 struct sock *new_mptcp_sock;
3878
3879 subflow = mptcp_subflow_ctx(newsk);
3880 new_mptcp_sock = subflow->conn;
3881
3882 /* is_mptcp should be false if subflow->conn is missing, see
3883 * subflow_syn_recv_sock()
3884 */
3885 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3886 tcp_sk(newsk)->is_mptcp = 0;
3887 goto tcpfallback;
3888 }
3889
3890 newsk = new_mptcp_sock;
3891 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3892
3893 newsk->sk_kern_sock = kern;
3894 lock_sock(newsk);
3895 __inet_accept(sock, newsock, newsk);
3896
3897 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3898 msk = mptcp_sk(newsk);
3899 msk->in_accept_queue = 0;
3900
3901 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3902 * This is needed so NOSPACE flag can be set from tcp stack.
3903 */
3904 mptcp_for_each_subflow(msk, subflow) {
3905 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3906
3907 if (!ssk->sk_socket)
3908 mptcp_sock_graft(ssk, newsock);
3909 }
3910
3911 /* Do late cleanup for the first subflow as necessary. Also
3912 * deal with bad peers not doing a complete shutdown.
3913 */
3914 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3915 __mptcp_close_ssk(newsk, msk->first,
3916 mptcp_subflow_ctx(msk->first), 0);
3917 if (unlikely(list_is_singular(&msk->conn_list)))
3918 mptcp_set_state(newsk, TCP_CLOSE);
3919 }
3920 } else {
3921 tcpfallback:
3922 newsk->sk_kern_sock = kern;
3923 lock_sock(newsk);
3924 __inet_accept(sock, newsock, newsk);
3925 /* we are being invoked after accepting a non-mp-capable
3926 * flow: sk is a tcp_sk, not an mptcp one.
3927 *
3928 * Hand the socket over to tcp so all further socket ops
3929 * bypass mptcp.
3930 */
3931 WRITE_ONCE(newsock->sk->sk_socket->ops,
3932 mptcp_fallback_tcp_ops(newsock->sk));
3933 }
3934 release_sock(newsk);
3935
3936 return 0;
3937 }
3938
mptcp_check_writeable(struct mptcp_sock * msk)3939 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3940 {
3941 struct sock *sk = (struct sock *)msk;
3942
3943 if (sk_stream_is_writeable(sk))
3944 return EPOLLOUT | EPOLLWRNORM;
3945
3946 mptcp_set_nospace(sk);
3947 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3948 if (sk_stream_is_writeable(sk))
3949 return EPOLLOUT | EPOLLWRNORM;
3950
3951 return 0;
3952 }
3953
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3954 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3955 struct poll_table_struct *wait)
3956 {
3957 struct sock *sk = sock->sk;
3958 struct mptcp_sock *msk;
3959 __poll_t mask = 0;
3960 u8 shutdown;
3961 int state;
3962
3963 msk = mptcp_sk(sk);
3964 sock_poll_wait(file, sock, wait);
3965
3966 state = inet_sk_state_load(sk);
3967 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3968 if (state == TCP_LISTEN) {
3969 struct sock *ssk = READ_ONCE(msk->first);
3970
3971 if (WARN_ON_ONCE(!ssk))
3972 return 0;
3973
3974 return inet_csk_listen_poll(ssk);
3975 }
3976
3977 shutdown = READ_ONCE(sk->sk_shutdown);
3978 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3979 mask |= EPOLLHUP;
3980 if (shutdown & RCV_SHUTDOWN)
3981 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3982
3983 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3984 mask |= mptcp_check_readable(sk);
3985 if (shutdown & SEND_SHUTDOWN)
3986 mask |= EPOLLOUT | EPOLLWRNORM;
3987 else
3988 mask |= mptcp_check_writeable(msk);
3989 } else if (state == TCP_SYN_SENT &&
3990 inet_test_bit(DEFER_CONNECT, sk)) {
3991 /* cf tcp_poll() note about TFO */
3992 mask |= EPOLLOUT | EPOLLWRNORM;
3993 }
3994
3995 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3996 smp_rmb();
3997 if (READ_ONCE(sk->sk_err))
3998 mask |= EPOLLERR;
3999
4000 return mask;
4001 }
4002
4003 static const struct proto_ops mptcp_stream_ops = {
4004 .family = PF_INET,
4005 .owner = THIS_MODULE,
4006 .release = inet_release,
4007 .bind = mptcp_bind,
4008 .connect = inet_stream_connect,
4009 .socketpair = sock_no_socketpair,
4010 .accept = mptcp_stream_accept,
4011 .getname = inet_getname,
4012 .poll = mptcp_poll,
4013 .ioctl = inet_ioctl,
4014 .gettstamp = sock_gettstamp,
4015 .listen = mptcp_listen,
4016 .shutdown = inet_shutdown,
4017 .setsockopt = sock_common_setsockopt,
4018 .getsockopt = sock_common_getsockopt,
4019 .sendmsg = inet_sendmsg,
4020 .recvmsg = inet_recvmsg,
4021 .mmap = sock_no_mmap,
4022 .set_rcvlowat = mptcp_set_rcvlowat,
4023 };
4024
4025 static struct inet_protosw mptcp_protosw = {
4026 .type = SOCK_STREAM,
4027 .protocol = IPPROTO_MPTCP,
4028 .prot = &mptcp_prot,
4029 .ops = &mptcp_stream_ops,
4030 .flags = INET_PROTOSW_ICSK,
4031 };
4032
mptcp_napi_poll(struct napi_struct * napi,int budget)4033 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4034 {
4035 struct mptcp_delegated_action *delegated;
4036 struct mptcp_subflow_context *subflow;
4037 int work_done = 0;
4038
4039 delegated = container_of(napi, struct mptcp_delegated_action, napi);
4040 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4041 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4042
4043 bh_lock_sock_nested(ssk);
4044 if (!sock_owned_by_user(ssk)) {
4045 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4046 } else {
4047 /* tcp_release_cb_override already processed
4048 * the action or will do at next release_sock().
4049 * In both case must dequeue the subflow here - on the same
4050 * CPU that scheduled it.
4051 */
4052 smp_wmb();
4053 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4054 }
4055 bh_unlock_sock(ssk);
4056 sock_put(ssk);
4057
4058 if (++work_done == budget)
4059 return budget;
4060 }
4061
4062 /* always provide a 0 'work_done' argument, so that napi_complete_done
4063 * will not try accessing the NULL napi->dev ptr
4064 */
4065 napi_complete_done(napi, 0);
4066 return work_done;
4067 }
4068
mptcp_proto_init(void)4069 void __init mptcp_proto_init(void)
4070 {
4071 struct mptcp_delegated_action *delegated;
4072 int cpu;
4073
4074 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4075
4076 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4077 panic("Failed to allocate MPTCP pcpu counter\n");
4078
4079 init_dummy_netdev(&mptcp_napi_dev);
4080 for_each_possible_cpu(cpu) {
4081 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4082 INIT_LIST_HEAD(&delegated->head);
4083 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4084 mptcp_napi_poll);
4085 napi_enable(&delegated->napi);
4086 }
4087
4088 mptcp_subflow_init();
4089 mptcp_pm_init();
4090 mptcp_sched_init();
4091 mptcp_token_init();
4092
4093 if (proto_register(&mptcp_prot, 1) != 0)
4094 panic("Failed to register MPTCP proto.\n");
4095
4096 inet_register_protosw(&mptcp_protosw);
4097
4098 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4099 }
4100
4101 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4102 static const struct proto_ops mptcp_v6_stream_ops = {
4103 .family = PF_INET6,
4104 .owner = THIS_MODULE,
4105 .release = inet6_release,
4106 .bind = mptcp_bind,
4107 .connect = inet_stream_connect,
4108 .socketpair = sock_no_socketpair,
4109 .accept = mptcp_stream_accept,
4110 .getname = inet6_getname,
4111 .poll = mptcp_poll,
4112 .ioctl = inet6_ioctl,
4113 .gettstamp = sock_gettstamp,
4114 .listen = mptcp_listen,
4115 .shutdown = inet_shutdown,
4116 .setsockopt = sock_common_setsockopt,
4117 .getsockopt = sock_common_getsockopt,
4118 .sendmsg = inet6_sendmsg,
4119 .recvmsg = inet6_recvmsg,
4120 .mmap = sock_no_mmap,
4121 #ifdef CONFIG_COMPAT
4122 .compat_ioctl = inet6_compat_ioctl,
4123 #endif
4124 .set_rcvlowat = mptcp_set_rcvlowat,
4125 };
4126
4127 static struct proto mptcp_v6_prot;
4128
4129 static struct inet_protosw mptcp_v6_protosw = {
4130 .type = SOCK_STREAM,
4131 .protocol = IPPROTO_MPTCP,
4132 .prot = &mptcp_v6_prot,
4133 .ops = &mptcp_v6_stream_ops,
4134 .flags = INET_PROTOSW_ICSK,
4135 };
4136
mptcp_proto_v6_init(void)4137 int __init mptcp_proto_v6_init(void)
4138 {
4139 int err;
4140
4141 mptcp_v6_prot = mptcp_prot;
4142 strcpy(mptcp_v6_prot.name, "MPTCPv6");
4143 mptcp_v6_prot.slab = NULL;
4144 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4145 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4146
4147 err = proto_register(&mptcp_v6_prot, 1);
4148 if (err)
4149 return err;
4150
4151 err = inet6_register_protosw(&mptcp_v6_protosw);
4152 if (err)
4153 proto_unregister(&mptcp_v6_prot);
4154
4155 return err;
4156 }
4157 #endif
4158