• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/acpi/power.c - ACPI Power Resources management.
4  *
5  * Copyright (C) 2001 - 2015 Intel Corp.
6  * Author: Andy Grover <andrew.grover@intel.com>
7  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9  */
10 
11 /*
12  * ACPI power-managed devices may be controlled in two ways:
13  * 1. via "Device Specific (D-State) Control"
14  * 2. via "Power Resource Control".
15  * The code below deals with ACPI Power Resources control.
16  *
17  * An ACPI "power resource object" represents a software controllable power
18  * plane, clock plane, or other resource depended on by a device.
19  *
20  * A device may rely on multiple power resources, and a power resource
21  * may be shared by multiple devices.
22  */
23 
24 #define pr_fmt(fmt) "ACPI: PM: " fmt
25 
26 #include <linux/dmi.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/sysfs.h>
34 #include <linux/acpi.h>
35 #include "sleep.h"
36 #include "internal.h"
37 
38 #define ACPI_POWER_CLASS		"power_resource"
39 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
40 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
41 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
42 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
43 
44 struct acpi_power_dependent_device {
45 	struct device *dev;
46 	struct list_head node;
47 };
48 
49 struct acpi_power_resource {
50 	struct acpi_device device;
51 	struct list_head list_node;
52 	u32 system_level;
53 	u32 order;
54 	unsigned int ref_count;
55 	u8 state;
56 	struct mutex resource_lock;
57 	struct list_head dependents;
58 };
59 
60 struct acpi_power_resource_entry {
61 	struct list_head node;
62 	struct acpi_power_resource *resource;
63 };
64 
65 static LIST_HEAD(acpi_power_resource_list);
66 static DEFINE_MUTEX(power_resource_list_lock);
67 
68 /* --------------------------------------------------------------------------
69                              Power Resource Management
70    -------------------------------------------------------------------------- */
71 
resource_dev_name(struct acpi_power_resource * pr)72 static inline const char *resource_dev_name(struct acpi_power_resource *pr)
73 {
74 	return dev_name(&pr->device.dev);
75 }
76 
77 static inline
to_power_resource(struct acpi_device * device)78 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
79 {
80 	return container_of(device, struct acpi_power_resource, device);
81 }
82 
acpi_power_get_context(acpi_handle handle)83 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
84 {
85 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
86 
87 	if (!device)
88 		return NULL;
89 
90 	return to_power_resource(device);
91 }
92 
acpi_power_resources_list_add(acpi_handle handle,struct list_head * list)93 static int acpi_power_resources_list_add(acpi_handle handle,
94 					 struct list_head *list)
95 {
96 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
97 	struct acpi_power_resource_entry *entry;
98 
99 	if (!resource || !list)
100 		return -EINVAL;
101 
102 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
103 	if (!entry)
104 		return -ENOMEM;
105 
106 	entry->resource = resource;
107 	if (!list_empty(list)) {
108 		struct acpi_power_resource_entry *e;
109 
110 		list_for_each_entry(e, list, node)
111 			if (e->resource->order > resource->order) {
112 				list_add_tail(&entry->node, &e->node);
113 				return 0;
114 			}
115 	}
116 	list_add_tail(&entry->node, list);
117 	return 0;
118 }
119 
acpi_power_resources_list_free(struct list_head * list)120 void acpi_power_resources_list_free(struct list_head *list)
121 {
122 	struct acpi_power_resource_entry *entry, *e;
123 
124 	list_for_each_entry_safe(entry, e, list, node) {
125 		list_del(&entry->node);
126 		kfree(entry);
127 	}
128 }
129 
acpi_power_resource_is_dup(union acpi_object * package,unsigned int start,unsigned int i)130 static bool acpi_power_resource_is_dup(union acpi_object *package,
131 				       unsigned int start, unsigned int i)
132 {
133 	acpi_handle rhandle, dup;
134 	unsigned int j;
135 
136 	/* The caller is expected to check the package element types */
137 	rhandle = package->package.elements[i].reference.handle;
138 	for (j = start; j < i; j++) {
139 		dup = package->package.elements[j].reference.handle;
140 		if (dup == rhandle)
141 			return true;
142 	}
143 
144 	return false;
145 }
146 
acpi_extract_power_resources(union acpi_object * package,unsigned int start,struct list_head * list)147 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
148 				 struct list_head *list)
149 {
150 	unsigned int i;
151 	int err = 0;
152 
153 	for (i = start; i < package->package.count; i++) {
154 		union acpi_object *element = &package->package.elements[i];
155 		struct acpi_device *rdev;
156 		acpi_handle rhandle;
157 
158 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
159 			err = -ENODATA;
160 			break;
161 		}
162 		rhandle = element->reference.handle;
163 		if (!rhandle) {
164 			err = -ENODEV;
165 			break;
166 		}
167 
168 		/* Some ACPI tables contain duplicate power resource references */
169 		if (acpi_power_resource_is_dup(package, start, i))
170 			continue;
171 
172 		rdev = acpi_add_power_resource(rhandle);
173 		if (!rdev) {
174 			err = -ENODEV;
175 			break;
176 		}
177 		err = acpi_power_resources_list_add(rhandle, list);
178 		if (err)
179 			break;
180 	}
181 	if (err)
182 		acpi_power_resources_list_free(list);
183 
184 	return err;
185 }
186 
__get_state(acpi_handle handle,u8 * state)187 static int __get_state(acpi_handle handle, u8 *state)
188 {
189 	acpi_status status = AE_OK;
190 	unsigned long long sta = 0;
191 	u8 cur_state;
192 
193 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
194 	if (ACPI_FAILURE(status))
195 		return -ENODEV;
196 
197 	cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON;
198 
199 	acpi_handle_debug(handle, "Power resource is %s\n",
200 			  cur_state ? "on" : "off");
201 
202 	*state = cur_state;
203 	return 0;
204 }
205 
acpi_power_get_state(struct acpi_power_resource * resource,u8 * state)206 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state)
207 {
208 	if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) {
209 		int ret;
210 
211 		ret = __get_state(resource->device.handle, &resource->state);
212 		if (ret)
213 			return ret;
214 	}
215 
216 	*state = resource->state;
217 	return 0;
218 }
219 
acpi_power_get_list_state(struct list_head * list,u8 * state)220 static int acpi_power_get_list_state(struct list_head *list, u8 *state)
221 {
222 	struct acpi_power_resource_entry *entry;
223 	u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF;
224 
225 	if (!list || !state)
226 		return -EINVAL;
227 
228 	/* The state of the list is 'on' IFF all resources are 'on'. */
229 	list_for_each_entry(entry, list, node) {
230 		struct acpi_power_resource *resource = entry->resource;
231 		int result;
232 
233 		mutex_lock(&resource->resource_lock);
234 		result = acpi_power_get_state(resource, &cur_state);
235 		mutex_unlock(&resource->resource_lock);
236 		if (result)
237 			return result;
238 
239 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
240 			break;
241 	}
242 
243 	pr_debug("Power resource list is %s\n", cur_state ? "on" : "off");
244 
245 	*state = cur_state;
246 	return 0;
247 }
248 
249 static int
acpi_power_resource_add_dependent(struct acpi_power_resource * resource,struct device * dev)250 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
251 				  struct device *dev)
252 {
253 	struct acpi_power_dependent_device *dep;
254 	int ret = 0;
255 
256 	mutex_lock(&resource->resource_lock);
257 	list_for_each_entry(dep, &resource->dependents, node) {
258 		/* Only add it once */
259 		if (dep->dev == dev)
260 			goto unlock;
261 	}
262 
263 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
264 	if (!dep) {
265 		ret = -ENOMEM;
266 		goto unlock;
267 	}
268 
269 	dep->dev = dev;
270 	list_add_tail(&dep->node, &resource->dependents);
271 	dev_dbg(dev, "added power dependency to [%s]\n",
272 		resource_dev_name(resource));
273 
274 unlock:
275 	mutex_unlock(&resource->resource_lock);
276 	return ret;
277 }
278 
279 static void
acpi_power_resource_remove_dependent(struct acpi_power_resource * resource,struct device * dev)280 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
281 				     struct device *dev)
282 {
283 	struct acpi_power_dependent_device *dep;
284 
285 	mutex_lock(&resource->resource_lock);
286 	list_for_each_entry(dep, &resource->dependents, node) {
287 		if (dep->dev == dev) {
288 			list_del(&dep->node);
289 			kfree(dep);
290 			dev_dbg(dev, "removed power dependency to [%s]\n",
291 				resource_dev_name(resource));
292 			break;
293 		}
294 	}
295 	mutex_unlock(&resource->resource_lock);
296 }
297 
298 /**
299  * acpi_device_power_add_dependent - Add dependent device of this ACPI device
300  * @adev: ACPI device pointer
301  * @dev: Dependent device
302  *
303  * If @adev has non-empty _PR0 the @dev is added as dependent device to all
304  * power resources returned by it. This means that whenever these power
305  * resources are turned _ON the dependent devices get runtime resumed. This
306  * is needed for devices such as PCI to allow its driver to re-initialize
307  * it after it went to D0uninitialized.
308  *
309  * If @adev does not have _PR0 this does nothing.
310  *
311  * Returns %0 in case of success and negative errno otherwise.
312  */
acpi_device_power_add_dependent(struct acpi_device * adev,struct device * dev)313 int acpi_device_power_add_dependent(struct acpi_device *adev,
314 				    struct device *dev)
315 {
316 	struct acpi_power_resource_entry *entry;
317 	struct list_head *resources;
318 	int ret;
319 
320 	if (!adev->flags.power_manageable)
321 		return 0;
322 
323 	resources = &adev->power.states[ACPI_STATE_D0].resources;
324 	list_for_each_entry(entry, resources, node) {
325 		ret = acpi_power_resource_add_dependent(entry->resource, dev);
326 		if (ret)
327 			goto err;
328 	}
329 
330 	return 0;
331 
332 err:
333 	list_for_each_entry(entry, resources, node)
334 		acpi_power_resource_remove_dependent(entry->resource, dev);
335 
336 	return ret;
337 }
338 
339 /**
340  * acpi_device_power_remove_dependent - Remove dependent device
341  * @adev: ACPI device pointer
342  * @dev: Dependent device
343  *
344  * Does the opposite of acpi_device_power_add_dependent() and removes the
345  * dependent device if it is found. Can be called to @adev that does not
346  * have _PR0 as well.
347  */
acpi_device_power_remove_dependent(struct acpi_device * adev,struct device * dev)348 void acpi_device_power_remove_dependent(struct acpi_device *adev,
349 					struct device *dev)
350 {
351 	struct acpi_power_resource_entry *entry;
352 	struct list_head *resources;
353 
354 	if (!adev->flags.power_manageable)
355 		return;
356 
357 	resources = &adev->power.states[ACPI_STATE_D0].resources;
358 	list_for_each_entry_reverse(entry, resources, node)
359 		acpi_power_resource_remove_dependent(entry->resource, dev);
360 }
361 
__acpi_power_on(struct acpi_power_resource * resource)362 static int __acpi_power_on(struct acpi_power_resource *resource)
363 {
364 	acpi_handle handle = resource->device.handle;
365 	struct acpi_power_dependent_device *dep;
366 	acpi_status status = AE_OK;
367 
368 	status = acpi_evaluate_object(handle, "_ON", NULL, NULL);
369 	if (ACPI_FAILURE(status)) {
370 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
371 		return -ENODEV;
372 	}
373 
374 	resource->state = ACPI_POWER_RESOURCE_STATE_ON;
375 
376 	acpi_handle_debug(handle, "Power resource turned on\n");
377 
378 	/*
379 	 * If there are other dependents on this power resource we need to
380 	 * resume them now so that their drivers can re-initialize the
381 	 * hardware properly after it went back to D0.
382 	 */
383 	if (list_empty(&resource->dependents) ||
384 	    list_is_singular(&resource->dependents))
385 		return 0;
386 
387 	list_for_each_entry(dep, &resource->dependents, node) {
388 		dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
389 			resource_dev_name(resource));
390 		pm_request_resume(dep->dev);
391 	}
392 
393 	return 0;
394 }
395 
acpi_power_on_unlocked(struct acpi_power_resource * resource)396 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
397 {
398 	int result = 0;
399 
400 	if (resource->ref_count++) {
401 		acpi_handle_debug(resource->device.handle,
402 				  "Power resource already on\n");
403 	} else {
404 		result = __acpi_power_on(resource);
405 		if (result)
406 			resource->ref_count--;
407 	}
408 	return result;
409 }
410 
acpi_power_on(struct acpi_power_resource * resource)411 static int acpi_power_on(struct acpi_power_resource *resource)
412 {
413 	int result;
414 
415 	mutex_lock(&resource->resource_lock);
416 	result = acpi_power_on_unlocked(resource);
417 	mutex_unlock(&resource->resource_lock);
418 	return result;
419 }
420 
__acpi_power_off(struct acpi_power_resource * resource)421 static int __acpi_power_off(struct acpi_power_resource *resource)
422 {
423 	acpi_handle handle = resource->device.handle;
424 	acpi_status status;
425 
426 	status = acpi_evaluate_object(handle, "_OFF", NULL, NULL);
427 	if (ACPI_FAILURE(status)) {
428 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
429 		return -ENODEV;
430 	}
431 
432 	resource->state = ACPI_POWER_RESOURCE_STATE_OFF;
433 
434 	acpi_handle_debug(handle, "Power resource turned off\n");
435 
436 	return 0;
437 }
438 
acpi_power_off_unlocked(struct acpi_power_resource * resource)439 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
440 {
441 	int result = 0;
442 
443 	if (!resource->ref_count) {
444 		acpi_handle_debug(resource->device.handle,
445 				  "Power resource already off\n");
446 		return 0;
447 	}
448 
449 	if (--resource->ref_count) {
450 		acpi_handle_debug(resource->device.handle,
451 				  "Power resource still in use\n");
452 	} else {
453 		result = __acpi_power_off(resource);
454 		if (result)
455 			resource->ref_count++;
456 	}
457 	return result;
458 }
459 
acpi_power_off(struct acpi_power_resource * resource)460 static int acpi_power_off(struct acpi_power_resource *resource)
461 {
462 	int result;
463 
464 	mutex_lock(&resource->resource_lock);
465 	result = acpi_power_off_unlocked(resource);
466 	mutex_unlock(&resource->resource_lock);
467 	return result;
468 }
469 
acpi_power_off_list(struct list_head * list)470 static int acpi_power_off_list(struct list_head *list)
471 {
472 	struct acpi_power_resource_entry *entry;
473 	int result = 0;
474 
475 	list_for_each_entry_reverse(entry, list, node) {
476 		result = acpi_power_off(entry->resource);
477 		if (result)
478 			goto err;
479 	}
480 	return 0;
481 
482  err:
483 	list_for_each_entry_continue(entry, list, node)
484 		acpi_power_on(entry->resource);
485 
486 	return result;
487 }
488 
acpi_power_on_list(struct list_head * list)489 static int acpi_power_on_list(struct list_head *list)
490 {
491 	struct acpi_power_resource_entry *entry;
492 	int result = 0;
493 
494 	list_for_each_entry(entry, list, node) {
495 		result = acpi_power_on(entry->resource);
496 		if (result)
497 			goto err;
498 	}
499 	return 0;
500 
501  err:
502 	list_for_each_entry_continue_reverse(entry, list, node)
503 		acpi_power_off(entry->resource);
504 
505 	return result;
506 }
507 
508 static struct attribute *attrs[] = {
509 	NULL,
510 };
511 
512 static const struct attribute_group attr_groups[] = {
513 	[ACPI_STATE_D0] = {
514 		.name = "power_resources_D0",
515 		.attrs = attrs,
516 	},
517 	[ACPI_STATE_D1] = {
518 		.name = "power_resources_D1",
519 		.attrs = attrs,
520 	},
521 	[ACPI_STATE_D2] = {
522 		.name = "power_resources_D2",
523 		.attrs = attrs,
524 	},
525 	[ACPI_STATE_D3_HOT] = {
526 		.name = "power_resources_D3hot",
527 		.attrs = attrs,
528 	},
529 };
530 
531 static const struct attribute_group wakeup_attr_group = {
532 	.name = "power_resources_wakeup",
533 	.attrs = attrs,
534 };
535 
acpi_power_hide_list(struct acpi_device * adev,struct list_head * resources,const struct attribute_group * attr_group)536 static void acpi_power_hide_list(struct acpi_device *adev,
537 				 struct list_head *resources,
538 				 const struct attribute_group *attr_group)
539 {
540 	struct acpi_power_resource_entry *entry;
541 
542 	if (list_empty(resources))
543 		return;
544 
545 	list_for_each_entry_reverse(entry, resources, node) {
546 		struct acpi_device *res_dev = &entry->resource->device;
547 
548 		sysfs_remove_link_from_group(&adev->dev.kobj,
549 					     attr_group->name,
550 					     dev_name(&res_dev->dev));
551 	}
552 	sysfs_remove_group(&adev->dev.kobj, attr_group);
553 }
554 
acpi_power_expose_list(struct acpi_device * adev,struct list_head * resources,const struct attribute_group * attr_group)555 static void acpi_power_expose_list(struct acpi_device *adev,
556 				   struct list_head *resources,
557 				   const struct attribute_group *attr_group)
558 {
559 	struct acpi_power_resource_entry *entry;
560 	int ret;
561 
562 	if (list_empty(resources))
563 		return;
564 
565 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
566 	if (ret)
567 		return;
568 
569 	list_for_each_entry(entry, resources, node) {
570 		struct acpi_device *res_dev = &entry->resource->device;
571 
572 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
573 					      attr_group->name,
574 					      &res_dev->dev.kobj,
575 					      dev_name(&res_dev->dev));
576 		if (ret) {
577 			acpi_power_hide_list(adev, resources, attr_group);
578 			break;
579 		}
580 	}
581 }
582 
acpi_power_expose_hide(struct acpi_device * adev,struct list_head * resources,const struct attribute_group * attr_group,bool expose)583 static void acpi_power_expose_hide(struct acpi_device *adev,
584 				   struct list_head *resources,
585 				   const struct attribute_group *attr_group,
586 				   bool expose)
587 {
588 	if (expose)
589 		acpi_power_expose_list(adev, resources, attr_group);
590 	else
591 		acpi_power_hide_list(adev, resources, attr_group);
592 }
593 
acpi_power_add_remove_device(struct acpi_device * adev,bool add)594 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
595 {
596 	int state;
597 
598 	if (adev->wakeup.flags.valid)
599 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
600 				       &wakeup_attr_group, add);
601 
602 	if (!adev->power.flags.power_resources)
603 		return;
604 
605 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
606 		acpi_power_expose_hide(adev,
607 				       &adev->power.states[state].resources,
608 				       &attr_groups[state], add);
609 }
610 
acpi_power_wakeup_list_init(struct list_head * list,int * system_level_p)611 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
612 {
613 	struct acpi_power_resource_entry *entry;
614 	int system_level = 5;
615 
616 	list_for_each_entry(entry, list, node) {
617 		struct acpi_power_resource *resource = entry->resource;
618 		u8 state;
619 
620 		mutex_lock(&resource->resource_lock);
621 
622 		/*
623 		 * Make sure that the power resource state and its reference
624 		 * counter value are consistent with each other.
625 		 */
626 		if (!resource->ref_count &&
627 		    !acpi_power_get_state(resource, &state) &&
628 		    state == ACPI_POWER_RESOURCE_STATE_ON)
629 			__acpi_power_off(resource);
630 
631 		if (system_level > resource->system_level)
632 			system_level = resource->system_level;
633 
634 		mutex_unlock(&resource->resource_lock);
635 	}
636 	*system_level_p = system_level;
637 	return 0;
638 }
639 
640 /* --------------------------------------------------------------------------
641                              Device Power Management
642    -------------------------------------------------------------------------- */
643 
644 /**
645  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
646  *                          ACPI 3.0) _PSW (Power State Wake)
647  * @dev: Device to handle.
648  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
649  * @sleep_state: Target sleep state of the system.
650  * @dev_state: Target power state of the device.
651  *
652  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
653  * State Wake) for the device, if present.  On failure reset the device's
654  * wakeup.flags.valid flag.
655  *
656  * RETURN VALUE:
657  * 0 if either _DSW or _PSW has been successfully executed
658  * 0 if neither _DSW nor _PSW has been found
659  * -ENODEV if the execution of either _DSW or _PSW has failed
660  */
acpi_device_sleep_wake(struct acpi_device * dev,int enable,int sleep_state,int dev_state)661 int acpi_device_sleep_wake(struct acpi_device *dev,
662 			   int enable, int sleep_state, int dev_state)
663 {
664 	union acpi_object in_arg[3];
665 	struct acpi_object_list arg_list = { 3, in_arg };
666 	acpi_status status = AE_OK;
667 
668 	/*
669 	 * Try to execute _DSW first.
670 	 *
671 	 * Three arguments are needed for the _DSW object:
672 	 * Argument 0: enable/disable the wake capabilities
673 	 * Argument 1: target system state
674 	 * Argument 2: target device state
675 	 * When _DSW object is called to disable the wake capabilities, maybe
676 	 * the first argument is filled. The values of the other two arguments
677 	 * are meaningless.
678 	 */
679 	in_arg[0].type = ACPI_TYPE_INTEGER;
680 	in_arg[0].integer.value = enable;
681 	in_arg[1].type = ACPI_TYPE_INTEGER;
682 	in_arg[1].integer.value = sleep_state;
683 	in_arg[2].type = ACPI_TYPE_INTEGER;
684 	in_arg[2].integer.value = dev_state;
685 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
686 	if (ACPI_SUCCESS(status)) {
687 		return 0;
688 	} else if (status != AE_NOT_FOUND) {
689 		acpi_handle_info(dev->handle, "_DSW execution failed\n");
690 		dev->wakeup.flags.valid = 0;
691 		return -ENODEV;
692 	}
693 
694 	/* Execute _PSW */
695 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
696 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
697 		acpi_handle_info(dev->handle, "_PSW execution failed\n");
698 		dev->wakeup.flags.valid = 0;
699 		return -ENODEV;
700 	}
701 
702 	return 0;
703 }
704 
705 /*
706  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
707  * 1. Power on the power resources required for the wakeup device
708  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
709  *    State Wake) for the device, if present
710  */
acpi_enable_wakeup_device_power(struct acpi_device * dev,int sleep_state)711 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
712 {
713 	int err = 0;
714 
715 	if (!dev || !dev->wakeup.flags.valid)
716 		return -EINVAL;
717 
718 	mutex_lock(&acpi_device_lock);
719 
720 	dev_dbg(&dev->dev, "Enabling wakeup power (count %d)\n",
721 		dev->wakeup.prepare_count);
722 
723 	if (dev->wakeup.prepare_count++)
724 		goto out;
725 
726 	err = acpi_power_on_list(&dev->wakeup.resources);
727 	if (err) {
728 		dev_err(&dev->dev, "Cannot turn on wakeup power resources\n");
729 		dev->wakeup.flags.valid = 0;
730 		goto out;
731 	}
732 
733 	/*
734 	 * Passing 3 as the third argument below means the device may be
735 	 * put into arbitrary power state afterward.
736 	 */
737 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
738 	if (err) {
739 		acpi_power_off_list(&dev->wakeup.resources);
740 		dev->wakeup.prepare_count = 0;
741 		goto out;
742 	}
743 
744 	dev_dbg(&dev->dev, "Wakeup power enabled\n");
745 
746  out:
747 	mutex_unlock(&acpi_device_lock);
748 	return err;
749 }
750 
751 /*
752  * Shutdown a wakeup device, counterpart of above method
753  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
754  *    State Wake) for the device, if present
755  * 2. Shutdown down the power resources
756  */
acpi_disable_wakeup_device_power(struct acpi_device * dev)757 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
758 {
759 	struct acpi_power_resource_entry *entry;
760 	int err = 0;
761 
762 	if (!dev || !dev->wakeup.flags.valid)
763 		return -EINVAL;
764 
765 	mutex_lock(&acpi_device_lock);
766 
767 	dev_dbg(&dev->dev, "Disabling wakeup power (count %d)\n",
768 		dev->wakeup.prepare_count);
769 
770 	/* Do nothing if wakeup power has not been enabled for this device. */
771 	if (dev->wakeup.prepare_count <= 0)
772 		goto out;
773 
774 	if (--dev->wakeup.prepare_count > 0)
775 		goto out;
776 
777 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
778 	if (err)
779 		goto out;
780 
781 	/*
782 	 * All of the power resources in the list need to be turned off even if
783 	 * there are errors.
784 	 */
785 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
786 		int ret;
787 
788 		ret = acpi_power_off(entry->resource);
789 		if (ret && !err)
790 			err = ret;
791 	}
792 	if (err) {
793 		dev_err(&dev->dev, "Cannot turn off wakeup power resources\n");
794 		dev->wakeup.flags.valid = 0;
795 		goto out;
796 	}
797 
798 	dev_dbg(&dev->dev, "Wakeup power disabled\n");
799 
800  out:
801 	mutex_unlock(&acpi_device_lock);
802 	return err;
803 }
804 
acpi_power_get_inferred_state(struct acpi_device * device,int * state)805 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
806 {
807 	u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF;
808 	int result = 0;
809 	int i = 0;
810 
811 	if (!device || !state)
812 		return -EINVAL;
813 
814 	/*
815 	 * We know a device's inferred power state when all the resources
816 	 * required for a given D-state are 'on'.
817 	 */
818 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
819 		struct list_head *list = &device->power.states[i].resources;
820 
821 		if (list_empty(list))
822 			continue;
823 
824 		result = acpi_power_get_list_state(list, &list_state);
825 		if (result)
826 			return result;
827 
828 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
829 			*state = i;
830 			return 0;
831 		}
832 	}
833 
834 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
835 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
836 	return 0;
837 }
838 
acpi_power_on_resources(struct acpi_device * device,int state)839 int acpi_power_on_resources(struct acpi_device *device, int state)
840 {
841 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
842 		return -EINVAL;
843 
844 	return acpi_power_on_list(&device->power.states[state].resources);
845 }
846 
acpi_power_transition(struct acpi_device * device,int state)847 int acpi_power_transition(struct acpi_device *device, int state)
848 {
849 	int result = 0;
850 
851 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
852 		return -EINVAL;
853 
854 	if (device->power.state == state || !device->flags.power_manageable)
855 		return 0;
856 
857 	if ((device->power.state < ACPI_STATE_D0)
858 	    || (device->power.state > ACPI_STATE_D3_COLD))
859 		return -ENODEV;
860 
861 	/*
862 	 * First we reference all power resources required in the target list
863 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
864 	 * we dereference all power resources used in the current list.
865 	 */
866 	if (state < ACPI_STATE_D3_COLD)
867 		result = acpi_power_on_list(
868 			&device->power.states[state].resources);
869 
870 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
871 		acpi_power_off_list(
872 			&device->power.states[device->power.state].resources);
873 
874 	/* We shouldn't change the state unless the above operations succeed. */
875 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
876 
877 	return result;
878 }
879 
acpi_release_power_resource(struct device * dev)880 static void acpi_release_power_resource(struct device *dev)
881 {
882 	struct acpi_device *device = to_acpi_device(dev);
883 	struct acpi_power_resource *resource;
884 
885 	resource = container_of(device, struct acpi_power_resource, device);
886 
887 	mutex_lock(&power_resource_list_lock);
888 	list_del(&resource->list_node);
889 	mutex_unlock(&power_resource_list_lock);
890 
891 	acpi_free_pnp_ids(&device->pnp);
892 	kfree(resource);
893 }
894 
resource_in_use_show(struct device * dev,struct device_attribute * attr,char * buf)895 static ssize_t resource_in_use_show(struct device *dev,
896 				    struct device_attribute *attr,
897 				    char *buf)
898 {
899 	struct acpi_power_resource *resource;
900 
901 	resource = to_power_resource(to_acpi_device(dev));
902 	return sprintf(buf, "%u\n", !!resource->ref_count);
903 }
904 static DEVICE_ATTR_RO(resource_in_use);
905 
acpi_power_sysfs_remove(struct acpi_device * device)906 static void acpi_power_sysfs_remove(struct acpi_device *device)
907 {
908 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
909 }
910 
acpi_power_add_resource_to_list(struct acpi_power_resource * resource)911 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
912 {
913 	mutex_lock(&power_resource_list_lock);
914 
915 	if (!list_empty(&acpi_power_resource_list)) {
916 		struct acpi_power_resource *r;
917 
918 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
919 			if (r->order > resource->order) {
920 				list_add_tail(&resource->list_node, &r->list_node);
921 				goto out;
922 			}
923 	}
924 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
925 
926  out:
927 	mutex_unlock(&power_resource_list_lock);
928 }
929 
acpi_add_power_resource(acpi_handle handle)930 struct acpi_device *acpi_add_power_resource(acpi_handle handle)
931 {
932 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
933 	struct acpi_power_resource *resource;
934 	union acpi_object acpi_object;
935 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
936 	acpi_status status;
937 	u8 state_dummy;
938 	int result;
939 
940 	if (device)
941 		return device;
942 
943 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
944 	if (!resource)
945 		return NULL;
946 
947 	device = &resource->device;
948 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
949 				acpi_release_power_resource);
950 	mutex_init(&resource->resource_lock);
951 	INIT_LIST_HEAD(&resource->list_node);
952 	INIT_LIST_HEAD(&resource->dependents);
953 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
954 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
955 	device->power.state = ACPI_STATE_UNKNOWN;
956 	device->flags.match_driver = true;
957 
958 	/* Evaluate the object to get the system level and resource order. */
959 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
960 	if (ACPI_FAILURE(status))
961 		goto err;
962 
963 	resource->system_level = acpi_object.power_resource.system_level;
964 	resource->order = acpi_object.power_resource.resource_order;
965 	resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
966 
967 	/* Get the initial state or just flip it on if that fails. */
968 	if (acpi_power_get_state(resource, &state_dummy))
969 		__acpi_power_on(resource);
970 
971 	acpi_handle_info(handle, "New power resource\n");
972 
973 	result = acpi_tie_acpi_dev(device);
974 	if (result)
975 		goto err;
976 
977 	result = acpi_device_add(device);
978 	if (result)
979 		goto err;
980 
981 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
982 		device->remove = acpi_power_sysfs_remove;
983 
984 	acpi_power_add_resource_to_list(resource);
985 	acpi_device_add_finalize(device);
986 	return device;
987 
988  err:
989 	acpi_release_power_resource(&device->dev);
990 	return NULL;
991 }
992 
993 #ifdef CONFIG_ACPI_SLEEP
acpi_resume_power_resources(void)994 void acpi_resume_power_resources(void)
995 {
996 	struct acpi_power_resource *resource;
997 
998 	mutex_lock(&power_resource_list_lock);
999 
1000 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
1001 		int result;
1002 		u8 state;
1003 
1004 		mutex_lock(&resource->resource_lock);
1005 
1006 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
1007 		result = acpi_power_get_state(resource, &state);
1008 		if (result) {
1009 			mutex_unlock(&resource->resource_lock);
1010 			continue;
1011 		}
1012 
1013 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
1014 		    && resource->ref_count) {
1015 			acpi_handle_debug(resource->device.handle, "Turning ON\n");
1016 			__acpi_power_on(resource);
1017 		}
1018 
1019 		mutex_unlock(&resource->resource_lock);
1020 	}
1021 
1022 	mutex_unlock(&power_resource_list_lock);
1023 }
1024 #endif
1025 
1026 static const struct dmi_system_id dmi_leave_unused_power_resources_on[] = {
1027 	{
1028 		/*
1029 		 * The Toshiba Click Mini has a CPR3 power-resource which must
1030 		 * be on for the touchscreen to work, but which is not in any
1031 		 * _PR? lists. The other 2 affected power-resources are no-ops.
1032 		 */
1033 		.matches = {
1034 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
1035 			DMI_MATCH(DMI_PRODUCT_NAME, "SATELLITE Click Mini L9W-B"),
1036 		},
1037 	},
1038 	{}
1039 };
1040 
1041 /**
1042  * acpi_turn_off_unused_power_resources - Turn off power resources not in use.
1043  */
acpi_turn_off_unused_power_resources(void)1044 void acpi_turn_off_unused_power_resources(void)
1045 {
1046 	struct acpi_power_resource *resource;
1047 
1048 	if (dmi_check_system(dmi_leave_unused_power_resources_on))
1049 		return;
1050 
1051 	mutex_lock(&power_resource_list_lock);
1052 
1053 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1054 		mutex_lock(&resource->resource_lock);
1055 
1056 		if (!resource->ref_count &&
1057 		    resource->state == ACPI_POWER_RESOURCE_STATE_ON) {
1058 			acpi_handle_debug(resource->device.handle, "Turning OFF\n");
1059 			__acpi_power_off(resource);
1060 		}
1061 
1062 		mutex_unlock(&resource->resource_lock);
1063 	}
1064 
1065 	mutex_unlock(&power_resource_list_lock);
1066 }
1067