• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/cpu_device_id.h>
13 #include <asm/e820/api.h>
14 #include <asm/init.h>
15 #include <asm/page.h>
16 #include <asm/page_types.h>
17 #include <asm/sections.h>
18 #include <asm/setup.h>
19 #include <asm/tlbflush.h>
20 #include <asm/tlb.h>
21 #include <asm/proto.h>
22 #include <asm/dma.h>		/* for MAX_DMA_PFN */
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 #include <asm/memtype.h>
29 #include <asm/paravirt.h>
30 
31 /*
32  * We need to define the tracepoints somewhere, and tlb.c
33  * is only compiled when SMP=y.
34  */
35 #include <trace/events/tlb.h>
36 
37 #include "mm_internal.h"
38 
39 /*
40  * Tables translating between page_cache_type_t and pte encoding.
41  *
42  * The default values are defined statically as minimal supported mode;
43  * WC and WT fall back to UC-.  pat_init() updates these values to support
44  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
45  * for the details.  Note, __early_ioremap() used during early boot-time
46  * takes pgprot_t (pte encoding) and does not use these tables.
47  *
48  *   Index into __cachemode2pte_tbl[] is the cachemode.
49  *
50  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52  */
53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
55 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
56 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
60 };
61 
cachemode2protval(enum page_cache_mode pcm)62 unsigned long cachemode2protval(enum page_cache_mode pcm)
63 {
64 	if (likely(pcm == 0))
65 		return 0;
66 	return __cachemode2pte_tbl[pcm];
67 }
68 EXPORT_SYMBOL(cachemode2protval);
69 
70 static uint8_t __pte2cachemode_tbl[8] = {
71 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
72 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
73 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
75 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79 };
80 
81 /*
82  * Check that the write-protect PAT entry is set for write-protect.
83  * To do this without making assumptions how PAT has been set up (Xen has
84  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
85  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
86  * bits will select a cache mode of WP or better), and then translate the
87  * protection bits back into the cache mode using __pte2cm_idx() and the
88  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
89  */
x86_has_pat_wp(void)90 bool x86_has_pat_wp(void)
91 {
92 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
93 
94 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
95 }
96 
pgprot2cachemode(pgprot_t pgprot)97 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
98 {
99 	unsigned long masked;
100 
101 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
102 	if (likely(masked == 0))
103 		return 0;
104 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
105 }
106 
107 static unsigned long __initdata pgt_buf_start;
108 static unsigned long __initdata pgt_buf_end;
109 static unsigned long __initdata pgt_buf_top;
110 
111 static unsigned long min_pfn_mapped;
112 
113 static bool __initdata can_use_brk_pgt = true;
114 
115 /*
116  * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
117  * CONFIG_ZONE_DMA32.
118  */
119 static bool disable_dma32 __ro_after_init;
120 
121 /*
122  * Pages returned are already directly mapped.
123  *
124  * Changing that is likely to break Xen, see commit:
125  *
126  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
127  *
128  * for detailed information.
129  */
alloc_low_pages(unsigned int num)130 __ref void *alloc_low_pages(unsigned int num)
131 {
132 	unsigned long pfn;
133 	int i;
134 
135 	if (after_bootmem) {
136 		unsigned int order;
137 
138 		order = get_order((unsigned long)num << PAGE_SHIFT);
139 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
140 	}
141 
142 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
143 		unsigned long ret = 0;
144 
145 		if (min_pfn_mapped < max_pfn_mapped) {
146 			ret = memblock_phys_alloc_range(
147 					PAGE_SIZE * num, PAGE_SIZE,
148 					min_pfn_mapped << PAGE_SHIFT,
149 					max_pfn_mapped << PAGE_SHIFT);
150 		}
151 		if (!ret && can_use_brk_pgt)
152 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
153 
154 		if (!ret)
155 			panic("alloc_low_pages: can not alloc memory");
156 
157 		pfn = ret >> PAGE_SHIFT;
158 	} else {
159 		pfn = pgt_buf_end;
160 		pgt_buf_end += num;
161 	}
162 
163 	for (i = 0; i < num; i++) {
164 		void *adr;
165 
166 		adr = __va((pfn + i) << PAGE_SHIFT);
167 		clear_page(adr);
168 	}
169 
170 	return __va(pfn << PAGE_SHIFT);
171 }
172 
173 /*
174  * By default need to be able to allocate page tables below PGD firstly for
175  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
176  * With KASLR memory randomization, depending on the machine e820 memory and the
177  * PUD alignment, twice that many pages may be needed when KASLR memory
178  * randomization is enabled.
179  */
180 
181 #ifndef CONFIG_X86_5LEVEL
182 #define INIT_PGD_PAGE_TABLES    3
183 #else
184 #define INIT_PGD_PAGE_TABLES    4
185 #endif
186 
187 #ifndef CONFIG_RANDOMIZE_MEMORY
188 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
189 #else
190 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
191 #endif
192 
193 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
194 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)195 void  __init early_alloc_pgt_buf(void)
196 {
197 	unsigned long tables = INIT_PGT_BUF_SIZE;
198 	phys_addr_t base;
199 
200 	base = __pa(extend_brk(tables, PAGE_SIZE));
201 
202 	pgt_buf_start = base >> PAGE_SHIFT;
203 	pgt_buf_end = pgt_buf_start;
204 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
205 }
206 
207 int after_bootmem;
208 
209 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
210 
211 struct map_range {
212 	unsigned long start;
213 	unsigned long end;
214 	unsigned page_size_mask;
215 };
216 
217 static int page_size_mask;
218 
219 /*
220  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
221  * enable and PPro Global page enable), so that any CPU's that boot
222  * up after us can get the correct flags. Invoked on the boot CPU.
223  */
cr4_set_bits_and_update_boot(unsigned long mask)224 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
225 {
226 	mmu_cr4_features |= mask;
227 	if (trampoline_cr4_features)
228 		*trampoline_cr4_features = mmu_cr4_features;
229 	cr4_set_bits(mask);
230 }
231 
probe_page_size_mask(void)232 static void __init probe_page_size_mask(void)
233 {
234 	/*
235 	 * For pagealloc debugging, identity mapping will use small pages.
236 	 * This will simplify cpa(), which otherwise needs to support splitting
237 	 * large pages into small in interrupt context, etc.
238 	 */
239 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
240 		page_size_mask |= 1 << PG_LEVEL_2M;
241 	else
242 		direct_gbpages = 0;
243 
244 	/* Enable PSE if available */
245 	if (boot_cpu_has(X86_FEATURE_PSE))
246 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
247 
248 	/* Enable PGE if available */
249 	__supported_pte_mask &= ~_PAGE_GLOBAL;
250 	if (boot_cpu_has(X86_FEATURE_PGE)) {
251 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
252 		__supported_pte_mask |= _PAGE_GLOBAL;
253 	}
254 
255 	/* By the default is everything supported: */
256 	__default_kernel_pte_mask = __supported_pte_mask;
257 	/* Except when with PTI where the kernel is mostly non-Global: */
258 	if (cpu_feature_enabled(X86_FEATURE_PTI))
259 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
260 
261 	/* Enable 1 GB linear kernel mappings if available: */
262 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
263 		printk(KERN_INFO "Using GB pages for direct mapping\n");
264 		page_size_mask |= 1 << PG_LEVEL_1G;
265 	} else {
266 		direct_gbpages = 0;
267 	}
268 }
269 
270 #define INTEL_MATCH(_model) { .vendor  = X86_VENDOR_INTEL,	\
271 			      .family  = 6,			\
272 			      .model = _model,			\
273 			    }
274 /*
275  * INVLPG may not properly flush Global entries
276  * on these CPUs when PCIDs are enabled.
277  */
278 static const struct x86_cpu_id invlpg_miss_ids[] = {
279 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE   ),
280 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
281 	INTEL_MATCH(INTEL_FAM6_ATOM_GRACEMONT ),
282 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE  ),
283 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
284 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
285 	{}
286 };
287 
setup_pcid(void)288 static void setup_pcid(void)
289 {
290 	if (!IS_ENABLED(CONFIG_X86_64))
291 		return;
292 
293 	if (!boot_cpu_has(X86_FEATURE_PCID))
294 		return;
295 
296 	if (x86_match_cpu(invlpg_miss_ids)) {
297 		pr_info("Incomplete global flushes, disabling PCID");
298 		setup_clear_cpu_cap(X86_FEATURE_PCID);
299 		return;
300 	}
301 
302 	if (boot_cpu_has(X86_FEATURE_PGE)) {
303 		/*
304 		 * This can't be cr4_set_bits_and_update_boot() -- the
305 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
306 		 * do any good anyway.  Despite the name,
307 		 * cr4_set_bits_and_update_boot() doesn't actually cause
308 		 * the bits in question to remain set all the way through
309 		 * the secondary boot asm.
310 		 *
311 		 * Instead, we brute-force it and set CR4.PCIDE manually in
312 		 * start_secondary().
313 		 */
314 		cr4_set_bits(X86_CR4_PCIDE);
315 	} else {
316 		/*
317 		 * flush_tlb_all(), as currently implemented, won't work if
318 		 * PCID is on but PGE is not.  Since that combination
319 		 * doesn't exist on real hardware, there's no reason to try
320 		 * to fully support it, but it's polite to avoid corrupting
321 		 * data if we're on an improperly configured VM.
322 		 */
323 		setup_clear_cpu_cap(X86_FEATURE_PCID);
324 	}
325 }
326 
327 #ifdef CONFIG_X86_32
328 #define NR_RANGE_MR 3
329 #else /* CONFIG_X86_64 */
330 #define NR_RANGE_MR 5
331 #endif
332 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)333 static int __meminit save_mr(struct map_range *mr, int nr_range,
334 			     unsigned long start_pfn, unsigned long end_pfn,
335 			     unsigned long page_size_mask)
336 {
337 	if (start_pfn < end_pfn) {
338 		if (nr_range >= NR_RANGE_MR)
339 			panic("run out of range for init_memory_mapping\n");
340 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
341 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
342 		mr[nr_range].page_size_mask = page_size_mask;
343 		nr_range++;
344 	}
345 
346 	return nr_range;
347 }
348 
349 /*
350  * adjust the page_size_mask for small range to go with
351  *	big page size instead small one if nearby are ram too.
352  */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)353 static void __ref adjust_range_page_size_mask(struct map_range *mr,
354 							 int nr_range)
355 {
356 	int i;
357 
358 	for (i = 0; i < nr_range; i++) {
359 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
360 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
361 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
362 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
363 
364 #ifdef CONFIG_X86_32
365 			if ((end >> PAGE_SHIFT) > max_low_pfn)
366 				continue;
367 #endif
368 
369 			if (memblock_is_region_memory(start, end - start))
370 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
371 		}
372 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
373 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
374 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
375 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
376 
377 			if (memblock_is_region_memory(start, end - start))
378 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
379 		}
380 	}
381 }
382 
page_size_string(struct map_range * mr)383 static const char *page_size_string(struct map_range *mr)
384 {
385 	static const char str_1g[] = "1G";
386 	static const char str_2m[] = "2M";
387 	static const char str_4m[] = "4M";
388 	static const char str_4k[] = "4k";
389 
390 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
391 		return str_1g;
392 	/*
393 	 * 32-bit without PAE has a 4M large page size.
394 	 * PG_LEVEL_2M is misnamed, but we can at least
395 	 * print out the right size in the string.
396 	 */
397 	if (IS_ENABLED(CONFIG_X86_32) &&
398 	    !IS_ENABLED(CONFIG_X86_PAE) &&
399 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
400 		return str_4m;
401 
402 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
403 		return str_2m;
404 
405 	return str_4k;
406 }
407 
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)408 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
409 				     unsigned long start,
410 				     unsigned long end)
411 {
412 	unsigned long start_pfn, end_pfn, limit_pfn;
413 	unsigned long pfn;
414 	int i;
415 
416 	limit_pfn = PFN_DOWN(end);
417 
418 	/* head if not big page alignment ? */
419 	pfn = start_pfn = PFN_DOWN(start);
420 #ifdef CONFIG_X86_32
421 	/*
422 	 * Don't use a large page for the first 2/4MB of memory
423 	 * because there are often fixed size MTRRs in there
424 	 * and overlapping MTRRs into large pages can cause
425 	 * slowdowns.
426 	 */
427 	if (pfn == 0)
428 		end_pfn = PFN_DOWN(PMD_SIZE);
429 	else
430 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
431 #else /* CONFIG_X86_64 */
432 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
433 #endif
434 	if (end_pfn > limit_pfn)
435 		end_pfn = limit_pfn;
436 	if (start_pfn < end_pfn) {
437 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
438 		pfn = end_pfn;
439 	}
440 
441 	/* big page (2M) range */
442 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
443 #ifdef CONFIG_X86_32
444 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
445 #else /* CONFIG_X86_64 */
446 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
447 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
448 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
449 #endif
450 
451 	if (start_pfn < end_pfn) {
452 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
453 				page_size_mask & (1<<PG_LEVEL_2M));
454 		pfn = end_pfn;
455 	}
456 
457 #ifdef CONFIG_X86_64
458 	/* big page (1G) range */
459 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
460 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
461 	if (start_pfn < end_pfn) {
462 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
463 				page_size_mask &
464 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
465 		pfn = end_pfn;
466 	}
467 
468 	/* tail is not big page (1G) alignment */
469 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
470 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
471 	if (start_pfn < end_pfn) {
472 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
473 				page_size_mask & (1<<PG_LEVEL_2M));
474 		pfn = end_pfn;
475 	}
476 #endif
477 
478 	/* tail is not big page (2M) alignment */
479 	start_pfn = pfn;
480 	end_pfn = limit_pfn;
481 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
482 
483 	if (!after_bootmem)
484 		adjust_range_page_size_mask(mr, nr_range);
485 
486 	/* try to merge same page size and continuous */
487 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
488 		unsigned long old_start;
489 		if (mr[i].end != mr[i+1].start ||
490 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
491 			continue;
492 		/* move it */
493 		old_start = mr[i].start;
494 		memmove(&mr[i], &mr[i+1],
495 			(nr_range - 1 - i) * sizeof(struct map_range));
496 		mr[i--].start = old_start;
497 		nr_range--;
498 	}
499 
500 	for (i = 0; i < nr_range; i++)
501 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
502 				mr[i].start, mr[i].end - 1,
503 				page_size_string(&mr[i]));
504 
505 	return nr_range;
506 }
507 
508 struct range pfn_mapped[E820_MAX_ENTRIES];
509 int nr_pfn_mapped;
510 
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)511 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
512 {
513 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
514 					     nr_pfn_mapped, start_pfn, end_pfn);
515 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
516 
517 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
518 
519 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
520 		max_low_pfn_mapped = max(max_low_pfn_mapped,
521 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
522 }
523 
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)524 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
525 {
526 	int i;
527 
528 	for (i = 0; i < nr_pfn_mapped; i++)
529 		if ((start_pfn >= pfn_mapped[i].start) &&
530 		    (end_pfn <= pfn_mapped[i].end))
531 			return true;
532 
533 	return false;
534 }
535 
536 /*
537  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
538  * This runs before bootmem is initialized and gets pages directly from
539  * the physical memory. To access them they are temporarily mapped.
540  */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)541 unsigned long __ref init_memory_mapping(unsigned long start,
542 					unsigned long end, pgprot_t prot)
543 {
544 	struct map_range mr[NR_RANGE_MR];
545 	unsigned long ret = 0;
546 	int nr_range, i;
547 
548 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
549 	       start, end - 1);
550 
551 	memset(mr, 0, sizeof(mr));
552 	nr_range = split_mem_range(mr, 0, start, end);
553 
554 	for (i = 0; i < nr_range; i++)
555 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
556 						   mr[i].page_size_mask,
557 						   prot);
558 
559 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
560 
561 	return ret >> PAGE_SHIFT;
562 }
563 
564 /*
565  * We need to iterate through the E820 memory map and create direct mappings
566  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
567  * create direct mappings for all pfns from [0 to max_low_pfn) and
568  * [4GB to max_pfn) because of possible memory holes in high addresses
569  * that cannot be marked as UC by fixed/variable range MTRRs.
570  * Depending on the alignment of E820 ranges, this may possibly result
571  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
572  *
573  * init_mem_mapping() calls init_range_memory_mapping() with big range.
574  * That range would have hole in the middle or ends, and only ram parts
575  * will be mapped in init_range_memory_mapping().
576  */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)577 static unsigned long __init init_range_memory_mapping(
578 					   unsigned long r_start,
579 					   unsigned long r_end)
580 {
581 	unsigned long start_pfn, end_pfn;
582 	unsigned long mapped_ram_size = 0;
583 	int i;
584 
585 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
586 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
587 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
588 		if (start >= end)
589 			continue;
590 
591 		/*
592 		 * if it is overlapping with brk pgt, we need to
593 		 * alloc pgt buf from memblock instead.
594 		 */
595 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
596 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
597 		init_memory_mapping(start, end, PAGE_KERNEL);
598 		mapped_ram_size += end - start;
599 		can_use_brk_pgt = true;
600 	}
601 
602 	return mapped_ram_size;
603 }
604 
get_new_step_size(unsigned long step_size)605 static unsigned long __init get_new_step_size(unsigned long step_size)
606 {
607 	/*
608 	 * Initial mapped size is PMD_SIZE (2M).
609 	 * We can not set step_size to be PUD_SIZE (1G) yet.
610 	 * In worse case, when we cross the 1G boundary, and
611 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
612 	 * to map 1G range with PTE. Hence we use one less than the
613 	 * difference of page table level shifts.
614 	 *
615 	 * Don't need to worry about overflow in the top-down case, on 32bit,
616 	 * when step_size is 0, round_down() returns 0 for start, and that
617 	 * turns it into 0x100000000ULL.
618 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
619 	 * needs to be taken into consideration by the code below.
620 	 */
621 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
622 }
623 
624 /**
625  * memory_map_top_down - Map [map_start, map_end) top down
626  * @map_start: start address of the target memory range
627  * @map_end: end address of the target memory range
628  *
629  * This function will setup direct mapping for memory range
630  * [map_start, map_end) in top-down. That said, the page tables
631  * will be allocated at the end of the memory, and we map the
632  * memory in top-down.
633  */
memory_map_top_down(unsigned long map_start,unsigned long map_end)634 static void __init memory_map_top_down(unsigned long map_start,
635 				       unsigned long map_end)
636 {
637 	unsigned long real_end, last_start;
638 	unsigned long step_size;
639 	unsigned long addr;
640 	unsigned long mapped_ram_size = 0;
641 
642 	/*
643 	 * Systems that have many reserved areas near top of the memory,
644 	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
645 	 * require lots of 4K mappings which may exhaust pgt_buf.
646 	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
647 	 * there is enough mapped memory that can be allocated from
648 	 * memblock.
649 	 */
650 	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
651 					 map_end);
652 	memblock_phys_free(addr, PMD_SIZE);
653 	real_end = addr + PMD_SIZE;
654 
655 	/* step_size need to be small so pgt_buf from BRK could cover it */
656 	step_size = PMD_SIZE;
657 	max_pfn_mapped = 0; /* will get exact value next */
658 	min_pfn_mapped = real_end >> PAGE_SHIFT;
659 	last_start = real_end;
660 
661 	/*
662 	 * We start from the top (end of memory) and go to the bottom.
663 	 * The memblock_find_in_range() gets us a block of RAM from the
664 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
665 	 * for page table.
666 	 */
667 	while (last_start > map_start) {
668 		unsigned long start;
669 
670 		if (last_start > step_size) {
671 			start = round_down(last_start - 1, step_size);
672 			if (start < map_start)
673 				start = map_start;
674 		} else
675 			start = map_start;
676 		mapped_ram_size += init_range_memory_mapping(start,
677 							last_start);
678 		last_start = start;
679 		min_pfn_mapped = last_start >> PAGE_SHIFT;
680 		if (mapped_ram_size >= step_size)
681 			step_size = get_new_step_size(step_size);
682 	}
683 
684 	if (real_end < map_end)
685 		init_range_memory_mapping(real_end, map_end);
686 }
687 
688 /**
689  * memory_map_bottom_up - Map [map_start, map_end) bottom up
690  * @map_start: start address of the target memory range
691  * @map_end: end address of the target memory range
692  *
693  * This function will setup direct mapping for memory range
694  * [map_start, map_end) in bottom-up. Since we have limited the
695  * bottom-up allocation above the kernel, the page tables will
696  * be allocated just above the kernel and we map the memory
697  * in [map_start, map_end) in bottom-up.
698  */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)699 static void __init memory_map_bottom_up(unsigned long map_start,
700 					unsigned long map_end)
701 {
702 	unsigned long next, start;
703 	unsigned long mapped_ram_size = 0;
704 	/* step_size need to be small so pgt_buf from BRK could cover it */
705 	unsigned long step_size = PMD_SIZE;
706 
707 	start = map_start;
708 	min_pfn_mapped = start >> PAGE_SHIFT;
709 
710 	/*
711 	 * We start from the bottom (@map_start) and go to the top (@map_end).
712 	 * The memblock_find_in_range() gets us a block of RAM from the
713 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
714 	 * for page table.
715 	 */
716 	while (start < map_end) {
717 		if (step_size && map_end - start > step_size) {
718 			next = round_up(start + 1, step_size);
719 			if (next > map_end)
720 				next = map_end;
721 		} else {
722 			next = map_end;
723 		}
724 
725 		mapped_ram_size += init_range_memory_mapping(start, next);
726 		start = next;
727 
728 		if (mapped_ram_size >= step_size)
729 			step_size = get_new_step_size(step_size);
730 	}
731 }
732 
733 /*
734  * The real mode trampoline, which is required for bootstrapping CPUs
735  * occupies only a small area under the low 1MB.  See reserve_real_mode()
736  * for details.
737  *
738  * If KASLR is disabled the first PGD entry of the direct mapping is copied
739  * to map the real mode trampoline.
740  *
741  * If KASLR is enabled, copy only the PUD which covers the low 1MB
742  * area. This limits the randomization granularity to 1GB for both 4-level
743  * and 5-level paging.
744  */
init_trampoline(void)745 static void __init init_trampoline(void)
746 {
747 #ifdef CONFIG_X86_64
748 	/*
749 	 * The code below will alias kernel page-tables in the user-range of the
750 	 * address space, including the Global bit. So global TLB entries will
751 	 * be created when using the trampoline page-table.
752 	 */
753 	if (!kaslr_memory_enabled())
754 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
755 	else
756 		init_trampoline_kaslr();
757 #endif
758 }
759 
init_mem_mapping(void)760 void __init init_mem_mapping(void)
761 {
762 	unsigned long end;
763 
764 	pti_check_boottime_disable();
765 	probe_page_size_mask();
766 	setup_pcid();
767 
768 #ifdef CONFIG_X86_64
769 	end = max_pfn << PAGE_SHIFT;
770 #else
771 	end = max_low_pfn << PAGE_SHIFT;
772 #endif
773 
774 	/* the ISA range is always mapped regardless of memory holes */
775 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
776 
777 	/* Init the trampoline, possibly with KASLR memory offset */
778 	init_trampoline();
779 
780 	/*
781 	 * If the allocation is in bottom-up direction, we setup direct mapping
782 	 * in bottom-up, otherwise we setup direct mapping in top-down.
783 	 */
784 	if (memblock_bottom_up()) {
785 		unsigned long kernel_end = __pa_symbol(_end);
786 
787 		/*
788 		 * we need two separate calls here. This is because we want to
789 		 * allocate page tables above the kernel. So we first map
790 		 * [kernel_end, end) to make memory above the kernel be mapped
791 		 * as soon as possible. And then use page tables allocated above
792 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
793 		 */
794 		memory_map_bottom_up(kernel_end, end);
795 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
796 	} else {
797 		memory_map_top_down(ISA_END_ADDRESS, end);
798 	}
799 
800 #ifdef CONFIG_X86_64
801 	if (max_pfn > max_low_pfn) {
802 		/* can we preserve max_low_pfn ?*/
803 		max_low_pfn = max_pfn;
804 	}
805 #else
806 	early_ioremap_page_table_range_init();
807 #endif
808 
809 	load_cr3(swapper_pg_dir);
810 	__flush_tlb_all();
811 
812 	x86_init.hyper.init_mem_mapping();
813 
814 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
815 }
816 
817 /*
818  * Initialize an mm_struct to be used during poking and a pointer to be used
819  * during patching.
820  */
poking_init(void)821 void __init poking_init(void)
822 {
823 	spinlock_t *ptl;
824 	pte_t *ptep;
825 
826 	poking_mm = mm_alloc();
827 	BUG_ON(!poking_mm);
828 
829 	/* Xen PV guests need the PGD to be pinned. */
830 	paravirt_enter_mmap(poking_mm);
831 
832 	/*
833 	 * Randomize the poking address, but make sure that the following page
834 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
835 	 * and adjust the address if the PMD ends after the first one.
836 	 */
837 	poking_addr = TASK_UNMAPPED_BASE;
838 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
839 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
840 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
841 
842 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
843 		poking_addr += PAGE_SIZE;
844 
845 	/*
846 	 * We need to trigger the allocation of the page-tables that will be
847 	 * needed for poking now. Later, poking may be performed in an atomic
848 	 * section, which might cause allocation to fail.
849 	 */
850 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
851 	BUG_ON(!ptep);
852 	pte_unmap_unlock(ptep, ptl);
853 }
854 
855 /*
856  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
857  * is valid. The argument is a physical page number.
858  *
859  * On x86, access has to be given to the first megabyte of RAM because that
860  * area traditionally contains BIOS code and data regions used by X, dosemu,
861  * and similar apps. Since they map the entire memory range, the whole range
862  * must be allowed (for mapping), but any areas that would otherwise be
863  * disallowed are flagged as being "zero filled" instead of rejected.
864  * Access has to be given to non-kernel-ram areas as well, these contain the
865  * PCI mmio resources as well as potential bios/acpi data regions.
866  */
devmem_is_allowed(unsigned long pagenr)867 int devmem_is_allowed(unsigned long pagenr)
868 {
869 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
870 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
871 			!= REGION_DISJOINT) {
872 		/*
873 		 * For disallowed memory regions in the low 1MB range,
874 		 * request that the page be shown as all zeros.
875 		 */
876 		if (pagenr < 256)
877 			return 2;
878 
879 		return 0;
880 	}
881 
882 	/*
883 	 * This must follow RAM test, since System RAM is considered a
884 	 * restricted resource under CONFIG_STRICT_DEVMEM.
885 	 */
886 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
887 		/* Low 1MB bypasses iomem restrictions. */
888 		if (pagenr < 256)
889 			return 1;
890 
891 		return 0;
892 	}
893 
894 	return 1;
895 }
896 
free_init_pages(const char * what,unsigned long begin,unsigned long end)897 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
898 {
899 	unsigned long begin_aligned, end_aligned;
900 
901 	/* Make sure boundaries are page aligned */
902 	begin_aligned = PAGE_ALIGN(begin);
903 	end_aligned   = end & PAGE_MASK;
904 
905 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
906 		begin = begin_aligned;
907 		end   = end_aligned;
908 	}
909 
910 	if (begin >= end)
911 		return;
912 
913 	/*
914 	 * If debugging page accesses then do not free this memory but
915 	 * mark them not present - any buggy init-section access will
916 	 * create a kernel page fault:
917 	 */
918 	if (debug_pagealloc_enabled()) {
919 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
920 			begin, end - 1);
921 		/*
922 		 * Inform kmemleak about the hole in the memory since the
923 		 * corresponding pages will be unmapped.
924 		 */
925 		kmemleak_free_part((void *)begin, end - begin);
926 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
927 	} else {
928 		/*
929 		 * We just marked the kernel text read only above, now that
930 		 * we are going to free part of that, we need to make that
931 		 * writeable and non-executable first.
932 		 */
933 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
934 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
935 
936 		free_reserved_area((void *)begin, (void *)end,
937 				   POISON_FREE_INITMEM, what);
938 	}
939 }
940 
941 /*
942  * begin/end can be in the direct map or the "high kernel mapping"
943  * used for the kernel image only.  free_init_pages() will do the
944  * right thing for either kind of address.
945  */
free_kernel_image_pages(const char * what,void * begin,void * end)946 void free_kernel_image_pages(const char *what, void *begin, void *end)
947 {
948 	unsigned long begin_ul = (unsigned long)begin;
949 	unsigned long end_ul = (unsigned long)end;
950 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
951 
952 	free_init_pages(what, begin_ul, end_ul);
953 
954 	/*
955 	 * PTI maps some of the kernel into userspace.  For performance,
956 	 * this includes some kernel areas that do not contain secrets.
957 	 * Those areas might be adjacent to the parts of the kernel image
958 	 * being freed, which may contain secrets.  Remove the "high kernel
959 	 * image mapping" for these freed areas, ensuring they are not even
960 	 * potentially vulnerable to Meltdown regardless of the specific
961 	 * optimizations PTI is currently using.
962 	 *
963 	 * The "noalias" prevents unmapping the direct map alias which is
964 	 * needed to access the freed pages.
965 	 *
966 	 * This is only valid for 64bit kernels. 32bit has only one mapping
967 	 * which can't be treated in this way for obvious reasons.
968 	 */
969 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
970 		set_memory_np_noalias(begin_ul, len_pages);
971 }
972 
free_initmem(void)973 void __ref free_initmem(void)
974 {
975 	e820__reallocate_tables();
976 
977 	mem_encrypt_free_decrypted_mem();
978 
979 	free_kernel_image_pages("unused kernel image (initmem)",
980 				&__init_begin, &__init_end);
981 }
982 
983 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)984 void __init free_initrd_mem(unsigned long start, unsigned long end)
985 {
986 	/*
987 	 * end could be not aligned, and We can not align that,
988 	 * decompressor could be confused by aligned initrd_end
989 	 * We already reserve the end partial page before in
990 	 *   - i386_start_kernel()
991 	 *   - x86_64_start_kernel()
992 	 *   - relocate_initrd()
993 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
994 	 */
995 	free_init_pages("initrd", start, PAGE_ALIGN(end));
996 }
997 #endif
998 
999 /*
1000  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
1001  * and pass it to the MM layer - to help it set zone watermarks more
1002  * accurately.
1003  *
1004  * Done on 64-bit systems only for the time being, although 32-bit systems
1005  * might benefit from this as well.
1006  */
memblock_find_dma_reserve(void)1007 void __init memblock_find_dma_reserve(void)
1008 {
1009 #ifdef CONFIG_X86_64
1010 	u64 nr_pages = 0, nr_free_pages = 0;
1011 	unsigned long start_pfn, end_pfn;
1012 	phys_addr_t start_addr, end_addr;
1013 	int i;
1014 	u64 u;
1015 
1016 	/*
1017 	 * Iterate over all memory ranges (free and reserved ones alike),
1018 	 * to calculate the total number of pages in the first 16 MB of RAM:
1019 	 */
1020 	nr_pages = 0;
1021 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1022 		start_pfn = min(start_pfn, MAX_DMA_PFN);
1023 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
1024 
1025 		nr_pages += end_pfn - start_pfn;
1026 	}
1027 
1028 	/*
1029 	 * Iterate over free memory ranges to calculate the number of free
1030 	 * pages in the DMA zone, while not counting potential partial
1031 	 * pages at the beginning or the end of the range:
1032 	 */
1033 	nr_free_pages = 0;
1034 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1035 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1036 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1037 
1038 		if (start_pfn < end_pfn)
1039 			nr_free_pages += end_pfn - start_pfn;
1040 	}
1041 
1042 	set_dma_reserve(nr_pages - nr_free_pages);
1043 #endif
1044 }
1045 
zone_sizes_init(void)1046 void __init zone_sizes_init(void)
1047 {
1048 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1049 
1050 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1051 
1052 #ifdef CONFIG_ZONE_DMA
1053 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1054 #endif
1055 #ifdef CONFIG_ZONE_DMA32
1056 	max_zone_pfns[ZONE_DMA32]	= disable_dma32 ? 0 : min(MAX_DMA32_PFN, max_low_pfn);
1057 #endif
1058 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1059 #ifdef CONFIG_HIGHMEM
1060 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1061 #endif
1062 
1063 	free_area_init(max_zone_pfns);
1064 }
1065 
early_disable_dma32(char * buf)1066 static int __init early_disable_dma32(char *buf)
1067 {
1068 	if (!buf)
1069 		return -EINVAL;
1070 
1071 	if (!strcmp(buf, "on"))
1072 		disable_dma32 = true;
1073 
1074 	return 0;
1075 }
1076 early_param("disable_dma32", early_disable_dma32);
1077 
1078 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1079 	.loaded_mm = &init_mm,
1080 	.next_asid = 1,
1081 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1082 };
1083 
1084 #ifdef CONFIG_ADDRESS_MASKING
1085 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1086 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1087 #endif
1088 
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1089 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1090 {
1091 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1092 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1093 
1094 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1095 	__pte2cachemode_tbl[entry] = cache;
1096 }
1097 
1098 #ifdef CONFIG_SWAP
arch_max_swapfile_size(void)1099 unsigned long arch_max_swapfile_size(void)
1100 {
1101 	unsigned long pages;
1102 
1103 	pages = generic_max_swapfile_size();
1104 
1105 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1106 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1107 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1108 		/*
1109 		 * We encode swap offsets also with 3 bits below those for pfn
1110 		 * which makes the usable limit higher.
1111 		 */
1112 #if CONFIG_PGTABLE_LEVELS > 2
1113 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1114 #endif
1115 		pages = min_t(unsigned long long, l1tf_limit, pages);
1116 	}
1117 	return pages;
1118 }
1119 #endif
1120