1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned int xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags_on;
100 u16 lflags_off;
101 };
102
103 struct ata_force_ent {
104 int port;
105 int device;
106 struct ata_force_param param;
107 };
108
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162
ata_dev_print_info(struct ata_device * dev)163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 struct ata_eh_context *ehc = &dev->link->eh_context;
166
167 return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169
ata_sstatus_online(u32 sstatus)170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 return (sstatus & 0xf) == 0x3;
173 }
174
175 /**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189 {
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 fallthrough;
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 fallthrough;
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 fallthrough;
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234
235 /**
236 * ata_dev_next - device iteration helper
237 * @dev: the previous device, NULL to start
238 * @link: ATA link containing devices to iterate
239 * @mode: iteration mode, one of ATA_DITER_*
240 *
241 * LOCKING:
242 * Host lock or EH context.
243 *
244 * RETURNS:
245 * Pointer to the next device.
246 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 enum ata_dev_iter_mode mode)
249 {
250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253 /* NULL dev indicates start of iteration */
254 if (!dev)
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 dev = link->device;
259 goto check;
260 case ATA_DITER_ENABLED_REVERSE:
261 case ATA_DITER_ALL_REVERSE:
262 dev = link->device + ata_link_max_devices(link) - 1;
263 goto check;
264 }
265
266 next:
267 /* move to the next one */
268 switch (mode) {
269 case ATA_DITER_ENABLED:
270 case ATA_DITER_ALL:
271 if (++dev < link->device + ata_link_max_devices(link))
272 goto check;
273 return NULL;
274 case ATA_DITER_ENABLED_REVERSE:
275 case ATA_DITER_ALL_REVERSE:
276 if (--dev >= link->device)
277 goto check;
278 return NULL;
279 }
280
281 check:
282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 !ata_dev_enabled(dev))
284 goto next;
285 return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288
289 /**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
ata_dev_phys_link(struct ata_device * dev)303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312 }
313
314 #ifdef CONFIG_ATA_FORCE
315 /**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
ata_force_cbl(struct ata_port * ap)328 void ata_force_cbl(struct ata_port *ap)
329 {
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345 }
346
347 /**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
ata_force_link_limits(struct ata_link * link)363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags_on) {
391 link->flags |= fe->param.lflags_on;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags_on, link->flags);
395 }
396 if (fe->param.lflags_off) {
397 link->flags &= ~fe->param.lflags_off;
398 ata_link_notice(link,
399 "FORCE: link flag 0x%x cleared -> 0x%x\n",
400 fe->param.lflags_off, link->flags);
401 }
402 }
403 }
404
405 /**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
ata_force_xfermask(struct ata_device * dev)416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned int pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
455 return;
456 }
457 }
458
459 /**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
ata_force_horkage(struct ata_device * dev)470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
499 }
500 }
501 #else
ata_force_link_limits(struct ata_link * link)502 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)503 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506
507 /**
508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 * @opcode: SCSI opcode
510 *
511 * Determine ATAPI command type from @opcode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
atapi_cmd_type(u8 opcode)519 int atapi_cmd_type(u8 opcode)
520 {
521 switch (opcode) {
522 case GPCMD_READ_10:
523 case GPCMD_READ_12:
524 return ATAPI_READ;
525
526 case GPCMD_WRITE_10:
527 case GPCMD_WRITE_12:
528 case GPCMD_WRITE_AND_VERIFY_10:
529 return ATAPI_WRITE;
530
531 case GPCMD_READ_CD:
532 case GPCMD_READ_CD_MSF:
533 return ATAPI_READ_CD;
534
535 case ATA_16:
536 case ATA_12:
537 if (atapi_passthru16)
538 return ATAPI_PASS_THRU;
539 fallthrough;
540 default:
541 return ATAPI_MISC;
542 }
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546 static const u8 ata_rw_cmds[] = {
547 /* pio multi */
548 ATA_CMD_READ_MULTI,
549 ATA_CMD_WRITE_MULTI,
550 ATA_CMD_READ_MULTI_EXT,
551 ATA_CMD_WRITE_MULTI_EXT,
552 0,
553 0,
554 0,
555 0,
556 /* pio */
557 ATA_CMD_PIO_READ,
558 ATA_CMD_PIO_WRITE,
559 ATA_CMD_PIO_READ_EXT,
560 ATA_CMD_PIO_WRITE_EXT,
561 0,
562 0,
563 0,
564 0,
565 /* dma */
566 ATA_CMD_READ,
567 ATA_CMD_WRITE,
568 ATA_CMD_READ_EXT,
569 ATA_CMD_WRITE_EXT,
570 0,
571 0,
572 0,
573 ATA_CMD_WRITE_FUA_EXT
574 };
575
576 /**
577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578 * @dev: target device for the taskfile
579 * @tf: taskfile to examine and configure
580 *
581 * Examine the device configuration and tf->flags to determine
582 * the proper read/write command and protocol to use for @tf.
583 *
584 * LOCKING:
585 * caller.
586 */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)587 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 struct ata_taskfile *tf)
589 {
590 u8 cmd;
591
592 int index, fua, lba48, write;
593
594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597
598 if (dev->flags & ATA_DFLAG_PIO) {
599 tf->protocol = ATA_PROT_PIO;
600 index = dev->multi_count ? 0 : 8;
601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 /* Unable to use DMA due to host limitation */
603 tf->protocol = ATA_PROT_PIO;
604 index = dev->multi_count ? 0 : 8;
605 } else {
606 tf->protocol = ATA_PROT_DMA;
607 index = 16;
608 }
609
610 cmd = ata_rw_cmds[index + fua + lba48 + write];
611 if (!cmd)
612 return false;
613
614 tf->command = cmd;
615
616 return true;
617 }
618
619 /**
620 * ata_tf_read_block - Read block address from ATA taskfile
621 * @tf: ATA taskfile of interest
622 * @dev: ATA device @tf belongs to
623 *
624 * LOCKING:
625 * None.
626 *
627 * Read block address from @tf. This function can handle all
628 * three address formats - LBA, LBA48 and CHS. tf->protocol and
629 * flags select the address format to use.
630 *
631 * RETURNS:
632 * Block address read from @tf.
633 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635 {
636 u64 block = 0;
637
638 if (tf->flags & ATA_TFLAG_LBA) {
639 if (tf->flags & ATA_TFLAG_LBA48) {
640 block |= (u64)tf->hob_lbah << 40;
641 block |= (u64)tf->hob_lbam << 32;
642 block |= (u64)tf->hob_lbal << 24;
643 } else
644 block |= (tf->device & 0xf) << 24;
645
646 block |= tf->lbah << 16;
647 block |= tf->lbam << 8;
648 block |= tf->lbal;
649 } else {
650 u32 cyl, head, sect;
651
652 cyl = tf->lbam | (tf->lbah << 8);
653 head = tf->device & 0xf;
654 sect = tf->lbal;
655
656 if (!sect) {
657 ata_dev_warn(dev,
658 "device reported invalid CHS sector 0\n");
659 return U64_MAX;
660 }
661
662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 }
664
665 return block;
666 }
667
668 /*
669 * Set a taskfile command duration limit index.
670 */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672 {
673 struct ata_taskfile *tf = &qc->tf;
674
675 if (tf->protocol == ATA_PROT_NCQ)
676 tf->auxiliary |= cdl;
677 else
678 tf->feature |= cdl;
679
680 /*
681 * Mark this command as having a CDL and request the result
682 * task file so that we can inspect the sense data available
683 * bit on completion.
684 */
685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686 }
687
688 /**
689 * ata_build_rw_tf - Build ATA taskfile for given read/write request
690 * @qc: Metadata associated with the taskfile to build
691 * @block: Block address
692 * @n_block: Number of blocks
693 * @tf_flags: RW/FUA etc...
694 * @cdl: Command duration limit index
695 * @class: IO priority class
696 *
697 * LOCKING:
698 * None.
699 *
700 * Build ATA taskfile for the command @qc for read/write request described
701 * by @block, @n_block, @tf_flags and @class.
702 *
703 * RETURNS:
704 *
705 * 0 on success, -ERANGE if the request is too large for @dev,
706 * -EINVAL if the request is invalid.
707 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709 unsigned int tf_flags, int cdl, int class)
710 {
711 struct ata_taskfile *tf = &qc->tf;
712 struct ata_device *dev = qc->dev;
713
714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715 tf->flags |= tf_flags;
716
717 if (ata_ncq_enabled(dev)) {
718 /* yay, NCQ */
719 if (!lba_48_ok(block, n_block))
720 return -ERANGE;
721
722 tf->protocol = ATA_PROT_NCQ;
723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724
725 if (tf->flags & ATA_TFLAG_WRITE)
726 tf->command = ATA_CMD_FPDMA_WRITE;
727 else
728 tf->command = ATA_CMD_FPDMA_READ;
729
730 tf->nsect = qc->hw_tag << 3;
731 tf->hob_feature = (n_block >> 8) & 0xff;
732 tf->feature = n_block & 0xff;
733
734 tf->hob_lbah = (block >> 40) & 0xff;
735 tf->hob_lbam = (block >> 32) & 0xff;
736 tf->hob_lbal = (block >> 24) & 0xff;
737 tf->lbah = (block >> 16) & 0xff;
738 tf->lbam = (block >> 8) & 0xff;
739 tf->lbal = block & 0xff;
740
741 tf->device = ATA_LBA;
742 if (tf->flags & ATA_TFLAG_FUA)
743 tf->device |= 1 << 7;
744
745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746 class == IOPRIO_CLASS_RT)
747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748
749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750 ata_set_tf_cdl(qc, cdl);
751
752 } else if (dev->flags & ATA_DFLAG_LBA) {
753 tf->flags |= ATA_TFLAG_LBA;
754
755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756 ata_set_tf_cdl(qc, cdl);
757
758 /* Both FUA writes and a CDL index require 48-bit commands */
759 if (!(tf->flags & ATA_TFLAG_FUA) &&
760 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761 lba_28_ok(block, n_block)) {
762 /* use LBA28 */
763 tf->device |= (block >> 24) & 0xf;
764 } else if (lba_48_ok(block, n_block)) {
765 if (!(dev->flags & ATA_DFLAG_LBA48))
766 return -ERANGE;
767
768 /* use LBA48 */
769 tf->flags |= ATA_TFLAG_LBA48;
770
771 tf->hob_nsect = (n_block >> 8) & 0xff;
772
773 tf->hob_lbah = (block >> 40) & 0xff;
774 tf->hob_lbam = (block >> 32) & 0xff;
775 tf->hob_lbal = (block >> 24) & 0xff;
776 } else {
777 /* request too large even for LBA48 */
778 return -ERANGE;
779 }
780
781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782 return -EINVAL;
783
784 tf->nsect = n_block & 0xff;
785
786 tf->lbah = (block >> 16) & 0xff;
787 tf->lbam = (block >> 8) & 0xff;
788 tf->lbal = block & 0xff;
789
790 tf->device |= ATA_LBA;
791 } else {
792 /* CHS */
793 u32 sect, head, cyl, track;
794
795 /* The request -may- be too large for CHS addressing. */
796 if (!lba_28_ok(block, n_block))
797 return -ERANGE;
798
799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 return -EINVAL;
801
802 /* Convert LBA to CHS */
803 track = (u32)block / dev->sectors;
804 cyl = track / dev->heads;
805 head = track % dev->heads;
806 sect = (u32)block % dev->sectors + 1;
807
808 /* Check whether the converted CHS can fit.
809 Cylinder: 0-65535
810 Head: 0-15
811 Sector: 1-255*/
812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813 return -ERANGE;
814
815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816 tf->lbal = sect;
817 tf->lbam = cyl;
818 tf->lbah = cyl >> 8;
819 tf->device |= head;
820 }
821
822 return 0;
823 }
824
825 /**
826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827 * @pio_mask: pio_mask
828 * @mwdma_mask: mwdma_mask
829 * @udma_mask: udma_mask
830 *
831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832 * unsigned int xfer_mask.
833 *
834 * LOCKING:
835 * None.
836 *
837 * RETURNS:
838 * Packed xfer_mask.
839 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)840 unsigned int ata_pack_xfermask(unsigned int pio_mask,
841 unsigned int mwdma_mask,
842 unsigned int udma_mask)
843 {
844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847 }
848 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849
850 /**
851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852 * @xfer_mask: xfer_mask to unpack
853 * @pio_mask: resulting pio_mask
854 * @mwdma_mask: resulting mwdma_mask
855 * @udma_mask: resulting udma_mask
856 *
857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858 * Any NULL destination masks will be ignored.
859 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861 unsigned int *mwdma_mask, unsigned int *udma_mask)
862 {
863 if (pio_mask)
864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865 if (mwdma_mask)
866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867 if (udma_mask)
868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869 }
870
871 static const struct ata_xfer_ent {
872 int shift, bits;
873 u8 base;
874 } ata_xfer_tbl[] = {
875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878 { -1, },
879 };
880
881 /**
882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883 * @xfer_mask: xfer_mask of interest
884 *
885 * Return matching XFER_* value for @xfer_mask. Only the highest
886 * bit of @xfer_mask is considered.
887 *
888 * LOCKING:
889 * None.
890 *
891 * RETURNS:
892 * Matching XFER_* value, 0xff if no match found.
893 */
ata_xfer_mask2mode(unsigned int xfer_mask)894 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895 {
896 int highbit = fls(xfer_mask) - 1;
897 const struct ata_xfer_ent *ent;
898
899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901 return ent->base + highbit - ent->shift;
902 return 0xff;
903 }
904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905
906 /**
907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908 * @xfer_mode: XFER_* of interest
909 *
910 * Return matching xfer_mask for @xfer_mode.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
916 * Matching xfer_mask, 0 if no match found.
917 */
ata_xfer_mode2mask(u8 xfer_mode)918 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919 {
920 const struct ata_xfer_ent *ent;
921
922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925 & ~((1 << ent->shift) - 1);
926 return 0;
927 }
928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929
930 /**
931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932 * @xfer_mode: XFER_* of interest
933 *
934 * Return matching xfer_shift for @xfer_mode.
935 *
936 * LOCKING:
937 * None.
938 *
939 * RETURNS:
940 * Matching xfer_shift, -1 if no match found.
941 */
ata_xfer_mode2shift(u8 xfer_mode)942 int ata_xfer_mode2shift(u8 xfer_mode)
943 {
944 const struct ata_xfer_ent *ent;
945
946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 return ent->shift;
949 return -1;
950 }
951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952
953 /**
954 * ata_mode_string - convert xfer_mask to string
955 * @xfer_mask: mask of bits supported; only highest bit counts.
956 *
957 * Determine string which represents the highest speed
958 * (highest bit in @modemask).
959 *
960 * LOCKING:
961 * None.
962 *
963 * RETURNS:
964 * Constant C string representing highest speed listed in
965 * @mode_mask, or the constant C string "<n/a>".
966 */
ata_mode_string(unsigned int xfer_mask)967 const char *ata_mode_string(unsigned int xfer_mask)
968 {
969 static const char * const xfer_mode_str[] = {
970 "PIO0",
971 "PIO1",
972 "PIO2",
973 "PIO3",
974 "PIO4",
975 "PIO5",
976 "PIO6",
977 "MWDMA0",
978 "MWDMA1",
979 "MWDMA2",
980 "MWDMA3",
981 "MWDMA4",
982 "UDMA/16",
983 "UDMA/25",
984 "UDMA/33",
985 "UDMA/44",
986 "UDMA/66",
987 "UDMA/100",
988 "UDMA/133",
989 "UDMA7",
990 };
991 int highbit;
992
993 highbit = fls(xfer_mask) - 1;
994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995 return xfer_mode_str[highbit];
996 return "<n/a>";
997 }
998 EXPORT_SYMBOL_GPL(ata_mode_string);
999
sata_spd_string(unsigned int spd)1000 const char *sata_spd_string(unsigned int spd)
1001 {
1002 static const char * const spd_str[] = {
1003 "1.5 Gbps",
1004 "3.0 Gbps",
1005 "6.0 Gbps",
1006 };
1007
1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009 return "<unknown>";
1010 return spd_str[spd - 1];
1011 }
1012
1013 /**
1014 * ata_dev_classify - determine device type based on ATA-spec signature
1015 * @tf: ATA taskfile register set for device to be identified
1016 *
1017 * Determine from taskfile register contents whether a device is
1018 * ATA or ATAPI, as per "Signature and persistence" section
1019 * of ATA/PI spec (volume 1, sect 5.14).
1020 *
1021 * LOCKING:
1022 * None.
1023 *
1024 * RETURNS:
1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027 */
ata_dev_classify(const struct ata_taskfile * tf)1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029 {
1030 /* Apple's open source Darwin code hints that some devices only
1031 * put a proper signature into the LBA mid/high registers,
1032 * So, we only check those. It's sufficient for uniqueness.
1033 *
1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035 * signatures for ATA and ATAPI devices attached on SerialATA,
1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1037 * spec has never mentioned about using different signatures
1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1039 * Multiplier specification began to use 0x69/0x96 to identify
1040 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042 * 0x69/0x96 shortly and described them as reserved for
1043 * SerialATA.
1044 *
1045 * We follow the current spec and consider that 0x69/0x96
1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048 * SEMB signature. This is worked around in
1049 * ata_dev_read_id().
1050 */
1051 if (tf->lbam == 0 && tf->lbah == 0)
1052 return ATA_DEV_ATA;
1053
1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055 return ATA_DEV_ATAPI;
1056
1057 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058 return ATA_DEV_PMP;
1059
1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061 return ATA_DEV_SEMB;
1062
1063 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064 return ATA_DEV_ZAC;
1065
1066 return ATA_DEV_UNKNOWN;
1067 }
1068 EXPORT_SYMBOL_GPL(ata_dev_classify);
1069
1070 /**
1071 * ata_id_string - Convert IDENTIFY DEVICE page into string
1072 * @id: IDENTIFY DEVICE results we will examine
1073 * @s: string into which data is output
1074 * @ofs: offset into identify device page
1075 * @len: length of string to return. must be an even number.
1076 *
1077 * The strings in the IDENTIFY DEVICE page are broken up into
1078 * 16-bit chunks. Run through the string, and output each
1079 * 8-bit chunk linearly, regardless of platform.
1080 *
1081 * LOCKING:
1082 * caller.
1083 */
1084
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1085 void ata_id_string(const u16 *id, unsigned char *s,
1086 unsigned int ofs, unsigned int len)
1087 {
1088 unsigned int c;
1089
1090 BUG_ON(len & 1);
1091
1092 while (len > 0) {
1093 c = id[ofs] >> 8;
1094 *s = c;
1095 s++;
1096
1097 c = id[ofs] & 0xff;
1098 *s = c;
1099 s++;
1100
1101 ofs++;
1102 len -= 2;
1103 }
1104 }
1105 EXPORT_SYMBOL_GPL(ata_id_string);
1106
1107 /**
1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109 * @id: IDENTIFY DEVICE results we will examine
1110 * @s: string into which data is output
1111 * @ofs: offset into identify device page
1112 * @len: length of string to return. must be an odd number.
1113 *
1114 * This function is identical to ata_id_string except that it
1115 * trims trailing spaces and terminates the resulting string with
1116 * null. @len must be actual maximum length (even number) + 1.
1117 *
1118 * LOCKING:
1119 * caller.
1120 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1121 void ata_id_c_string(const u16 *id, unsigned char *s,
1122 unsigned int ofs, unsigned int len)
1123 {
1124 unsigned char *p;
1125
1126 ata_id_string(id, s, ofs, len - 1);
1127
1128 p = s + strnlen(s, len - 1);
1129 while (p > s && p[-1] == ' ')
1130 p--;
1131 *p = '\0';
1132 }
1133 EXPORT_SYMBOL_GPL(ata_id_c_string);
1134
ata_id_n_sectors(const u16 * id)1135 static u64 ata_id_n_sectors(const u16 *id)
1136 {
1137 if (ata_id_has_lba(id)) {
1138 if (ata_id_has_lba48(id))
1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140
1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142 }
1143
1144 if (ata_id_current_chs_valid(id))
1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146 (u32)id[ATA_ID_CUR_SECTORS];
1147
1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149 (u32)id[ATA_ID_SECTORS];
1150 }
1151
ata_tf_to_lba48(const struct ata_taskfile * tf)1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153 {
1154 u64 sectors = 0;
1155
1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159 sectors |= (tf->lbah & 0xff) << 16;
1160 sectors |= (tf->lbam & 0xff) << 8;
1161 sectors |= (tf->lbal & 0xff);
1162
1163 return sectors;
1164 }
1165
ata_tf_to_lba(const struct ata_taskfile * tf)1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167 {
1168 u64 sectors = 0;
1169
1170 sectors |= (tf->device & 0x0f) << 24;
1171 sectors |= (tf->lbah & 0xff) << 16;
1172 sectors |= (tf->lbam & 0xff) << 8;
1173 sectors |= (tf->lbal & 0xff);
1174
1175 return sectors;
1176 }
1177
1178 /**
1179 * ata_read_native_max_address - Read native max address
1180 * @dev: target device
1181 * @max_sectors: out parameter for the result native max address
1182 *
1183 * Perform an LBA48 or LBA28 native size query upon the device in
1184 * question.
1185 *
1186 * RETURNS:
1187 * 0 on success, -EACCES if command is aborted by the drive.
1188 * -EIO on other errors.
1189 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191 {
1192 unsigned int err_mask;
1193 struct ata_taskfile tf;
1194 int lba48 = ata_id_has_lba48(dev->id);
1195
1196 ata_tf_init(dev, &tf);
1197
1198 /* always clear all address registers */
1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200
1201 if (lba48) {
1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203 tf.flags |= ATA_TFLAG_LBA48;
1204 } else
1205 tf.command = ATA_CMD_READ_NATIVE_MAX;
1206
1207 tf.protocol = ATA_PROT_NODATA;
1208 tf.device |= ATA_LBA;
1209
1210 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211 if (err_mask) {
1212 ata_dev_warn(dev,
1213 "failed to read native max address (err_mask=0x%x)\n",
1214 err_mask);
1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216 return -EACCES;
1217 return -EIO;
1218 }
1219
1220 if (lba48)
1221 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1222 else
1223 *max_sectors = ata_tf_to_lba(&tf) + 1;
1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225 (*max_sectors)--;
1226 return 0;
1227 }
1228
1229 /**
1230 * ata_set_max_sectors - Set max sectors
1231 * @dev: target device
1232 * @new_sectors: new max sectors value to set for the device
1233 *
1234 * Set max sectors of @dev to @new_sectors.
1235 *
1236 * RETURNS:
1237 * 0 on success, -EACCES if command is aborted or denied (due to
1238 * previous non-volatile SET_MAX) by the drive. -EIO on other
1239 * errors.
1240 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242 {
1243 unsigned int err_mask;
1244 struct ata_taskfile tf;
1245 int lba48 = ata_id_has_lba48(dev->id);
1246
1247 new_sectors--;
1248
1249 ata_tf_init(dev, &tf);
1250
1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252
1253 if (lba48) {
1254 tf.command = ATA_CMD_SET_MAX_EXT;
1255 tf.flags |= ATA_TFLAG_LBA48;
1256
1257 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260 } else {
1261 tf.command = ATA_CMD_SET_MAX;
1262
1263 tf.device |= (new_sectors >> 24) & 0xf;
1264 }
1265
1266 tf.protocol = ATA_PROT_NODATA;
1267 tf.device |= ATA_LBA;
1268
1269 tf.lbal = (new_sectors >> 0) & 0xff;
1270 tf.lbam = (new_sectors >> 8) & 0xff;
1271 tf.lbah = (new_sectors >> 16) & 0xff;
1272
1273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274 if (err_mask) {
1275 ata_dev_warn(dev,
1276 "failed to set max address (err_mask=0x%x)\n",
1277 err_mask);
1278 if (err_mask == AC_ERR_DEV &&
1279 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280 return -EACCES;
1281 return -EIO;
1282 }
1283
1284 return 0;
1285 }
1286
1287 /**
1288 * ata_hpa_resize - Resize a device with an HPA set
1289 * @dev: Device to resize
1290 *
1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292 * it if required to the full size of the media. The caller must check
1293 * the drive has the HPA feature set enabled.
1294 *
1295 * RETURNS:
1296 * 0 on success, -errno on failure.
1297 */
ata_hpa_resize(struct ata_device * dev)1298 static int ata_hpa_resize(struct ata_device *dev)
1299 {
1300 bool print_info = ata_dev_print_info(dev);
1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302 u64 sectors = ata_id_n_sectors(dev->id);
1303 u64 native_sectors;
1304 int rc;
1305
1306 /* do we need to do it? */
1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310 return 0;
1311
1312 /* read native max address */
1313 rc = ata_read_native_max_address(dev, &native_sectors);
1314 if (rc) {
1315 /* If device aborted the command or HPA isn't going to
1316 * be unlocked, skip HPA resizing.
1317 */
1318 if (rc == -EACCES || !unlock_hpa) {
1319 ata_dev_warn(dev,
1320 "HPA support seems broken, skipping HPA handling\n");
1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322
1323 /* we can continue if device aborted the command */
1324 if (rc == -EACCES)
1325 rc = 0;
1326 }
1327
1328 return rc;
1329 }
1330 dev->n_native_sectors = native_sectors;
1331
1332 /* nothing to do? */
1333 if (native_sectors <= sectors || !unlock_hpa) {
1334 if (!print_info || native_sectors == sectors)
1335 return 0;
1336
1337 if (native_sectors > sectors)
1338 ata_dev_info(dev,
1339 "HPA detected: current %llu, native %llu\n",
1340 (unsigned long long)sectors,
1341 (unsigned long long)native_sectors);
1342 else if (native_sectors < sectors)
1343 ata_dev_warn(dev,
1344 "native sectors (%llu) is smaller than sectors (%llu)\n",
1345 (unsigned long long)native_sectors,
1346 (unsigned long long)sectors);
1347 return 0;
1348 }
1349
1350 /* let's unlock HPA */
1351 rc = ata_set_max_sectors(dev, native_sectors);
1352 if (rc == -EACCES) {
1353 /* if device aborted the command, skip HPA resizing */
1354 ata_dev_warn(dev,
1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356 (unsigned long long)sectors,
1357 (unsigned long long)native_sectors);
1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359 return 0;
1360 } else if (rc)
1361 return rc;
1362
1363 /* re-read IDENTIFY data */
1364 rc = ata_dev_reread_id(dev, 0);
1365 if (rc) {
1366 ata_dev_err(dev,
1367 "failed to re-read IDENTIFY data after HPA resizing\n");
1368 return rc;
1369 }
1370
1371 if (print_info) {
1372 u64 new_sectors = ata_id_n_sectors(dev->id);
1373 ata_dev_info(dev,
1374 "HPA unlocked: %llu -> %llu, native %llu\n",
1375 (unsigned long long)sectors,
1376 (unsigned long long)new_sectors,
1377 (unsigned long long)native_sectors);
1378 }
1379
1380 return 0;
1381 }
1382
1383 /**
1384 * ata_dump_id - IDENTIFY DEVICE info debugging output
1385 * @dev: device from which the information is fetched
1386 * @id: IDENTIFY DEVICE page to dump
1387 *
1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1389 * page.
1390 *
1391 * LOCKING:
1392 * caller.
1393 */
1394
ata_dump_id(struct ata_device * dev,const u16 * id)1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396 {
1397 ata_dev_dbg(dev,
1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1400 "88==0x%04x 93==0x%04x\n",
1401 id[49], id[53], id[63], id[64], id[75], id[80],
1402 id[81], id[82], id[83], id[84], id[88], id[93]);
1403 }
1404
1405 /**
1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407 * @id: IDENTIFY data to compute xfer mask from
1408 *
1409 * Compute the xfermask for this device. This is not as trivial
1410 * as it seems if we must consider early devices correctly.
1411 *
1412 * FIXME: pre IDE drive timing (do we care ?).
1413 *
1414 * LOCKING:
1415 * None.
1416 *
1417 * RETURNS:
1418 * Computed xfermask
1419 */
ata_id_xfermask(const u16 * id)1420 unsigned int ata_id_xfermask(const u16 *id)
1421 {
1422 unsigned int pio_mask, mwdma_mask, udma_mask;
1423
1424 /* Usual case. Word 53 indicates word 64 is valid */
1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427 pio_mask <<= 3;
1428 pio_mask |= 0x7;
1429 } else {
1430 /* If word 64 isn't valid then Word 51 high byte holds
1431 * the PIO timing number for the maximum. Turn it into
1432 * a mask.
1433 */
1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435 if (mode < 5) /* Valid PIO range */
1436 pio_mask = (2 << mode) - 1;
1437 else
1438 pio_mask = 1;
1439
1440 /* But wait.. there's more. Design your standards by
1441 * committee and you too can get a free iordy field to
1442 * process. However it is the speeds not the modes that
1443 * are supported... Note drivers using the timing API
1444 * will get this right anyway
1445 */
1446 }
1447
1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449
1450 if (ata_id_is_cfa(id)) {
1451 /*
1452 * Process compact flash extended modes
1453 */
1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456
1457 if (pio)
1458 pio_mask |= (1 << 5);
1459 if (pio > 1)
1460 pio_mask |= (1 << 6);
1461 if (dma)
1462 mwdma_mask |= (1 << 3);
1463 if (dma > 1)
1464 mwdma_mask |= (1 << 4);
1465 }
1466
1467 udma_mask = 0;
1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470
1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472 }
1473 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474
ata_qc_complete_internal(struct ata_queued_cmd * qc)1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476 {
1477 struct completion *waiting = qc->private_data;
1478
1479 complete(waiting);
1480 }
1481
1482 /**
1483 * ata_exec_internal_sg - execute libata internal command
1484 * @dev: Device to which the command is sent
1485 * @tf: Taskfile registers for the command and the result
1486 * @cdb: CDB for packet command
1487 * @dma_dir: Data transfer direction of the command
1488 * @sgl: sg list for the data buffer of the command
1489 * @n_elem: Number of sg entries
1490 * @timeout: Timeout in msecs (0 for default)
1491 *
1492 * Executes libata internal command with timeout. @tf contains
1493 * command on entry and result on return. Timeout and error
1494 * conditions are reported via return value. No recovery action
1495 * is taken after a command times out. It's caller's duty to
1496 * clean up after timeout.
1497 *
1498 * LOCKING:
1499 * None. Should be called with kernel context, might sleep.
1500 *
1501 * RETURNS:
1502 * Zero on success, AC_ERR_* mask on failure
1503 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned int timeout)1504 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1505 struct ata_taskfile *tf, const u8 *cdb,
1506 int dma_dir, struct scatterlist *sgl,
1507 unsigned int n_elem, unsigned int timeout)
1508 {
1509 struct ata_link *link = dev->link;
1510 struct ata_port *ap = link->ap;
1511 u8 command = tf->command;
1512 int auto_timeout = 0;
1513 struct ata_queued_cmd *qc;
1514 unsigned int preempted_tag;
1515 u32 preempted_sactive;
1516 u64 preempted_qc_active;
1517 int preempted_nr_active_links;
1518 DECLARE_COMPLETION_ONSTACK(wait);
1519 unsigned long flags;
1520 unsigned int err_mask;
1521 int rc;
1522
1523 spin_lock_irqsave(ap->lock, flags);
1524
1525 /* no internal command while frozen */
1526 if (ata_port_is_frozen(ap)) {
1527 spin_unlock_irqrestore(ap->lock, flags);
1528 return AC_ERR_SYSTEM;
1529 }
1530
1531 /* initialize internal qc */
1532 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1533
1534 qc->tag = ATA_TAG_INTERNAL;
1535 qc->hw_tag = 0;
1536 qc->scsicmd = NULL;
1537 qc->ap = ap;
1538 qc->dev = dev;
1539 ata_qc_reinit(qc);
1540
1541 preempted_tag = link->active_tag;
1542 preempted_sactive = link->sactive;
1543 preempted_qc_active = ap->qc_active;
1544 preempted_nr_active_links = ap->nr_active_links;
1545 link->active_tag = ATA_TAG_POISON;
1546 link->sactive = 0;
1547 ap->qc_active = 0;
1548 ap->nr_active_links = 0;
1549
1550 /* prepare & issue qc */
1551 qc->tf = *tf;
1552 if (cdb)
1553 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1554
1555 /* some SATA bridges need us to indicate data xfer direction */
1556 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1557 dma_dir == DMA_FROM_DEVICE)
1558 qc->tf.feature |= ATAPI_DMADIR;
1559
1560 qc->flags |= ATA_QCFLAG_RESULT_TF;
1561 qc->dma_dir = dma_dir;
1562 if (dma_dir != DMA_NONE) {
1563 unsigned int i, buflen = 0;
1564 struct scatterlist *sg;
1565
1566 for_each_sg(sgl, sg, n_elem, i)
1567 buflen += sg->length;
1568
1569 ata_sg_init(qc, sgl, n_elem);
1570 qc->nbytes = buflen;
1571 }
1572
1573 qc->private_data = &wait;
1574 qc->complete_fn = ata_qc_complete_internal;
1575
1576 ata_qc_issue(qc);
1577
1578 spin_unlock_irqrestore(ap->lock, flags);
1579
1580 if (!timeout) {
1581 if (ata_probe_timeout)
1582 timeout = ata_probe_timeout * 1000;
1583 else {
1584 timeout = ata_internal_cmd_timeout(dev, command);
1585 auto_timeout = 1;
1586 }
1587 }
1588
1589 ata_eh_release(ap);
1590
1591 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1592
1593 ata_eh_acquire(ap);
1594
1595 ata_sff_flush_pio_task(ap);
1596
1597 if (!rc) {
1598 spin_lock_irqsave(ap->lock, flags);
1599
1600 /* We're racing with irq here. If we lose, the
1601 * following test prevents us from completing the qc
1602 * twice. If we win, the port is frozen and will be
1603 * cleaned up by ->post_internal_cmd().
1604 */
1605 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1606 qc->err_mask |= AC_ERR_TIMEOUT;
1607
1608 ata_port_freeze(ap);
1609
1610 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1611 timeout, command);
1612 }
1613
1614 spin_unlock_irqrestore(ap->lock, flags);
1615 }
1616
1617 /* do post_internal_cmd */
1618 if (ap->ops->post_internal_cmd)
1619 ap->ops->post_internal_cmd(qc);
1620
1621 /* perform minimal error analysis */
1622 if (qc->flags & ATA_QCFLAG_EH) {
1623 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1624 qc->err_mask |= AC_ERR_DEV;
1625
1626 if (!qc->err_mask)
1627 qc->err_mask |= AC_ERR_OTHER;
1628
1629 if (qc->err_mask & ~AC_ERR_OTHER)
1630 qc->err_mask &= ~AC_ERR_OTHER;
1631 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1632 qc->result_tf.status |= ATA_SENSE;
1633 }
1634
1635 /* finish up */
1636 spin_lock_irqsave(ap->lock, flags);
1637
1638 *tf = qc->result_tf;
1639 err_mask = qc->err_mask;
1640
1641 ata_qc_free(qc);
1642 link->active_tag = preempted_tag;
1643 link->sactive = preempted_sactive;
1644 ap->qc_active = preempted_qc_active;
1645 ap->nr_active_links = preempted_nr_active_links;
1646
1647 spin_unlock_irqrestore(ap->lock, flags);
1648
1649 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1650 ata_internal_cmd_timed_out(dev, command);
1651
1652 return err_mask;
1653 }
1654
1655 /**
1656 * ata_exec_internal - execute libata internal command
1657 * @dev: Device to which the command is sent
1658 * @tf: Taskfile registers for the command and the result
1659 * @cdb: CDB for packet command
1660 * @dma_dir: Data transfer direction of the command
1661 * @buf: Data buffer of the command
1662 * @buflen: Length of data buffer
1663 * @timeout: Timeout in msecs (0 for default)
1664 *
1665 * Wrapper around ata_exec_internal_sg() which takes simple
1666 * buffer instead of sg list.
1667 *
1668 * LOCKING:
1669 * None. Should be called with kernel context, might sleep.
1670 *
1671 * RETURNS:
1672 * Zero on success, AC_ERR_* mask on failure
1673 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1674 unsigned ata_exec_internal(struct ata_device *dev,
1675 struct ata_taskfile *tf, const u8 *cdb,
1676 int dma_dir, void *buf, unsigned int buflen,
1677 unsigned int timeout)
1678 {
1679 struct scatterlist *psg = NULL, sg;
1680 unsigned int n_elem = 0;
1681
1682 if (dma_dir != DMA_NONE) {
1683 WARN_ON(!buf);
1684 sg_init_one(&sg, buf, buflen);
1685 psg = &sg;
1686 n_elem++;
1687 }
1688
1689 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1690 timeout);
1691 }
1692
1693 /**
1694 * ata_pio_need_iordy - check if iordy needed
1695 * @adev: ATA device
1696 *
1697 * Check if the current speed of the device requires IORDY. Used
1698 * by various controllers for chip configuration.
1699 */
ata_pio_need_iordy(const struct ata_device * adev)1700 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1701 {
1702 /* Don't set IORDY if we're preparing for reset. IORDY may
1703 * lead to controller lock up on certain controllers if the
1704 * port is not occupied. See bko#11703 for details.
1705 */
1706 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1707 return 0;
1708 /* Controller doesn't support IORDY. Probably a pointless
1709 * check as the caller should know this.
1710 */
1711 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1712 return 0;
1713 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1714 if (ata_id_is_cfa(adev->id)
1715 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1716 return 0;
1717 /* PIO3 and higher it is mandatory */
1718 if (adev->pio_mode > XFER_PIO_2)
1719 return 1;
1720 /* We turn it on when possible */
1721 if (ata_id_has_iordy(adev->id))
1722 return 1;
1723 return 0;
1724 }
1725 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1726
1727 /**
1728 * ata_pio_mask_no_iordy - Return the non IORDY mask
1729 * @adev: ATA device
1730 *
1731 * Compute the highest mode possible if we are not using iordy. Return
1732 * -1 if no iordy mode is available.
1733 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1734 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1735 {
1736 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1737 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1738 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1739 /* Is the speed faster than the drive allows non IORDY ? */
1740 if (pio) {
1741 /* This is cycle times not frequency - watch the logic! */
1742 if (pio > 240) /* PIO2 is 240nS per cycle */
1743 return 3 << ATA_SHIFT_PIO;
1744 return 7 << ATA_SHIFT_PIO;
1745 }
1746 }
1747 return 3 << ATA_SHIFT_PIO;
1748 }
1749
1750 /**
1751 * ata_do_dev_read_id - default ID read method
1752 * @dev: device
1753 * @tf: proposed taskfile
1754 * @id: data buffer
1755 *
1756 * Issue the identify taskfile and hand back the buffer containing
1757 * identify data. For some RAID controllers and for pre ATA devices
1758 * this function is wrapped or replaced by the driver
1759 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1760 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1761 struct ata_taskfile *tf, __le16 *id)
1762 {
1763 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1764 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1765 }
1766 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1767
1768 /**
1769 * ata_dev_read_id - Read ID data from the specified device
1770 * @dev: target device
1771 * @p_class: pointer to class of the target device (may be changed)
1772 * @flags: ATA_READID_* flags
1773 * @id: buffer to read IDENTIFY data into
1774 *
1775 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1776 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1777 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1778 * for pre-ATA4 drives.
1779 *
1780 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1781 * now we abort if we hit that case.
1782 *
1783 * LOCKING:
1784 * Kernel thread context (may sleep)
1785 *
1786 * RETURNS:
1787 * 0 on success, -errno otherwise.
1788 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1789 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1790 unsigned int flags, u16 *id)
1791 {
1792 struct ata_port *ap = dev->link->ap;
1793 unsigned int class = *p_class;
1794 struct ata_taskfile tf;
1795 unsigned int err_mask = 0;
1796 const char *reason;
1797 bool is_semb = class == ATA_DEV_SEMB;
1798 int may_fallback = 1, tried_spinup = 0;
1799 int rc;
1800
1801 retry:
1802 ata_tf_init(dev, &tf);
1803
1804 switch (class) {
1805 case ATA_DEV_SEMB:
1806 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1807 fallthrough;
1808 case ATA_DEV_ATA:
1809 case ATA_DEV_ZAC:
1810 tf.command = ATA_CMD_ID_ATA;
1811 break;
1812 case ATA_DEV_ATAPI:
1813 tf.command = ATA_CMD_ID_ATAPI;
1814 break;
1815 default:
1816 rc = -ENODEV;
1817 reason = "unsupported class";
1818 goto err_out;
1819 }
1820
1821 tf.protocol = ATA_PROT_PIO;
1822
1823 /* Some devices choke if TF registers contain garbage. Make
1824 * sure those are properly initialized.
1825 */
1826 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1827
1828 /* Device presence detection is unreliable on some
1829 * controllers. Always poll IDENTIFY if available.
1830 */
1831 tf.flags |= ATA_TFLAG_POLLING;
1832
1833 if (ap->ops->read_id)
1834 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1835 else
1836 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1837
1838 if (err_mask) {
1839 if (err_mask & AC_ERR_NODEV_HINT) {
1840 ata_dev_dbg(dev, "NODEV after polling detection\n");
1841 return -ENOENT;
1842 }
1843
1844 if (is_semb) {
1845 ata_dev_info(dev,
1846 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1847 /* SEMB is not supported yet */
1848 *p_class = ATA_DEV_SEMB_UNSUP;
1849 return 0;
1850 }
1851
1852 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1853 /* Device or controller might have reported
1854 * the wrong device class. Give a shot at the
1855 * other IDENTIFY if the current one is
1856 * aborted by the device.
1857 */
1858 if (may_fallback) {
1859 may_fallback = 0;
1860
1861 if (class == ATA_DEV_ATA)
1862 class = ATA_DEV_ATAPI;
1863 else
1864 class = ATA_DEV_ATA;
1865 goto retry;
1866 }
1867
1868 /* Control reaches here iff the device aborted
1869 * both flavors of IDENTIFYs which happens
1870 * sometimes with phantom devices.
1871 */
1872 ata_dev_dbg(dev,
1873 "both IDENTIFYs aborted, assuming NODEV\n");
1874 return -ENOENT;
1875 }
1876
1877 rc = -EIO;
1878 reason = "I/O error";
1879 goto err_out;
1880 }
1881
1882 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1883 ata_dev_info(dev, "dumping IDENTIFY data, "
1884 "class=%d may_fallback=%d tried_spinup=%d\n",
1885 class, may_fallback, tried_spinup);
1886 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1887 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1888 }
1889
1890 /* Falling back doesn't make sense if ID data was read
1891 * successfully at least once.
1892 */
1893 may_fallback = 0;
1894
1895 swap_buf_le16(id, ATA_ID_WORDS);
1896
1897 /* sanity check */
1898 rc = -EINVAL;
1899 reason = "device reports invalid type";
1900
1901 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1902 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1903 goto err_out;
1904 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1905 ata_id_is_ata(id)) {
1906 ata_dev_dbg(dev,
1907 "host indicates ignore ATA devices, ignored\n");
1908 return -ENOENT;
1909 }
1910 } else {
1911 if (ata_id_is_ata(id))
1912 goto err_out;
1913 }
1914
1915 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1916 tried_spinup = 1;
1917 /*
1918 * Drive powered-up in standby mode, and requires a specific
1919 * SET_FEATURES spin-up subcommand before it will accept
1920 * anything other than the original IDENTIFY command.
1921 */
1922 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1923 if (err_mask && id[2] != 0x738c) {
1924 rc = -EIO;
1925 reason = "SPINUP failed";
1926 goto err_out;
1927 }
1928 /*
1929 * If the drive initially returned incomplete IDENTIFY info,
1930 * we now must reissue the IDENTIFY command.
1931 */
1932 if (id[2] == 0x37c8)
1933 goto retry;
1934 }
1935
1936 if ((flags & ATA_READID_POSTRESET) &&
1937 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1938 /*
1939 * The exact sequence expected by certain pre-ATA4 drives is:
1940 * SRST RESET
1941 * IDENTIFY (optional in early ATA)
1942 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1943 * anything else..
1944 * Some drives were very specific about that exact sequence.
1945 *
1946 * Note that ATA4 says lba is mandatory so the second check
1947 * should never trigger.
1948 */
1949 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1950 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1951 if (err_mask) {
1952 rc = -EIO;
1953 reason = "INIT_DEV_PARAMS failed";
1954 goto err_out;
1955 }
1956
1957 /* current CHS translation info (id[53-58]) might be
1958 * changed. reread the identify device info.
1959 */
1960 flags &= ~ATA_READID_POSTRESET;
1961 goto retry;
1962 }
1963 }
1964
1965 *p_class = class;
1966
1967 return 0;
1968
1969 err_out:
1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 reason, err_mask);
1972 return rc;
1973 }
1974
1975 /**
1976 * ata_dev_power_set_standby - Set a device power mode to standby
1977 * @dev: target device
1978 *
1979 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1980 * For an HDD device, this spins down the disks.
1981 *
1982 * LOCKING:
1983 * Kernel thread context (may sleep).
1984 */
ata_dev_power_set_standby(struct ata_device * dev)1985 void ata_dev_power_set_standby(struct ata_device *dev)
1986 {
1987 unsigned long ap_flags = dev->link->ap->flags;
1988 struct ata_taskfile tf;
1989 unsigned int err_mask;
1990
1991 /* Issue STANDBY IMMEDIATE command only if supported by the device */
1992 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1993 return;
1994
1995 /*
1996 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
1997 * causing some drives to spin up and down again. For these, do nothing
1998 * if we are being called on shutdown.
1999 */
2000 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2001 system_state == SYSTEM_POWER_OFF)
2002 return;
2003
2004 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2005 system_entering_hibernation())
2006 return;
2007
2008 ata_tf_init(dev, &tf);
2009 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2010 tf.protocol = ATA_PROT_NODATA;
2011 tf.command = ATA_CMD_STANDBYNOW1;
2012
2013 ata_dev_notice(dev, "Entering standby power mode\n");
2014
2015 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2016 if (err_mask)
2017 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2018 err_mask);
2019 }
2020
2021 /**
2022 * ata_dev_power_set_active - Set a device power mode to active
2023 * @dev: target device
2024 *
2025 * Issue a VERIFY command to enter to ensure that the device is in the
2026 * active power mode. For a spun-down HDD (standby or idle power mode),
2027 * the VERIFY command will complete after the disk spins up.
2028 *
2029 * LOCKING:
2030 * Kernel thread context (may sleep).
2031 */
ata_dev_power_set_active(struct ata_device * dev)2032 void ata_dev_power_set_active(struct ata_device *dev)
2033 {
2034 struct ata_taskfile tf;
2035 unsigned int err_mask;
2036
2037 /* If the device is already sleeping, do nothing. */
2038 if (dev->flags & ATA_DFLAG_SLEEPING)
2039 return;
2040
2041 /*
2042 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2043 * if supported by the device.
2044 */
2045 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
2046 return;
2047
2048 ata_tf_init(dev, &tf);
2049 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2050 tf.protocol = ATA_PROT_NODATA;
2051 tf.command = ATA_CMD_VERIFY;
2052 tf.nsect = 1;
2053 if (dev->flags & ATA_DFLAG_LBA) {
2054 tf.flags |= ATA_TFLAG_LBA;
2055 tf.device |= ATA_LBA;
2056 } else {
2057 /* CHS */
2058 tf.lbal = 0x1; /* sect */
2059 }
2060
2061 ata_dev_notice(dev, "Entering active power mode\n");
2062
2063 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2064 if (err_mask)
2065 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2066 err_mask);
2067 }
2068
2069 /**
2070 * ata_read_log_page - read a specific log page
2071 * @dev: target device
2072 * @log: log to read
2073 * @page: page to read
2074 * @buf: buffer to store read page
2075 * @sectors: number of sectors to read
2076 *
2077 * Read log page using READ_LOG_EXT command.
2078 *
2079 * LOCKING:
2080 * Kernel thread context (may sleep).
2081 *
2082 * RETURNS:
2083 * 0 on success, AC_ERR_* mask otherwise.
2084 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2085 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2086 u8 page, void *buf, unsigned int sectors)
2087 {
2088 unsigned long ap_flags = dev->link->ap->flags;
2089 struct ata_taskfile tf;
2090 unsigned int err_mask;
2091 bool dma = false;
2092
2093 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2094
2095 /*
2096 * Return error without actually issuing the command on controllers
2097 * which e.g. lockup on a read log page.
2098 */
2099 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2100 return AC_ERR_DEV;
2101
2102 retry:
2103 ata_tf_init(dev, &tf);
2104 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2105 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2106 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2107 tf.protocol = ATA_PROT_DMA;
2108 dma = true;
2109 } else {
2110 tf.command = ATA_CMD_READ_LOG_EXT;
2111 tf.protocol = ATA_PROT_PIO;
2112 dma = false;
2113 }
2114 tf.lbal = log;
2115 tf.lbam = page;
2116 tf.nsect = sectors;
2117 tf.hob_nsect = sectors >> 8;
2118 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2119
2120 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2121 buf, sectors * ATA_SECT_SIZE, 0);
2122
2123 if (err_mask) {
2124 if (dma) {
2125 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2126 if (!ata_port_is_frozen(dev->link->ap))
2127 goto retry;
2128 }
2129 ata_dev_err(dev,
2130 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2131 (unsigned int)log, (unsigned int)page, err_mask);
2132 }
2133
2134 return err_mask;
2135 }
2136
ata_log_supported(struct ata_device * dev,u8 log)2137 static int ata_log_supported(struct ata_device *dev, u8 log)
2138 {
2139 struct ata_port *ap = dev->link->ap;
2140
2141 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2142 return 0;
2143
2144 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2145 return 0;
2146 return get_unaligned_le16(&ap->sector_buf[log * 2]);
2147 }
2148
ata_identify_page_supported(struct ata_device * dev,u8 page)2149 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2150 {
2151 struct ata_port *ap = dev->link->ap;
2152 unsigned int err, i;
2153
2154 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2155 return false;
2156
2157 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2158 /*
2159 * IDENTIFY DEVICE data log is defined as mandatory starting
2160 * with ACS-3 (ATA version 10). Warn about the missing log
2161 * for drives which implement this ATA level or above.
2162 */
2163 if (ata_id_major_version(dev->id) >= 10)
2164 ata_dev_warn(dev,
2165 "ATA Identify Device Log not supported\n");
2166 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2167 return false;
2168 }
2169
2170 /*
2171 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2172 * supported.
2173 */
2174 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2175 1);
2176 if (err)
2177 return false;
2178
2179 for (i = 0; i < ap->sector_buf[8]; i++) {
2180 if (ap->sector_buf[9 + i] == page)
2181 return true;
2182 }
2183
2184 return false;
2185 }
2186
ata_do_link_spd_horkage(struct ata_device * dev)2187 static int ata_do_link_spd_horkage(struct ata_device *dev)
2188 {
2189 struct ata_link *plink = ata_dev_phys_link(dev);
2190 u32 target, target_limit;
2191
2192 if (!sata_scr_valid(plink))
2193 return 0;
2194
2195 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2196 target = 1;
2197 else
2198 return 0;
2199
2200 target_limit = (1 << target) - 1;
2201
2202 /* if already on stricter limit, no need to push further */
2203 if (plink->sata_spd_limit <= target_limit)
2204 return 0;
2205
2206 plink->sata_spd_limit = target_limit;
2207
2208 /* Request another EH round by returning -EAGAIN if link is
2209 * going faster than the target speed. Forward progress is
2210 * guaranteed by setting sata_spd_limit to target_limit above.
2211 */
2212 if (plink->sata_spd > target) {
2213 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2214 sata_spd_string(target));
2215 return -EAGAIN;
2216 }
2217 return 0;
2218 }
2219
ata_dev_knobble(struct ata_device * dev)2220 static inline u8 ata_dev_knobble(struct ata_device *dev)
2221 {
2222 struct ata_port *ap = dev->link->ap;
2223
2224 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2225 return 0;
2226
2227 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2228 }
2229
ata_dev_config_ncq_send_recv(struct ata_device * dev)2230 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2231 {
2232 struct ata_port *ap = dev->link->ap;
2233 unsigned int err_mask;
2234
2235 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2236 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2237 return;
2238 }
2239 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2240 0, ap->sector_buf, 1);
2241 if (!err_mask) {
2242 u8 *cmds = dev->ncq_send_recv_cmds;
2243
2244 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2245 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2246
2247 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2248 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2249 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2250 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2251 }
2252 }
2253 }
2254
ata_dev_config_ncq_non_data(struct ata_device * dev)2255 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2256 {
2257 struct ata_port *ap = dev->link->ap;
2258 unsigned int err_mask;
2259
2260 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2261 ata_dev_warn(dev,
2262 "NCQ Send/Recv Log not supported\n");
2263 return;
2264 }
2265 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2266 0, ap->sector_buf, 1);
2267 if (!err_mask) {
2268 u8 *cmds = dev->ncq_non_data_cmds;
2269
2270 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2271 }
2272 }
2273
ata_dev_config_ncq_prio(struct ata_device * dev)2274 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2275 {
2276 struct ata_port *ap = dev->link->ap;
2277 unsigned int err_mask;
2278
2279 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2280 return;
2281
2282 err_mask = ata_read_log_page(dev,
2283 ATA_LOG_IDENTIFY_DEVICE,
2284 ATA_LOG_SATA_SETTINGS,
2285 ap->sector_buf,
2286 1);
2287 if (err_mask)
2288 goto not_supported;
2289
2290 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2291 goto not_supported;
2292
2293 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2294
2295 return;
2296
2297 not_supported:
2298 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2299 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2300 }
2301
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2302 static bool ata_dev_check_adapter(struct ata_device *dev,
2303 unsigned short vendor_id)
2304 {
2305 struct pci_dev *pcidev = NULL;
2306 struct device *parent_dev = NULL;
2307
2308 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2309 parent_dev = parent_dev->parent) {
2310 if (dev_is_pci(parent_dev)) {
2311 pcidev = to_pci_dev(parent_dev);
2312 if (pcidev->vendor == vendor_id)
2313 return true;
2314 break;
2315 }
2316 }
2317
2318 return false;
2319 }
2320
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2321 static int ata_dev_config_ncq(struct ata_device *dev,
2322 char *desc, size_t desc_sz)
2323 {
2324 struct ata_port *ap = dev->link->ap;
2325 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2326 unsigned int err_mask;
2327 char *aa_desc = "";
2328
2329 if (!ata_id_has_ncq(dev->id)) {
2330 desc[0] = '\0';
2331 return 0;
2332 }
2333 if (!IS_ENABLED(CONFIG_SATA_HOST))
2334 return 0;
2335 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2336 snprintf(desc, desc_sz, "NCQ (not used)");
2337 return 0;
2338 }
2339
2340 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2341 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2342 snprintf(desc, desc_sz, "NCQ (not used)");
2343 return 0;
2344 }
2345
2346 if (ap->flags & ATA_FLAG_NCQ) {
2347 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2348 dev->flags |= ATA_DFLAG_NCQ;
2349 }
2350
2351 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2352 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2353 ata_id_has_fpdma_aa(dev->id)) {
2354 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2355 SATA_FPDMA_AA);
2356 if (err_mask) {
2357 ata_dev_err(dev,
2358 "failed to enable AA (error_mask=0x%x)\n",
2359 err_mask);
2360 if (err_mask != AC_ERR_DEV) {
2361 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2362 return -EIO;
2363 }
2364 } else
2365 aa_desc = ", AA";
2366 }
2367
2368 if (hdepth >= ddepth)
2369 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2370 else
2371 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2372 ddepth, aa_desc);
2373
2374 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2375 if (ata_id_has_ncq_send_and_recv(dev->id))
2376 ata_dev_config_ncq_send_recv(dev);
2377 if (ata_id_has_ncq_non_data(dev->id))
2378 ata_dev_config_ncq_non_data(dev);
2379 if (ata_id_has_ncq_prio(dev->id))
2380 ata_dev_config_ncq_prio(dev);
2381 }
2382
2383 return 0;
2384 }
2385
ata_dev_config_sense_reporting(struct ata_device * dev)2386 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2387 {
2388 unsigned int err_mask;
2389
2390 if (!ata_id_has_sense_reporting(dev->id))
2391 return;
2392
2393 if (ata_id_sense_reporting_enabled(dev->id))
2394 return;
2395
2396 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2397 if (err_mask) {
2398 ata_dev_dbg(dev,
2399 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2400 err_mask);
2401 }
2402 }
2403
ata_dev_config_zac(struct ata_device * dev)2404 static void ata_dev_config_zac(struct ata_device *dev)
2405 {
2406 struct ata_port *ap = dev->link->ap;
2407 unsigned int err_mask;
2408 u8 *identify_buf = ap->sector_buf;
2409
2410 dev->zac_zones_optimal_open = U32_MAX;
2411 dev->zac_zones_optimal_nonseq = U32_MAX;
2412 dev->zac_zones_max_open = U32_MAX;
2413
2414 /*
2415 * Always set the 'ZAC' flag for Host-managed devices.
2416 */
2417 if (dev->class == ATA_DEV_ZAC)
2418 dev->flags |= ATA_DFLAG_ZAC;
2419 else if (ata_id_zoned_cap(dev->id) == 0x01)
2420 /*
2421 * Check for host-aware devices.
2422 */
2423 dev->flags |= ATA_DFLAG_ZAC;
2424
2425 if (!(dev->flags & ATA_DFLAG_ZAC))
2426 return;
2427
2428 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2429 ata_dev_warn(dev,
2430 "ATA Zoned Information Log not supported\n");
2431 return;
2432 }
2433
2434 /*
2435 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2436 */
2437 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2438 ATA_LOG_ZONED_INFORMATION,
2439 identify_buf, 1);
2440 if (!err_mask) {
2441 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2442
2443 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2444 if ((zoned_cap >> 63))
2445 dev->zac_zoned_cap = (zoned_cap & 1);
2446 opt_open = get_unaligned_le64(&identify_buf[24]);
2447 if ((opt_open >> 63))
2448 dev->zac_zones_optimal_open = (u32)opt_open;
2449 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2450 if ((opt_nonseq >> 63))
2451 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2452 max_open = get_unaligned_le64(&identify_buf[40]);
2453 if ((max_open >> 63))
2454 dev->zac_zones_max_open = (u32)max_open;
2455 }
2456 }
2457
ata_dev_config_trusted(struct ata_device * dev)2458 static void ata_dev_config_trusted(struct ata_device *dev)
2459 {
2460 struct ata_port *ap = dev->link->ap;
2461 u64 trusted_cap;
2462 unsigned int err;
2463
2464 if (!ata_id_has_trusted(dev->id))
2465 return;
2466
2467 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2468 ata_dev_warn(dev,
2469 "Security Log not supported\n");
2470 return;
2471 }
2472
2473 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2474 ap->sector_buf, 1);
2475 if (err)
2476 return;
2477
2478 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2479 if (!(trusted_cap & (1ULL << 63))) {
2480 ata_dev_dbg(dev,
2481 "Trusted Computing capability qword not valid!\n");
2482 return;
2483 }
2484
2485 if (trusted_cap & (1 << 0))
2486 dev->flags |= ATA_DFLAG_TRUSTED;
2487 }
2488
ata_dev_config_cdl(struct ata_device * dev)2489 static void ata_dev_config_cdl(struct ata_device *dev)
2490 {
2491 struct ata_port *ap = dev->link->ap;
2492 unsigned int err_mask;
2493 bool cdl_enabled;
2494 u64 val;
2495
2496 if (ata_id_major_version(dev->id) < 11)
2497 goto not_supported;
2498
2499 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2500 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2501 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2502 goto not_supported;
2503
2504 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2505 ATA_LOG_SUPPORTED_CAPABILITIES,
2506 ap->sector_buf, 1);
2507 if (err_mask)
2508 goto not_supported;
2509
2510 /* Check Command Duration Limit Supported bits */
2511 val = get_unaligned_le64(&ap->sector_buf[168]);
2512 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2513 goto not_supported;
2514
2515 /* Warn the user if command duration guideline is not supported */
2516 if (!(val & BIT_ULL(1)))
2517 ata_dev_warn(dev,
2518 "Command duration guideline is not supported\n");
2519
2520 /*
2521 * We must have support for the sense data for successful NCQ commands
2522 * log indicated by the successful NCQ command sense data supported bit.
2523 */
2524 val = get_unaligned_le64(&ap->sector_buf[8]);
2525 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2526 ata_dev_warn(dev,
2527 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2528 goto not_supported;
2529 }
2530
2531 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2532 if (!ata_id_has_ncq_autosense(dev->id)) {
2533 ata_dev_warn(dev,
2534 "CDL supported but NCQ autosense is not supported\n");
2535 goto not_supported;
2536 }
2537
2538 /*
2539 * If CDL is marked as enabled, make sure the feature is enabled too.
2540 * Conversely, if CDL is disabled, make sure the feature is turned off.
2541 */
2542 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2543 ATA_LOG_CURRENT_SETTINGS,
2544 ap->sector_buf, 1);
2545 if (err_mask)
2546 goto not_supported;
2547
2548 val = get_unaligned_le64(&ap->sector_buf[8]);
2549 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2550 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2551 if (!cdl_enabled) {
2552 /* Enable CDL on the device */
2553 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2554 if (err_mask) {
2555 ata_dev_err(dev,
2556 "Enable CDL feature failed\n");
2557 goto not_supported;
2558 }
2559 }
2560 } else {
2561 if (cdl_enabled) {
2562 /* Disable CDL on the device */
2563 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2564 if (err_mask) {
2565 ata_dev_err(dev,
2566 "Disable CDL feature failed\n");
2567 goto not_supported;
2568 }
2569 }
2570 }
2571
2572 /*
2573 * While CDL itself has to be enabled using sysfs, CDL requires that
2574 * sense data for successful NCQ commands is enabled to work properly.
2575 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2576 * if supported.
2577 */
2578 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2579 err_mask = ata_dev_set_feature(dev,
2580 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2581 if (err_mask) {
2582 ata_dev_warn(dev,
2583 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2584 err_mask);
2585 goto not_supported;
2586 }
2587 }
2588
2589 /*
2590 * Allocate a buffer to handle reading the sense data for successful
2591 * NCQ Commands log page for commands using a CDL with one of the limit
2592 * policy set to 0xD (successful completion with sense data available
2593 * bit set).
2594 */
2595 if (!ap->ncq_sense_buf) {
2596 ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2597 if (!ap->ncq_sense_buf)
2598 goto not_supported;
2599 }
2600
2601 /*
2602 * Command duration limits is supported: cache the CDL log page 18h
2603 * (command duration descriptors).
2604 */
2605 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2606 if (err_mask) {
2607 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2608 goto not_supported;
2609 }
2610
2611 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2612 dev->flags |= ATA_DFLAG_CDL;
2613
2614 return;
2615
2616 not_supported:
2617 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2618 kfree(ap->ncq_sense_buf);
2619 ap->ncq_sense_buf = NULL;
2620 }
2621
ata_dev_config_lba(struct ata_device * dev)2622 static int ata_dev_config_lba(struct ata_device *dev)
2623 {
2624 const u16 *id = dev->id;
2625 const char *lba_desc;
2626 char ncq_desc[32];
2627 int ret;
2628
2629 dev->flags |= ATA_DFLAG_LBA;
2630
2631 if (ata_id_has_lba48(id)) {
2632 lba_desc = "LBA48";
2633 dev->flags |= ATA_DFLAG_LBA48;
2634 if (dev->n_sectors >= (1UL << 28) &&
2635 ata_id_has_flush_ext(id))
2636 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2637 } else {
2638 lba_desc = "LBA";
2639 }
2640
2641 /* config NCQ */
2642 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2643
2644 /* print device info to dmesg */
2645 if (ata_dev_print_info(dev))
2646 ata_dev_info(dev,
2647 "%llu sectors, multi %u: %s %s\n",
2648 (unsigned long long)dev->n_sectors,
2649 dev->multi_count, lba_desc, ncq_desc);
2650
2651 return ret;
2652 }
2653
ata_dev_config_chs(struct ata_device * dev)2654 static void ata_dev_config_chs(struct ata_device *dev)
2655 {
2656 const u16 *id = dev->id;
2657
2658 if (ata_id_current_chs_valid(id)) {
2659 /* Current CHS translation is valid. */
2660 dev->cylinders = id[54];
2661 dev->heads = id[55];
2662 dev->sectors = id[56];
2663 } else {
2664 /* Default translation */
2665 dev->cylinders = id[1];
2666 dev->heads = id[3];
2667 dev->sectors = id[6];
2668 }
2669
2670 /* print device info to dmesg */
2671 if (ata_dev_print_info(dev))
2672 ata_dev_info(dev,
2673 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2674 (unsigned long long)dev->n_sectors,
2675 dev->multi_count, dev->cylinders,
2676 dev->heads, dev->sectors);
2677 }
2678
ata_dev_config_fua(struct ata_device * dev)2679 static void ata_dev_config_fua(struct ata_device *dev)
2680 {
2681 /* Ignore FUA support if its use is disabled globally */
2682 if (!libata_fua)
2683 goto nofua;
2684
2685 /* Ignore devices without support for WRITE DMA FUA EXT */
2686 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2687 goto nofua;
2688
2689 /* Ignore known bad devices and devices that lack NCQ support */
2690 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2691 goto nofua;
2692
2693 dev->flags |= ATA_DFLAG_FUA;
2694
2695 return;
2696
2697 nofua:
2698 dev->flags &= ~ATA_DFLAG_FUA;
2699 }
2700
ata_dev_config_devslp(struct ata_device * dev)2701 static void ata_dev_config_devslp(struct ata_device *dev)
2702 {
2703 u8 *sata_setting = dev->link->ap->sector_buf;
2704 unsigned int err_mask;
2705 int i, j;
2706
2707 /*
2708 * Check device sleep capability. Get DevSlp timing variables
2709 * from SATA Settings page of Identify Device Data Log.
2710 */
2711 if (!ata_id_has_devslp(dev->id) ||
2712 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2713 return;
2714
2715 err_mask = ata_read_log_page(dev,
2716 ATA_LOG_IDENTIFY_DEVICE,
2717 ATA_LOG_SATA_SETTINGS,
2718 sata_setting, 1);
2719 if (err_mask)
2720 return;
2721
2722 dev->flags |= ATA_DFLAG_DEVSLP;
2723 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2724 j = ATA_LOG_DEVSLP_OFFSET + i;
2725 dev->devslp_timing[i] = sata_setting[j];
2726 }
2727 }
2728
ata_dev_config_cpr(struct ata_device * dev)2729 static void ata_dev_config_cpr(struct ata_device *dev)
2730 {
2731 unsigned int err_mask;
2732 size_t buf_len;
2733 int i, nr_cpr = 0;
2734 struct ata_cpr_log *cpr_log = NULL;
2735 u8 *desc, *buf = NULL;
2736
2737 if (ata_id_major_version(dev->id) < 11)
2738 goto out;
2739
2740 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2741 if (buf_len == 0)
2742 goto out;
2743
2744 /*
2745 * Read the concurrent positioning ranges log (0x47). We can have at
2746 * most 255 32B range descriptors plus a 64B header. This log varies in
2747 * size, so use the size reported in the GPL directory. Reading beyond
2748 * the supported length will result in an error.
2749 */
2750 buf_len <<= 9;
2751 buf = kzalloc(buf_len, GFP_KERNEL);
2752 if (!buf)
2753 goto out;
2754
2755 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2756 0, buf, buf_len >> 9);
2757 if (err_mask)
2758 goto out;
2759
2760 nr_cpr = buf[0];
2761 if (!nr_cpr)
2762 goto out;
2763
2764 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2765 if (!cpr_log)
2766 goto out;
2767
2768 cpr_log->nr_cpr = nr_cpr;
2769 desc = &buf[64];
2770 for (i = 0; i < nr_cpr; i++, desc += 32) {
2771 cpr_log->cpr[i].num = desc[0];
2772 cpr_log->cpr[i].num_storage_elements = desc[1];
2773 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2774 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2775 }
2776
2777 out:
2778 swap(dev->cpr_log, cpr_log);
2779 kfree(cpr_log);
2780 kfree(buf);
2781 }
2782
ata_dev_print_features(struct ata_device * dev)2783 static void ata_dev_print_features(struct ata_device *dev)
2784 {
2785 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2786 return;
2787
2788 ata_dev_info(dev,
2789 "Features:%s%s%s%s%s%s%s%s\n",
2790 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2791 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2792 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2793 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2794 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2795 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2796 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2797 dev->cpr_log ? " CPR" : "");
2798 }
2799
2800 /**
2801 * ata_dev_configure - Configure the specified ATA/ATAPI device
2802 * @dev: Target device to configure
2803 *
2804 * Configure @dev according to @dev->id. Generic and low-level
2805 * driver specific fixups are also applied.
2806 *
2807 * LOCKING:
2808 * Kernel thread context (may sleep)
2809 *
2810 * RETURNS:
2811 * 0 on success, -errno otherwise
2812 */
ata_dev_configure(struct ata_device * dev)2813 int ata_dev_configure(struct ata_device *dev)
2814 {
2815 struct ata_port *ap = dev->link->ap;
2816 bool print_info = ata_dev_print_info(dev);
2817 const u16 *id = dev->id;
2818 unsigned int xfer_mask;
2819 unsigned int err_mask;
2820 char revbuf[7]; /* XYZ-99\0 */
2821 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2822 char modelbuf[ATA_ID_PROD_LEN+1];
2823 int rc;
2824
2825 if (!ata_dev_enabled(dev)) {
2826 ata_dev_dbg(dev, "no device\n");
2827 return 0;
2828 }
2829
2830 /* set horkage */
2831 dev->horkage |= ata_dev_blacklisted(dev);
2832 ata_force_horkage(dev);
2833
2834 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2835 ata_dev_info(dev, "unsupported device, disabling\n");
2836 ata_dev_disable(dev);
2837 return 0;
2838 }
2839
2840 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2841 dev->class == ATA_DEV_ATAPI) {
2842 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2843 atapi_enabled ? "not supported with this driver"
2844 : "disabled");
2845 ata_dev_disable(dev);
2846 return 0;
2847 }
2848
2849 rc = ata_do_link_spd_horkage(dev);
2850 if (rc)
2851 return rc;
2852
2853 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2854 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2855 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2856 dev->horkage |= ATA_HORKAGE_NOLPM;
2857
2858 if (ap->flags & ATA_FLAG_NO_LPM)
2859 dev->horkage |= ATA_HORKAGE_NOLPM;
2860
2861 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2862 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2863 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2864 }
2865
2866 /* let ACPI work its magic */
2867 rc = ata_acpi_on_devcfg(dev);
2868 if (rc)
2869 return rc;
2870
2871 /* massage HPA, do it early as it might change IDENTIFY data */
2872 rc = ata_hpa_resize(dev);
2873 if (rc)
2874 return rc;
2875
2876 /* print device capabilities */
2877 ata_dev_dbg(dev,
2878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2880 __func__,
2881 id[49], id[82], id[83], id[84],
2882 id[85], id[86], id[87], id[88]);
2883
2884 /* initialize to-be-configured parameters */
2885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2886 dev->max_sectors = 0;
2887 dev->cdb_len = 0;
2888 dev->n_sectors = 0;
2889 dev->cylinders = 0;
2890 dev->heads = 0;
2891 dev->sectors = 0;
2892 dev->multi_count = 0;
2893
2894 /*
2895 * common ATA, ATAPI feature tests
2896 */
2897
2898 /* find max transfer mode; for printk only */
2899 xfer_mask = ata_id_xfermask(id);
2900
2901 ata_dump_id(dev, id);
2902
2903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2905 sizeof(fwrevbuf));
2906
2907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2908 sizeof(modelbuf));
2909
2910 /* ATA-specific feature tests */
2911 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2912 if (ata_id_is_cfa(id)) {
2913 /* CPRM may make this media unusable */
2914 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2915 ata_dev_warn(dev,
2916 "supports DRM functions and may not be fully accessible\n");
2917 snprintf(revbuf, 7, "CFA");
2918 } else {
2919 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2920 /* Warn the user if the device has TPM extensions */
2921 if (ata_id_has_tpm(id))
2922 ata_dev_warn(dev,
2923 "supports DRM functions and may not be fully accessible\n");
2924 }
2925
2926 dev->n_sectors = ata_id_n_sectors(id);
2927
2928 /* get current R/W Multiple count setting */
2929 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2930 unsigned int max = dev->id[47] & 0xff;
2931 unsigned int cnt = dev->id[59] & 0xff;
2932 /* only recognize/allow powers of two here */
2933 if (is_power_of_2(max) && is_power_of_2(cnt))
2934 if (cnt <= max)
2935 dev->multi_count = cnt;
2936 }
2937
2938 /* print device info to dmesg */
2939 if (print_info)
2940 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2941 revbuf, modelbuf, fwrevbuf,
2942 ata_mode_string(xfer_mask));
2943
2944 if (ata_id_has_lba(id)) {
2945 rc = ata_dev_config_lba(dev);
2946 if (rc)
2947 return rc;
2948 } else {
2949 ata_dev_config_chs(dev);
2950 }
2951
2952 ata_dev_config_fua(dev);
2953 ata_dev_config_devslp(dev);
2954 ata_dev_config_sense_reporting(dev);
2955 ata_dev_config_zac(dev);
2956 ata_dev_config_trusted(dev);
2957 ata_dev_config_cpr(dev);
2958 ata_dev_config_cdl(dev);
2959 dev->cdb_len = 32;
2960
2961 if (print_info)
2962 ata_dev_print_features(dev);
2963 }
2964
2965 /* ATAPI-specific feature tests */
2966 else if (dev->class == ATA_DEV_ATAPI) {
2967 const char *cdb_intr_string = "";
2968 const char *atapi_an_string = "";
2969 const char *dma_dir_string = "";
2970 u32 sntf;
2971
2972 rc = atapi_cdb_len(id);
2973 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2974 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2975 rc = -EINVAL;
2976 goto err_out_nosup;
2977 }
2978 dev->cdb_len = (unsigned int) rc;
2979
2980 /* Enable ATAPI AN if both the host and device have
2981 * the support. If PMP is attached, SNTF is required
2982 * to enable ATAPI AN to discern between PHY status
2983 * changed notifications and ATAPI ANs.
2984 */
2985 if (atapi_an &&
2986 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2987 (!sata_pmp_attached(ap) ||
2988 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2989 /* issue SET feature command to turn this on */
2990 err_mask = ata_dev_set_feature(dev,
2991 SETFEATURES_SATA_ENABLE, SATA_AN);
2992 if (err_mask)
2993 ata_dev_err(dev,
2994 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2995 err_mask);
2996 else {
2997 dev->flags |= ATA_DFLAG_AN;
2998 atapi_an_string = ", ATAPI AN";
2999 }
3000 }
3001
3002 if (ata_id_cdb_intr(dev->id)) {
3003 dev->flags |= ATA_DFLAG_CDB_INTR;
3004 cdb_intr_string = ", CDB intr";
3005 }
3006
3007 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
3008 dev->flags |= ATA_DFLAG_DMADIR;
3009 dma_dir_string = ", DMADIR";
3010 }
3011
3012 if (ata_id_has_da(dev->id)) {
3013 dev->flags |= ATA_DFLAG_DA;
3014 zpodd_init(dev);
3015 }
3016
3017 /* print device info to dmesg */
3018 if (print_info)
3019 ata_dev_info(dev,
3020 "ATAPI: %s, %s, max %s%s%s%s\n",
3021 modelbuf, fwrevbuf,
3022 ata_mode_string(xfer_mask),
3023 cdb_intr_string, atapi_an_string,
3024 dma_dir_string);
3025 }
3026
3027 /* determine max_sectors */
3028 dev->max_sectors = ATA_MAX_SECTORS;
3029 if (dev->flags & ATA_DFLAG_LBA48)
3030 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3031
3032 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3033 200 sectors */
3034 if (ata_dev_knobble(dev)) {
3035 if (print_info)
3036 ata_dev_info(dev, "applying bridge limits\n");
3037 dev->udma_mask &= ATA_UDMA5;
3038 dev->max_sectors = ATA_MAX_SECTORS;
3039 }
3040
3041 if ((dev->class == ATA_DEV_ATAPI) &&
3042 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3043 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3044 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
3045 }
3046
3047 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
3048 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3049 dev->max_sectors);
3050
3051 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
3052 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3053 dev->max_sectors);
3054
3055 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
3056 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3057
3058 if (ap->ops->dev_config)
3059 ap->ops->dev_config(dev);
3060
3061 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
3062 /* Let the user know. We don't want to disallow opens for
3063 rescue purposes, or in case the vendor is just a blithering
3064 idiot. Do this after the dev_config call as some controllers
3065 with buggy firmware may want to avoid reporting false device
3066 bugs */
3067
3068 if (print_info) {
3069 ata_dev_warn(dev,
3070 "Drive reports diagnostics failure. This may indicate a drive\n");
3071 ata_dev_warn(dev,
3072 "fault or invalid emulation. Contact drive vendor for information.\n");
3073 }
3074 }
3075
3076 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
3077 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3078 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3079 }
3080
3081 return 0;
3082
3083 err_out_nosup:
3084 return rc;
3085 }
3086
3087 /**
3088 * ata_cable_40wire - return 40 wire cable type
3089 * @ap: port
3090 *
3091 * Helper method for drivers which want to hardwire 40 wire cable
3092 * detection.
3093 */
3094
ata_cable_40wire(struct ata_port * ap)3095 int ata_cable_40wire(struct ata_port *ap)
3096 {
3097 return ATA_CBL_PATA40;
3098 }
3099 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3100
3101 /**
3102 * ata_cable_80wire - return 80 wire cable type
3103 * @ap: port
3104 *
3105 * Helper method for drivers which want to hardwire 80 wire cable
3106 * detection.
3107 */
3108
ata_cable_80wire(struct ata_port * ap)3109 int ata_cable_80wire(struct ata_port *ap)
3110 {
3111 return ATA_CBL_PATA80;
3112 }
3113 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3114
3115 /**
3116 * ata_cable_unknown - return unknown PATA cable.
3117 * @ap: port
3118 *
3119 * Helper method for drivers which have no PATA cable detection.
3120 */
3121
ata_cable_unknown(struct ata_port * ap)3122 int ata_cable_unknown(struct ata_port *ap)
3123 {
3124 return ATA_CBL_PATA_UNK;
3125 }
3126 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3127
3128 /**
3129 * ata_cable_ignore - return ignored PATA cable.
3130 * @ap: port
3131 *
3132 * Helper method for drivers which don't use cable type to limit
3133 * transfer mode.
3134 */
ata_cable_ignore(struct ata_port * ap)3135 int ata_cable_ignore(struct ata_port *ap)
3136 {
3137 return ATA_CBL_PATA_IGN;
3138 }
3139 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3140
3141 /**
3142 * ata_cable_sata - return SATA cable type
3143 * @ap: port
3144 *
3145 * Helper method for drivers which have SATA cables
3146 */
3147
ata_cable_sata(struct ata_port * ap)3148 int ata_cable_sata(struct ata_port *ap)
3149 {
3150 return ATA_CBL_SATA;
3151 }
3152 EXPORT_SYMBOL_GPL(ata_cable_sata);
3153
3154 /**
3155 * sata_print_link_status - Print SATA link status
3156 * @link: SATA link to printk link status about
3157 *
3158 * This function prints link speed and status of a SATA link.
3159 *
3160 * LOCKING:
3161 * None.
3162 */
sata_print_link_status(struct ata_link * link)3163 static void sata_print_link_status(struct ata_link *link)
3164 {
3165 u32 sstatus, scontrol, tmp;
3166
3167 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3168 return;
3169 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3170 return;
3171
3172 if (ata_phys_link_online(link)) {
3173 tmp = (sstatus >> 4) & 0xf;
3174 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3175 sata_spd_string(tmp), sstatus, scontrol);
3176 } else {
3177 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3178 sstatus, scontrol);
3179 }
3180 }
3181
3182 /**
3183 * ata_dev_pair - return other device on cable
3184 * @adev: device
3185 *
3186 * Obtain the other device on the same cable, or if none is
3187 * present NULL is returned
3188 */
3189
ata_dev_pair(struct ata_device * adev)3190 struct ata_device *ata_dev_pair(struct ata_device *adev)
3191 {
3192 struct ata_link *link = adev->link;
3193 struct ata_device *pair = &link->device[1 - adev->devno];
3194 if (!ata_dev_enabled(pair))
3195 return NULL;
3196 return pair;
3197 }
3198 EXPORT_SYMBOL_GPL(ata_dev_pair);
3199
3200 /**
3201 * sata_down_spd_limit - adjust SATA spd limit downward
3202 * @link: Link to adjust SATA spd limit for
3203 * @spd_limit: Additional limit
3204 *
3205 * Adjust SATA spd limit of @link downward. Note that this
3206 * function only adjusts the limit. The change must be applied
3207 * using sata_set_spd().
3208 *
3209 * If @spd_limit is non-zero, the speed is limited to equal to or
3210 * lower than @spd_limit if such speed is supported. If
3211 * @spd_limit is slower than any supported speed, only the lowest
3212 * supported speed is allowed.
3213 *
3214 * LOCKING:
3215 * Inherited from caller.
3216 *
3217 * RETURNS:
3218 * 0 on success, negative errno on failure
3219 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3220 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3221 {
3222 u32 sstatus, spd, mask;
3223 int rc, bit;
3224
3225 if (!sata_scr_valid(link))
3226 return -EOPNOTSUPP;
3227
3228 /* If SCR can be read, use it to determine the current SPD.
3229 * If not, use cached value in link->sata_spd.
3230 */
3231 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3232 if (rc == 0 && ata_sstatus_online(sstatus))
3233 spd = (sstatus >> 4) & 0xf;
3234 else
3235 spd = link->sata_spd;
3236
3237 mask = link->sata_spd_limit;
3238 if (mask <= 1)
3239 return -EINVAL;
3240
3241 /* unconditionally mask off the highest bit */
3242 bit = fls(mask) - 1;
3243 mask &= ~(1 << bit);
3244
3245 /*
3246 * Mask off all speeds higher than or equal to the current one. At
3247 * this point, if current SPD is not available and we previously
3248 * recorded the link speed from SStatus, the driver has already
3249 * masked off the highest bit so mask should already be 1 or 0.
3250 * Otherwise, we should not force 1.5Gbps on a link where we have
3251 * not previously recorded speed from SStatus. Just return in this
3252 * case.
3253 */
3254 if (spd > 1)
3255 mask &= (1 << (spd - 1)) - 1;
3256 else if (link->sata_spd)
3257 return -EINVAL;
3258
3259 /* were we already at the bottom? */
3260 if (!mask)
3261 return -EINVAL;
3262
3263 if (spd_limit) {
3264 if (mask & ((1 << spd_limit) - 1))
3265 mask &= (1 << spd_limit) - 1;
3266 else {
3267 bit = ffs(mask) - 1;
3268 mask = 1 << bit;
3269 }
3270 }
3271
3272 link->sata_spd_limit = mask;
3273
3274 ata_link_warn(link, "limiting SATA link speed to %s\n",
3275 sata_spd_string(fls(mask)));
3276
3277 return 0;
3278 }
3279
3280 #ifdef CONFIG_ATA_ACPI
3281 /**
3282 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3283 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3284 * @cycle: cycle duration in ns
3285 *
3286 * Return matching xfer mode for @cycle. The returned mode is of
3287 * the transfer type specified by @xfer_shift. If @cycle is too
3288 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3289 * than the fastest known mode, the fasted mode is returned.
3290 *
3291 * LOCKING:
3292 * None.
3293 *
3294 * RETURNS:
3295 * Matching xfer_mode, 0xff if no match found.
3296 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3297 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3298 {
3299 u8 base_mode = 0xff, last_mode = 0xff;
3300 const struct ata_xfer_ent *ent;
3301 const struct ata_timing *t;
3302
3303 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3304 if (ent->shift == xfer_shift)
3305 base_mode = ent->base;
3306
3307 for (t = ata_timing_find_mode(base_mode);
3308 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3309 unsigned short this_cycle;
3310
3311 switch (xfer_shift) {
3312 case ATA_SHIFT_PIO:
3313 case ATA_SHIFT_MWDMA:
3314 this_cycle = t->cycle;
3315 break;
3316 case ATA_SHIFT_UDMA:
3317 this_cycle = t->udma;
3318 break;
3319 default:
3320 return 0xff;
3321 }
3322
3323 if (cycle > this_cycle)
3324 break;
3325
3326 last_mode = t->mode;
3327 }
3328
3329 return last_mode;
3330 }
3331 #endif
3332
3333 /**
3334 * ata_down_xfermask_limit - adjust dev xfer masks downward
3335 * @dev: Device to adjust xfer masks
3336 * @sel: ATA_DNXFER_* selector
3337 *
3338 * Adjust xfer masks of @dev downward. Note that this function
3339 * does not apply the change. Invoking ata_set_mode() afterwards
3340 * will apply the limit.
3341 *
3342 * LOCKING:
3343 * Inherited from caller.
3344 *
3345 * RETURNS:
3346 * 0 on success, negative errno on failure
3347 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3348 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3349 {
3350 char buf[32];
3351 unsigned int orig_mask, xfer_mask;
3352 unsigned int pio_mask, mwdma_mask, udma_mask;
3353 int quiet, highbit;
3354
3355 quiet = !!(sel & ATA_DNXFER_QUIET);
3356 sel &= ~ATA_DNXFER_QUIET;
3357
3358 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3359 dev->mwdma_mask,
3360 dev->udma_mask);
3361 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3362
3363 switch (sel) {
3364 case ATA_DNXFER_PIO:
3365 highbit = fls(pio_mask) - 1;
3366 pio_mask &= ~(1 << highbit);
3367 break;
3368
3369 case ATA_DNXFER_DMA:
3370 if (udma_mask) {
3371 highbit = fls(udma_mask) - 1;
3372 udma_mask &= ~(1 << highbit);
3373 if (!udma_mask)
3374 return -ENOENT;
3375 } else if (mwdma_mask) {
3376 highbit = fls(mwdma_mask) - 1;
3377 mwdma_mask &= ~(1 << highbit);
3378 if (!mwdma_mask)
3379 return -ENOENT;
3380 }
3381 break;
3382
3383 case ATA_DNXFER_40C:
3384 udma_mask &= ATA_UDMA_MASK_40C;
3385 break;
3386
3387 case ATA_DNXFER_FORCE_PIO0:
3388 pio_mask &= 1;
3389 fallthrough;
3390 case ATA_DNXFER_FORCE_PIO:
3391 mwdma_mask = 0;
3392 udma_mask = 0;
3393 break;
3394
3395 default:
3396 BUG();
3397 }
3398
3399 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3400
3401 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3402 return -ENOENT;
3403
3404 if (!quiet) {
3405 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3406 snprintf(buf, sizeof(buf), "%s:%s",
3407 ata_mode_string(xfer_mask),
3408 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3409 else
3410 snprintf(buf, sizeof(buf), "%s",
3411 ata_mode_string(xfer_mask));
3412
3413 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3414 }
3415
3416 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3417 &dev->udma_mask);
3418
3419 return 0;
3420 }
3421
ata_dev_set_mode(struct ata_device * dev)3422 static int ata_dev_set_mode(struct ata_device *dev)
3423 {
3424 struct ata_port *ap = dev->link->ap;
3425 struct ata_eh_context *ehc = &dev->link->eh_context;
3426 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3427 const char *dev_err_whine = "";
3428 int ign_dev_err = 0;
3429 unsigned int err_mask = 0;
3430 int rc;
3431
3432 dev->flags &= ~ATA_DFLAG_PIO;
3433 if (dev->xfer_shift == ATA_SHIFT_PIO)
3434 dev->flags |= ATA_DFLAG_PIO;
3435
3436 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3437 dev_err_whine = " (SET_XFERMODE skipped)";
3438 else {
3439 if (nosetxfer)
3440 ata_dev_warn(dev,
3441 "NOSETXFER but PATA detected - can't "
3442 "skip SETXFER, might malfunction\n");
3443 err_mask = ata_dev_set_xfermode(dev);
3444 }
3445
3446 if (err_mask & ~AC_ERR_DEV)
3447 goto fail;
3448
3449 /* revalidate */
3450 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3451 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3452 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3453 if (rc)
3454 return rc;
3455
3456 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3457 /* Old CFA may refuse this command, which is just fine */
3458 if (ata_id_is_cfa(dev->id))
3459 ign_dev_err = 1;
3460 /* Catch several broken garbage emulations plus some pre
3461 ATA devices */
3462 if (ata_id_major_version(dev->id) == 0 &&
3463 dev->pio_mode <= XFER_PIO_2)
3464 ign_dev_err = 1;
3465 /* Some very old devices and some bad newer ones fail
3466 any kind of SET_XFERMODE request but support PIO0-2
3467 timings and no IORDY */
3468 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3469 ign_dev_err = 1;
3470 }
3471 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3472 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3473 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3474 dev->dma_mode == XFER_MW_DMA_0 &&
3475 (dev->id[63] >> 8) & 1)
3476 ign_dev_err = 1;
3477
3478 /* if the device is actually configured correctly, ignore dev err */
3479 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3480 ign_dev_err = 1;
3481
3482 if (err_mask & AC_ERR_DEV) {
3483 if (!ign_dev_err)
3484 goto fail;
3485 else
3486 dev_err_whine = " (device error ignored)";
3487 }
3488
3489 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3490 dev->xfer_shift, (int)dev->xfer_mode);
3491
3492 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3493 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3494 ata_dev_info(dev, "configured for %s%s\n",
3495 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3496 dev_err_whine);
3497
3498 return 0;
3499
3500 fail:
3501 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3502 return -EIO;
3503 }
3504
3505 /**
3506 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3507 * @link: link on which timings will be programmed
3508 * @r_failed_dev: out parameter for failed device
3509 *
3510 * Standard implementation of the function used to tune and set
3511 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3512 * ata_dev_set_mode() fails, pointer to the failing device is
3513 * returned in @r_failed_dev.
3514 *
3515 * LOCKING:
3516 * PCI/etc. bus probe sem.
3517 *
3518 * RETURNS:
3519 * 0 on success, negative errno otherwise
3520 */
3521
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3522 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3523 {
3524 struct ata_port *ap = link->ap;
3525 struct ata_device *dev;
3526 int rc = 0, used_dma = 0, found = 0;
3527
3528 /* step 1: calculate xfer_mask */
3529 ata_for_each_dev(dev, link, ENABLED) {
3530 unsigned int pio_mask, dma_mask;
3531 unsigned int mode_mask;
3532
3533 mode_mask = ATA_DMA_MASK_ATA;
3534 if (dev->class == ATA_DEV_ATAPI)
3535 mode_mask = ATA_DMA_MASK_ATAPI;
3536 else if (ata_id_is_cfa(dev->id))
3537 mode_mask = ATA_DMA_MASK_CFA;
3538
3539 ata_dev_xfermask(dev);
3540 ata_force_xfermask(dev);
3541
3542 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3543
3544 if (libata_dma_mask & mode_mask)
3545 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3546 dev->udma_mask);
3547 else
3548 dma_mask = 0;
3549
3550 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3551 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3552
3553 found = 1;
3554 if (ata_dma_enabled(dev))
3555 used_dma = 1;
3556 }
3557 if (!found)
3558 goto out;
3559
3560 /* step 2: always set host PIO timings */
3561 ata_for_each_dev(dev, link, ENABLED) {
3562 if (dev->pio_mode == 0xff) {
3563 ata_dev_warn(dev, "no PIO support\n");
3564 rc = -EINVAL;
3565 goto out;
3566 }
3567
3568 dev->xfer_mode = dev->pio_mode;
3569 dev->xfer_shift = ATA_SHIFT_PIO;
3570 if (ap->ops->set_piomode)
3571 ap->ops->set_piomode(ap, dev);
3572 }
3573
3574 /* step 3: set host DMA timings */
3575 ata_for_each_dev(dev, link, ENABLED) {
3576 if (!ata_dma_enabled(dev))
3577 continue;
3578
3579 dev->xfer_mode = dev->dma_mode;
3580 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3581 if (ap->ops->set_dmamode)
3582 ap->ops->set_dmamode(ap, dev);
3583 }
3584
3585 /* step 4: update devices' xfer mode */
3586 ata_for_each_dev(dev, link, ENABLED) {
3587 rc = ata_dev_set_mode(dev);
3588 if (rc)
3589 goto out;
3590 }
3591
3592 /* Record simplex status. If we selected DMA then the other
3593 * host channels are not permitted to do so.
3594 */
3595 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3596 ap->host->simplex_claimed = ap;
3597
3598 out:
3599 if (rc)
3600 *r_failed_dev = dev;
3601 return rc;
3602 }
3603 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3604
3605 /**
3606 * ata_wait_ready - wait for link to become ready
3607 * @link: link to be waited on
3608 * @deadline: deadline jiffies for the operation
3609 * @check_ready: callback to check link readiness
3610 *
3611 * Wait for @link to become ready. @check_ready should return
3612 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3613 * link doesn't seem to be occupied, other errno for other error
3614 * conditions.
3615 *
3616 * Transient -ENODEV conditions are allowed for
3617 * ATA_TMOUT_FF_WAIT.
3618 *
3619 * LOCKING:
3620 * EH context.
3621 *
3622 * RETURNS:
3623 * 0 if @link is ready before @deadline; otherwise, -errno.
3624 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3625 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3626 int (*check_ready)(struct ata_link *link))
3627 {
3628 unsigned long start = jiffies;
3629 unsigned long nodev_deadline;
3630 int warned = 0;
3631
3632 /* choose which 0xff timeout to use, read comment in libata.h */
3633 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3634 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3635 else
3636 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3637
3638 /* Slave readiness can't be tested separately from master. On
3639 * M/S emulation configuration, this function should be called
3640 * only on the master and it will handle both master and slave.
3641 */
3642 WARN_ON(link == link->ap->slave_link);
3643
3644 if (time_after(nodev_deadline, deadline))
3645 nodev_deadline = deadline;
3646
3647 while (1) {
3648 unsigned long now = jiffies;
3649 int ready, tmp;
3650
3651 ready = tmp = check_ready(link);
3652 if (ready > 0)
3653 return 0;
3654
3655 /*
3656 * -ENODEV could be transient. Ignore -ENODEV if link
3657 * is online. Also, some SATA devices take a long
3658 * time to clear 0xff after reset. Wait for
3659 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3660 * offline.
3661 *
3662 * Note that some PATA controllers (pata_ali) explode
3663 * if status register is read more than once when
3664 * there's no device attached.
3665 */
3666 if (ready == -ENODEV) {
3667 if (ata_link_online(link))
3668 ready = 0;
3669 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3670 !ata_link_offline(link) &&
3671 time_before(now, nodev_deadline))
3672 ready = 0;
3673 }
3674
3675 if (ready)
3676 return ready;
3677 if (time_after(now, deadline))
3678 return -EBUSY;
3679
3680 if (!warned && time_after(now, start + 5 * HZ) &&
3681 (deadline - now > 3 * HZ)) {
3682 ata_link_warn(link,
3683 "link is slow to respond, please be patient "
3684 "(ready=%d)\n", tmp);
3685 warned = 1;
3686 }
3687
3688 ata_msleep(link->ap, 50);
3689 }
3690 }
3691
3692 /**
3693 * ata_wait_after_reset - wait for link to become ready after reset
3694 * @link: link to be waited on
3695 * @deadline: deadline jiffies for the operation
3696 * @check_ready: callback to check link readiness
3697 *
3698 * Wait for @link to become ready after reset.
3699 *
3700 * LOCKING:
3701 * EH context.
3702 *
3703 * RETURNS:
3704 * 0 if @link is ready before @deadline; otherwise, -errno.
3705 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3706 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3707 int (*check_ready)(struct ata_link *link))
3708 {
3709 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3710
3711 return ata_wait_ready(link, deadline, check_ready);
3712 }
3713 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3714
3715 /**
3716 * ata_std_prereset - prepare for reset
3717 * @link: ATA link to be reset
3718 * @deadline: deadline jiffies for the operation
3719 *
3720 * @link is about to be reset. Initialize it. Failure from
3721 * prereset makes libata abort whole reset sequence and give up
3722 * that port, so prereset should be best-effort. It does its
3723 * best to prepare for reset sequence but if things go wrong, it
3724 * should just whine, not fail.
3725 *
3726 * LOCKING:
3727 * Kernel thread context (may sleep)
3728 *
3729 * RETURNS:
3730 * Always 0.
3731 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3732 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3733 {
3734 struct ata_port *ap = link->ap;
3735 struct ata_eh_context *ehc = &link->eh_context;
3736 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3737 int rc;
3738
3739 /* if we're about to do hardreset, nothing more to do */
3740 if (ehc->i.action & ATA_EH_HARDRESET)
3741 return 0;
3742
3743 /* if SATA, resume link */
3744 if (ap->flags & ATA_FLAG_SATA) {
3745 rc = sata_link_resume(link, timing, deadline);
3746 /* whine about phy resume failure but proceed */
3747 if (rc && rc != -EOPNOTSUPP)
3748 ata_link_warn(link,
3749 "failed to resume link for reset (errno=%d)\n",
3750 rc);
3751 }
3752
3753 /* no point in trying softreset on offline link */
3754 if (ata_phys_link_offline(link))
3755 ehc->i.action &= ~ATA_EH_SOFTRESET;
3756
3757 return 0;
3758 }
3759 EXPORT_SYMBOL_GPL(ata_std_prereset);
3760
3761 /**
3762 * sata_std_hardreset - COMRESET w/o waiting or classification
3763 * @link: link to reset
3764 * @class: resulting class of attached device
3765 * @deadline: deadline jiffies for the operation
3766 *
3767 * Standard SATA COMRESET w/o waiting or classification.
3768 *
3769 * LOCKING:
3770 * Kernel thread context (may sleep)
3771 *
3772 * RETURNS:
3773 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3774 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3775 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3776 unsigned long deadline)
3777 {
3778 const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
3779 bool online;
3780 int rc;
3781
3782 /* do hardreset */
3783 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3784 return online ? -EAGAIN : rc;
3785 }
3786 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3787
3788 /**
3789 * ata_std_postreset - standard postreset callback
3790 * @link: the target ata_link
3791 * @classes: classes of attached devices
3792 *
3793 * This function is invoked after a successful reset. Note that
3794 * the device might have been reset more than once using
3795 * different reset methods before postreset is invoked.
3796 *
3797 * LOCKING:
3798 * Kernel thread context (may sleep)
3799 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3800 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3801 {
3802 u32 serror;
3803
3804 /* reset complete, clear SError */
3805 if (!sata_scr_read(link, SCR_ERROR, &serror))
3806 sata_scr_write(link, SCR_ERROR, serror);
3807
3808 /* print link status */
3809 sata_print_link_status(link);
3810 }
3811 EXPORT_SYMBOL_GPL(ata_std_postreset);
3812
3813 /**
3814 * ata_dev_same_device - Determine whether new ID matches configured device
3815 * @dev: device to compare against
3816 * @new_class: class of the new device
3817 * @new_id: IDENTIFY page of the new device
3818 *
3819 * Compare @new_class and @new_id against @dev and determine
3820 * whether @dev is the device indicated by @new_class and
3821 * @new_id.
3822 *
3823 * LOCKING:
3824 * None.
3825 *
3826 * RETURNS:
3827 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3828 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3829 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3830 const u16 *new_id)
3831 {
3832 const u16 *old_id = dev->id;
3833 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3834 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3835
3836 if (dev->class != new_class) {
3837 ata_dev_info(dev, "class mismatch %d != %d\n",
3838 dev->class, new_class);
3839 return 0;
3840 }
3841
3842 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3843 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3844 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3845 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3846
3847 if (strcmp(model[0], model[1])) {
3848 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3849 model[0], model[1]);
3850 return 0;
3851 }
3852
3853 if (strcmp(serial[0], serial[1])) {
3854 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3855 serial[0], serial[1]);
3856 return 0;
3857 }
3858
3859 return 1;
3860 }
3861
3862 /**
3863 * ata_dev_reread_id - Re-read IDENTIFY data
3864 * @dev: target ATA device
3865 * @readid_flags: read ID flags
3866 *
3867 * Re-read IDENTIFY page and make sure @dev is still attached to
3868 * the port.
3869 *
3870 * LOCKING:
3871 * Kernel thread context (may sleep)
3872 *
3873 * RETURNS:
3874 * 0 on success, negative errno otherwise
3875 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3876 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3877 {
3878 unsigned int class = dev->class;
3879 u16 *id = (void *)dev->link->ap->sector_buf;
3880 int rc;
3881
3882 /* read ID data */
3883 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3884 if (rc)
3885 return rc;
3886
3887 /* is the device still there? */
3888 if (!ata_dev_same_device(dev, class, id))
3889 return -ENODEV;
3890
3891 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3892 return 0;
3893 }
3894
3895 /**
3896 * ata_dev_revalidate - Revalidate ATA device
3897 * @dev: device to revalidate
3898 * @new_class: new class code
3899 * @readid_flags: read ID flags
3900 *
3901 * Re-read IDENTIFY page, make sure @dev is still attached to the
3902 * port and reconfigure it according to the new IDENTIFY page.
3903 *
3904 * LOCKING:
3905 * Kernel thread context (may sleep)
3906 *
3907 * RETURNS:
3908 * 0 on success, negative errno otherwise
3909 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3910 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3911 unsigned int readid_flags)
3912 {
3913 u64 n_sectors = dev->n_sectors;
3914 u64 n_native_sectors = dev->n_native_sectors;
3915 int rc;
3916
3917 if (!ata_dev_enabled(dev))
3918 return -ENODEV;
3919
3920 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3921 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3922 ata_dev_info(dev, "class mismatch %u != %u\n",
3923 dev->class, new_class);
3924 rc = -ENODEV;
3925 goto fail;
3926 }
3927
3928 /* re-read ID */
3929 rc = ata_dev_reread_id(dev, readid_flags);
3930 if (rc)
3931 goto fail;
3932
3933 /* configure device according to the new ID */
3934 rc = ata_dev_configure(dev);
3935 if (rc)
3936 goto fail;
3937
3938 /* verify n_sectors hasn't changed */
3939 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3940 dev->n_sectors == n_sectors)
3941 return 0;
3942
3943 /* n_sectors has changed */
3944 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3945 (unsigned long long)n_sectors,
3946 (unsigned long long)dev->n_sectors);
3947
3948 /*
3949 * Something could have caused HPA to be unlocked
3950 * involuntarily. If n_native_sectors hasn't changed and the
3951 * new size matches it, keep the device.
3952 */
3953 if (dev->n_native_sectors == n_native_sectors &&
3954 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3955 ata_dev_warn(dev,
3956 "new n_sectors matches native, probably "
3957 "late HPA unlock, n_sectors updated\n");
3958 /* use the larger n_sectors */
3959 return 0;
3960 }
3961
3962 /*
3963 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3964 * unlocking HPA in those cases.
3965 *
3966 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3967 */
3968 if (dev->n_native_sectors == n_native_sectors &&
3969 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3970 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3971 ata_dev_warn(dev,
3972 "old n_sectors matches native, probably "
3973 "late HPA lock, will try to unlock HPA\n");
3974 /* try unlocking HPA */
3975 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3976 rc = -EIO;
3977 } else
3978 rc = -ENODEV;
3979
3980 /* restore original n_[native_]sectors and fail */
3981 dev->n_native_sectors = n_native_sectors;
3982 dev->n_sectors = n_sectors;
3983 fail:
3984 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3985 return rc;
3986 }
3987
3988 struct ata_blacklist_entry {
3989 const char *model_num;
3990 const char *model_rev;
3991 unsigned long horkage;
3992 };
3993
3994 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3995 /* Devices with DMA related problems under Linux */
3996 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3997 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3998 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3999 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4000 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4001 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4002 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4003 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4004 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4005 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4006 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4007 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4008 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4009 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4010 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4011 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4012 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4013 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4014 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4015 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4016 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4017 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4018 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4019 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4020 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4021 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4022 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4023 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4024 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4025 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4026 /* Odd clown on sil3726/4726 PMPs */
4027 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4028 /* Similar story with ASMedia 1092 */
4029 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
4030
4031 /* Weird ATAPI devices */
4032 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4033 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4034 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4035 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4036
4037 /*
4038 * Causes silent data corruption with higher max sects.
4039 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4040 */
4041 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4042
4043 /*
4044 * These devices time out with higher max sects.
4045 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4046 */
4047 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4048 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4049
4050 /* Devices we expect to fail diagnostics */
4051
4052 /* Devices where NCQ should be avoided */
4053 /* NCQ is slow */
4054 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4055 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ },
4056 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4057 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4058 /* NCQ is broken */
4059 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4060 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4061 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4062 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4063 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4064
4065 /* Seagate NCQ + FLUSH CACHE firmware bug */
4066 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4067 ATA_HORKAGE_FIRMWARE_WARN },
4068
4069 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4070 ATA_HORKAGE_FIRMWARE_WARN },
4071
4072 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4073 ATA_HORKAGE_FIRMWARE_WARN },
4074
4075 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4076 ATA_HORKAGE_FIRMWARE_WARN },
4077
4078 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4079 the ST disks also have LPM issues */
4080 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
4081 ATA_HORKAGE_NOLPM },
4082 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4083
4084 /* Blacklist entries taken from Silicon Image 3124/3132
4085 Windows driver .inf file - also several Linux problem reports */
4086 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ },
4087 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ },
4088 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ },
4089
4090 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4091 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ },
4092
4093 /* Sandisk SD7/8/9s lock up hard on large trims */
4094 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M },
4095
4096 /* devices which puke on READ_NATIVE_MAX */
4097 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA },
4098 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4099 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4100 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4101
4102 /* this one allows HPA unlocking but fails IOs on the area */
4103 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4104
4105 /* Devices which report 1 sector over size HPA */
4106 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE },
4107 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE },
4108 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE },
4109
4110 /* Devices which get the IVB wrong */
4111 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4112 /* Maybe we should just blacklist TSSTcorp... */
4113 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB },
4114
4115 /* Devices that do not need bridging limits applied */
4116 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK },
4117 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK },
4118
4119 /* Devices which aren't very happy with higher link speeds */
4120 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS },
4121 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS },
4122
4123 /*
4124 * Devices which choke on SETXFER. Applies only if both the
4125 * device and controller are SATA.
4126 */
4127 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4128 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4129 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4130 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4131 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4132
4133 /* These specific Pioneer models have LPM issues */
4134 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM },
4135 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM },
4136
4137 /* Crucial BX100 SSD 500GB has broken LPM support */
4138 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4139
4140 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4141 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4142 ATA_HORKAGE_ZERO_AFTER_TRIM |
4143 ATA_HORKAGE_NOLPM },
4144 /* 512GB MX100 with newer firmware has only LPM issues */
4145 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4146 ATA_HORKAGE_NOLPM },
4147
4148 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4149 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4150 ATA_HORKAGE_ZERO_AFTER_TRIM |
4151 ATA_HORKAGE_NOLPM },
4152 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4153 ATA_HORKAGE_ZERO_AFTER_TRIM |
4154 ATA_HORKAGE_NOLPM },
4155
4156 /* These specific Samsung models/firmware-revs do not handle LPM well */
4157 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4158 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM },
4159 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM },
4160 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4161
4162 /* devices that don't properly handle queued TRIM commands */
4163 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4164 ATA_HORKAGE_ZERO_AFTER_TRIM },
4165 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4166 ATA_HORKAGE_ZERO_AFTER_TRIM },
4167 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4168 ATA_HORKAGE_ZERO_AFTER_TRIM },
4169 { "Micron_1100_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4170 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4171 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4172 ATA_HORKAGE_ZERO_AFTER_TRIM },
4173 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4174 ATA_HORKAGE_ZERO_AFTER_TRIM },
4175 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4176 ATA_HORKAGE_ZERO_AFTER_TRIM },
4177 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4178 ATA_HORKAGE_NO_DMA_LOG |
4179 ATA_HORKAGE_ZERO_AFTER_TRIM },
4180 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4181 ATA_HORKAGE_ZERO_AFTER_TRIM },
4182 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4183 ATA_HORKAGE_ZERO_AFTER_TRIM },
4184 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4185 ATA_HORKAGE_ZERO_AFTER_TRIM |
4186 ATA_HORKAGE_NO_NCQ_ON_ATI },
4187 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4188 ATA_HORKAGE_ZERO_AFTER_TRIM |
4189 ATA_HORKAGE_NO_NCQ_ON_ATI },
4190 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4191 ATA_HORKAGE_ZERO_AFTER_TRIM |
4192 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4193 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4194 ATA_HORKAGE_ZERO_AFTER_TRIM },
4195
4196 /* devices that don't properly handle TRIM commands */
4197 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM },
4198 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM },
4199
4200 /*
4201 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4202 * (Return Zero After Trim) flags in the ATA Command Set are
4203 * unreliable in the sense that they only define what happens if
4204 * the device successfully executed the DSM TRIM command. TRIM
4205 * is only advisory, however, and the device is free to silently
4206 * ignore all or parts of the request.
4207 *
4208 * Whitelist drives that are known to reliably return zeroes
4209 * after TRIM.
4210 */
4211
4212 /*
4213 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4214 * that model before whitelisting all other intel SSDs.
4215 */
4216 { "INTEL*SSDSC2MH*", NULL, 0 },
4217
4218 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4219 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4220 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4221 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4222 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4223 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4224 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4225 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4226
4227 /*
4228 * Some WD SATA-I drives spin up and down erratically when the link
4229 * is put into the slumber mode. We don't have full list of the
4230 * affected devices. Disable LPM if the device matches one of the
4231 * known prefixes and is SATA-1. As a side effect LPM partial is
4232 * lost too.
4233 *
4234 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4235 */
4236 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4237 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4238 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4239 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4240 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4241 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4242 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4243
4244 /*
4245 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4246 * log page is accessed. Ensure we never ask for this log page with
4247 * these devices.
4248 */
4249 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR },
4250
4251 /* Buggy FUA */
4252 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA },
4253 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA },
4254 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA },
4255 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA },
4256
4257 /* End Marker */
4258 { }
4259 };
4260
ata_dev_blacklisted(const struct ata_device * dev)4261 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4262 {
4263 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4264 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4265 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4266
4267 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4268 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4269
4270 while (ad->model_num) {
4271 if (glob_match(ad->model_num, model_num)) {
4272 if (ad->model_rev == NULL)
4273 return ad->horkage;
4274 if (glob_match(ad->model_rev, model_rev))
4275 return ad->horkage;
4276 }
4277 ad++;
4278 }
4279 return 0;
4280 }
4281
ata_dma_blacklisted(const struct ata_device * dev)4282 static int ata_dma_blacklisted(const struct ata_device *dev)
4283 {
4284 /* We don't support polling DMA.
4285 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4286 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4287 */
4288 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4289 (dev->flags & ATA_DFLAG_CDB_INTR))
4290 return 1;
4291 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4292 }
4293
4294 /**
4295 * ata_is_40wire - check drive side detection
4296 * @dev: device
4297 *
4298 * Perform drive side detection decoding, allowing for device vendors
4299 * who can't follow the documentation.
4300 */
4301
ata_is_40wire(struct ata_device * dev)4302 static int ata_is_40wire(struct ata_device *dev)
4303 {
4304 if (dev->horkage & ATA_HORKAGE_IVB)
4305 return ata_drive_40wire_relaxed(dev->id);
4306 return ata_drive_40wire(dev->id);
4307 }
4308
4309 /**
4310 * cable_is_40wire - 40/80/SATA decider
4311 * @ap: port to consider
4312 *
4313 * This function encapsulates the policy for speed management
4314 * in one place. At the moment we don't cache the result but
4315 * there is a good case for setting ap->cbl to the result when
4316 * we are called with unknown cables (and figuring out if it
4317 * impacts hotplug at all).
4318 *
4319 * Return 1 if the cable appears to be 40 wire.
4320 */
4321
cable_is_40wire(struct ata_port * ap)4322 static int cable_is_40wire(struct ata_port *ap)
4323 {
4324 struct ata_link *link;
4325 struct ata_device *dev;
4326
4327 /* If the controller thinks we are 40 wire, we are. */
4328 if (ap->cbl == ATA_CBL_PATA40)
4329 return 1;
4330
4331 /* If the controller thinks we are 80 wire, we are. */
4332 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4333 return 0;
4334
4335 /* If the system is known to be 40 wire short cable (eg
4336 * laptop), then we allow 80 wire modes even if the drive
4337 * isn't sure.
4338 */
4339 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4340 return 0;
4341
4342 /* If the controller doesn't know, we scan.
4343 *
4344 * Note: We look for all 40 wire detects at this point. Any
4345 * 80 wire detect is taken to be 80 wire cable because
4346 * - in many setups only the one drive (slave if present) will
4347 * give a valid detect
4348 * - if you have a non detect capable drive you don't want it
4349 * to colour the choice
4350 */
4351 ata_for_each_link(link, ap, EDGE) {
4352 ata_for_each_dev(dev, link, ENABLED) {
4353 if (!ata_is_40wire(dev))
4354 return 0;
4355 }
4356 }
4357 return 1;
4358 }
4359
4360 /**
4361 * ata_dev_xfermask - Compute supported xfermask of the given device
4362 * @dev: Device to compute xfermask for
4363 *
4364 * Compute supported xfermask of @dev and store it in
4365 * dev->*_mask. This function is responsible for applying all
4366 * known limits including host controller limits, device
4367 * blacklist, etc...
4368 *
4369 * LOCKING:
4370 * None.
4371 */
ata_dev_xfermask(struct ata_device * dev)4372 static void ata_dev_xfermask(struct ata_device *dev)
4373 {
4374 struct ata_link *link = dev->link;
4375 struct ata_port *ap = link->ap;
4376 struct ata_host *host = ap->host;
4377 unsigned int xfer_mask;
4378
4379 /* controller modes available */
4380 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4381 ap->mwdma_mask, ap->udma_mask);
4382
4383 /* drive modes available */
4384 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4385 dev->mwdma_mask, dev->udma_mask);
4386 xfer_mask &= ata_id_xfermask(dev->id);
4387
4388 /*
4389 * CFA Advanced TrueIDE timings are not allowed on a shared
4390 * cable
4391 */
4392 if (ata_dev_pair(dev)) {
4393 /* No PIO5 or PIO6 */
4394 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4395 /* No MWDMA3 or MWDMA 4 */
4396 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4397 }
4398
4399 if (ata_dma_blacklisted(dev)) {
4400 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4401 ata_dev_warn(dev,
4402 "device is on DMA blacklist, disabling DMA\n");
4403 }
4404
4405 if ((host->flags & ATA_HOST_SIMPLEX) &&
4406 host->simplex_claimed && host->simplex_claimed != ap) {
4407 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4408 ata_dev_warn(dev,
4409 "simplex DMA is claimed by other device, disabling DMA\n");
4410 }
4411
4412 if (ap->flags & ATA_FLAG_NO_IORDY)
4413 xfer_mask &= ata_pio_mask_no_iordy(dev);
4414
4415 if (ap->ops->mode_filter)
4416 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4417
4418 /* Apply cable rule here. Don't apply it early because when
4419 * we handle hot plug the cable type can itself change.
4420 * Check this last so that we know if the transfer rate was
4421 * solely limited by the cable.
4422 * Unknown or 80 wire cables reported host side are checked
4423 * drive side as well. Cases where we know a 40wire cable
4424 * is used safely for 80 are not checked here.
4425 */
4426 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4427 /* UDMA/44 or higher would be available */
4428 if (cable_is_40wire(ap)) {
4429 ata_dev_warn(dev,
4430 "limited to UDMA/33 due to 40-wire cable\n");
4431 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4432 }
4433
4434 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4435 &dev->mwdma_mask, &dev->udma_mask);
4436 }
4437
4438 /**
4439 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4440 * @dev: Device to which command will be sent
4441 *
4442 * Issue SET FEATURES - XFER MODE command to device @dev
4443 * on port @ap.
4444 *
4445 * LOCKING:
4446 * PCI/etc. bus probe sem.
4447 *
4448 * RETURNS:
4449 * 0 on success, AC_ERR_* mask otherwise.
4450 */
4451
ata_dev_set_xfermode(struct ata_device * dev)4452 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4453 {
4454 struct ata_taskfile tf;
4455
4456 /* set up set-features taskfile */
4457 ata_dev_dbg(dev, "set features - xfer mode\n");
4458
4459 /* Some controllers and ATAPI devices show flaky interrupt
4460 * behavior after setting xfer mode. Use polling instead.
4461 */
4462 ata_tf_init(dev, &tf);
4463 tf.command = ATA_CMD_SET_FEATURES;
4464 tf.feature = SETFEATURES_XFER;
4465 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4466 tf.protocol = ATA_PROT_NODATA;
4467 /* If we are using IORDY we must send the mode setting command */
4468 if (ata_pio_need_iordy(dev))
4469 tf.nsect = dev->xfer_mode;
4470 /* If the device has IORDY and the controller does not - turn it off */
4471 else if (ata_id_has_iordy(dev->id))
4472 tf.nsect = 0x01;
4473 else /* In the ancient relic department - skip all of this */
4474 return 0;
4475
4476 /*
4477 * On some disks, this command causes spin-up, so we need longer
4478 * timeout.
4479 */
4480 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4481 }
4482
4483 /**
4484 * ata_dev_set_feature - Issue SET FEATURES
4485 * @dev: Device to which command will be sent
4486 * @subcmd: The SET FEATURES subcommand to be sent
4487 * @action: The sector count represents a subcommand specific action
4488 *
4489 * Issue SET FEATURES command to device @dev on port @ap with sector count
4490 *
4491 * LOCKING:
4492 * PCI/etc. bus probe sem.
4493 *
4494 * RETURNS:
4495 * 0 on success, AC_ERR_* mask otherwise.
4496 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4497 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4498 {
4499 struct ata_taskfile tf;
4500 unsigned int timeout = 0;
4501
4502 /* set up set-features taskfile */
4503 ata_dev_dbg(dev, "set features\n");
4504
4505 ata_tf_init(dev, &tf);
4506 tf.command = ATA_CMD_SET_FEATURES;
4507 tf.feature = subcmd;
4508 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4509 tf.protocol = ATA_PROT_NODATA;
4510 tf.nsect = action;
4511
4512 if (subcmd == SETFEATURES_SPINUP)
4513 timeout = ata_probe_timeout ?
4514 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4515
4516 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4517 }
4518 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4519
4520 /**
4521 * ata_dev_init_params - Issue INIT DEV PARAMS command
4522 * @dev: Device to which command will be sent
4523 * @heads: Number of heads (taskfile parameter)
4524 * @sectors: Number of sectors (taskfile parameter)
4525 *
4526 * LOCKING:
4527 * Kernel thread context (may sleep)
4528 *
4529 * RETURNS:
4530 * 0 on success, AC_ERR_* mask otherwise.
4531 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4532 static unsigned int ata_dev_init_params(struct ata_device *dev,
4533 u16 heads, u16 sectors)
4534 {
4535 struct ata_taskfile tf;
4536 unsigned int err_mask;
4537
4538 /* Number of sectors per track 1-255. Number of heads 1-16 */
4539 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4540 return AC_ERR_INVALID;
4541
4542 /* set up init dev params taskfile */
4543 ata_dev_dbg(dev, "init dev params \n");
4544
4545 ata_tf_init(dev, &tf);
4546 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4547 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4548 tf.protocol = ATA_PROT_NODATA;
4549 tf.nsect = sectors;
4550 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4551
4552 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4553 /* A clean abort indicates an original or just out of spec drive
4554 and we should continue as we issue the setup based on the
4555 drive reported working geometry */
4556 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4557 err_mask = 0;
4558
4559 return err_mask;
4560 }
4561
4562 /**
4563 * atapi_check_dma - Check whether ATAPI DMA can be supported
4564 * @qc: Metadata associated with taskfile to check
4565 *
4566 * Allow low-level driver to filter ATA PACKET commands, returning
4567 * a status indicating whether or not it is OK to use DMA for the
4568 * supplied PACKET command.
4569 *
4570 * LOCKING:
4571 * spin_lock_irqsave(host lock)
4572 *
4573 * RETURNS: 0 when ATAPI DMA can be used
4574 * nonzero otherwise
4575 */
atapi_check_dma(struct ata_queued_cmd * qc)4576 int atapi_check_dma(struct ata_queued_cmd *qc)
4577 {
4578 struct ata_port *ap = qc->ap;
4579
4580 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4581 * few ATAPI devices choke on such DMA requests.
4582 */
4583 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4584 unlikely(qc->nbytes & 15))
4585 return 1;
4586
4587 if (ap->ops->check_atapi_dma)
4588 return ap->ops->check_atapi_dma(qc);
4589
4590 return 0;
4591 }
4592
4593 /**
4594 * ata_std_qc_defer - Check whether a qc needs to be deferred
4595 * @qc: ATA command in question
4596 *
4597 * Non-NCQ commands cannot run with any other command, NCQ or
4598 * not. As upper layer only knows the queue depth, we are
4599 * responsible for maintaining exclusion. This function checks
4600 * whether a new command @qc can be issued.
4601 *
4602 * LOCKING:
4603 * spin_lock_irqsave(host lock)
4604 *
4605 * RETURNS:
4606 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4607 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4608 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4609 {
4610 struct ata_link *link = qc->dev->link;
4611
4612 if (ata_is_ncq(qc->tf.protocol)) {
4613 if (!ata_tag_valid(link->active_tag))
4614 return 0;
4615 } else {
4616 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4617 return 0;
4618 }
4619
4620 return ATA_DEFER_LINK;
4621 }
4622 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4623
ata_noop_qc_prep(struct ata_queued_cmd * qc)4624 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4625 {
4626 return AC_ERR_OK;
4627 }
4628 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4629
4630 /**
4631 * ata_sg_init - Associate command with scatter-gather table.
4632 * @qc: Command to be associated
4633 * @sg: Scatter-gather table.
4634 * @n_elem: Number of elements in s/g table.
4635 *
4636 * Initialize the data-related elements of queued_cmd @qc
4637 * to point to a scatter-gather table @sg, containing @n_elem
4638 * elements.
4639 *
4640 * LOCKING:
4641 * spin_lock_irqsave(host lock)
4642 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4643 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4644 unsigned int n_elem)
4645 {
4646 qc->sg = sg;
4647 qc->n_elem = n_elem;
4648 qc->cursg = qc->sg;
4649 }
4650
4651 #ifdef CONFIG_HAS_DMA
4652
4653 /**
4654 * ata_sg_clean - Unmap DMA memory associated with command
4655 * @qc: Command containing DMA memory to be released
4656 *
4657 * Unmap all mapped DMA memory associated with this command.
4658 *
4659 * LOCKING:
4660 * spin_lock_irqsave(host lock)
4661 */
ata_sg_clean(struct ata_queued_cmd * qc)4662 static void ata_sg_clean(struct ata_queued_cmd *qc)
4663 {
4664 struct ata_port *ap = qc->ap;
4665 struct scatterlist *sg = qc->sg;
4666 int dir = qc->dma_dir;
4667
4668 WARN_ON_ONCE(sg == NULL);
4669
4670 if (qc->n_elem)
4671 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4672
4673 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4674 qc->sg = NULL;
4675 }
4676
4677 /**
4678 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4679 * @qc: Command with scatter-gather table to be mapped.
4680 *
4681 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4682 *
4683 * LOCKING:
4684 * spin_lock_irqsave(host lock)
4685 *
4686 * RETURNS:
4687 * Zero on success, negative on error.
4688 *
4689 */
ata_sg_setup(struct ata_queued_cmd * qc)4690 static int ata_sg_setup(struct ata_queued_cmd *qc)
4691 {
4692 struct ata_port *ap = qc->ap;
4693 unsigned int n_elem;
4694
4695 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4696 if (n_elem < 1)
4697 return -1;
4698
4699 qc->orig_n_elem = qc->n_elem;
4700 qc->n_elem = n_elem;
4701 qc->flags |= ATA_QCFLAG_DMAMAP;
4702
4703 return 0;
4704 }
4705
4706 #else /* !CONFIG_HAS_DMA */
4707
ata_sg_clean(struct ata_queued_cmd * qc)4708 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4709 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4710
4711 #endif /* !CONFIG_HAS_DMA */
4712
4713 /**
4714 * swap_buf_le16 - swap halves of 16-bit words in place
4715 * @buf: Buffer to swap
4716 * @buf_words: Number of 16-bit words in buffer.
4717 *
4718 * Swap halves of 16-bit words if needed to convert from
4719 * little-endian byte order to native cpu byte order, or
4720 * vice-versa.
4721 *
4722 * LOCKING:
4723 * Inherited from caller.
4724 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4725 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4726 {
4727 #ifdef __BIG_ENDIAN
4728 unsigned int i;
4729
4730 for (i = 0; i < buf_words; i++)
4731 buf[i] = le16_to_cpu(buf[i]);
4732 #endif /* __BIG_ENDIAN */
4733 }
4734
4735 /**
4736 * ata_qc_free - free unused ata_queued_cmd
4737 * @qc: Command to complete
4738 *
4739 * Designed to free unused ata_queued_cmd object
4740 * in case something prevents using it.
4741 *
4742 * LOCKING:
4743 * spin_lock_irqsave(host lock)
4744 */
ata_qc_free(struct ata_queued_cmd * qc)4745 void ata_qc_free(struct ata_queued_cmd *qc)
4746 {
4747 qc->flags = 0;
4748 if (ata_tag_valid(qc->tag))
4749 qc->tag = ATA_TAG_POISON;
4750 }
4751
__ata_qc_complete(struct ata_queued_cmd * qc)4752 void __ata_qc_complete(struct ata_queued_cmd *qc)
4753 {
4754 struct ata_port *ap;
4755 struct ata_link *link;
4756
4757 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4758 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4759 ap = qc->ap;
4760 link = qc->dev->link;
4761
4762 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4763 ata_sg_clean(qc);
4764
4765 /* command should be marked inactive atomically with qc completion */
4766 if (ata_is_ncq(qc->tf.protocol)) {
4767 link->sactive &= ~(1 << qc->hw_tag);
4768 if (!link->sactive)
4769 ap->nr_active_links--;
4770 } else {
4771 link->active_tag = ATA_TAG_POISON;
4772 ap->nr_active_links--;
4773 }
4774
4775 /* clear exclusive status */
4776 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4777 ap->excl_link == link))
4778 ap->excl_link = NULL;
4779
4780 /* atapi: mark qc as inactive to prevent the interrupt handler
4781 * from completing the command twice later, before the error handler
4782 * is called. (when rc != 0 and atapi request sense is needed)
4783 */
4784 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4785 ap->qc_active &= ~(1ULL << qc->tag);
4786
4787 /* call completion callback */
4788 qc->complete_fn(qc);
4789 }
4790
fill_result_tf(struct ata_queued_cmd * qc)4791 static void fill_result_tf(struct ata_queued_cmd *qc)
4792 {
4793 struct ata_port *ap = qc->ap;
4794
4795 qc->result_tf.flags = qc->tf.flags;
4796 ap->ops->qc_fill_rtf(qc);
4797 }
4798
ata_verify_xfer(struct ata_queued_cmd * qc)4799 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4800 {
4801 struct ata_device *dev = qc->dev;
4802
4803 if (!ata_is_data(qc->tf.protocol))
4804 return;
4805
4806 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4807 return;
4808
4809 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4810 }
4811
4812 /**
4813 * ata_qc_complete - Complete an active ATA command
4814 * @qc: Command to complete
4815 *
4816 * Indicate to the mid and upper layers that an ATA command has
4817 * completed, with either an ok or not-ok status.
4818 *
4819 * Refrain from calling this function multiple times when
4820 * successfully completing multiple NCQ commands.
4821 * ata_qc_complete_multiple() should be used instead, which will
4822 * properly update IRQ expect state.
4823 *
4824 * LOCKING:
4825 * spin_lock_irqsave(host lock)
4826 */
ata_qc_complete(struct ata_queued_cmd * qc)4827 void ata_qc_complete(struct ata_queued_cmd *qc)
4828 {
4829 struct ata_port *ap = qc->ap;
4830 struct ata_device *dev = qc->dev;
4831 struct ata_eh_info *ehi = &dev->link->eh_info;
4832
4833 /* Trigger the LED (if available) */
4834 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4835
4836 /*
4837 * In order to synchronize EH with the regular execution path, a qc that
4838 * is owned by EH is marked with ATA_QCFLAG_EH.
4839 *
4840 * The normal execution path is responsible for not accessing a qc owned
4841 * by EH. libata core enforces the rule by returning NULL from
4842 * ata_qc_from_tag() for qcs owned by EH.
4843 */
4844 if (unlikely(qc->err_mask))
4845 qc->flags |= ATA_QCFLAG_EH;
4846
4847 /*
4848 * Finish internal commands without any further processing and always
4849 * with the result TF filled.
4850 */
4851 if (unlikely(ata_tag_internal(qc->tag))) {
4852 fill_result_tf(qc);
4853 trace_ata_qc_complete_internal(qc);
4854 __ata_qc_complete(qc);
4855 return;
4856 }
4857
4858 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4859 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4860 fill_result_tf(qc);
4861 trace_ata_qc_complete_failed(qc);
4862 ata_qc_schedule_eh(qc);
4863 return;
4864 }
4865
4866 WARN_ON_ONCE(ata_port_is_frozen(ap));
4867
4868 /* read result TF if requested */
4869 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4870 fill_result_tf(qc);
4871
4872 trace_ata_qc_complete_done(qc);
4873
4874 /*
4875 * For CDL commands that completed without an error, check if we have
4876 * sense data (ATA_SENSE is set). If we do, then the command may have
4877 * been aborted by the device due to a limit timeout using the policy
4878 * 0xD. For these commands, invoke EH to get the command sense data.
4879 */
4880 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4881 qc->result_tf.status & ATA_SENSE) {
4882 /*
4883 * Tell SCSI EH to not overwrite scmd->result even if this
4884 * command is finished with result SAM_STAT_GOOD.
4885 */
4886 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4887 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4888 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4889
4890 /*
4891 * set pending so that ata_qc_schedule_eh() does not trigger
4892 * fast drain, and freeze the port.
4893 */
4894 ap->pflags |= ATA_PFLAG_EH_PENDING;
4895 ata_qc_schedule_eh(qc);
4896 return;
4897 }
4898
4899 /* Some commands need post-processing after successful completion. */
4900 switch (qc->tf.command) {
4901 case ATA_CMD_SET_FEATURES:
4902 if (qc->tf.feature != SETFEATURES_WC_ON &&
4903 qc->tf.feature != SETFEATURES_WC_OFF &&
4904 qc->tf.feature != SETFEATURES_RA_ON &&
4905 qc->tf.feature != SETFEATURES_RA_OFF)
4906 break;
4907 fallthrough;
4908 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4909 case ATA_CMD_SET_MULTI: /* multi_count changed */
4910 /* revalidate device */
4911 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4912 ata_port_schedule_eh(ap);
4913 break;
4914
4915 case ATA_CMD_SLEEP:
4916 dev->flags |= ATA_DFLAG_SLEEPING;
4917 break;
4918 }
4919
4920 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4921 ata_verify_xfer(qc);
4922
4923 __ata_qc_complete(qc);
4924 }
4925 EXPORT_SYMBOL_GPL(ata_qc_complete);
4926
4927 /**
4928 * ata_qc_get_active - get bitmask of active qcs
4929 * @ap: port in question
4930 *
4931 * LOCKING:
4932 * spin_lock_irqsave(host lock)
4933 *
4934 * RETURNS:
4935 * Bitmask of active qcs
4936 */
ata_qc_get_active(struct ata_port * ap)4937 u64 ata_qc_get_active(struct ata_port *ap)
4938 {
4939 u64 qc_active = ap->qc_active;
4940
4941 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4942 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4943 qc_active |= (1 << 0);
4944 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4945 }
4946
4947 return qc_active;
4948 }
4949 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4950
4951 /**
4952 * ata_qc_issue - issue taskfile to device
4953 * @qc: command to issue to device
4954 *
4955 * Prepare an ATA command to submission to device.
4956 * This includes mapping the data into a DMA-able
4957 * area, filling in the S/G table, and finally
4958 * writing the taskfile to hardware, starting the command.
4959 *
4960 * LOCKING:
4961 * spin_lock_irqsave(host lock)
4962 */
ata_qc_issue(struct ata_queued_cmd * qc)4963 void ata_qc_issue(struct ata_queued_cmd *qc)
4964 {
4965 struct ata_port *ap = qc->ap;
4966 struct ata_link *link = qc->dev->link;
4967 u8 prot = qc->tf.protocol;
4968
4969 /* Make sure only one non-NCQ command is outstanding. */
4970 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4971
4972 if (ata_is_ncq(prot)) {
4973 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4974
4975 if (!link->sactive)
4976 ap->nr_active_links++;
4977 link->sactive |= 1 << qc->hw_tag;
4978 } else {
4979 WARN_ON_ONCE(link->sactive);
4980
4981 ap->nr_active_links++;
4982 link->active_tag = qc->tag;
4983 }
4984
4985 qc->flags |= ATA_QCFLAG_ACTIVE;
4986 ap->qc_active |= 1ULL << qc->tag;
4987
4988 /*
4989 * We guarantee to LLDs that they will have at least one
4990 * non-zero sg if the command is a data command.
4991 */
4992 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4993 goto sys_err;
4994
4995 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4996 (ap->flags & ATA_FLAG_PIO_DMA)))
4997 if (ata_sg_setup(qc))
4998 goto sys_err;
4999
5000 /* if device is sleeping, schedule reset and abort the link */
5001 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5002 link->eh_info.action |= ATA_EH_RESET;
5003 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5004 ata_link_abort(link);
5005 return;
5006 }
5007
5008 trace_ata_qc_prep(qc);
5009 qc->err_mask |= ap->ops->qc_prep(qc);
5010 if (unlikely(qc->err_mask))
5011 goto err;
5012 trace_ata_qc_issue(qc);
5013 qc->err_mask |= ap->ops->qc_issue(qc);
5014 if (unlikely(qc->err_mask))
5015 goto err;
5016 return;
5017
5018 sys_err:
5019 qc->err_mask |= AC_ERR_SYSTEM;
5020 err:
5021 ata_qc_complete(qc);
5022 }
5023
5024 /**
5025 * ata_phys_link_online - test whether the given link is online
5026 * @link: ATA link to test
5027 *
5028 * Test whether @link is online. Note that this function returns
5029 * 0 if online status of @link cannot be obtained, so
5030 * ata_link_online(link) != !ata_link_offline(link).
5031 *
5032 * LOCKING:
5033 * None.
5034 *
5035 * RETURNS:
5036 * True if the port online status is available and online.
5037 */
ata_phys_link_online(struct ata_link * link)5038 bool ata_phys_link_online(struct ata_link *link)
5039 {
5040 u32 sstatus;
5041
5042 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5043 ata_sstatus_online(sstatus))
5044 return true;
5045 return false;
5046 }
5047
5048 /**
5049 * ata_phys_link_offline - test whether the given link is offline
5050 * @link: ATA link to test
5051 *
5052 * Test whether @link is offline. Note that this function
5053 * returns 0 if offline status of @link cannot be obtained, so
5054 * ata_link_online(link) != !ata_link_offline(link).
5055 *
5056 * LOCKING:
5057 * None.
5058 *
5059 * RETURNS:
5060 * True if the port offline status is available and offline.
5061 */
ata_phys_link_offline(struct ata_link * link)5062 bool ata_phys_link_offline(struct ata_link *link)
5063 {
5064 u32 sstatus;
5065
5066 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5067 !ata_sstatus_online(sstatus))
5068 return true;
5069 return false;
5070 }
5071
5072 /**
5073 * ata_link_online - test whether the given link is online
5074 * @link: ATA link to test
5075 *
5076 * Test whether @link is online. This is identical to
5077 * ata_phys_link_online() when there's no slave link. When
5078 * there's a slave link, this function should only be called on
5079 * the master link and will return true if any of M/S links is
5080 * online.
5081 *
5082 * LOCKING:
5083 * None.
5084 *
5085 * RETURNS:
5086 * True if the port online status is available and online.
5087 */
ata_link_online(struct ata_link * link)5088 bool ata_link_online(struct ata_link *link)
5089 {
5090 struct ata_link *slave = link->ap->slave_link;
5091
5092 WARN_ON(link == slave); /* shouldn't be called on slave link */
5093
5094 return ata_phys_link_online(link) ||
5095 (slave && ata_phys_link_online(slave));
5096 }
5097 EXPORT_SYMBOL_GPL(ata_link_online);
5098
5099 /**
5100 * ata_link_offline - test whether the given link is offline
5101 * @link: ATA link to test
5102 *
5103 * Test whether @link is offline. This is identical to
5104 * ata_phys_link_offline() when there's no slave link. When
5105 * there's a slave link, this function should only be called on
5106 * the master link and will return true if both M/S links are
5107 * offline.
5108 *
5109 * LOCKING:
5110 * None.
5111 *
5112 * RETURNS:
5113 * True if the port offline status is available and offline.
5114 */
ata_link_offline(struct ata_link * link)5115 bool ata_link_offline(struct ata_link *link)
5116 {
5117 struct ata_link *slave = link->ap->slave_link;
5118
5119 WARN_ON(link == slave); /* shouldn't be called on slave link */
5120
5121 return ata_phys_link_offline(link) &&
5122 (!slave || ata_phys_link_offline(slave));
5123 }
5124 EXPORT_SYMBOL_GPL(ata_link_offline);
5125
5126 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5127 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5128 unsigned int action, unsigned int ehi_flags,
5129 bool async)
5130 {
5131 struct ata_link *link;
5132 unsigned long flags;
5133
5134 spin_lock_irqsave(ap->lock, flags);
5135
5136 /*
5137 * A previous PM operation might still be in progress. Wait for
5138 * ATA_PFLAG_PM_PENDING to clear.
5139 */
5140 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5141 spin_unlock_irqrestore(ap->lock, flags);
5142 ata_port_wait_eh(ap);
5143 spin_lock_irqsave(ap->lock, flags);
5144 }
5145
5146 /* Request PM operation to EH */
5147 ap->pm_mesg = mesg;
5148 ap->pflags |= ATA_PFLAG_PM_PENDING;
5149 ata_for_each_link(link, ap, HOST_FIRST) {
5150 link->eh_info.action |= action;
5151 link->eh_info.flags |= ehi_flags;
5152 }
5153
5154 ata_port_schedule_eh(ap);
5155
5156 spin_unlock_irqrestore(ap->lock, flags);
5157
5158 if (!async)
5159 ata_port_wait_eh(ap);
5160 }
5161
5162 /*
5163 * On some hardware, device fails to respond after spun down for suspend. As
5164 * the device won't be used before being resumed, we don't need to touch the
5165 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5166 *
5167 * http://thread.gmane.org/gmane.linux.ide/46764
5168 */
5169 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5170 | ATA_EHI_NO_AUTOPSY
5171 | ATA_EHI_NO_RECOVERY;
5172
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5173 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5174 {
5175 /*
5176 * We are about to suspend the port, so we do not care about
5177 * scsi_rescan_device() calls scheduled by previous resume operations.
5178 * The next resume will schedule the rescan again. So cancel any rescan
5179 * that is not done yet.
5180 */
5181 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5182
5183 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5184 }
5185
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5186 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5187 {
5188 /*
5189 * We are about to suspend the port, so we do not care about
5190 * scsi_rescan_device() calls scheduled by previous resume operations.
5191 * The next resume will schedule the rescan again. So cancel any rescan
5192 * that is not done yet.
5193 */
5194 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5195
5196 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5197 }
5198
ata_port_pm_suspend(struct device * dev)5199 static int ata_port_pm_suspend(struct device *dev)
5200 {
5201 struct ata_port *ap = to_ata_port(dev);
5202
5203 if (pm_runtime_suspended(dev))
5204 return 0;
5205
5206 ata_port_suspend(ap, PMSG_SUSPEND);
5207 return 0;
5208 }
5209
ata_port_pm_freeze(struct device * dev)5210 static int ata_port_pm_freeze(struct device *dev)
5211 {
5212 struct ata_port *ap = to_ata_port(dev);
5213
5214 if (pm_runtime_suspended(dev))
5215 return 0;
5216
5217 ata_port_suspend(ap, PMSG_FREEZE);
5218 return 0;
5219 }
5220
ata_port_pm_poweroff(struct device * dev)5221 static int ata_port_pm_poweroff(struct device *dev)
5222 {
5223 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5224 return 0;
5225 }
5226
5227 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5228 | ATA_EHI_QUIET;
5229
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5230 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5231 {
5232 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5233 }
5234
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5235 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5236 {
5237 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5238 }
5239
ata_port_pm_resume(struct device * dev)5240 static int ata_port_pm_resume(struct device *dev)
5241 {
5242 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5243 pm_runtime_disable(dev);
5244 pm_runtime_set_active(dev);
5245 pm_runtime_enable(dev);
5246 return 0;
5247 }
5248
5249 /*
5250 * For ODDs, the upper layer will poll for media change every few seconds,
5251 * which will make it enter and leave suspend state every few seconds. And
5252 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5253 * is very little and the ODD may malfunction after constantly being reset.
5254 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5255 * ODD is attached to the port.
5256 */
ata_port_runtime_idle(struct device * dev)5257 static int ata_port_runtime_idle(struct device *dev)
5258 {
5259 struct ata_port *ap = to_ata_port(dev);
5260 struct ata_link *link;
5261 struct ata_device *adev;
5262
5263 ata_for_each_link(link, ap, HOST_FIRST) {
5264 ata_for_each_dev(adev, link, ENABLED)
5265 if (adev->class == ATA_DEV_ATAPI &&
5266 !zpodd_dev_enabled(adev))
5267 return -EBUSY;
5268 }
5269
5270 return 0;
5271 }
5272
ata_port_runtime_suspend(struct device * dev)5273 static int ata_port_runtime_suspend(struct device *dev)
5274 {
5275 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5276 return 0;
5277 }
5278
ata_port_runtime_resume(struct device * dev)5279 static int ata_port_runtime_resume(struct device *dev)
5280 {
5281 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5282 return 0;
5283 }
5284
5285 static const struct dev_pm_ops ata_port_pm_ops = {
5286 .suspend = ata_port_pm_suspend,
5287 .resume = ata_port_pm_resume,
5288 .freeze = ata_port_pm_freeze,
5289 .thaw = ata_port_pm_resume,
5290 .poweroff = ata_port_pm_poweroff,
5291 .restore = ata_port_pm_resume,
5292
5293 .runtime_suspend = ata_port_runtime_suspend,
5294 .runtime_resume = ata_port_runtime_resume,
5295 .runtime_idle = ata_port_runtime_idle,
5296 };
5297
5298 /* sas ports don't participate in pm runtime management of ata_ports,
5299 * and need to resume ata devices at the domain level, not the per-port
5300 * level. sas suspend/resume is async to allow parallel port recovery
5301 * since sas has multiple ata_port instances per Scsi_Host.
5302 */
ata_sas_port_suspend(struct ata_port * ap)5303 void ata_sas_port_suspend(struct ata_port *ap)
5304 {
5305 ata_port_suspend_async(ap, PMSG_SUSPEND);
5306 }
5307 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5308
ata_sas_port_resume(struct ata_port * ap)5309 void ata_sas_port_resume(struct ata_port *ap)
5310 {
5311 ata_port_resume_async(ap, PMSG_RESUME);
5312 }
5313 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5314
5315 /**
5316 * ata_host_suspend - suspend host
5317 * @host: host to suspend
5318 * @mesg: PM message
5319 *
5320 * Suspend @host. Actual operation is performed by port suspend.
5321 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5322 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5323 {
5324 host->dev->power.power_state = mesg;
5325 }
5326 EXPORT_SYMBOL_GPL(ata_host_suspend);
5327
5328 /**
5329 * ata_host_resume - resume host
5330 * @host: host to resume
5331 *
5332 * Resume @host. Actual operation is performed by port resume.
5333 */
ata_host_resume(struct ata_host * host)5334 void ata_host_resume(struct ata_host *host)
5335 {
5336 host->dev->power.power_state = PMSG_ON;
5337 }
5338 EXPORT_SYMBOL_GPL(ata_host_resume);
5339 #endif
5340
5341 const struct device_type ata_port_type = {
5342 .name = ATA_PORT_TYPE_NAME,
5343 #ifdef CONFIG_PM
5344 .pm = &ata_port_pm_ops,
5345 #endif
5346 };
5347
5348 /**
5349 * ata_dev_init - Initialize an ata_device structure
5350 * @dev: Device structure to initialize
5351 *
5352 * Initialize @dev in preparation for probing.
5353 *
5354 * LOCKING:
5355 * Inherited from caller.
5356 */
ata_dev_init(struct ata_device * dev)5357 void ata_dev_init(struct ata_device *dev)
5358 {
5359 struct ata_link *link = ata_dev_phys_link(dev);
5360 struct ata_port *ap = link->ap;
5361 unsigned long flags;
5362
5363 /* SATA spd limit is bound to the attached device, reset together */
5364 link->sata_spd_limit = link->hw_sata_spd_limit;
5365 link->sata_spd = 0;
5366
5367 /* High bits of dev->flags are used to record warm plug
5368 * requests which occur asynchronously. Synchronize using
5369 * host lock.
5370 */
5371 spin_lock_irqsave(ap->lock, flags);
5372 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5373 dev->horkage = 0;
5374 spin_unlock_irqrestore(ap->lock, flags);
5375
5376 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5377 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5378 dev->pio_mask = UINT_MAX;
5379 dev->mwdma_mask = UINT_MAX;
5380 dev->udma_mask = UINT_MAX;
5381 }
5382
5383 /**
5384 * ata_link_init - Initialize an ata_link structure
5385 * @ap: ATA port link is attached to
5386 * @link: Link structure to initialize
5387 * @pmp: Port multiplier port number
5388 *
5389 * Initialize @link.
5390 *
5391 * LOCKING:
5392 * Kernel thread context (may sleep)
5393 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5394 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5395 {
5396 int i;
5397
5398 /* clear everything except for devices */
5399 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5400 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5401
5402 link->ap = ap;
5403 link->pmp = pmp;
5404 link->active_tag = ATA_TAG_POISON;
5405 link->hw_sata_spd_limit = UINT_MAX;
5406
5407 /* can't use iterator, ap isn't initialized yet */
5408 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5409 struct ata_device *dev = &link->device[i];
5410
5411 dev->link = link;
5412 dev->devno = dev - link->device;
5413 #ifdef CONFIG_ATA_ACPI
5414 dev->gtf_filter = ata_acpi_gtf_filter;
5415 #endif
5416 ata_dev_init(dev);
5417 }
5418 }
5419
5420 /**
5421 * sata_link_init_spd - Initialize link->sata_spd_limit
5422 * @link: Link to configure sata_spd_limit for
5423 *
5424 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5425 * configured value.
5426 *
5427 * LOCKING:
5428 * Kernel thread context (may sleep).
5429 *
5430 * RETURNS:
5431 * 0 on success, -errno on failure.
5432 */
sata_link_init_spd(struct ata_link * link)5433 int sata_link_init_spd(struct ata_link *link)
5434 {
5435 u8 spd;
5436 int rc;
5437
5438 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5439 if (rc)
5440 return rc;
5441
5442 spd = (link->saved_scontrol >> 4) & 0xf;
5443 if (spd)
5444 link->hw_sata_spd_limit &= (1 << spd) - 1;
5445
5446 ata_force_link_limits(link);
5447
5448 link->sata_spd_limit = link->hw_sata_spd_limit;
5449
5450 return 0;
5451 }
5452
5453 /**
5454 * ata_port_alloc - allocate and initialize basic ATA port resources
5455 * @host: ATA host this allocated port belongs to
5456 *
5457 * Allocate and initialize basic ATA port resources.
5458 *
5459 * RETURNS:
5460 * Allocate ATA port on success, NULL on failure.
5461 *
5462 * LOCKING:
5463 * Inherited from calling layer (may sleep).
5464 */
ata_port_alloc(struct ata_host * host)5465 struct ata_port *ata_port_alloc(struct ata_host *host)
5466 {
5467 struct ata_port *ap;
5468
5469 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5470 if (!ap)
5471 return NULL;
5472
5473 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5474 ap->lock = &host->lock;
5475 ap->print_id = -1;
5476 ap->local_port_no = -1;
5477 ap->host = host;
5478 ap->dev = host->dev;
5479
5480 mutex_init(&ap->scsi_scan_mutex);
5481 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5482 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5483 INIT_LIST_HEAD(&ap->eh_done_q);
5484 init_waitqueue_head(&ap->eh_wait_q);
5485 init_completion(&ap->park_req_pending);
5486 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5487 TIMER_DEFERRABLE);
5488
5489 ap->cbl = ATA_CBL_NONE;
5490
5491 ata_link_init(ap, &ap->link, 0);
5492
5493 #ifdef ATA_IRQ_TRAP
5494 ap->stats.unhandled_irq = 1;
5495 ap->stats.idle_irq = 1;
5496 #endif
5497 ata_sff_port_init(ap);
5498
5499 return ap;
5500 }
5501
ata_port_free(struct ata_port * ap)5502 void ata_port_free(struct ata_port *ap)
5503 {
5504 if (!ap)
5505 return;
5506
5507 kfree(ap->pmp_link);
5508 kfree(ap->slave_link);
5509 kfree(ap->ncq_sense_buf);
5510 kfree(ap);
5511 }
5512 EXPORT_SYMBOL_GPL(ata_port_free);
5513
ata_devres_release(struct device * gendev,void * res)5514 static void ata_devres_release(struct device *gendev, void *res)
5515 {
5516 struct ata_host *host = dev_get_drvdata(gendev);
5517 int i;
5518
5519 for (i = 0; i < host->n_ports; i++) {
5520 struct ata_port *ap = host->ports[i];
5521
5522 if (!ap)
5523 continue;
5524
5525 if (ap->scsi_host)
5526 scsi_host_put(ap->scsi_host);
5527
5528 }
5529
5530 dev_set_drvdata(gendev, NULL);
5531 ata_host_put(host);
5532 }
5533
ata_host_release(struct kref * kref)5534 static void ata_host_release(struct kref *kref)
5535 {
5536 struct ata_host *host = container_of(kref, struct ata_host, kref);
5537 int i;
5538
5539 for (i = 0; i < host->n_ports; i++) {
5540 ata_port_free(host->ports[i]);
5541 host->ports[i] = NULL;
5542 }
5543 kfree(host);
5544 }
5545
ata_host_get(struct ata_host * host)5546 void ata_host_get(struct ata_host *host)
5547 {
5548 kref_get(&host->kref);
5549 }
5550
ata_host_put(struct ata_host * host)5551 void ata_host_put(struct ata_host *host)
5552 {
5553 kref_put(&host->kref, ata_host_release);
5554 }
5555 EXPORT_SYMBOL_GPL(ata_host_put);
5556
5557 /**
5558 * ata_host_alloc - allocate and init basic ATA host resources
5559 * @dev: generic device this host is associated with
5560 * @max_ports: maximum number of ATA ports associated with this host
5561 *
5562 * Allocate and initialize basic ATA host resources. LLD calls
5563 * this function to allocate a host, initializes it fully and
5564 * attaches it using ata_host_register().
5565 *
5566 * @max_ports ports are allocated and host->n_ports is
5567 * initialized to @max_ports. The caller is allowed to decrease
5568 * host->n_ports before calling ata_host_register(). The unused
5569 * ports will be automatically freed on registration.
5570 *
5571 * RETURNS:
5572 * Allocate ATA host on success, NULL on failure.
5573 *
5574 * LOCKING:
5575 * Inherited from calling layer (may sleep).
5576 */
ata_host_alloc(struct device * dev,int max_ports)5577 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5578 {
5579 struct ata_host *host;
5580 size_t sz;
5581 int i;
5582 void *dr;
5583
5584 /* alloc a container for our list of ATA ports (buses) */
5585 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5586 host = kzalloc(sz, GFP_KERNEL);
5587 if (!host)
5588 return NULL;
5589
5590 if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5591 kfree(host);
5592 return NULL;
5593 }
5594
5595 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5596 if (!dr)
5597 goto err_out;
5598
5599 devres_add(dev, dr);
5600 dev_set_drvdata(dev, host);
5601
5602 spin_lock_init(&host->lock);
5603 mutex_init(&host->eh_mutex);
5604 host->dev = dev;
5605 host->n_ports = max_ports;
5606 kref_init(&host->kref);
5607
5608 /* allocate ports bound to this host */
5609 for (i = 0; i < max_ports; i++) {
5610 struct ata_port *ap;
5611
5612 ap = ata_port_alloc(host);
5613 if (!ap)
5614 goto err_out;
5615
5616 ap->port_no = i;
5617 host->ports[i] = ap;
5618 }
5619
5620 devres_remove_group(dev, NULL);
5621 return host;
5622
5623 err_out:
5624 devres_release_group(dev, NULL);
5625 return NULL;
5626 }
5627 EXPORT_SYMBOL_GPL(ata_host_alloc);
5628
5629 /**
5630 * ata_host_alloc_pinfo - alloc host and init with port_info array
5631 * @dev: generic device this host is associated with
5632 * @ppi: array of ATA port_info to initialize host with
5633 * @n_ports: number of ATA ports attached to this host
5634 *
5635 * Allocate ATA host and initialize with info from @ppi. If NULL
5636 * terminated, @ppi may contain fewer entries than @n_ports. The
5637 * last entry will be used for the remaining ports.
5638 *
5639 * RETURNS:
5640 * Allocate ATA host on success, NULL on failure.
5641 *
5642 * LOCKING:
5643 * Inherited from calling layer (may sleep).
5644 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5645 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5646 const struct ata_port_info * const * ppi,
5647 int n_ports)
5648 {
5649 const struct ata_port_info *pi = &ata_dummy_port_info;
5650 struct ata_host *host;
5651 int i, j;
5652
5653 host = ata_host_alloc(dev, n_ports);
5654 if (!host)
5655 return NULL;
5656
5657 for (i = 0, j = 0; i < host->n_ports; i++) {
5658 struct ata_port *ap = host->ports[i];
5659
5660 if (ppi[j])
5661 pi = ppi[j++];
5662
5663 ap->pio_mask = pi->pio_mask;
5664 ap->mwdma_mask = pi->mwdma_mask;
5665 ap->udma_mask = pi->udma_mask;
5666 ap->flags |= pi->flags;
5667 ap->link.flags |= pi->link_flags;
5668 ap->ops = pi->port_ops;
5669
5670 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5671 host->ops = pi->port_ops;
5672 }
5673
5674 return host;
5675 }
5676 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5677
ata_host_stop(struct device * gendev,void * res)5678 static void ata_host_stop(struct device *gendev, void *res)
5679 {
5680 struct ata_host *host = dev_get_drvdata(gendev);
5681 int i;
5682
5683 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5684
5685 for (i = 0; i < host->n_ports; i++) {
5686 struct ata_port *ap = host->ports[i];
5687
5688 if (ap->ops->port_stop)
5689 ap->ops->port_stop(ap);
5690 }
5691
5692 if (host->ops->host_stop)
5693 host->ops->host_stop(host);
5694 }
5695
5696 /**
5697 * ata_finalize_port_ops - finalize ata_port_operations
5698 * @ops: ata_port_operations to finalize
5699 *
5700 * An ata_port_operations can inherit from another ops and that
5701 * ops can again inherit from another. This can go on as many
5702 * times as necessary as long as there is no loop in the
5703 * inheritance chain.
5704 *
5705 * Ops tables are finalized when the host is started. NULL or
5706 * unspecified entries are inherited from the closet ancestor
5707 * which has the method and the entry is populated with it.
5708 * After finalization, the ops table directly points to all the
5709 * methods and ->inherits is no longer necessary and cleared.
5710 *
5711 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5712 *
5713 * LOCKING:
5714 * None.
5715 */
ata_finalize_port_ops(struct ata_port_operations * ops)5716 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5717 {
5718 static DEFINE_SPINLOCK(lock);
5719 const struct ata_port_operations *cur;
5720 void **begin = (void **)ops;
5721 void **end = (void **)&ops->inherits;
5722 void **pp;
5723
5724 if (!ops || !ops->inherits)
5725 return;
5726
5727 spin_lock(&lock);
5728
5729 for (cur = ops->inherits; cur; cur = cur->inherits) {
5730 void **inherit = (void **)cur;
5731
5732 for (pp = begin; pp < end; pp++, inherit++)
5733 if (!*pp)
5734 *pp = *inherit;
5735 }
5736
5737 for (pp = begin; pp < end; pp++)
5738 if (IS_ERR(*pp))
5739 *pp = NULL;
5740
5741 ops->inherits = NULL;
5742
5743 spin_unlock(&lock);
5744 }
5745
5746 /**
5747 * ata_host_start - start and freeze ports of an ATA host
5748 * @host: ATA host to start ports for
5749 *
5750 * Start and then freeze ports of @host. Started status is
5751 * recorded in host->flags, so this function can be called
5752 * multiple times. Ports are guaranteed to get started only
5753 * once. If host->ops is not initialized yet, it is set to the
5754 * first non-dummy port ops.
5755 *
5756 * LOCKING:
5757 * Inherited from calling layer (may sleep).
5758 *
5759 * RETURNS:
5760 * 0 if all ports are started successfully, -errno otherwise.
5761 */
ata_host_start(struct ata_host * host)5762 int ata_host_start(struct ata_host *host)
5763 {
5764 int have_stop = 0;
5765 void *start_dr = NULL;
5766 int i, rc;
5767
5768 if (host->flags & ATA_HOST_STARTED)
5769 return 0;
5770
5771 ata_finalize_port_ops(host->ops);
5772
5773 for (i = 0; i < host->n_ports; i++) {
5774 struct ata_port *ap = host->ports[i];
5775
5776 ata_finalize_port_ops(ap->ops);
5777
5778 if (!host->ops && !ata_port_is_dummy(ap))
5779 host->ops = ap->ops;
5780
5781 if (ap->ops->port_stop)
5782 have_stop = 1;
5783 }
5784
5785 if (host->ops && host->ops->host_stop)
5786 have_stop = 1;
5787
5788 if (have_stop) {
5789 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5790 if (!start_dr)
5791 return -ENOMEM;
5792 }
5793
5794 for (i = 0; i < host->n_ports; i++) {
5795 struct ata_port *ap = host->ports[i];
5796
5797 if (ap->ops->port_start) {
5798 rc = ap->ops->port_start(ap);
5799 if (rc) {
5800 if (rc != -ENODEV)
5801 dev_err(host->dev,
5802 "failed to start port %d (errno=%d)\n",
5803 i, rc);
5804 goto err_out;
5805 }
5806 }
5807 ata_eh_freeze_port(ap);
5808 }
5809
5810 if (start_dr)
5811 devres_add(host->dev, start_dr);
5812 host->flags |= ATA_HOST_STARTED;
5813 return 0;
5814
5815 err_out:
5816 while (--i >= 0) {
5817 struct ata_port *ap = host->ports[i];
5818
5819 if (ap->ops->port_stop)
5820 ap->ops->port_stop(ap);
5821 }
5822 devres_free(start_dr);
5823 return rc;
5824 }
5825 EXPORT_SYMBOL_GPL(ata_host_start);
5826
5827 /**
5828 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5829 * @host: host to initialize
5830 * @dev: device host is attached to
5831 * @ops: port_ops
5832 *
5833 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5834 void ata_host_init(struct ata_host *host, struct device *dev,
5835 struct ata_port_operations *ops)
5836 {
5837 spin_lock_init(&host->lock);
5838 mutex_init(&host->eh_mutex);
5839 host->n_tags = ATA_MAX_QUEUE;
5840 host->dev = dev;
5841 host->ops = ops;
5842 kref_init(&host->kref);
5843 }
5844 EXPORT_SYMBOL_GPL(ata_host_init);
5845
ata_port_probe(struct ata_port * ap)5846 void ata_port_probe(struct ata_port *ap)
5847 {
5848 struct ata_eh_info *ehi = &ap->link.eh_info;
5849 unsigned long flags;
5850
5851 /* kick EH for boot probing */
5852 spin_lock_irqsave(ap->lock, flags);
5853
5854 ehi->probe_mask |= ATA_ALL_DEVICES;
5855 ehi->action |= ATA_EH_RESET;
5856 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5857
5858 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5859 ap->pflags |= ATA_PFLAG_LOADING;
5860 ata_port_schedule_eh(ap);
5861
5862 spin_unlock_irqrestore(ap->lock, flags);
5863 }
5864 EXPORT_SYMBOL_GPL(ata_port_probe);
5865
async_port_probe(void * data,async_cookie_t cookie)5866 static void async_port_probe(void *data, async_cookie_t cookie)
5867 {
5868 struct ata_port *ap = data;
5869
5870 /*
5871 * If we're not allowed to scan this host in parallel,
5872 * we need to wait until all previous scans have completed
5873 * before going further.
5874 * Jeff Garzik says this is only within a controller, so we
5875 * don't need to wait for port 0, only for later ports.
5876 */
5877 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5878 async_synchronize_cookie(cookie);
5879
5880 ata_port_probe(ap);
5881 ata_port_wait_eh(ap);
5882
5883 /* in order to keep device order, we need to synchronize at this point */
5884 async_synchronize_cookie(cookie);
5885
5886 ata_scsi_scan_host(ap, 1);
5887 }
5888
5889 /**
5890 * ata_host_register - register initialized ATA host
5891 * @host: ATA host to register
5892 * @sht: template for SCSI host
5893 *
5894 * Register initialized ATA host. @host is allocated using
5895 * ata_host_alloc() and fully initialized by LLD. This function
5896 * starts ports, registers @host with ATA and SCSI layers and
5897 * probe registered devices.
5898 *
5899 * LOCKING:
5900 * Inherited from calling layer (may sleep).
5901 *
5902 * RETURNS:
5903 * 0 on success, -errno otherwise.
5904 */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5905 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5906 {
5907 int i, rc;
5908
5909 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5910
5911 /* host must have been started */
5912 if (!(host->flags & ATA_HOST_STARTED)) {
5913 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5914 WARN_ON(1);
5915 return -EINVAL;
5916 }
5917
5918 /* Blow away unused ports. This happens when LLD can't
5919 * determine the exact number of ports to allocate at
5920 * allocation time.
5921 */
5922 for (i = host->n_ports; host->ports[i]; i++)
5923 ata_port_free(host->ports[i]);
5924
5925 /* give ports names and add SCSI hosts */
5926 for (i = 0; i < host->n_ports; i++) {
5927 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5928 host->ports[i]->local_port_no = i + 1;
5929 }
5930
5931 /* Create associated sysfs transport objects */
5932 for (i = 0; i < host->n_ports; i++) {
5933 rc = ata_tport_add(host->dev,host->ports[i]);
5934 if (rc) {
5935 goto err_tadd;
5936 }
5937 }
5938
5939 rc = ata_scsi_add_hosts(host, sht);
5940 if (rc)
5941 goto err_tadd;
5942
5943 /* set cable, sata_spd_limit and report */
5944 for (i = 0; i < host->n_ports; i++) {
5945 struct ata_port *ap = host->ports[i];
5946 unsigned int xfer_mask;
5947
5948 /* set SATA cable type if still unset */
5949 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5950 ap->cbl = ATA_CBL_SATA;
5951
5952 /* init sata_spd_limit to the current value */
5953 sata_link_init_spd(&ap->link);
5954 if (ap->slave_link)
5955 sata_link_init_spd(ap->slave_link);
5956
5957 /* print per-port info to dmesg */
5958 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5959 ap->udma_mask);
5960
5961 if (!ata_port_is_dummy(ap)) {
5962 ata_port_info(ap, "%cATA max %s %s\n",
5963 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5964 ata_mode_string(xfer_mask),
5965 ap->link.eh_info.desc);
5966 ata_ehi_clear_desc(&ap->link.eh_info);
5967 } else
5968 ata_port_info(ap, "DUMMY\n");
5969 }
5970
5971 /* perform each probe asynchronously */
5972 for (i = 0; i < host->n_ports; i++) {
5973 struct ata_port *ap = host->ports[i];
5974 ap->cookie = async_schedule(async_port_probe, ap);
5975 }
5976
5977 return 0;
5978
5979 err_tadd:
5980 while (--i >= 0) {
5981 ata_tport_delete(host->ports[i]);
5982 }
5983 return rc;
5984
5985 }
5986 EXPORT_SYMBOL_GPL(ata_host_register);
5987
5988 /**
5989 * ata_host_activate - start host, request IRQ and register it
5990 * @host: target ATA host
5991 * @irq: IRQ to request
5992 * @irq_handler: irq_handler used when requesting IRQ
5993 * @irq_flags: irq_flags used when requesting IRQ
5994 * @sht: scsi_host_template to use when registering the host
5995 *
5996 * After allocating an ATA host and initializing it, most libata
5997 * LLDs perform three steps to activate the host - start host,
5998 * request IRQ and register it. This helper takes necessary
5999 * arguments and performs the three steps in one go.
6000 *
6001 * An invalid IRQ skips the IRQ registration and expects the host to
6002 * have set polling mode on the port. In this case, @irq_handler
6003 * should be NULL.
6004 *
6005 * LOCKING:
6006 * Inherited from calling layer (may sleep).
6007 *
6008 * RETURNS:
6009 * 0 on success, -errno otherwise.
6010 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)6011 int ata_host_activate(struct ata_host *host, int irq,
6012 irq_handler_t irq_handler, unsigned long irq_flags,
6013 const struct scsi_host_template *sht)
6014 {
6015 int i, rc;
6016 char *irq_desc;
6017
6018 rc = ata_host_start(host);
6019 if (rc)
6020 return rc;
6021
6022 /* Special case for polling mode */
6023 if (!irq) {
6024 WARN_ON(irq_handler);
6025 return ata_host_register(host, sht);
6026 }
6027
6028 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6029 dev_driver_string(host->dev),
6030 dev_name(host->dev));
6031 if (!irq_desc)
6032 return -ENOMEM;
6033
6034 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6035 irq_desc, host);
6036 if (rc)
6037 return rc;
6038
6039 for (i = 0; i < host->n_ports; i++)
6040 ata_port_desc(host->ports[i], "irq %d", irq);
6041
6042 rc = ata_host_register(host, sht);
6043 /* if failed, just free the IRQ and leave ports alone */
6044 if (rc)
6045 devm_free_irq(host->dev, irq, host);
6046
6047 return rc;
6048 }
6049 EXPORT_SYMBOL_GPL(ata_host_activate);
6050
6051 /**
6052 * ata_port_detach - Detach ATA port in preparation of device removal
6053 * @ap: ATA port to be detached
6054 *
6055 * Detach all ATA devices and the associated SCSI devices of @ap;
6056 * then, remove the associated SCSI host. @ap is guaranteed to
6057 * be quiescent on return from this function.
6058 *
6059 * LOCKING:
6060 * Kernel thread context (may sleep).
6061 */
ata_port_detach(struct ata_port * ap)6062 static void ata_port_detach(struct ata_port *ap)
6063 {
6064 unsigned long flags;
6065 struct ata_link *link;
6066 struct ata_device *dev;
6067
6068 /* Wait for any ongoing EH */
6069 ata_port_wait_eh(ap);
6070
6071 mutex_lock(&ap->scsi_scan_mutex);
6072 spin_lock_irqsave(ap->lock, flags);
6073
6074 /* Remove scsi devices */
6075 ata_for_each_link(link, ap, HOST_FIRST) {
6076 ata_for_each_dev(dev, link, ALL) {
6077 if (dev->sdev) {
6078 spin_unlock_irqrestore(ap->lock, flags);
6079 scsi_remove_device(dev->sdev);
6080 spin_lock_irqsave(ap->lock, flags);
6081 dev->sdev = NULL;
6082 }
6083 }
6084 }
6085
6086 /* Tell EH to disable all devices */
6087 ap->pflags |= ATA_PFLAG_UNLOADING;
6088 ata_port_schedule_eh(ap);
6089
6090 spin_unlock_irqrestore(ap->lock, flags);
6091 mutex_unlock(&ap->scsi_scan_mutex);
6092
6093 /* wait till EH commits suicide */
6094 ata_port_wait_eh(ap);
6095
6096 /* it better be dead now */
6097 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6098
6099 cancel_delayed_work_sync(&ap->hotplug_task);
6100 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6101
6102 /* clean up zpodd on port removal */
6103 ata_for_each_link(link, ap, HOST_FIRST) {
6104 ata_for_each_dev(dev, link, ALL) {
6105 if (zpodd_dev_enabled(dev))
6106 zpodd_exit(dev);
6107 }
6108 }
6109 if (ap->pmp_link) {
6110 int i;
6111 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6112 ata_tlink_delete(&ap->pmp_link[i]);
6113 }
6114 /* remove the associated SCSI host */
6115 scsi_remove_host(ap->scsi_host);
6116 ata_tport_delete(ap);
6117 }
6118
6119 /**
6120 * ata_host_detach - Detach all ports of an ATA host
6121 * @host: Host to detach
6122 *
6123 * Detach all ports of @host.
6124 *
6125 * LOCKING:
6126 * Kernel thread context (may sleep).
6127 */
ata_host_detach(struct ata_host * host)6128 void ata_host_detach(struct ata_host *host)
6129 {
6130 int i;
6131
6132 for (i = 0; i < host->n_ports; i++) {
6133 /* Ensure ata_port probe has completed */
6134 async_synchronize_cookie(host->ports[i]->cookie + 1);
6135 ata_port_detach(host->ports[i]);
6136 }
6137
6138 /* the host is dead now, dissociate ACPI */
6139 ata_acpi_dissociate(host);
6140 }
6141 EXPORT_SYMBOL_GPL(ata_host_detach);
6142
6143 #ifdef CONFIG_PCI
6144
6145 /**
6146 * ata_pci_remove_one - PCI layer callback for device removal
6147 * @pdev: PCI device that was removed
6148 *
6149 * PCI layer indicates to libata via this hook that hot-unplug or
6150 * module unload event has occurred. Detach all ports. Resource
6151 * release is handled via devres.
6152 *
6153 * LOCKING:
6154 * Inherited from PCI layer (may sleep).
6155 */
ata_pci_remove_one(struct pci_dev * pdev)6156 void ata_pci_remove_one(struct pci_dev *pdev)
6157 {
6158 struct ata_host *host = pci_get_drvdata(pdev);
6159
6160 ata_host_detach(host);
6161 }
6162 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6163
ata_pci_shutdown_one(struct pci_dev * pdev)6164 void ata_pci_shutdown_one(struct pci_dev *pdev)
6165 {
6166 struct ata_host *host = pci_get_drvdata(pdev);
6167 int i;
6168
6169 for (i = 0; i < host->n_ports; i++) {
6170 struct ata_port *ap = host->ports[i];
6171
6172 ap->pflags |= ATA_PFLAG_FROZEN;
6173
6174 /* Disable port interrupts */
6175 if (ap->ops->freeze)
6176 ap->ops->freeze(ap);
6177
6178 /* Stop the port DMA engines */
6179 if (ap->ops->port_stop)
6180 ap->ops->port_stop(ap);
6181 }
6182 }
6183 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6184
6185 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6186 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6187 {
6188 unsigned long tmp = 0;
6189
6190 switch (bits->width) {
6191 case 1: {
6192 u8 tmp8 = 0;
6193 pci_read_config_byte(pdev, bits->reg, &tmp8);
6194 tmp = tmp8;
6195 break;
6196 }
6197 case 2: {
6198 u16 tmp16 = 0;
6199 pci_read_config_word(pdev, bits->reg, &tmp16);
6200 tmp = tmp16;
6201 break;
6202 }
6203 case 4: {
6204 u32 tmp32 = 0;
6205 pci_read_config_dword(pdev, bits->reg, &tmp32);
6206 tmp = tmp32;
6207 break;
6208 }
6209
6210 default:
6211 return -EINVAL;
6212 }
6213
6214 tmp &= bits->mask;
6215
6216 return (tmp == bits->val) ? 1 : 0;
6217 }
6218 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6219
6220 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6221 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6222 {
6223 pci_save_state(pdev);
6224 pci_disable_device(pdev);
6225
6226 if (mesg.event & PM_EVENT_SLEEP)
6227 pci_set_power_state(pdev, PCI_D3hot);
6228 }
6229 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6230
ata_pci_device_do_resume(struct pci_dev * pdev)6231 int ata_pci_device_do_resume(struct pci_dev *pdev)
6232 {
6233 int rc;
6234
6235 pci_set_power_state(pdev, PCI_D0);
6236 pci_restore_state(pdev);
6237
6238 rc = pcim_enable_device(pdev);
6239 if (rc) {
6240 dev_err(&pdev->dev,
6241 "failed to enable device after resume (%d)\n", rc);
6242 return rc;
6243 }
6244
6245 pci_set_master(pdev);
6246 return 0;
6247 }
6248 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6249
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6250 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6251 {
6252 struct ata_host *host = pci_get_drvdata(pdev);
6253
6254 ata_host_suspend(host, mesg);
6255
6256 ata_pci_device_do_suspend(pdev, mesg);
6257
6258 return 0;
6259 }
6260 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6261
ata_pci_device_resume(struct pci_dev * pdev)6262 int ata_pci_device_resume(struct pci_dev *pdev)
6263 {
6264 struct ata_host *host = pci_get_drvdata(pdev);
6265 int rc;
6266
6267 rc = ata_pci_device_do_resume(pdev);
6268 if (rc == 0)
6269 ata_host_resume(host);
6270 return rc;
6271 }
6272 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6273 #endif /* CONFIG_PM */
6274 #endif /* CONFIG_PCI */
6275
6276 /**
6277 * ata_platform_remove_one - Platform layer callback for device removal
6278 * @pdev: Platform device that was removed
6279 *
6280 * Platform layer indicates to libata via this hook that hot-unplug or
6281 * module unload event has occurred. Detach all ports. Resource
6282 * release is handled via devres.
6283 *
6284 * LOCKING:
6285 * Inherited from platform layer (may sleep).
6286 */
ata_platform_remove_one(struct platform_device * pdev)6287 void ata_platform_remove_one(struct platform_device *pdev)
6288 {
6289 struct ata_host *host = platform_get_drvdata(pdev);
6290
6291 ata_host_detach(host);
6292 }
6293 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6294
6295 #ifdef CONFIG_ATA_FORCE
6296
6297 #define force_cbl(name, flag) \
6298 { #name, .cbl = (flag) }
6299
6300 #define force_spd_limit(spd, val) \
6301 { #spd, .spd_limit = (val) }
6302
6303 #define force_xfer(mode, shift) \
6304 { #mode, .xfer_mask = (1UL << (shift)) }
6305
6306 #define force_lflag_on(name, flags) \
6307 { #name, .lflags_on = (flags) }
6308
6309 #define force_lflag_onoff(name, flags) \
6310 { "no" #name, .lflags_on = (flags) }, \
6311 { #name, .lflags_off = (flags) }
6312
6313 #define force_horkage_on(name, flag) \
6314 { #name, .horkage_on = (flag) }
6315
6316 #define force_horkage_onoff(name, flag) \
6317 { "no" #name, .horkage_on = (flag) }, \
6318 { #name, .horkage_off = (flag) }
6319
6320 static const struct ata_force_param force_tbl[] __initconst = {
6321 force_cbl(40c, ATA_CBL_PATA40),
6322 force_cbl(80c, ATA_CBL_PATA80),
6323 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6324 force_cbl(unk, ATA_CBL_PATA_UNK),
6325 force_cbl(ign, ATA_CBL_PATA_IGN),
6326 force_cbl(sata, ATA_CBL_SATA),
6327
6328 force_spd_limit(1.5Gbps, 1),
6329 force_spd_limit(3.0Gbps, 2),
6330
6331 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6332 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6333 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6334 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6335 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6336 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6337 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6338 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6339 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6340 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6341 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6342 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6343 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6344 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6345 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6346 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6347 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6348 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6349 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6350 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6351 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6352 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6353 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6354 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6355 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6356 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6357 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6358 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6359 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6360 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6361 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6362 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6363 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6364 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6365
6366 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6367 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6368 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6369 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6370 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6371
6372 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ),
6373 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM),
6374 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI),
6375
6376 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM),
6377 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM),
6378 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6379
6380 force_horkage_onoff(dma, ATA_HORKAGE_NODMA),
6381 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR),
6382 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6383
6384 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG),
6385 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG),
6386 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR),
6387
6388 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128),
6389 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024),
6390 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48),
6391
6392 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM),
6393 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER),
6394 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID),
6395 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA),
6396
6397 force_horkage_on(disable, ATA_HORKAGE_DISABLE),
6398 };
6399
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6400 static int __init ata_parse_force_one(char **cur,
6401 struct ata_force_ent *force_ent,
6402 const char **reason)
6403 {
6404 char *start = *cur, *p = *cur;
6405 char *id, *val, *endp;
6406 const struct ata_force_param *match_fp = NULL;
6407 int nr_matches = 0, i;
6408
6409 /* find where this param ends and update *cur */
6410 while (*p != '\0' && *p != ',')
6411 p++;
6412
6413 if (*p == '\0')
6414 *cur = p;
6415 else
6416 *cur = p + 1;
6417
6418 *p = '\0';
6419
6420 /* parse */
6421 p = strchr(start, ':');
6422 if (!p) {
6423 val = strstrip(start);
6424 goto parse_val;
6425 }
6426 *p = '\0';
6427
6428 id = strstrip(start);
6429 val = strstrip(p + 1);
6430
6431 /* parse id */
6432 p = strchr(id, '.');
6433 if (p) {
6434 *p++ = '\0';
6435 force_ent->device = simple_strtoul(p, &endp, 10);
6436 if (p == endp || *endp != '\0') {
6437 *reason = "invalid device";
6438 return -EINVAL;
6439 }
6440 }
6441
6442 force_ent->port = simple_strtoul(id, &endp, 10);
6443 if (id == endp || *endp != '\0') {
6444 *reason = "invalid port/link";
6445 return -EINVAL;
6446 }
6447
6448 parse_val:
6449 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6450 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6451 const struct ata_force_param *fp = &force_tbl[i];
6452
6453 if (strncasecmp(val, fp->name, strlen(val)))
6454 continue;
6455
6456 nr_matches++;
6457 match_fp = fp;
6458
6459 if (strcasecmp(val, fp->name) == 0) {
6460 nr_matches = 1;
6461 break;
6462 }
6463 }
6464
6465 if (!nr_matches) {
6466 *reason = "unknown value";
6467 return -EINVAL;
6468 }
6469 if (nr_matches > 1) {
6470 *reason = "ambiguous value";
6471 return -EINVAL;
6472 }
6473
6474 force_ent->param = *match_fp;
6475
6476 return 0;
6477 }
6478
ata_parse_force_param(void)6479 static void __init ata_parse_force_param(void)
6480 {
6481 int idx = 0, size = 1;
6482 int last_port = -1, last_device = -1;
6483 char *p, *cur, *next;
6484
6485 /* Calculate maximum number of params and allocate ata_force_tbl */
6486 for (p = ata_force_param_buf; *p; p++)
6487 if (*p == ',')
6488 size++;
6489
6490 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6491 if (!ata_force_tbl) {
6492 printk(KERN_WARNING "ata: failed to extend force table, "
6493 "libata.force ignored\n");
6494 return;
6495 }
6496
6497 /* parse and populate the table */
6498 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6499 const char *reason = "";
6500 struct ata_force_ent te = { .port = -1, .device = -1 };
6501
6502 next = cur;
6503 if (ata_parse_force_one(&next, &te, &reason)) {
6504 printk(KERN_WARNING "ata: failed to parse force "
6505 "parameter \"%s\" (%s)\n",
6506 cur, reason);
6507 continue;
6508 }
6509
6510 if (te.port == -1) {
6511 te.port = last_port;
6512 te.device = last_device;
6513 }
6514
6515 ata_force_tbl[idx++] = te;
6516
6517 last_port = te.port;
6518 last_device = te.device;
6519 }
6520
6521 ata_force_tbl_size = idx;
6522 }
6523
ata_free_force_param(void)6524 static void ata_free_force_param(void)
6525 {
6526 kfree(ata_force_tbl);
6527 }
6528 #else
ata_parse_force_param(void)6529 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6530 static inline void ata_free_force_param(void) { }
6531 #endif
6532
ata_init(void)6533 static int __init ata_init(void)
6534 {
6535 int rc;
6536
6537 ata_parse_force_param();
6538
6539 rc = ata_sff_init();
6540 if (rc) {
6541 ata_free_force_param();
6542 return rc;
6543 }
6544
6545 libata_transport_init();
6546 ata_scsi_transport_template = ata_attach_transport();
6547 if (!ata_scsi_transport_template) {
6548 ata_sff_exit();
6549 rc = -ENOMEM;
6550 goto err_out;
6551 }
6552
6553 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6554 return 0;
6555
6556 err_out:
6557 return rc;
6558 }
6559
ata_exit(void)6560 static void __exit ata_exit(void)
6561 {
6562 ata_release_transport(ata_scsi_transport_template);
6563 libata_transport_exit();
6564 ata_sff_exit();
6565 ata_free_force_param();
6566 }
6567
6568 subsys_initcall(ata_init);
6569 module_exit(ata_exit);
6570
6571 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6572
ata_ratelimit(void)6573 int ata_ratelimit(void)
6574 {
6575 return __ratelimit(&ratelimit);
6576 }
6577 EXPORT_SYMBOL_GPL(ata_ratelimit);
6578
6579 /**
6580 * ata_msleep - ATA EH owner aware msleep
6581 * @ap: ATA port to attribute the sleep to
6582 * @msecs: duration to sleep in milliseconds
6583 *
6584 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6585 * ownership is released before going to sleep and reacquired
6586 * after the sleep is complete. IOW, other ports sharing the
6587 * @ap->host will be allowed to own the EH while this task is
6588 * sleeping.
6589 *
6590 * LOCKING:
6591 * Might sleep.
6592 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6593 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6594 {
6595 bool owns_eh = ap && ap->host->eh_owner == current;
6596
6597 if (owns_eh)
6598 ata_eh_release(ap);
6599
6600 if (msecs < 20) {
6601 unsigned long usecs = msecs * USEC_PER_MSEC;
6602 usleep_range(usecs, usecs + 50);
6603 } else {
6604 msleep(msecs);
6605 }
6606
6607 if (owns_eh)
6608 ata_eh_acquire(ap);
6609 }
6610 EXPORT_SYMBOL_GPL(ata_msleep);
6611
6612 /**
6613 * ata_wait_register - wait until register value changes
6614 * @ap: ATA port to wait register for, can be NULL
6615 * @reg: IO-mapped register
6616 * @mask: Mask to apply to read register value
6617 * @val: Wait condition
6618 * @interval: polling interval in milliseconds
6619 * @timeout: timeout in milliseconds
6620 *
6621 * Waiting for some bits of register to change is a common
6622 * operation for ATA controllers. This function reads 32bit LE
6623 * IO-mapped register @reg and tests for the following condition.
6624 *
6625 * (*@reg & mask) != val
6626 *
6627 * If the condition is met, it returns; otherwise, the process is
6628 * repeated after @interval_msec until timeout.
6629 *
6630 * LOCKING:
6631 * Kernel thread context (may sleep)
6632 *
6633 * RETURNS:
6634 * The final register value.
6635 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6636 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6637 unsigned int interval, unsigned int timeout)
6638 {
6639 unsigned long deadline;
6640 u32 tmp;
6641
6642 tmp = ioread32(reg);
6643
6644 /* Calculate timeout _after_ the first read to make sure
6645 * preceding writes reach the controller before starting to
6646 * eat away the timeout.
6647 */
6648 deadline = ata_deadline(jiffies, timeout);
6649
6650 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6651 ata_msleep(ap, interval);
6652 tmp = ioread32(reg);
6653 }
6654
6655 return tmp;
6656 }
6657 EXPORT_SYMBOL_GPL(ata_wait_register);
6658
6659 /*
6660 * Dummy port_ops
6661 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6662 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6663 {
6664 return AC_ERR_SYSTEM;
6665 }
6666
ata_dummy_error_handler(struct ata_port * ap)6667 static void ata_dummy_error_handler(struct ata_port *ap)
6668 {
6669 /* truly dummy */
6670 }
6671
6672 struct ata_port_operations ata_dummy_port_ops = {
6673 .qc_prep = ata_noop_qc_prep,
6674 .qc_issue = ata_dummy_qc_issue,
6675 .error_handler = ata_dummy_error_handler,
6676 .sched_eh = ata_std_sched_eh,
6677 .end_eh = ata_std_end_eh,
6678 };
6679 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6680
6681 const struct ata_port_info ata_dummy_port_info = {
6682 .port_ops = &ata_dummy_port_ops,
6683 };
6684 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6685
ata_print_version(const struct device * dev,const char * version)6686 void ata_print_version(const struct device *dev, const char *version)
6687 {
6688 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6689 }
6690 EXPORT_SYMBOL(ata_print_version);
6691
6692 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6693 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6694 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6695 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6696 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6697