1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37 /* Shifts in ar5008_phy.c and ar9003_phy.c are equal for all revisions */
38 #define ATH9K_PWRTBL_11NA_OFDM_SHIFT 0
39 #define ATH9K_PWRTBL_11NG_OFDM_SHIFT 4
40 #define ATH9K_PWRTBL_11NA_HT_SHIFT 8
41 #define ATH9K_PWRTBL_11NG_HT_SHIFT 12
42
43
44 static u16 bits_per_symbol[][2] = {
45 /* 20MHz 40MHz */
46 { 26, 54 }, /* 0: BPSK */
47 { 52, 108 }, /* 1: QPSK 1/2 */
48 { 78, 162 }, /* 2: QPSK 3/4 */
49 { 104, 216 }, /* 3: 16-QAM 1/2 */
50 { 156, 324 }, /* 4: 16-QAM 3/4 */
51 { 208, 432 }, /* 5: 64-QAM 2/3 */
52 { 234, 486 }, /* 6: 64-QAM 3/4 */
53 { 260, 540 }, /* 7: 64-QAM 5/6 */
54 };
55
56 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
57 struct ath_atx_tid *tid, struct sk_buff *skb);
58 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
59 int tx_flags, struct ath_txq *txq,
60 struct ieee80211_sta *sta);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_txq *txq, struct list_head *bf_q,
63 struct ieee80211_sta *sta,
64 struct ath_tx_status *ts, int txok);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 struct list_head *head, bool internal);
67 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
68 struct ath_tx_status *ts, int nframes, int nbad,
69 int txok);
70 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
71 struct ath_buf *bf);
72 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
73 struct ath_txq *txq,
74 struct ath_atx_tid *tid,
75 struct sk_buff *skb);
76 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
77 struct ath_tx_control *txctl);
78
79 enum {
80 MCS_HT20,
81 MCS_HT20_SGI,
82 MCS_HT40,
83 MCS_HT40_SGI,
84 };
85
86 /*********************/
87 /* Aggregation logic */
88 /*********************/
89
ath_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb)90 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
91 {
92 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
93 struct ieee80211_sta *sta = info->status.status_driver_data[0];
94
95 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
96 IEEE80211_TX_STATUS_EOSP)) {
97 ieee80211_tx_status(hw, skb);
98 return;
99 }
100
101 if (sta)
102 ieee80211_tx_status_noskb(hw, sta, info);
103
104 dev_kfree_skb(skb);
105 }
106
ath_txq_unlock_complete(struct ath_softc * sc,struct ath_txq * txq)107 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
108 __releases(&txq->axq_lock)
109 {
110 struct ieee80211_hw *hw = sc->hw;
111 struct sk_buff_head q;
112 struct sk_buff *skb;
113
114 __skb_queue_head_init(&q);
115 skb_queue_splice_init(&txq->complete_q, &q);
116 spin_unlock_bh(&txq->axq_lock);
117
118 while ((skb = __skb_dequeue(&q)))
119 ath_tx_status(hw, skb);
120 }
121
ath_tx_queue_tid(struct ath_softc * sc,struct ath_atx_tid * tid)122 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
123 {
124 struct ieee80211_txq *queue =
125 container_of((void *)tid, struct ieee80211_txq, drv_priv);
126
127 ieee80211_schedule_txq(sc->hw, queue);
128 }
129
ath9k_wake_tx_queue(struct ieee80211_hw * hw,struct ieee80211_txq * queue)130 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
131 {
132 struct ath_softc *sc = hw->priv;
133 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
134 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
135 struct ath_txq *txq = tid->txq;
136
137 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
138 queue->sta ? queue->sta->addr : queue->vif->addr,
139 tid->tidno);
140
141 ath_txq_lock(sc, txq);
142 ath_txq_schedule(sc, txq);
143 ath_txq_unlock(sc, txq);
144 }
145
get_frame_info(struct sk_buff * skb)146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
147 {
148 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
149 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
150 sizeof(tx_info->status.status_driver_data));
151 return (struct ath_frame_info *) &tx_info->status.status_driver_data[0];
152 }
153
ath_send_bar(struct ath_atx_tid * tid,u16 seqno)154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
155 {
156 if (!tid->an->sta)
157 return;
158
159 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
160 seqno << IEEE80211_SEQ_SEQ_SHIFT);
161 }
162
ath_merge_ratetbl(struct ieee80211_sta * sta,struct ath_buf * bf,struct ieee80211_tx_info * tx_info)163 static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf,
164 struct ieee80211_tx_info *tx_info)
165 {
166 struct ieee80211_sta_rates *ratetbl;
167 u8 i;
168
169 if (!sta)
170 return false;
171
172 ratetbl = rcu_dereference(sta->rates);
173 if (!ratetbl)
174 return false;
175
176 if (tx_info->control.rates[0].idx < 0 ||
177 tx_info->control.rates[0].count == 0)
178 {
179 i = 0;
180 } else {
181 bf->rates[0] = tx_info->control.rates[0];
182 i = 1;
183 }
184
185 for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
186 bf->rates[i].idx = ratetbl->rate[i].idx;
187 bf->rates[i].flags = ratetbl->rate[i].flags;
188 if (tx_info->control.use_rts)
189 bf->rates[i].count = ratetbl->rate[i].count_rts;
190 else if (tx_info->control.use_cts_prot)
191 bf->rates[i].count = ratetbl->rate[i].count_cts;
192 else
193 bf->rates[i].count = ratetbl->rate[i].count;
194 }
195
196 return true;
197 }
198
ath_set_rates(struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ath_buf * bf)199 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
200 struct ath_buf *bf)
201 {
202 struct ieee80211_tx_info *tx_info;
203
204 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
205
206 if (!ath_merge_ratetbl(sta, bf, tx_info))
207 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
208 ARRAY_SIZE(bf->rates));
209 }
210
ath_txq_skb_done(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb)211 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
212 struct sk_buff *skb)
213 {
214 struct ath_frame_info *fi = get_frame_info(skb);
215 int q = fi->txq;
216
217 if (q < 0)
218 return;
219
220 txq = sc->tx.txq_map[q];
221 if (WARN_ON(--txq->pending_frames < 0))
222 txq->pending_frames = 0;
223
224 }
225
226 static struct ath_atx_tid *
ath_get_skb_tid(struct ath_softc * sc,struct ath_node * an,struct sk_buff * skb)227 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
228 {
229 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
230 return ATH_AN_2_TID(an, tidno);
231 }
232
233 static int
ath_tid_pull(struct ath_atx_tid * tid,struct sk_buff ** skbuf)234 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
235 {
236 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
237 struct ath_softc *sc = tid->an->sc;
238 struct ieee80211_hw *hw = sc->hw;
239 struct ath_tx_control txctl = {
240 .txq = tid->txq,
241 .sta = tid->an->sta,
242 };
243 struct sk_buff *skb;
244 struct ath_frame_info *fi;
245 int q, ret;
246
247 skb = ieee80211_tx_dequeue(hw, txq);
248 if (!skb)
249 return -ENOENT;
250
251 ret = ath_tx_prepare(hw, skb, &txctl);
252 if (ret) {
253 ieee80211_free_txskb(hw, skb);
254 return ret;
255 }
256
257 q = skb_get_queue_mapping(skb);
258 if (tid->txq == sc->tx.txq_map[q]) {
259 fi = get_frame_info(skb);
260 fi->txq = q;
261 ++tid->txq->pending_frames;
262 }
263
264 *skbuf = skb;
265 return 0;
266 }
267
ath_tid_dequeue(struct ath_atx_tid * tid,struct sk_buff ** skb)268 static int ath_tid_dequeue(struct ath_atx_tid *tid,
269 struct sk_buff **skb)
270 {
271 int ret = 0;
272 *skb = __skb_dequeue(&tid->retry_q);
273 if (!*skb)
274 ret = ath_tid_pull(tid, skb);
275
276 return ret;
277 }
278
ath_tx_flush_tid(struct ath_softc * sc,struct ath_atx_tid * tid)279 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
280 {
281 struct ath_txq *txq = tid->txq;
282 struct sk_buff *skb;
283 struct ath_buf *bf;
284 struct list_head bf_head;
285 struct ath_tx_status ts;
286 struct ath_frame_info *fi;
287 bool sendbar = false;
288
289 INIT_LIST_HEAD(&bf_head);
290
291 memset(&ts, 0, sizeof(ts));
292
293 while ((skb = __skb_dequeue(&tid->retry_q))) {
294 fi = get_frame_info(skb);
295 bf = fi->bf;
296 if (!bf) {
297 ath_txq_skb_done(sc, txq, skb);
298 ieee80211_free_txskb(sc->hw, skb);
299 continue;
300 }
301
302 if (fi->baw_tracked) {
303 ath_tx_update_baw(sc, tid, bf);
304 sendbar = true;
305 }
306
307 list_add_tail(&bf->list, &bf_head);
308 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
309 }
310
311 if (sendbar) {
312 ath_txq_unlock(sc, txq);
313 ath_send_bar(tid, tid->seq_start);
314 ath_txq_lock(sc, txq);
315 }
316 }
317
ath_tx_update_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)318 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
319 struct ath_buf *bf)
320 {
321 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
322 u16 seqno = bf->bf_state.seqno;
323 int index, cindex;
324
325 if (!fi->baw_tracked)
326 return;
327
328 index = ATH_BA_INDEX(tid->seq_start, seqno);
329 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
330
331 __clear_bit(cindex, tid->tx_buf);
332
333 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
334 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
335 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
336 if (tid->bar_index >= 0)
337 tid->bar_index--;
338 }
339 }
340
ath_tx_addto_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)341 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
342 struct ath_buf *bf)
343 {
344 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
345 u16 seqno = bf->bf_state.seqno;
346 int index, cindex;
347
348 if (fi->baw_tracked)
349 return;
350
351 index = ATH_BA_INDEX(tid->seq_start, seqno);
352 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
353 __set_bit(cindex, tid->tx_buf);
354 fi->baw_tracked = 1;
355
356 if (index >= ((tid->baw_tail - tid->baw_head) &
357 (ATH_TID_MAX_BUFS - 1))) {
358 tid->baw_tail = cindex;
359 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
360 }
361 }
362
ath_tid_drain(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)363 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
364 struct ath_atx_tid *tid)
365
366 {
367 struct sk_buff *skb;
368 struct ath_buf *bf;
369 struct list_head bf_head;
370 struct ath_tx_status ts;
371 struct ath_frame_info *fi;
372 int ret;
373
374 memset(&ts, 0, sizeof(ts));
375 INIT_LIST_HEAD(&bf_head);
376
377 while ((ret = ath_tid_dequeue(tid, &skb)) == 0) {
378 fi = get_frame_info(skb);
379 bf = fi->bf;
380
381 if (!bf) {
382 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
383 continue;
384 }
385
386 list_add_tail(&bf->list, &bf_head);
387 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
388 }
389 }
390
ath_tx_set_retry(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb,int count)391 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
392 struct sk_buff *skb, int count)
393 {
394 struct ath_frame_info *fi = get_frame_info(skb);
395 struct ath_buf *bf = fi->bf;
396 struct ieee80211_hdr *hdr;
397 int prev = fi->retries;
398
399 TX_STAT_INC(sc, txq->axq_qnum, a_retries);
400 fi->retries += count;
401
402 if (prev > 0)
403 return;
404
405 hdr = (struct ieee80211_hdr *)skb->data;
406 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
407 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
408 sizeof(*hdr), DMA_TO_DEVICE);
409 }
410
ath_tx_get_buffer(struct ath_softc * sc)411 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
412 {
413 struct ath_buf *bf = NULL;
414
415 spin_lock_bh(&sc->tx.txbuflock);
416
417 if (unlikely(list_empty(&sc->tx.txbuf))) {
418 spin_unlock_bh(&sc->tx.txbuflock);
419 return NULL;
420 }
421
422 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
423 list_del(&bf->list);
424
425 spin_unlock_bh(&sc->tx.txbuflock);
426
427 return bf;
428 }
429
ath_tx_return_buffer(struct ath_softc * sc,struct ath_buf * bf)430 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
431 {
432 spin_lock_bh(&sc->tx.txbuflock);
433 list_add_tail(&bf->list, &sc->tx.txbuf);
434 spin_unlock_bh(&sc->tx.txbuflock);
435 }
436
ath_clone_txbuf(struct ath_softc * sc,struct ath_buf * bf)437 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
438 {
439 struct ath_buf *tbf;
440
441 tbf = ath_tx_get_buffer(sc);
442 if (WARN_ON(!tbf))
443 return NULL;
444
445 ATH_TXBUF_RESET(tbf);
446
447 tbf->bf_mpdu = bf->bf_mpdu;
448 tbf->bf_buf_addr = bf->bf_buf_addr;
449 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
450 tbf->bf_state = bf->bf_state;
451 tbf->bf_state.stale = false;
452
453 return tbf;
454 }
455
ath_tx_count_frames(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int txok,int * nframes,int * nbad)456 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
457 struct ath_tx_status *ts, int txok,
458 int *nframes, int *nbad)
459 {
460 u16 seq_st = 0;
461 u32 ba[WME_BA_BMP_SIZE >> 5];
462 int ba_index;
463 int isaggr = 0;
464
465 *nbad = 0;
466 *nframes = 0;
467
468 isaggr = bf_isaggr(bf);
469 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
470
471 if (isaggr) {
472 seq_st = ts->ts_seqnum;
473 memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
474 }
475
476 while (bf) {
477 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
478
479 (*nframes)++;
480 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
481 (*nbad)++;
482
483 bf = bf->bf_next;
484 }
485 }
486
487
ath_tx_complete_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_buf * bf,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_atx_tid * tid,struct ath_tx_status * ts,int txok)488 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
489 struct ath_buf *bf, struct list_head *bf_q,
490 struct ieee80211_sta *sta,
491 struct ath_atx_tid *tid,
492 struct ath_tx_status *ts, int txok)
493 {
494 struct ath_node *an = NULL;
495 struct sk_buff *skb;
496 struct ieee80211_tx_info *tx_info;
497 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
498 struct list_head bf_head;
499 struct sk_buff_head bf_pending;
500 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
501 u32 ba[WME_BA_BMP_SIZE >> 5];
502 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
503 bool rc_update = true, isba;
504 struct ieee80211_tx_rate rates[4];
505 struct ath_frame_info *fi;
506 int nframes;
507 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
508 int i, retries;
509 int bar_index = -1;
510
511 skb = bf->bf_mpdu;
512 tx_info = IEEE80211_SKB_CB(skb);
513
514 memcpy(rates, bf->rates, sizeof(rates));
515
516 retries = ts->ts_longretry + 1;
517 for (i = 0; i < ts->ts_rateindex; i++)
518 retries += rates[i].count;
519
520 if (!sta) {
521 INIT_LIST_HEAD(&bf_head);
522 while (bf) {
523 bf_next = bf->bf_next;
524
525 if (!bf->bf_state.stale || bf_next != NULL)
526 list_move_tail(&bf->list, &bf_head);
527
528 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
529
530 bf = bf_next;
531 }
532 return;
533 }
534
535 an = (struct ath_node *)sta->drv_priv;
536 seq_first = tid->seq_start;
537 isba = ts->ts_flags & ATH9K_TX_BA;
538
539 /*
540 * The hardware occasionally sends a tx status for the wrong TID.
541 * In this case, the BA status cannot be considered valid and all
542 * subframes need to be retransmitted
543 *
544 * Only BlockAcks have a TID and therefore normal Acks cannot be
545 * checked
546 */
547 if (isba && tid->tidno != ts->tid)
548 txok = false;
549
550 isaggr = bf_isaggr(bf);
551 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
552
553 if (isaggr && txok) {
554 if (ts->ts_flags & ATH9K_TX_BA) {
555 seq_st = ts->ts_seqnum;
556 memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
557 } else {
558 /*
559 * AR5416 can become deaf/mute when BA
560 * issue happens. Chip needs to be reset.
561 * But AP code may have sychronization issues
562 * when perform internal reset in this routine.
563 * Only enable reset in STA mode for now.
564 */
565 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
566 needreset = 1;
567 }
568 }
569
570 __skb_queue_head_init(&bf_pending);
571
572 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
573 while (bf) {
574 u16 seqno = bf->bf_state.seqno;
575
576 txfail = txpending = sendbar = 0;
577 bf_next = bf->bf_next;
578
579 skb = bf->bf_mpdu;
580 tx_info = IEEE80211_SKB_CB(skb);
581 fi = get_frame_info(skb);
582
583 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
584 !tid->active) {
585 /*
586 * Outside of the current BlockAck window,
587 * maybe part of a previous session
588 */
589 txfail = 1;
590 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
591 /* transmit completion, subframe is
592 * acked by block ack */
593 acked_cnt++;
594 } else if (!isaggr && txok) {
595 /* transmit completion */
596 acked_cnt++;
597 } else if (flush) {
598 txpending = 1;
599 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
600 if (txok || !an->sleeping)
601 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
602 retries);
603
604 txpending = 1;
605 } else {
606 txfail = 1;
607 txfail_cnt++;
608 bar_index = max_t(int, bar_index,
609 ATH_BA_INDEX(seq_first, seqno));
610 }
611
612 /*
613 * Make sure the last desc is reclaimed if it
614 * not a holding desc.
615 */
616 INIT_LIST_HEAD(&bf_head);
617 if (bf_next != NULL || !bf_last->bf_state.stale)
618 list_move_tail(&bf->list, &bf_head);
619
620 if (!txpending) {
621 /*
622 * complete the acked-ones/xretried ones; update
623 * block-ack window
624 */
625 ath_tx_update_baw(sc, tid, bf);
626
627 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
628 memcpy(tx_info->control.rates, rates, sizeof(rates));
629 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
630 rc_update = false;
631 if (bf == bf->bf_lastbf)
632 ath_dynack_sample_tx_ts(sc->sc_ah,
633 bf->bf_mpdu,
634 ts, sta);
635 }
636
637 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
638 !txfail);
639 } else {
640 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
641 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
642 ieee80211_sta_eosp(sta);
643 }
644 /* retry the un-acked ones */
645 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
646 struct ath_buf *tbf;
647
648 tbf = ath_clone_txbuf(sc, bf_last);
649 /*
650 * Update tx baw and complete the
651 * frame with failed status if we
652 * run out of tx buf.
653 */
654 if (!tbf) {
655 ath_tx_update_baw(sc, tid, bf);
656
657 ath_tx_complete_buf(sc, bf, txq,
658 &bf_head, NULL, ts,
659 0);
660 bar_index = max_t(int, bar_index,
661 ATH_BA_INDEX(seq_first, seqno));
662 break;
663 }
664
665 fi->bf = tbf;
666 }
667
668 /*
669 * Put this buffer to the temporary pending
670 * queue to retain ordering
671 */
672 __skb_queue_tail(&bf_pending, skb);
673 }
674
675 bf = bf_next;
676 }
677
678 /* prepend un-acked frames to the beginning of the pending frame queue */
679 if (!skb_queue_empty(&bf_pending)) {
680 if (an->sleeping)
681 ieee80211_sta_set_buffered(sta, tid->tidno, true);
682
683 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
684 if (!an->sleeping) {
685 ath_tx_queue_tid(sc, tid);
686 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
687 tid->clear_ps_filter = true;
688 }
689 }
690
691 if (bar_index >= 0) {
692 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
693
694 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
695 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
696
697 ath_txq_unlock(sc, txq);
698 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
699 ath_txq_lock(sc, txq);
700 }
701
702 if (needreset)
703 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
704 }
705
bf_is_ampdu_not_probing(struct ath_buf * bf)706 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
707 {
708 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
709 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
710 }
711
ath_tx_count_airtime(struct ath_softc * sc,struct ieee80211_sta * sta,struct ath_buf * bf,struct ath_tx_status * ts,u8 tid)712 static void ath_tx_count_airtime(struct ath_softc *sc,
713 struct ieee80211_sta *sta,
714 struct ath_buf *bf,
715 struct ath_tx_status *ts,
716 u8 tid)
717 {
718 u32 airtime = 0;
719 int i;
720
721 airtime += ts->duration * (ts->ts_longretry + 1);
722 for(i = 0; i < ts->ts_rateindex; i++) {
723 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
724 airtime += rate_dur * bf->rates[i].count;
725 }
726
727 ieee80211_sta_register_airtime(sta, tid, airtime, 0);
728 }
729
ath_tx_process_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf,struct list_head * bf_head)730 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
731 struct ath_tx_status *ts, struct ath_buf *bf,
732 struct list_head *bf_head)
733 {
734 struct ieee80211_hw *hw = sc->hw;
735 struct ieee80211_tx_info *info;
736 struct ieee80211_sta *sta;
737 struct ieee80211_hdr *hdr;
738 struct ath_atx_tid *tid = NULL;
739 bool txok, flush;
740
741 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
742 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
743 txq->axq_tx_inprogress = false;
744
745 txq->axq_depth--;
746 if (bf_is_ampdu_not_probing(bf))
747 txq->axq_ampdu_depth--;
748
749 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
750 ts->ts_rateindex);
751
752 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
753 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
754 if (sta) {
755 struct ath_node *an = (struct ath_node *)sta->drv_priv;
756 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
757 ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno);
758 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
759 tid->clear_ps_filter = true;
760 }
761
762 if (!bf_isampdu(bf)) {
763 if (!flush) {
764 info = IEEE80211_SKB_CB(bf->bf_mpdu);
765 memcpy(info->control.rates, bf->rates,
766 sizeof(info->control.rates));
767 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
768 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
769 sta);
770 }
771 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
772 } else
773 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
774
775 if (!flush)
776 ath_txq_schedule(sc, txq);
777 }
778
ath_lookup_legacy(struct ath_buf * bf)779 static bool ath_lookup_legacy(struct ath_buf *bf)
780 {
781 struct sk_buff *skb;
782 struct ieee80211_tx_info *tx_info;
783 struct ieee80211_tx_rate *rates;
784 int i;
785
786 skb = bf->bf_mpdu;
787 tx_info = IEEE80211_SKB_CB(skb);
788 rates = tx_info->control.rates;
789
790 for (i = 0; i < 4; i++) {
791 if (!rates[i].count || rates[i].idx < 0)
792 break;
793
794 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
795 return true;
796 }
797
798 return false;
799 }
800
ath_lookup_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)801 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
802 struct ath_atx_tid *tid)
803 {
804 struct sk_buff *skb;
805 struct ieee80211_tx_info *tx_info;
806 struct ieee80211_tx_rate *rates;
807 u32 max_4ms_framelen, frmlen;
808 u16 aggr_limit, bt_aggr_limit, legacy = 0;
809 int q = tid->txq->mac80211_qnum;
810 int i;
811
812 skb = bf->bf_mpdu;
813 tx_info = IEEE80211_SKB_CB(skb);
814 rates = bf->rates;
815
816 /*
817 * Find the lowest frame length among the rate series that will have a
818 * 4ms (or TXOP limited) transmit duration.
819 */
820 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
821
822 for (i = 0; i < 4; i++) {
823 int modeidx;
824
825 if (!rates[i].count)
826 continue;
827
828 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
829 legacy = 1;
830 break;
831 }
832
833 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
834 modeidx = MCS_HT40;
835 else
836 modeidx = MCS_HT20;
837
838 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
839 modeidx++;
840
841 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
842 max_4ms_framelen = min(max_4ms_framelen, frmlen);
843 }
844
845 /*
846 * limit aggregate size by the minimum rate if rate selected is
847 * not a probe rate, if rate selected is a probe rate then
848 * avoid aggregation of this packet.
849 */
850 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
851 return 0;
852
853 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
854
855 /*
856 * Override the default aggregation limit for BTCOEX.
857 */
858 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
859 if (bt_aggr_limit)
860 aggr_limit = bt_aggr_limit;
861
862 if (tid->an->maxampdu)
863 aggr_limit = min(aggr_limit, tid->an->maxampdu);
864
865 return aggr_limit;
866 }
867
868 /*
869 * Returns the number of delimiters to be added to
870 * meet the minimum required mpdudensity.
871 */
ath_compute_num_delims(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,u16 frmlen,bool first_subfrm)872 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
873 struct ath_buf *bf, u16 frmlen,
874 bool first_subfrm)
875 {
876 #define FIRST_DESC_NDELIMS 60
877 u32 nsymbits, nsymbols;
878 u16 minlen;
879 u8 flags, rix;
880 int width, streams, half_gi, ndelim, mindelim;
881 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
882
883 /* Select standard number of delimiters based on frame length alone */
884 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
885
886 /*
887 * If encryption enabled, hardware requires some more padding between
888 * subframes.
889 * TODO - this could be improved to be dependent on the rate.
890 * The hardware can keep up at lower rates, but not higher rates
891 */
892 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
893 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
894 ndelim += ATH_AGGR_ENCRYPTDELIM;
895
896 /*
897 * Add delimiter when using RTS/CTS with aggregation
898 * and non enterprise AR9003 card
899 */
900 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
901 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
902 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
903
904 /*
905 * Convert desired mpdu density from microeconds to bytes based
906 * on highest rate in rate series (i.e. first rate) to determine
907 * required minimum length for subframe. Take into account
908 * whether high rate is 20 or 40Mhz and half or full GI.
909 *
910 * If there is no mpdu density restriction, no further calculation
911 * is needed.
912 */
913
914 if (tid->an->mpdudensity == 0)
915 return ndelim;
916
917 rix = bf->rates[0].idx;
918 flags = bf->rates[0].flags;
919 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
920 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
921
922 if (half_gi)
923 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
924 else
925 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
926
927 if (nsymbols == 0)
928 nsymbols = 1;
929
930 streams = HT_RC_2_STREAMS(rix);
931 nsymbits = bits_per_symbol[rix % 8][width] * streams;
932 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
933
934 if (frmlen < minlen) {
935 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
936 ndelim = max(mindelim, ndelim);
937 }
938
939 return ndelim;
940 }
941
942 static int
ath_tx_get_tid_subframe(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct ath_buf ** buf)943 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
944 struct ath_atx_tid *tid, struct ath_buf **buf)
945 {
946 struct ieee80211_tx_info *tx_info;
947 struct ath_frame_info *fi;
948 struct ath_buf *bf;
949 struct sk_buff *skb, *first_skb = NULL;
950 u16 seqno;
951 int ret;
952
953 while (1) {
954 ret = ath_tid_dequeue(tid, &skb);
955 if (ret < 0)
956 return ret;
957
958 fi = get_frame_info(skb);
959 bf = fi->bf;
960 if (!fi->bf)
961 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
962 else
963 bf->bf_state.stale = false;
964
965 if (!bf) {
966 ath_txq_skb_done(sc, txq, skb);
967 ieee80211_free_txskb(sc->hw, skb);
968 continue;
969 }
970
971 bf->bf_next = NULL;
972 bf->bf_lastbf = bf;
973
974 tx_info = IEEE80211_SKB_CB(skb);
975 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
976 IEEE80211_TX_STATUS_EOSP);
977
978 /*
979 * No aggregation session is running, but there may be frames
980 * from a previous session or a failed attempt in the queue.
981 * Send them out as normal data frames
982 */
983 if (!tid->active)
984 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
985
986 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
987 bf->bf_state.bf_type = 0;
988 break;
989 }
990
991 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
992 seqno = bf->bf_state.seqno;
993
994 /* do not step over block-ack window */
995 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
996 __skb_queue_tail(&tid->retry_q, skb);
997
998 /* If there are other skbs in the retry q, they are
999 * probably within the BAW, so loop immediately to get
1000 * one of them. Otherwise the queue can get stuck. */
1001 if (!skb_queue_is_first(&tid->retry_q, skb) &&
1002 !WARN_ON(skb == first_skb)) {
1003 if(!first_skb) /* infinite loop prevention */
1004 first_skb = skb;
1005 continue;
1006 }
1007 return -EINPROGRESS;
1008 }
1009
1010 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1011 struct ath_tx_status ts = {};
1012 struct list_head bf_head;
1013
1014 INIT_LIST_HEAD(&bf_head);
1015 list_add(&bf->list, &bf_head);
1016 ath_tx_update_baw(sc, tid, bf);
1017 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1018 continue;
1019 }
1020
1021 if (bf_isampdu(bf))
1022 ath_tx_addto_baw(sc, tid, bf);
1023
1024 break;
1025 }
1026
1027 *buf = bf;
1028 return 0;
1029 }
1030
1031 static int
ath_tx_form_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1032 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1033 struct ath_atx_tid *tid, struct list_head *bf_q,
1034 struct ath_buf *bf_first)
1035 {
1036 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1037 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1038 int nframes = 0, ndelim, ret;
1039 u16 aggr_limit = 0, al = 0, bpad = 0,
1040 al_delta, h_baw = tid->baw_size / 2;
1041 struct ieee80211_tx_info *tx_info;
1042 struct ath_frame_info *fi;
1043 struct sk_buff *skb;
1044
1045
1046 bf = bf_first;
1047 aggr_limit = ath_lookup_rate(sc, bf, tid);
1048
1049 while (bf)
1050 {
1051 skb = bf->bf_mpdu;
1052 fi = get_frame_info(skb);
1053
1054 /* do not exceed aggregation limit */
1055 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1056 if (nframes) {
1057 if (aggr_limit < al + bpad + al_delta ||
1058 ath_lookup_legacy(bf) || nframes >= h_baw)
1059 goto stop;
1060
1061 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1062 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1063 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1064 goto stop;
1065 }
1066
1067 /* add padding for previous frame to aggregation length */
1068 al += bpad + al_delta;
1069
1070 /*
1071 * Get the delimiters needed to meet the MPDU
1072 * density for this node.
1073 */
1074 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1075 !nframes);
1076 bpad = PADBYTES(al_delta) + (ndelim << 2);
1077
1078 nframes++;
1079 bf->bf_next = NULL;
1080
1081 /* link buffers of this frame to the aggregate */
1082 bf->bf_state.ndelim = ndelim;
1083
1084 list_add_tail(&bf->list, bf_q);
1085 if (bf_prev)
1086 bf_prev->bf_next = bf;
1087
1088 bf_prev = bf;
1089
1090 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1091 if (ret < 0)
1092 break;
1093 }
1094 goto finish;
1095 stop:
1096 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1097 finish:
1098 bf = bf_first;
1099 bf->bf_lastbf = bf_prev;
1100
1101 if (bf == bf_prev) {
1102 al = get_frame_info(bf->bf_mpdu)->framelen;
1103 bf->bf_state.bf_type = BUF_AMPDU;
1104 } else {
1105 TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1106 }
1107
1108 return al;
1109 #undef PADBYTES
1110 }
1111
1112 /*
1113 * rix - rate index
1114 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1115 * width - 0 for 20 MHz, 1 for 40 MHz
1116 * half_gi - to use 4us v/s 3.6 us for symbol time
1117 */
ath_pkt_duration(struct ath_softc * sc,u8 rix,int pktlen,int width,int half_gi,bool shortPreamble)1118 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1119 int width, int half_gi, bool shortPreamble)
1120 {
1121 u32 nbits, nsymbits, duration, nsymbols;
1122 int streams;
1123
1124 /* find number of symbols: PLCP + data */
1125 streams = HT_RC_2_STREAMS(rix);
1126 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1127 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1128 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1129
1130 if (!half_gi)
1131 duration = SYMBOL_TIME(nsymbols);
1132 else
1133 duration = SYMBOL_TIME_HALFGI(nsymbols);
1134
1135 /* addup duration for legacy/ht training and signal fields */
1136 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1137
1138 return duration;
1139 }
1140
ath_max_framelen(int usec,int mcs,bool ht40,bool sgi)1141 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1142 {
1143 int streams = HT_RC_2_STREAMS(mcs);
1144 int symbols, bits;
1145 int bytes = 0;
1146
1147 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1148 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1149 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1150 bits -= OFDM_PLCP_BITS;
1151 bytes = bits / 8;
1152 if (bytes > 65532)
1153 bytes = 65532;
1154
1155 return bytes;
1156 }
1157
ath_update_max_aggr_framelen(struct ath_softc * sc,int queue,int txop)1158 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1159 {
1160 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1161 int mcs;
1162
1163 /* 4ms is the default (and maximum) duration */
1164 if (!txop || txop > 4096)
1165 txop = 4096;
1166
1167 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1168 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1169 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1170 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1171 for (mcs = 0; mcs < 32; mcs++) {
1172 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1173 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1174 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1175 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1176 }
1177 }
1178
ath_get_rate_txpower(struct ath_softc * sc,struct ath_buf * bf,u8 rateidx,bool is_40,bool is_cck,bool is_mcs)1179 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1180 u8 rateidx, bool is_40, bool is_cck, bool is_mcs)
1181 {
1182 u8 max_power;
1183 struct sk_buff *skb;
1184 struct ath_frame_info *fi;
1185 struct ieee80211_tx_info *info;
1186 struct ath_hw *ah = sc->sc_ah;
1187 bool is_2ghz, is_5ghz, use_stbc;
1188
1189 if (sc->tx99_state || !ah->tpc_enabled)
1190 return MAX_RATE_POWER;
1191
1192 skb = bf->bf_mpdu;
1193 fi = get_frame_info(skb);
1194 info = IEEE80211_SKB_CB(skb);
1195
1196 is_2ghz = info->band == NL80211_BAND_2GHZ;
1197 is_5ghz = info->band == NL80211_BAND_5GHZ;
1198 use_stbc = is_mcs && rateidx < 8 && (info->flags &
1199 IEEE80211_TX_CTL_STBC);
1200
1201 if (is_mcs)
1202 rateidx += is_5ghz ? ATH9K_PWRTBL_11NA_HT_SHIFT
1203 : ATH9K_PWRTBL_11NG_HT_SHIFT;
1204 else if (is_2ghz && !is_cck)
1205 rateidx += ATH9K_PWRTBL_11NG_OFDM_SHIFT;
1206 else
1207 rateidx += ATH9K_PWRTBL_11NA_OFDM_SHIFT;
1208
1209 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1210 int txpower = fi->tx_power;
1211
1212 if (is_40) {
1213 u8 power_ht40delta;
1214 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1215 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1216
1217 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1218 struct modal_eep_header *pmodal;
1219
1220 pmodal = &eep->modalHeader[is_2ghz];
1221 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1222 } else {
1223 power_ht40delta = 2;
1224 }
1225 txpower += power_ht40delta;
1226 }
1227
1228 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1229 AR_SREV_9271(ah)) {
1230 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1231 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1232 s8 power_offset;
1233
1234 power_offset = ah->eep_ops->get_eeprom(ah,
1235 EEP_PWR_TABLE_OFFSET);
1236 txpower -= 2 * power_offset;
1237 }
1238
1239 if (OLC_FOR_AR9280_20_LATER(ah) && is_cck)
1240 txpower -= 2;
1241
1242 txpower = max(txpower, 0);
1243 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1244
1245 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1246 * max_power is set to 0, frames are transmitted at max
1247 * TX power
1248 */
1249 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1250 max_power = 1;
1251 } else if (!bf->bf_state.bfs_paprd) {
1252 if (use_stbc)
1253 max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1254 fi->tx_power);
1255 else
1256 max_power = min_t(u8, ah->tx_power[rateidx],
1257 fi->tx_power);
1258 } else {
1259 max_power = ah->paprd_training_power;
1260 }
1261
1262 return max_power;
1263 }
1264
ath_buf_set_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_info * info,int len,bool rts)1265 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1266 struct ath_tx_info *info, int len, bool rts)
1267 {
1268 struct ath_hw *ah = sc->sc_ah;
1269 struct ath_common *common = ath9k_hw_common(ah);
1270 struct sk_buff *skb;
1271 struct ieee80211_tx_info *tx_info;
1272 struct ieee80211_tx_rate *rates;
1273 const struct ieee80211_rate *rate;
1274 struct ieee80211_hdr *hdr;
1275 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1276 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1277 int i;
1278 u8 rix = 0;
1279
1280 skb = bf->bf_mpdu;
1281 tx_info = IEEE80211_SKB_CB(skb);
1282 rates = bf->rates;
1283 hdr = (struct ieee80211_hdr *)skb->data;
1284
1285 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1286 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1287 info->rtscts_rate = fi->rtscts_rate;
1288
1289 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1290 bool is_40, is_sgi, is_sp, is_cck;
1291 int phy;
1292
1293 if (!rates[i].count || (rates[i].idx < 0))
1294 break;
1295
1296 rix = rates[i].idx;
1297 info->rates[i].Tries = rates[i].count;
1298
1299 /*
1300 * Handle RTS threshold for unaggregated HT frames.
1301 */
1302 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1303 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1304 unlikely(rts_thresh != (u32) -1)) {
1305 if (!rts_thresh || (len > rts_thresh))
1306 rts = true;
1307 }
1308
1309 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1310 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1311 info->flags |= ATH9K_TXDESC_RTSENA;
1312 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1313 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1314 info->flags |= ATH9K_TXDESC_CTSENA;
1315 }
1316
1317 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1318 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1319 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1320 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1321
1322 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1323 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1324 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1325
1326 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1327 /* MCS rates */
1328 info->rates[i].Rate = rix | 0x80;
1329 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1330 ah->txchainmask, info->rates[i].Rate);
1331 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1332 is_40, is_sgi, is_sp);
1333 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1334 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1335 if (rix >= 8 && fi->dyn_smps) {
1336 info->rates[i].RateFlags |=
1337 ATH9K_RATESERIES_RTS_CTS;
1338 info->flags |= ATH9K_TXDESC_CTSENA;
1339 }
1340
1341 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1342 is_40, false, true);
1343 continue;
1344 }
1345
1346 /* legacy rates */
1347 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1348 if ((tx_info->band == NL80211_BAND_2GHZ) &&
1349 !(rate->flags & IEEE80211_RATE_ERP_G))
1350 phy = WLAN_RC_PHY_CCK;
1351 else
1352 phy = WLAN_RC_PHY_OFDM;
1353
1354 info->rates[i].Rate = rate->hw_value;
1355 if (rate->hw_value_short) {
1356 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1357 info->rates[i].Rate |= rate->hw_value_short;
1358 } else {
1359 is_sp = false;
1360 }
1361
1362 if (bf->bf_state.bfs_paprd)
1363 info->rates[i].ChSel = ah->txchainmask;
1364 else
1365 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1366 ah->txchainmask, info->rates[i].Rate);
1367
1368 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1369 phy, rate->bitrate * 100, len, rix, is_sp);
1370
1371 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1372 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1373 is_cck, false);
1374 }
1375
1376 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1377 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1378 info->flags &= ~ATH9K_TXDESC_RTSENA;
1379
1380 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1381 if (info->flags & ATH9K_TXDESC_RTSENA)
1382 info->flags &= ~ATH9K_TXDESC_CTSENA;
1383 }
1384
get_hw_packet_type(struct sk_buff * skb)1385 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1386 {
1387 struct ieee80211_hdr *hdr;
1388 enum ath9k_pkt_type htype;
1389 __le16 fc;
1390
1391 hdr = (struct ieee80211_hdr *)skb->data;
1392 fc = hdr->frame_control;
1393
1394 if (ieee80211_is_beacon(fc))
1395 htype = ATH9K_PKT_TYPE_BEACON;
1396 else if (ieee80211_is_probe_resp(fc))
1397 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1398 else if (ieee80211_is_atim(fc))
1399 htype = ATH9K_PKT_TYPE_ATIM;
1400 else if (ieee80211_is_pspoll(fc))
1401 htype = ATH9K_PKT_TYPE_PSPOLL;
1402 else
1403 htype = ATH9K_PKT_TYPE_NORMAL;
1404
1405 return htype;
1406 }
1407
ath_tx_fill_desc(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,int len)1408 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1409 struct ath_txq *txq, int len)
1410 {
1411 struct ath_hw *ah = sc->sc_ah;
1412 struct ath_buf *bf_first = NULL;
1413 struct ath_tx_info info;
1414 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1415 bool rts = false;
1416
1417 memset(&info, 0, sizeof(info));
1418 info.is_first = true;
1419 info.is_last = true;
1420 info.qcu = txq->axq_qnum;
1421
1422 while (bf) {
1423 struct sk_buff *skb = bf->bf_mpdu;
1424 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1425 struct ath_frame_info *fi = get_frame_info(skb);
1426 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1427
1428 info.type = get_hw_packet_type(skb);
1429 if (bf->bf_next)
1430 info.link = bf->bf_next->bf_daddr;
1431 else
1432 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1433
1434 if (!bf_first) {
1435 bf_first = bf;
1436
1437 if (!sc->tx99_state)
1438 info.flags = ATH9K_TXDESC_INTREQ;
1439 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1440 txq == sc->tx.uapsdq)
1441 info.flags |= ATH9K_TXDESC_CLRDMASK;
1442
1443 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1444 info.flags |= ATH9K_TXDESC_NOACK;
1445 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1446 info.flags |= ATH9K_TXDESC_LDPC;
1447
1448 if (bf->bf_state.bfs_paprd)
1449 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1450 ATH9K_TXDESC_PAPRD_S;
1451
1452 /*
1453 * mac80211 doesn't handle RTS threshold for HT because
1454 * the decision has to be taken based on AMPDU length
1455 * and aggregation is done entirely inside ath9k.
1456 * Set the RTS/CTS flag for the first subframe based
1457 * on the threshold.
1458 */
1459 if (aggr && (bf == bf_first) &&
1460 unlikely(rts_thresh != (u32) -1)) {
1461 /*
1462 * "len" is the size of the entire AMPDU.
1463 */
1464 if (!rts_thresh || (len > rts_thresh))
1465 rts = true;
1466 }
1467
1468 if (!aggr)
1469 len = fi->framelen;
1470
1471 ath_buf_set_rate(sc, bf, &info, len, rts);
1472 }
1473
1474 info.buf_addr[0] = bf->bf_buf_addr;
1475 info.buf_len[0] = skb->len;
1476 info.pkt_len = fi->framelen;
1477 info.keyix = fi->keyix;
1478 info.keytype = fi->keytype;
1479
1480 if (aggr) {
1481 if (bf == bf_first)
1482 info.aggr = AGGR_BUF_FIRST;
1483 else if (bf == bf_first->bf_lastbf)
1484 info.aggr = AGGR_BUF_LAST;
1485 else
1486 info.aggr = AGGR_BUF_MIDDLE;
1487
1488 info.ndelim = bf->bf_state.ndelim;
1489 info.aggr_len = len;
1490 }
1491
1492 if (bf == bf_first->bf_lastbf)
1493 bf_first = NULL;
1494
1495 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1496 bf = bf->bf_next;
1497 }
1498 }
1499
1500 static void
ath_tx_form_burst(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1501 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1502 struct ath_atx_tid *tid, struct list_head *bf_q,
1503 struct ath_buf *bf_first)
1504 {
1505 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1506 int nframes = 0, ret;
1507
1508 do {
1509 struct ieee80211_tx_info *tx_info;
1510
1511 nframes++;
1512 list_add_tail(&bf->list, bf_q);
1513 if (bf_prev)
1514 bf_prev->bf_next = bf;
1515 bf_prev = bf;
1516
1517 if (nframes >= 2)
1518 break;
1519
1520 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1521 if (ret < 0)
1522 break;
1523
1524 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1525 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1526 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1527 break;
1528 }
1529
1530 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1531 } while (1);
1532 }
1533
ath_tx_sched_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)1534 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1535 struct ath_atx_tid *tid)
1536 {
1537 struct ath_buf *bf = NULL;
1538 struct ieee80211_tx_info *tx_info;
1539 struct list_head bf_q;
1540 int aggr_len = 0, ret;
1541 bool aggr;
1542
1543 INIT_LIST_HEAD(&bf_q);
1544
1545 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1546 if (ret < 0)
1547 return ret;
1548
1549 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1550 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1551 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1552 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1553 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1554 return -EBUSY;
1555 }
1556
1557 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1558 if (aggr)
1559 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1560 else
1561 ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1562
1563 if (list_empty(&bf_q))
1564 return -EAGAIN;
1565
1566 if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1567 tid->clear_ps_filter = false;
1568 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1569 }
1570
1571 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1572 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1573 return 0;
1574 }
1575
ath_tx_aggr_start(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid,u16 * ssn)1576 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1577 u16 tid, u16 *ssn)
1578 {
1579 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1580 struct ath_atx_tid *txtid;
1581 struct ath_txq *txq;
1582 struct ath_node *an;
1583 u8 density;
1584
1585 ath_dbg(common, XMIT, "%s called\n", __func__);
1586
1587 an = (struct ath_node *)sta->drv_priv;
1588 txtid = ATH_AN_2_TID(an, tid);
1589 txq = txtid->txq;
1590
1591 ath_txq_lock(sc, txq);
1592
1593 /* update ampdu factor/density, they may have changed. This may happen
1594 * in HT IBSS when a beacon with HT-info is received after the station
1595 * has already been added.
1596 */
1597 if (sta->deflink.ht_cap.ht_supported) {
1598 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1599 sta->deflink.ht_cap.ampdu_factor)) - 1;
1600 density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density);
1601 an->mpdudensity = density;
1602 }
1603
1604 txtid->active = true;
1605 *ssn = txtid->seq_start = txtid->seq_next;
1606 txtid->bar_index = -1;
1607
1608 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1609 txtid->baw_head = txtid->baw_tail = 0;
1610
1611 ath_txq_unlock_complete(sc, txq);
1612
1613 return 0;
1614 }
1615
ath_tx_aggr_stop(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid)1616 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1617 {
1618 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1619 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1620 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1621 struct ath_txq *txq = txtid->txq;
1622
1623 ath_dbg(common, XMIT, "%s called\n", __func__);
1624
1625 ath_txq_lock(sc, txq);
1626 txtid->active = false;
1627 ath_tx_flush_tid(sc, txtid);
1628 ath_txq_unlock_complete(sc, txq);
1629 }
1630
ath_tx_aggr_sleep(struct ieee80211_sta * sta,struct ath_softc * sc,struct ath_node * an)1631 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1632 struct ath_node *an)
1633 {
1634 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1635 struct ath_atx_tid *tid;
1636 int tidno;
1637
1638 ath_dbg(common, XMIT, "%s called\n", __func__);
1639
1640 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1641 tid = ath_node_to_tid(an, tidno);
1642
1643 if (!skb_queue_empty(&tid->retry_q))
1644 ieee80211_sta_set_buffered(sta, tid->tidno, true);
1645
1646 }
1647 }
1648
ath_tx_aggr_wakeup(struct ath_softc * sc,struct ath_node * an)1649 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1650 {
1651 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1652 struct ath_atx_tid *tid;
1653 struct ath_txq *txq;
1654 int tidno;
1655
1656 ath_dbg(common, XMIT, "%s called\n", __func__);
1657
1658 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1659 tid = ath_node_to_tid(an, tidno);
1660 txq = tid->txq;
1661
1662 ath_txq_lock(sc, txq);
1663 tid->clear_ps_filter = true;
1664 if (!skb_queue_empty(&tid->retry_q)) {
1665 ath_tx_queue_tid(sc, tid);
1666 ath_txq_schedule(sc, txq);
1667 }
1668 ath_txq_unlock_complete(sc, txq);
1669
1670 }
1671 }
1672
1673
1674 static void
ath9k_set_moredata(struct ath_softc * sc,struct ath_buf * bf,bool val)1675 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1676 {
1677 struct ieee80211_hdr *hdr;
1678 u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1679 u16 mask_val = mask * val;
1680
1681 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1682 if ((hdr->frame_control & mask) != mask_val) {
1683 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1684 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1685 sizeof(*hdr), DMA_TO_DEVICE);
1686 }
1687 }
1688
ath9k_release_buffered_frames(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u16 tids,int nframes,enum ieee80211_frame_release_type reason,bool more_data)1689 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1690 struct ieee80211_sta *sta,
1691 u16 tids, int nframes,
1692 enum ieee80211_frame_release_type reason,
1693 bool more_data)
1694 {
1695 struct ath_softc *sc = hw->priv;
1696 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1697 struct ath_txq *txq = sc->tx.uapsdq;
1698 struct ieee80211_tx_info *info;
1699 struct list_head bf_q;
1700 struct ath_buf *bf_tail = NULL, *bf = NULL;
1701 int i, ret;
1702
1703 INIT_LIST_HEAD(&bf_q);
1704 for (i = 0; tids && nframes; i++, tids >>= 1) {
1705 struct ath_atx_tid *tid;
1706
1707 if (!(tids & 1))
1708 continue;
1709
1710 tid = ATH_AN_2_TID(an, i);
1711
1712 ath_txq_lock(sc, tid->txq);
1713 while (nframes > 0) {
1714 ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
1715 tid, &bf);
1716 if (ret < 0)
1717 break;
1718
1719 ath9k_set_moredata(sc, bf, true);
1720 list_add_tail(&bf->list, &bf_q);
1721 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1722 if (bf_isampdu(bf))
1723 bf->bf_state.bf_type &= ~BUF_AGGR;
1724 if (bf_tail)
1725 bf_tail->bf_next = bf;
1726
1727 bf_tail = bf;
1728 nframes--;
1729 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1730
1731 if (an->sta && skb_queue_empty(&tid->retry_q))
1732 ieee80211_sta_set_buffered(an->sta, i, false);
1733 }
1734 ath_txq_unlock_complete(sc, tid->txq);
1735 }
1736
1737 if (list_empty(&bf_q))
1738 return;
1739
1740 if (!more_data)
1741 ath9k_set_moredata(sc, bf_tail, false);
1742
1743 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1744 info->flags |= IEEE80211_TX_STATUS_EOSP;
1745
1746 bf = list_first_entry(&bf_q, struct ath_buf, list);
1747 ath_txq_lock(sc, txq);
1748 ath_tx_fill_desc(sc, bf, txq, 0);
1749 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1750 ath_txq_unlock(sc, txq);
1751 }
1752
1753 /********************/
1754 /* Queue Management */
1755 /********************/
1756
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)1757 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1758 {
1759 struct ath_hw *ah = sc->sc_ah;
1760 struct ath9k_tx_queue_info qi;
1761 static const int subtype_txq_to_hwq[] = {
1762 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1763 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1764 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1765 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1766 };
1767 int axq_qnum, i;
1768
1769 memset(&qi, 0, sizeof(qi));
1770 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1771 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1772 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1773 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1774 qi.tqi_physCompBuf = 0;
1775
1776 /*
1777 * Enable interrupts only for EOL and DESC conditions.
1778 * We mark tx descriptors to receive a DESC interrupt
1779 * when a tx queue gets deep; otherwise waiting for the
1780 * EOL to reap descriptors. Note that this is done to
1781 * reduce interrupt load and this only defers reaping
1782 * descriptors, never transmitting frames. Aside from
1783 * reducing interrupts this also permits more concurrency.
1784 * The only potential downside is if the tx queue backs
1785 * up in which case the top half of the kernel may backup
1786 * due to a lack of tx descriptors.
1787 *
1788 * The UAPSD queue is an exception, since we take a desc-
1789 * based intr on the EOSP frames.
1790 */
1791 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1792 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1793 } else {
1794 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1795 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1796 else
1797 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1798 TXQ_FLAG_TXDESCINT_ENABLE;
1799 }
1800 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1801 if (axq_qnum == -1) {
1802 /*
1803 * NB: don't print a message, this happens
1804 * normally on parts with too few tx queues
1805 */
1806 return NULL;
1807 }
1808 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1809 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1810
1811 txq->axq_qnum = axq_qnum;
1812 txq->mac80211_qnum = -1;
1813 txq->axq_link = NULL;
1814 __skb_queue_head_init(&txq->complete_q);
1815 INIT_LIST_HEAD(&txq->axq_q);
1816 spin_lock_init(&txq->axq_lock);
1817 txq->axq_depth = 0;
1818 txq->axq_ampdu_depth = 0;
1819 txq->axq_tx_inprogress = false;
1820 sc->tx.txqsetup |= 1<<axq_qnum;
1821
1822 txq->txq_headidx = txq->txq_tailidx = 0;
1823 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1824 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1825 }
1826 return &sc->tx.txq[axq_qnum];
1827 }
1828
ath_txq_update(struct ath_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1829 int ath_txq_update(struct ath_softc *sc, int qnum,
1830 struct ath9k_tx_queue_info *qinfo)
1831 {
1832 struct ath_hw *ah = sc->sc_ah;
1833 int error = 0;
1834 struct ath9k_tx_queue_info qi;
1835
1836 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1837
1838 ath9k_hw_get_txq_props(ah, qnum, &qi);
1839 qi.tqi_aifs = qinfo->tqi_aifs;
1840 qi.tqi_cwmin = qinfo->tqi_cwmin;
1841 qi.tqi_cwmax = qinfo->tqi_cwmax;
1842 qi.tqi_burstTime = qinfo->tqi_burstTime;
1843 qi.tqi_readyTime = qinfo->tqi_readyTime;
1844
1845 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1846 ath_err(ath9k_hw_common(sc->sc_ah),
1847 "Unable to update hardware queue %u!\n", qnum);
1848 error = -EIO;
1849 } else {
1850 ath9k_hw_resettxqueue(ah, qnum);
1851 }
1852
1853 return error;
1854 }
1855
ath_cabq_update(struct ath_softc * sc)1856 int ath_cabq_update(struct ath_softc *sc)
1857 {
1858 struct ath9k_tx_queue_info qi;
1859 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1860 int qnum = sc->beacon.cabq->axq_qnum;
1861
1862 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1863
1864 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1865 ATH_CABQ_READY_TIME) / 100;
1866 ath_txq_update(sc, qnum, &qi);
1867
1868 return 0;
1869 }
1870
ath_drain_txq_list(struct ath_softc * sc,struct ath_txq * txq,struct list_head * list)1871 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1872 struct list_head *list)
1873 {
1874 struct ath_buf *bf, *lastbf;
1875 struct list_head bf_head;
1876 struct ath_tx_status ts;
1877
1878 memset(&ts, 0, sizeof(ts));
1879 ts.ts_status = ATH9K_TX_FLUSH;
1880 INIT_LIST_HEAD(&bf_head);
1881
1882 while (!list_empty(list)) {
1883 bf = list_first_entry(list, struct ath_buf, list);
1884
1885 if (bf->bf_state.stale) {
1886 list_del(&bf->list);
1887
1888 ath_tx_return_buffer(sc, bf);
1889 continue;
1890 }
1891
1892 lastbf = bf->bf_lastbf;
1893 list_cut_position(&bf_head, list, &lastbf->list);
1894 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1895 }
1896 }
1897
1898 /*
1899 * Drain a given TX queue (could be Beacon or Data)
1900 *
1901 * This assumes output has been stopped and
1902 * we do not need to block ath_tx_tasklet.
1903 */
ath_draintxq(struct ath_softc * sc,struct ath_txq * txq)1904 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1905 {
1906 rcu_read_lock();
1907 ath_txq_lock(sc, txq);
1908
1909 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1910 int idx = txq->txq_tailidx;
1911
1912 while (!list_empty(&txq->txq_fifo[idx])) {
1913 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1914
1915 INCR(idx, ATH_TXFIFO_DEPTH);
1916 }
1917 txq->txq_tailidx = idx;
1918 }
1919
1920 txq->axq_link = NULL;
1921 txq->axq_tx_inprogress = false;
1922 ath_drain_txq_list(sc, txq, &txq->axq_q);
1923
1924 ath_txq_unlock_complete(sc, txq);
1925 rcu_read_unlock();
1926 }
1927
ath_drain_all_txq(struct ath_softc * sc)1928 bool ath_drain_all_txq(struct ath_softc *sc)
1929 {
1930 struct ath_hw *ah = sc->sc_ah;
1931 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1932 struct ath_txq *txq;
1933 int i;
1934 u32 npend = 0;
1935
1936 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1937 return true;
1938
1939 ath9k_hw_abort_tx_dma(ah);
1940
1941 /* Check if any queue remains active */
1942 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1943 if (!ATH_TXQ_SETUP(sc, i))
1944 continue;
1945
1946 if (!sc->tx.txq[i].axq_depth)
1947 continue;
1948
1949 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1950 npend |= BIT(i);
1951 }
1952
1953 if (npend) {
1954 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1955 ath_dbg(common, RESET,
1956 "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1957 }
1958
1959 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1960 if (!ATH_TXQ_SETUP(sc, i))
1961 continue;
1962
1963 txq = &sc->tx.txq[i];
1964 ath_draintxq(sc, txq);
1965 }
1966
1967 return !npend;
1968 }
1969
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)1970 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1971 {
1972 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1973 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1974 }
1975
1976 /* For each acq entry, for each tid, try to schedule packets
1977 * for transmit until ampdu_depth has reached min Q depth.
1978 */
ath_txq_schedule(struct ath_softc * sc,struct ath_txq * txq)1979 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1980 {
1981 struct ieee80211_hw *hw = sc->hw;
1982 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1983 struct ieee80211_txq *queue;
1984 struct ath_atx_tid *tid;
1985 int ret;
1986
1987 if (txq->mac80211_qnum < 0)
1988 return;
1989
1990 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1991 return;
1992
1993 ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
1994 spin_lock_bh(&sc->chan_lock);
1995 rcu_read_lock();
1996
1997 if (sc->cur_chan->stopped)
1998 goto out;
1999
2000 while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
2001 bool force;
2002
2003 tid = (struct ath_atx_tid *)queue->drv_priv;
2004
2005 ret = ath_tx_sched_aggr(sc, txq, tid);
2006 ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
2007
2008 force = !skb_queue_empty(&tid->retry_q);
2009 ieee80211_return_txq(hw, queue, force);
2010 }
2011
2012 out:
2013 rcu_read_unlock();
2014 spin_unlock_bh(&sc->chan_lock);
2015 ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
2016 }
2017
ath_txq_schedule_all(struct ath_softc * sc)2018 void ath_txq_schedule_all(struct ath_softc *sc)
2019 {
2020 struct ath_txq *txq;
2021 int i;
2022
2023 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2024 txq = sc->tx.txq_map[i];
2025
2026 spin_lock_bh(&txq->axq_lock);
2027 ath_txq_schedule(sc, txq);
2028 spin_unlock_bh(&txq->axq_lock);
2029 }
2030 }
2031
2032 /***********/
2033 /* TX, DMA */
2034 /***********/
2035
2036 /*
2037 * Insert a chain of ath_buf (descriptors) on a txq and
2038 * assume the descriptors are already chained together by caller.
2039 */
ath_tx_txqaddbuf(struct ath_softc * sc,struct ath_txq * txq,struct list_head * head,bool internal)2040 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2041 struct list_head *head, bool internal)
2042 {
2043 struct ath_hw *ah = sc->sc_ah;
2044 struct ath_common *common = ath9k_hw_common(ah);
2045 struct ath_buf *bf, *bf_last;
2046 bool puttxbuf = false;
2047 bool edma;
2048
2049 /*
2050 * Insert the frame on the outbound list and
2051 * pass it on to the hardware.
2052 */
2053
2054 if (list_empty(head))
2055 return;
2056
2057 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2058 bf = list_first_entry(head, struct ath_buf, list);
2059 bf_last = list_entry(head->prev, struct ath_buf, list);
2060
2061 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2062 txq->axq_qnum, txq->axq_depth);
2063
2064 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2065 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2066 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2067 puttxbuf = true;
2068 } else {
2069 list_splice_tail_init(head, &txq->axq_q);
2070
2071 if (txq->axq_link) {
2072 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2073 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2074 txq->axq_qnum, txq->axq_link,
2075 ito64(bf->bf_daddr), bf->bf_desc);
2076 } else if (!edma)
2077 puttxbuf = true;
2078
2079 txq->axq_link = bf_last->bf_desc;
2080 }
2081
2082 if (puttxbuf) {
2083 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2084 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2085 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2086 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2087 }
2088
2089 if (!edma || sc->tx99_state) {
2090 TX_STAT_INC(sc, txq->axq_qnum, txstart);
2091 ath9k_hw_txstart(ah, txq->axq_qnum);
2092 }
2093
2094 if (!internal) {
2095 while (bf) {
2096 txq->axq_depth++;
2097 if (bf_is_ampdu_not_probing(bf))
2098 txq->axq_ampdu_depth++;
2099
2100 bf_last = bf->bf_lastbf;
2101 bf = bf_last->bf_next;
2102 bf_last->bf_next = NULL;
2103 }
2104 }
2105 }
2106
ath_tx_send_normal(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2107 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2108 struct ath_atx_tid *tid, struct sk_buff *skb)
2109 {
2110 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2111 struct ath_frame_info *fi = get_frame_info(skb);
2112 struct list_head bf_head;
2113 struct ath_buf *bf = fi->bf;
2114
2115 INIT_LIST_HEAD(&bf_head);
2116 list_add_tail(&bf->list, &bf_head);
2117 bf->bf_state.bf_type = 0;
2118 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2119 bf->bf_state.bf_type = BUF_AMPDU;
2120 ath_tx_addto_baw(sc, tid, bf);
2121 }
2122
2123 bf->bf_next = NULL;
2124 bf->bf_lastbf = bf;
2125 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2126 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2127 TX_STAT_INC(sc, txq->axq_qnum, queued);
2128 }
2129
setup_frame_info(struct ieee80211_hw * hw,struct ieee80211_sta * sta,struct sk_buff * skb,int framelen)2130 static void setup_frame_info(struct ieee80211_hw *hw,
2131 struct ieee80211_sta *sta,
2132 struct sk_buff *skb,
2133 int framelen)
2134 {
2135 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2136 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2137 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2138 const struct ieee80211_rate *rate;
2139 struct ath_frame_info *fi = get_frame_info(skb);
2140 struct ath_node *an = NULL;
2141 enum ath9k_key_type keytype;
2142 bool short_preamble = false;
2143 u8 txpower;
2144
2145 /*
2146 * We check if Short Preamble is needed for the CTS rate by
2147 * checking the BSS's global flag.
2148 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2149 */
2150 if (tx_info->control.vif &&
2151 tx_info->control.vif->bss_conf.use_short_preamble)
2152 short_preamble = true;
2153
2154 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2155 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2156
2157 if (sta)
2158 an = (struct ath_node *) sta->drv_priv;
2159
2160 if (tx_info->control.vif) {
2161 struct ieee80211_vif *vif = tx_info->control.vif;
2162 if (vif->bss_conf.txpower == INT_MIN)
2163 goto nonvifpower;
2164 txpower = 2 * vif->bss_conf.txpower;
2165 } else {
2166 struct ath_softc *sc;
2167 nonvifpower:
2168 sc = hw->priv;
2169
2170 txpower = sc->cur_chan->cur_txpower;
2171 }
2172
2173 memset(fi, 0, sizeof(*fi));
2174 fi->txq = -1;
2175 if (hw_key)
2176 fi->keyix = hw_key->hw_key_idx;
2177 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2178 fi->keyix = an->ps_key;
2179 else
2180 fi->keyix = ATH9K_TXKEYIX_INVALID;
2181 fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC;
2182 fi->keytype = keytype;
2183 fi->framelen = framelen;
2184 fi->tx_power = txpower;
2185
2186 if (!rate)
2187 return;
2188 fi->rtscts_rate = rate->hw_value;
2189 if (short_preamble)
2190 fi->rtscts_rate |= rate->hw_value_short;
2191 }
2192
ath_txchainmask_reduction(struct ath_softc * sc,u8 chainmask,u32 rate)2193 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2194 {
2195 struct ath_hw *ah = sc->sc_ah;
2196 struct ath9k_channel *curchan = ah->curchan;
2197
2198 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2199 (chainmask == 0x7) && (rate < 0x90))
2200 return 0x3;
2201 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2202 IS_CCK_RATE(rate))
2203 return 0x2;
2204 else
2205 return chainmask;
2206 }
2207
2208 /*
2209 * Assign a descriptor (and sequence number if necessary,
2210 * and map buffer for DMA. Frees skb on error
2211 */
ath_tx_setup_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2212 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2213 struct ath_txq *txq,
2214 struct ath_atx_tid *tid,
2215 struct sk_buff *skb)
2216 {
2217 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2218 struct ath_frame_info *fi = get_frame_info(skb);
2219 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2220 struct ath_buf *bf;
2221 int fragno;
2222 u16 seqno;
2223
2224 bf = ath_tx_get_buffer(sc);
2225 if (!bf) {
2226 ath_dbg(common, XMIT, "TX buffers are full\n");
2227 return NULL;
2228 }
2229
2230 ATH_TXBUF_RESET(bf);
2231
2232 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2233 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2234 seqno = tid->seq_next;
2235 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2236
2237 if (fragno)
2238 hdr->seq_ctrl |= cpu_to_le16(fragno);
2239
2240 if (!ieee80211_has_morefrags(hdr->frame_control))
2241 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2242
2243 bf->bf_state.seqno = seqno;
2244 }
2245
2246 bf->bf_mpdu = skb;
2247
2248 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2249 skb->len, DMA_TO_DEVICE);
2250 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2251 bf->bf_mpdu = NULL;
2252 bf->bf_buf_addr = 0;
2253 ath_err(ath9k_hw_common(sc->sc_ah),
2254 "dma_mapping_error() on TX\n");
2255 ath_tx_return_buffer(sc, bf);
2256 return NULL;
2257 }
2258
2259 fi->bf = bf;
2260
2261 return bf;
2262 }
2263
ath_assign_seq(struct ath_common * common,struct sk_buff * skb)2264 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2265 {
2266 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2267 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2268 struct ieee80211_vif *vif = info->control.vif;
2269 struct ath_vif *avp;
2270
2271 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2272 return;
2273
2274 if (!vif)
2275 return;
2276
2277 avp = (struct ath_vif *)vif->drv_priv;
2278
2279 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2280 avp->seq_no += 0x10;
2281
2282 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2283 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2284 }
2285
ath_tx_prepare(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2286 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2287 struct ath_tx_control *txctl)
2288 {
2289 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2290 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2291 struct ieee80211_sta *sta = txctl->sta;
2292 struct ieee80211_vif *vif = info->control.vif;
2293 struct ath_vif *avp;
2294 struct ath_softc *sc = hw->priv;
2295 int frmlen = skb->len + FCS_LEN;
2296 int padpos, padsize;
2297
2298 /* NOTE: sta can be NULL according to net/mac80211.h */
2299 if (sta)
2300 txctl->an = (struct ath_node *)sta->drv_priv;
2301 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2302 avp = (void *)vif->drv_priv;
2303 txctl->an = &avp->mcast_node;
2304 }
2305
2306 if (info->control.hw_key)
2307 frmlen += info->control.hw_key->icv_len;
2308
2309 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2310
2311 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2312 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2313 !ieee80211_is_data(hdr->frame_control))
2314 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2315
2316 /* Add the padding after the header if this is not already done */
2317 padpos = ieee80211_hdrlen(hdr->frame_control);
2318 padsize = padpos & 3;
2319 if (padsize && skb->len > padpos) {
2320 if (skb_headroom(skb) < padsize)
2321 return -ENOMEM;
2322
2323 skb_push(skb, padsize);
2324 memmove(skb->data, skb->data + padsize, padpos);
2325 }
2326
2327 setup_frame_info(hw, sta, skb, frmlen);
2328 return 0;
2329 }
2330
2331
2332 /* Upon failure caller should free skb */
ath_tx_start(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2333 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2334 struct ath_tx_control *txctl)
2335 {
2336 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2337 struct ieee80211_sta *sta = txctl->sta;
2338 struct ieee80211_vif *vif = info->control.vif;
2339 struct ath_frame_info *fi = get_frame_info(skb);
2340 struct ath_softc *sc = hw->priv;
2341 struct ath_txq *txq = txctl->txq;
2342 struct ath_atx_tid *tid = NULL;
2343 struct ath_node *an = NULL;
2344 struct ath_buf *bf;
2345 bool ps_resp;
2346 int q, ret;
2347
2348 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2349
2350 ret = ath_tx_prepare(hw, skb, txctl);
2351 if (ret)
2352 return ret;
2353
2354 /*
2355 * At this point, the vif, hw_key and sta pointers in the tx control
2356 * info are no longer valid (overwritten by the ath_frame_info data.
2357 */
2358
2359 q = skb_get_queue_mapping(skb);
2360
2361 if (ps_resp)
2362 txq = sc->tx.uapsdq;
2363
2364 if (txctl->sta) {
2365 an = (struct ath_node *) sta->drv_priv;
2366 tid = ath_get_skb_tid(sc, an, skb);
2367 }
2368
2369 ath_txq_lock(sc, txq);
2370 if (txq == sc->tx.txq_map[q]) {
2371 fi->txq = q;
2372 ++txq->pending_frames;
2373 }
2374
2375 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2376 if (!bf) {
2377 ath_txq_skb_done(sc, txq, skb);
2378 if (txctl->paprd)
2379 dev_kfree_skb_any(skb);
2380 else
2381 ieee80211_free_txskb(sc->hw, skb);
2382 goto out;
2383 }
2384
2385 bf->bf_state.bfs_paprd = txctl->paprd;
2386
2387 if (txctl->paprd)
2388 bf->bf_state.bfs_paprd_timestamp = jiffies;
2389
2390 ath_set_rates(vif, sta, bf);
2391 ath_tx_send_normal(sc, txq, tid, skb);
2392
2393 out:
2394 ath_txq_unlock(sc, txq);
2395
2396 return 0;
2397 }
2398
ath_tx_cabq(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct sk_buff * skb)2399 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2400 struct sk_buff *skb)
2401 {
2402 struct ath_softc *sc = hw->priv;
2403 struct ath_tx_control txctl = {
2404 .txq = sc->beacon.cabq
2405 };
2406 struct ath_tx_info info = {};
2407 struct ath_buf *bf_tail = NULL;
2408 struct ath_buf *bf;
2409 LIST_HEAD(bf_q);
2410 int duration = 0;
2411 int max_duration;
2412
2413 max_duration =
2414 sc->cur_chan->beacon.beacon_interval * 1000 *
2415 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2416
2417 do {
2418 struct ath_frame_info *fi = get_frame_info(skb);
2419
2420 if (ath_tx_prepare(hw, skb, &txctl))
2421 break;
2422
2423 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2424 if (!bf)
2425 break;
2426
2427 bf->bf_lastbf = bf;
2428 ath_set_rates(vif, NULL, bf);
2429 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2430 duration += info.rates[0].PktDuration;
2431 if (bf_tail)
2432 bf_tail->bf_next = bf;
2433
2434 list_add_tail(&bf->list, &bf_q);
2435 bf_tail = bf;
2436 skb = NULL;
2437
2438 if (duration > max_duration)
2439 break;
2440
2441 skb = ieee80211_get_buffered_bc(hw, vif);
2442 } while(skb);
2443
2444 if (skb)
2445 ieee80211_free_txskb(hw, skb);
2446
2447 if (list_empty(&bf_q))
2448 return;
2449
2450 bf = list_last_entry(&bf_q, struct ath_buf, list);
2451 ath9k_set_moredata(sc, bf, false);
2452
2453 bf = list_first_entry(&bf_q, struct ath_buf, list);
2454 ath_txq_lock(sc, txctl.txq);
2455 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2456 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2457 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2458 ath_txq_unlock(sc, txctl.txq);
2459 }
2460
2461 /*****************/
2462 /* TX Completion */
2463 /*****************/
2464
ath_tx_complete(struct ath_softc * sc,struct sk_buff * skb,int tx_flags,struct ath_txq * txq,struct ieee80211_sta * sta)2465 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2466 int tx_flags, struct ath_txq *txq,
2467 struct ieee80211_sta *sta)
2468 {
2469 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2470 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2471 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2472 int padpos, padsize;
2473 unsigned long flags;
2474
2475 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2476
2477 if (sc->sc_ah->caldata)
2478 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2479
2480 if (!(tx_flags & ATH_TX_ERROR)) {
2481 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2482 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2483 else
2484 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2485 }
2486
2487 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2488 padpos = ieee80211_hdrlen(hdr->frame_control);
2489 padsize = padpos & 3;
2490 if (padsize && skb->len>padpos+padsize) {
2491 /*
2492 * Remove MAC header padding before giving the frame back to
2493 * mac80211.
2494 */
2495 memmove(skb->data + padsize, skb->data, padpos);
2496 skb_pull(skb, padsize);
2497 }
2498 }
2499
2500 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2501 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2502 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2503 ath_dbg(common, PS,
2504 "Going back to sleep after having received TX status (0x%lx)\n",
2505 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2506 PS_WAIT_FOR_CAB |
2507 PS_WAIT_FOR_PSPOLL_DATA |
2508 PS_WAIT_FOR_TX_ACK));
2509 }
2510 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2511
2512 ath_txq_skb_done(sc, txq, skb);
2513 tx_info->status.status_driver_data[0] = sta;
2514 __skb_queue_tail(&txq->complete_q, skb);
2515 }
2516
ath_tx_complete_buf(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_tx_status * ts,int txok)2517 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2518 struct ath_txq *txq, struct list_head *bf_q,
2519 struct ieee80211_sta *sta,
2520 struct ath_tx_status *ts, int txok)
2521 {
2522 struct sk_buff *skb = bf->bf_mpdu;
2523 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2524 unsigned long flags;
2525 int tx_flags = 0;
2526
2527 if (!txok)
2528 tx_flags |= ATH_TX_ERROR;
2529
2530 if (ts->ts_status & ATH9K_TXERR_FILT)
2531 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2532
2533 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2534 bf->bf_buf_addr = 0;
2535 if (sc->tx99_state)
2536 goto skip_tx_complete;
2537
2538 if (bf->bf_state.bfs_paprd) {
2539 if (time_after(jiffies,
2540 bf->bf_state.bfs_paprd_timestamp +
2541 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2542 dev_kfree_skb_any(skb);
2543 else
2544 complete(&sc->paprd_complete);
2545 } else {
2546 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2547 ath_tx_complete(sc, skb, tx_flags, txq, sta);
2548 }
2549 skip_tx_complete:
2550 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2551 * accidentally reference it later.
2552 */
2553 bf->bf_mpdu = NULL;
2554
2555 /*
2556 * Return the list of ath_buf of this mpdu to free queue
2557 */
2558 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2559 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2560 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2561 }
2562
ath_clear_tx_status(struct ieee80211_tx_info * tx_info)2563 static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info)
2564 {
2565 void *ptr = &tx_info->status;
2566
2567 memset(ptr + sizeof(tx_info->status.rates), 0,
2568 sizeof(tx_info->status) -
2569 sizeof(tx_info->status.rates) -
2570 sizeof(tx_info->status.status_driver_data));
2571 }
2572
ath_tx_rc_status(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int nframes,int nbad,int txok)2573 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2574 struct ath_tx_status *ts, int nframes, int nbad,
2575 int txok)
2576 {
2577 struct sk_buff *skb = bf->bf_mpdu;
2578 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2579 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2580 struct ieee80211_hw *hw = sc->hw;
2581 struct ath_hw *ah = sc->sc_ah;
2582 u8 i, tx_rateindex;
2583
2584 ath_clear_tx_status(tx_info);
2585
2586 if (txok)
2587 tx_info->status.ack_signal = ts->ts_rssi;
2588
2589 tx_rateindex = ts->ts_rateindex;
2590 WARN_ON(tx_rateindex >= hw->max_rates);
2591
2592 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2593 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2594
2595 BUG_ON(nbad > nframes);
2596 }
2597 tx_info->status.ampdu_len = nframes;
2598 tx_info->status.ampdu_ack_len = nframes - nbad;
2599
2600 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2601
2602 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2603 tx_info->status.rates[i].count = 0;
2604 tx_info->status.rates[i].idx = -1;
2605 }
2606
2607 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2608 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2609 /*
2610 * If an underrun error is seen assume it as an excessive
2611 * retry only if max frame trigger level has been reached
2612 * (2 KB for single stream, and 4 KB for dual stream).
2613 * Adjust the long retry as if the frame was tried
2614 * hw->max_rate_tries times to affect how rate control updates
2615 * PER for the failed rate.
2616 * In case of congestion on the bus penalizing this type of
2617 * underruns should help hardware actually transmit new frames
2618 * successfully by eventually preferring slower rates.
2619 * This itself should also alleviate congestion on the bus.
2620 */
2621 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2622 ATH9K_TX_DELIM_UNDERRUN)) &&
2623 ieee80211_is_data(hdr->frame_control) &&
2624 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2625 tx_info->status.rates[tx_rateindex].count =
2626 hw->max_rate_tries;
2627 }
2628 }
2629
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)2630 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2631 {
2632 struct ath_hw *ah = sc->sc_ah;
2633 struct ath_common *common = ath9k_hw_common(ah);
2634 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2635 struct list_head bf_head;
2636 struct ath_desc *ds;
2637 struct ath_tx_status ts;
2638 int status;
2639
2640 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2641 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2642 txq->axq_link);
2643
2644 ath_txq_lock(sc, txq);
2645 for (;;) {
2646 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2647 break;
2648
2649 if (list_empty(&txq->axq_q)) {
2650 txq->axq_link = NULL;
2651 ath_txq_schedule(sc, txq);
2652 break;
2653 }
2654 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2655
2656 /*
2657 * There is a race condition that a BH gets scheduled
2658 * after sw writes TxE and before hw re-load the last
2659 * descriptor to get the newly chained one.
2660 * Software must keep the last DONE descriptor as a
2661 * holding descriptor - software does so by marking
2662 * it with the STALE flag.
2663 */
2664 bf_held = NULL;
2665 if (bf->bf_state.stale) {
2666 bf_held = bf;
2667 if (list_is_last(&bf_held->list, &txq->axq_q))
2668 break;
2669
2670 bf = list_entry(bf_held->list.next, struct ath_buf,
2671 list);
2672 }
2673
2674 lastbf = bf->bf_lastbf;
2675 ds = lastbf->bf_desc;
2676
2677 memset(&ts, 0, sizeof(ts));
2678 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2679 if (status == -EINPROGRESS)
2680 break;
2681
2682 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2683
2684 /*
2685 * Remove ath_buf's of the same transmit unit from txq,
2686 * however leave the last descriptor back as the holding
2687 * descriptor for hw.
2688 */
2689 lastbf->bf_state.stale = true;
2690 INIT_LIST_HEAD(&bf_head);
2691 if (!list_is_singular(&lastbf->list))
2692 list_cut_position(&bf_head,
2693 &txq->axq_q, lastbf->list.prev);
2694
2695 if (bf_held) {
2696 list_del(&bf_held->list);
2697 ath_tx_return_buffer(sc, bf_held);
2698 }
2699
2700 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2701 }
2702 ath_txq_unlock_complete(sc, txq);
2703 }
2704
ath_tx_tasklet(struct ath_softc * sc)2705 void ath_tx_tasklet(struct ath_softc *sc)
2706 {
2707 struct ath_hw *ah = sc->sc_ah;
2708 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2709 int i;
2710
2711 rcu_read_lock();
2712 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2713 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2714 ath_tx_processq(sc, &sc->tx.txq[i]);
2715 }
2716 rcu_read_unlock();
2717 }
2718
ath_tx_edma_tasklet(struct ath_softc * sc)2719 void ath_tx_edma_tasklet(struct ath_softc *sc)
2720 {
2721 struct ath_tx_status ts;
2722 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2723 struct ath_hw *ah = sc->sc_ah;
2724 struct ath_txq *txq;
2725 struct ath_buf *bf, *lastbf;
2726 struct list_head bf_head;
2727 struct list_head *fifo_list;
2728 int status;
2729
2730 rcu_read_lock();
2731 for (;;) {
2732 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2733 break;
2734
2735 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2736 if (status == -EINPROGRESS)
2737 break;
2738 if (status == -EIO) {
2739 ath_dbg(common, XMIT, "Error processing tx status\n");
2740 break;
2741 }
2742
2743 /* Process beacon completions separately */
2744 if (ts.qid == sc->beacon.beaconq) {
2745 sc->beacon.tx_processed = true;
2746 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2747
2748 if (ath9k_is_chanctx_enabled()) {
2749 ath_chanctx_event(sc, NULL,
2750 ATH_CHANCTX_EVENT_BEACON_SENT);
2751 }
2752
2753 ath9k_csa_update(sc);
2754 continue;
2755 }
2756
2757 txq = &sc->tx.txq[ts.qid];
2758
2759 ath_txq_lock(sc, txq);
2760
2761 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2762
2763 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2764 if (list_empty(fifo_list)) {
2765 ath_txq_unlock(sc, txq);
2766 break;
2767 }
2768
2769 bf = list_first_entry(fifo_list, struct ath_buf, list);
2770 if (bf->bf_state.stale) {
2771 list_del(&bf->list);
2772 ath_tx_return_buffer(sc, bf);
2773 bf = list_first_entry(fifo_list, struct ath_buf, list);
2774 }
2775
2776 lastbf = bf->bf_lastbf;
2777
2778 INIT_LIST_HEAD(&bf_head);
2779 if (list_is_last(&lastbf->list, fifo_list)) {
2780 list_splice_tail_init(fifo_list, &bf_head);
2781 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2782
2783 if (!list_empty(&txq->axq_q)) {
2784 struct list_head bf_q;
2785
2786 INIT_LIST_HEAD(&bf_q);
2787 txq->axq_link = NULL;
2788 list_splice_tail_init(&txq->axq_q, &bf_q);
2789 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2790 }
2791 } else {
2792 lastbf->bf_state.stale = true;
2793 if (bf != lastbf)
2794 list_cut_position(&bf_head, fifo_list,
2795 lastbf->list.prev);
2796 }
2797
2798 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2799 ath_txq_unlock_complete(sc, txq);
2800 }
2801 rcu_read_unlock();
2802 }
2803
2804 /*****************/
2805 /* Init, Cleanup */
2806 /*****************/
2807
ath_txstatus_setup(struct ath_softc * sc,int size)2808 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2809 {
2810 struct ath_descdma *dd = &sc->txsdma;
2811 u8 txs_len = sc->sc_ah->caps.txs_len;
2812
2813 dd->dd_desc_len = size * txs_len;
2814 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2815 &dd->dd_desc_paddr, GFP_KERNEL);
2816 if (!dd->dd_desc)
2817 return -ENOMEM;
2818
2819 return 0;
2820 }
2821
ath_tx_edma_init(struct ath_softc * sc)2822 static int ath_tx_edma_init(struct ath_softc *sc)
2823 {
2824 int err;
2825
2826 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2827 if (!err)
2828 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2829 sc->txsdma.dd_desc_paddr,
2830 ATH_TXSTATUS_RING_SIZE);
2831
2832 return err;
2833 }
2834
ath_tx_init(struct ath_softc * sc,int nbufs)2835 int ath_tx_init(struct ath_softc *sc, int nbufs)
2836 {
2837 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2838 int error = 0;
2839
2840 spin_lock_init(&sc->tx.txbuflock);
2841
2842 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2843 "tx", nbufs, 1, 1);
2844 if (error != 0) {
2845 ath_err(common,
2846 "Failed to allocate tx descriptors: %d\n", error);
2847 return error;
2848 }
2849
2850 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2851 "beacon", ATH_BCBUF, 1, 1);
2852 if (error != 0) {
2853 ath_err(common,
2854 "Failed to allocate beacon descriptors: %d\n", error);
2855 return error;
2856 }
2857
2858 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2859 error = ath_tx_edma_init(sc);
2860
2861 return error;
2862 }
2863
ath_tx_node_init(struct ath_softc * sc,struct ath_node * an)2864 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2865 {
2866 struct ath_atx_tid *tid;
2867 int tidno, acno;
2868
2869 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2870 tid = ath_node_to_tid(an, tidno);
2871 tid->an = an;
2872 tid->tidno = tidno;
2873 tid->seq_start = tid->seq_next = 0;
2874 tid->baw_size = WME_MAX_BA;
2875 tid->baw_head = tid->baw_tail = 0;
2876 tid->active = false;
2877 tid->clear_ps_filter = true;
2878 __skb_queue_head_init(&tid->retry_q);
2879 INIT_LIST_HEAD(&tid->list);
2880 acno = TID_TO_WME_AC(tidno);
2881 tid->txq = sc->tx.txq_map[acno];
2882
2883 if (!an->sta)
2884 break; /* just one multicast ath_atx_tid */
2885 }
2886 }
2887
ath_tx_node_cleanup(struct ath_softc * sc,struct ath_node * an)2888 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2889 {
2890 struct ath_atx_tid *tid;
2891 struct ath_txq *txq;
2892 int tidno;
2893
2894 rcu_read_lock();
2895
2896 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2897 tid = ath_node_to_tid(an, tidno);
2898 txq = tid->txq;
2899
2900 ath_txq_lock(sc, txq);
2901
2902 if (!list_empty(&tid->list))
2903 list_del_init(&tid->list);
2904
2905 ath_tid_drain(sc, txq, tid);
2906 tid->active = false;
2907
2908 ath_txq_unlock(sc, txq);
2909
2910 if (!an->sta)
2911 break; /* just one multicast ath_atx_tid */
2912 }
2913
2914 rcu_read_unlock();
2915 }
2916
2917 #ifdef CONFIG_ATH9K_TX99
2918
ath9k_tx99_send(struct ath_softc * sc,struct sk_buff * skb,struct ath_tx_control * txctl)2919 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2920 struct ath_tx_control *txctl)
2921 {
2922 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2923 struct ath_frame_info *fi = get_frame_info(skb);
2924 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2925 struct ath_buf *bf;
2926 int padpos, padsize;
2927
2928 padpos = ieee80211_hdrlen(hdr->frame_control);
2929 padsize = padpos & 3;
2930
2931 if (padsize && skb->len > padpos) {
2932 if (skb_headroom(skb) < padsize) {
2933 ath_dbg(common, XMIT,
2934 "tx99 padding failed\n");
2935 return -EINVAL;
2936 }
2937
2938 skb_push(skb, padsize);
2939 memmove(skb->data, skb->data + padsize, padpos);
2940 }
2941
2942 fi->keyix = ATH9K_TXKEYIX_INVALID;
2943 fi->framelen = skb->len + FCS_LEN;
2944 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2945
2946 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2947 if (!bf) {
2948 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2949 return -EINVAL;
2950 }
2951
2952 ath_set_rates(sc->tx99_vif, NULL, bf);
2953
2954 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2955 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2956
2957 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2958
2959 return 0;
2960 }
2961
2962 #endif /* CONFIG_ATH9K_TX99 */
2963