1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/page_size_compat.h>
70
71 #include <linux/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/tlb.h>
74
75 #include <trace/events/task.h>
76 #include "internal.h"
77
78 #include <trace/events/sched.h>
79 #include <trace/hooks/sched.h>
80
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82
83 int suid_dumpable = 0;
84
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87
__register_binfmt(struct linux_binfmt * fmt,int insert)88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 write_lock(&binfmt_lock);
91 insert ? list_add(&fmt->lh, &formats) :
92 list_add_tail(&fmt->lh, &formats);
93 write_unlock(&binfmt_lock);
94 }
95
96 EXPORT_SYMBOL(__register_binfmt);
97
unregister_binfmt(struct linux_binfmt * fmt)98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 write_lock(&binfmt_lock);
101 list_del(&fmt->lh);
102 write_unlock(&binfmt_lock);
103 }
104
105 EXPORT_SYMBOL(unregister_binfmt);
106
put_binfmt(struct linux_binfmt * fmt)107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 module_put(fmt->module);
110 }
111
path_noexec(const struct path * path)112 bool path_noexec(const struct path *path)
113 {
114 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117
118 #ifdef CONFIG_USELIB
119 /*
120 * Note that a shared library must be both readable and executable due to
121 * security reasons.
122 *
123 * Also note that we take the address to load from the file itself.
124 */
SYSCALL_DEFINE1(uselib,const char __user *,library)125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 struct linux_binfmt *fmt;
128 struct file *file;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
136 };
137
138 if (IS_ERR(tmp))
139 goto out;
140
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 putname(tmp);
143 error = PTR_ERR(file);
144 if (IS_ERR(file))
145 goto out;
146
147 /*
148 * may_open() has already checked for this, so it should be
149 * impossible to trip now. But we need to be extra cautious
150 * and check again at the very end too.
151 */
152 error = -EACCES;
153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 path_noexec(&file->f_path)))
155 goto exit;
156
157 error = -ENOEXEC;
158
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
162 continue;
163 if (!try_module_get(fmt->module))
164 continue;
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
168 put_binfmt(fmt);
169 if (error != -ENOEXEC)
170 break;
171 }
172 read_unlock(&binfmt_lock);
173 exit:
174 fput(file);
175 out:
176 return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179
180 #ifdef CONFIG_MMU
181 /*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
191
192 if (!mm || !diff)
193 return;
194
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201 {
202 struct page *page;
203 struct vm_area_struct *vma = bprm->vma;
204 struct mm_struct *mm = bprm->mm;
205 int ret;
206
207 /*
208 * Avoid relying on expanding the stack down in GUP (which
209 * does not work for STACK_GROWSUP anyway), and just do it
210 * by hand ahead of time.
211 */
212 if (write && pos < vma->vm_start) {
213 mmap_write_lock(mm);
214 ret = expand_downwards(vma, pos);
215 if (unlikely(ret < 0)) {
216 mmap_write_unlock(mm);
217 return NULL;
218 }
219 mmap_write_downgrade(mm);
220 } else
221 mmap_read_lock(mm);
222
223 /*
224 * We are doing an exec(). 'current' is the process
225 * doing the exec and 'mm' is the new process's mm.
226 */
227 ret = get_user_pages_remote(mm, pos, 1,
228 write ? FOLL_WRITE : 0,
229 &page, NULL);
230 mmap_read_unlock(mm);
231 if (ret <= 0)
232 return NULL;
233
234 if (write)
235 acct_arg_size(bprm, vma_pages(vma));
236
237 return page;
238 }
239
put_arg_page(struct page * page)240 static void put_arg_page(struct page *page)
241 {
242 put_page(page);
243 }
244
free_arg_pages(struct linux_binprm * bprm)245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 struct page *page)
251 {
252 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254
__bprm_mm_init(struct linux_binprm * bprm)255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257 int err;
258 struct vm_area_struct *vma = NULL;
259 struct mm_struct *mm = bprm->mm;
260
261 bprm->vma = vma = vm_area_alloc(mm);
262 if (!vma)
263 return -ENOMEM;
264 vma_set_anonymous(vma);
265
266 if (mmap_write_lock_killable(mm)) {
267 err = -EINTR;
268 goto err_free;
269 }
270
271 /*
272 * Place the stack at the largest stack address the architecture
273 * supports. Later, we'll move this to an appropriate place. We don't
274 * use STACK_TOP because that can depend on attributes which aren't
275 * configured yet.
276 */
277 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
278 vma->vm_end = STACK_TOP_MAX;
279 vma->vm_start = vma->vm_end - __PAGE_SIZE;
280 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
281 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
282
283 err = insert_vm_struct(mm, vma);
284 if (err)
285 goto err;
286
287 mm->stack_vm = mm->total_vm = 1;
288 mmap_write_unlock(mm);
289 bprm->p = vma->vm_end - sizeof(void *);
290 return 0;
291 err:
292 mmap_write_unlock(mm);
293 err_free:
294 bprm->vma = NULL;
295 vm_area_free(vma);
296 return err;
297 }
298
valid_arg_len(struct linux_binprm * bprm,long len)299 static bool valid_arg_len(struct linux_binprm *bprm, long len)
300 {
301 return len <= MAX_ARG_STRLEN;
302 }
303
304 #else
305
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
307 {
308 }
309
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
311 int write)
312 {
313 struct page *page;
314
315 page = bprm->page[pos / PAGE_SIZE];
316 if (!page && write) {
317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
318 if (!page)
319 return NULL;
320 bprm->page[pos / PAGE_SIZE] = page;
321 }
322
323 return page;
324 }
325
put_arg_page(struct page * page)326 static void put_arg_page(struct page *page)
327 {
328 }
329
free_arg_page(struct linux_binprm * bprm,int i)330 static void free_arg_page(struct linux_binprm *bprm, int i)
331 {
332 if (bprm->page[i]) {
333 __free_page(bprm->page[i]);
334 bprm->page[i] = NULL;
335 }
336 }
337
free_arg_pages(struct linux_binprm * bprm)338 static void free_arg_pages(struct linux_binprm *bprm)
339 {
340 int i;
341
342 for (i = 0; i < MAX_ARG_PAGES; i++)
343 free_arg_page(bprm, i);
344 }
345
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
347 struct page *page)
348 {
349 }
350
__bprm_mm_init(struct linux_binprm * bprm)351 static int __bprm_mm_init(struct linux_binprm *bprm)
352 {
353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
354 return 0;
355 }
356
valid_arg_len(struct linux_binprm * bprm,long len)357 static bool valid_arg_len(struct linux_binprm *bprm, long len)
358 {
359 return len <= bprm->p;
360 }
361
362 #endif /* CONFIG_MMU */
363
364 /*
365 * Create a new mm_struct and populate it with a temporary stack
366 * vm_area_struct. We don't have enough context at this point to set the stack
367 * flags, permissions, and offset, so we use temporary values. We'll update
368 * them later in setup_arg_pages().
369 */
bprm_mm_init(struct linux_binprm * bprm)370 static int bprm_mm_init(struct linux_binprm *bprm)
371 {
372 int err;
373 struct mm_struct *mm = NULL;
374
375 bprm->mm = mm = mm_alloc();
376 err = -ENOMEM;
377 if (!mm)
378 goto err;
379
380 /* Save current stack limit for all calculations made during exec. */
381 task_lock(current->group_leader);
382 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
383 task_unlock(current->group_leader);
384
385 err = __bprm_mm_init(bprm);
386 if (err)
387 goto err;
388
389 return 0;
390
391 err:
392 if (mm) {
393 bprm->mm = NULL;
394 mmdrop(mm);
395 }
396
397 return err;
398 }
399
400 struct user_arg_ptr {
401 #ifdef CONFIG_COMPAT
402 bool is_compat;
403 #endif
404 union {
405 const char __user *const __user *native;
406 #ifdef CONFIG_COMPAT
407 const compat_uptr_t __user *compat;
408 #endif
409 } ptr;
410 };
411
get_user_arg_ptr(struct user_arg_ptr argv,int nr)412 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
413 {
414 const char __user *native;
415
416 #ifdef CONFIG_COMPAT
417 if (unlikely(argv.is_compat)) {
418 compat_uptr_t compat;
419
420 if (get_user(compat, argv.ptr.compat + nr))
421 return ERR_PTR(-EFAULT);
422
423 return compat_ptr(compat);
424 }
425 #endif
426
427 if (get_user(native, argv.ptr.native + nr))
428 return ERR_PTR(-EFAULT);
429
430 return native;
431 }
432
433 /*
434 * count() counts the number of strings in array ARGV.
435 */
count(struct user_arg_ptr argv,int max)436 static int count(struct user_arg_ptr argv, int max)
437 {
438 int i = 0;
439
440 if (argv.ptr.native != NULL) {
441 for (;;) {
442 const char __user *p = get_user_arg_ptr(argv, i);
443
444 if (!p)
445 break;
446
447 if (IS_ERR(p))
448 return -EFAULT;
449
450 if (i >= max)
451 return -E2BIG;
452 ++i;
453
454 if (fatal_signal_pending(current))
455 return -ERESTARTNOHAND;
456 cond_resched();
457 }
458 }
459 return i;
460 }
461
count_strings_kernel(const char * const * argv)462 static int count_strings_kernel(const char *const *argv)
463 {
464 int i;
465
466 if (!argv)
467 return 0;
468
469 for (i = 0; argv[i]; ++i) {
470 if (i >= MAX_ARG_STRINGS)
471 return -E2BIG;
472 if (fatal_signal_pending(current))
473 return -ERESTARTNOHAND;
474 cond_resched();
475 }
476 return i;
477 }
478
bprm_stack_limits(struct linux_binprm * bprm)479 static int bprm_stack_limits(struct linux_binprm *bprm)
480 {
481 unsigned long limit, ptr_size;
482
483 /*
484 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
485 * (whichever is smaller) for the argv+env strings.
486 * This ensures that:
487 * - the remaining binfmt code will not run out of stack space,
488 * - the program will have a reasonable amount of stack left
489 * to work from.
490 */
491 limit = _STK_LIM / 4 * 3;
492 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
493 /*
494 * We've historically supported up to 32 pages (ARG_MAX)
495 * of argument strings even with small stacks
496 */
497 limit = max_t(unsigned long, limit, ARG_MAX);
498 /*
499 * We must account for the size of all the argv and envp pointers to
500 * the argv and envp strings, since they will also take up space in
501 * the stack. They aren't stored until much later when we can't
502 * signal to the parent that the child has run out of stack space.
503 * Instead, calculate it here so it's possible to fail gracefully.
504 *
505 * In the case of argc = 0, make sure there is space for adding a
506 * empty string (which will bump argc to 1), to ensure confused
507 * userspace programs don't start processing from argv[1], thinking
508 * argc can never be 0, to keep them from walking envp by accident.
509 * See do_execveat_common().
510 */
511 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
512 if (limit <= ptr_size)
513 return -E2BIG;
514 limit -= ptr_size;
515
516 bprm->argmin = bprm->p - limit;
517 return 0;
518 }
519
520 /*
521 * 'copy_strings()' copies argument/environment strings from the old
522 * processes's memory to the new process's stack. The call to get_user_pages()
523 * ensures the destination page is created and not swapped out.
524 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)525 static int copy_strings(int argc, struct user_arg_ptr argv,
526 struct linux_binprm *bprm)
527 {
528 struct page *kmapped_page = NULL;
529 char *kaddr = NULL;
530 unsigned long kpos = 0;
531 int ret;
532
533 while (argc-- > 0) {
534 const char __user *str;
535 int len;
536 unsigned long pos;
537
538 ret = -EFAULT;
539 str = get_user_arg_ptr(argv, argc);
540 if (IS_ERR(str))
541 goto out;
542
543 len = strnlen_user(str, MAX_ARG_STRLEN);
544 if (!len)
545 goto out;
546
547 ret = -E2BIG;
548 if (!valid_arg_len(bprm, len))
549 goto out;
550
551 /* We're going to work our way backwards. */
552 pos = bprm->p;
553 str += len;
554 bprm->p -= len;
555 #ifdef CONFIG_MMU
556 if (bprm->p < bprm->argmin)
557 goto out;
558 #endif
559
560 while (len > 0) {
561 int offset, bytes_to_copy;
562
563 if (fatal_signal_pending(current)) {
564 ret = -ERESTARTNOHAND;
565 goto out;
566 }
567 cond_resched();
568
569 offset = pos % PAGE_SIZE;
570 if (offset == 0)
571 offset = PAGE_SIZE;
572
573 bytes_to_copy = offset;
574 if (bytes_to_copy > len)
575 bytes_to_copy = len;
576
577 offset -= bytes_to_copy;
578 pos -= bytes_to_copy;
579 str -= bytes_to_copy;
580 len -= bytes_to_copy;
581
582 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
583 struct page *page;
584
585 page = get_arg_page(bprm, pos, 1);
586 if (!page) {
587 ret = -E2BIG;
588 goto out;
589 }
590
591 if (kmapped_page) {
592 flush_dcache_page(kmapped_page);
593 kunmap_local(kaddr);
594 put_arg_page(kmapped_page);
595 }
596 kmapped_page = page;
597 kaddr = kmap_local_page(kmapped_page);
598 kpos = pos & PAGE_MASK;
599 flush_arg_page(bprm, kpos, kmapped_page);
600 }
601 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
602 ret = -EFAULT;
603 goto out;
604 }
605 }
606 }
607 ret = 0;
608 out:
609 if (kmapped_page) {
610 flush_dcache_page(kmapped_page);
611 kunmap_local(kaddr);
612 put_arg_page(kmapped_page);
613 }
614 return ret;
615 }
616
617 /*
618 * Copy and argument/environment string from the kernel to the processes stack.
619 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)620 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
621 {
622 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
623 unsigned long pos = bprm->p;
624
625 if (len == 0)
626 return -EFAULT;
627 if (!valid_arg_len(bprm, len))
628 return -E2BIG;
629
630 /* We're going to work our way backwards. */
631 arg += len;
632 bprm->p -= len;
633 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
634 return -E2BIG;
635
636 while (len > 0) {
637 unsigned int bytes_to_copy = min_t(unsigned int, len,
638 min_not_zero(offset_in_page(pos), PAGE_SIZE));
639 struct page *page;
640
641 pos -= bytes_to_copy;
642 arg -= bytes_to_copy;
643 len -= bytes_to_copy;
644
645 page = get_arg_page(bprm, pos, 1);
646 if (!page)
647 return -E2BIG;
648 flush_arg_page(bprm, pos & PAGE_MASK, page);
649 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
650 put_arg_page(page);
651 }
652
653 return 0;
654 }
655 EXPORT_SYMBOL(copy_string_kernel);
656
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)657 static int copy_strings_kernel(int argc, const char *const *argv,
658 struct linux_binprm *bprm)
659 {
660 while (argc-- > 0) {
661 int ret = copy_string_kernel(argv[argc], bprm);
662 if (ret < 0)
663 return ret;
664 if (fatal_signal_pending(current))
665 return -ERESTARTNOHAND;
666 cond_resched();
667 }
668 return 0;
669 }
670
671 #ifdef CONFIG_MMU
672
673 /*
674 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
675 * the binfmt code determines where the new stack should reside, we shift it to
676 * its final location. The process proceeds as follows:
677 *
678 * 1) Use shift to calculate the new vma endpoints.
679 * 2) Extend vma to cover both the old and new ranges. This ensures the
680 * arguments passed to subsequent functions are consistent.
681 * 3) Move vma's page tables to the new range.
682 * 4) Free up any cleared pgd range.
683 * 5) Shrink the vma to cover only the new range.
684 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)685 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
686 {
687 struct mm_struct *mm = vma->vm_mm;
688 unsigned long old_start = vma->vm_start;
689 unsigned long old_end = vma->vm_end;
690 unsigned long length = old_end - old_start;
691 unsigned long new_start = old_start - shift;
692 unsigned long new_end = old_end - shift;
693 VMA_ITERATOR(vmi, mm, new_start);
694 struct vm_area_struct *next;
695 struct mmu_gather tlb;
696
697 BUG_ON(new_start > new_end);
698
699 /*
700 * ensure there are no vmas between where we want to go
701 * and where we are
702 */
703 if (vma != vma_next(&vmi))
704 return -EFAULT;
705
706 vma_iter_prev_range(&vmi);
707 /*
708 * cover the whole range: [new_start, old_end)
709 */
710 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
711 return -ENOMEM;
712
713 /*
714 * move the page tables downwards, on failure we rely on
715 * process cleanup to remove whatever mess we made.
716 */
717 if (length != move_page_tables(vma, old_start,
718 vma, new_start, length, false))
719 return -ENOMEM;
720
721 lru_add_drain();
722 tlb_gather_mmu(&tlb, mm);
723 next = vma_next(&vmi);
724 if (new_end > old_start) {
725 /*
726 * when the old and new regions overlap clear from new_end.
727 */
728 free_pgd_range(&tlb, new_end, old_end, new_end,
729 next ? next->vm_start : USER_PGTABLES_CEILING);
730 } else {
731 /*
732 * otherwise, clean from old_start; this is done to not touch
733 * the address space in [new_end, old_start) some architectures
734 * have constraints on va-space that make this illegal (IA64) -
735 * for the others its just a little faster.
736 */
737 free_pgd_range(&tlb, old_start, old_end, new_end,
738 next ? next->vm_start : USER_PGTABLES_CEILING);
739 }
740 tlb_finish_mmu(&tlb);
741
742 vma_prev(&vmi);
743 /* Shrink the vma to just the new range */
744 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
745 }
746
747 /*
748 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
749 * the stack is optionally relocated, and some extra space is added.
750 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)751 int setup_arg_pages(struct linux_binprm *bprm,
752 unsigned long stack_top,
753 int executable_stack)
754 {
755 unsigned long ret;
756 unsigned long stack_shift;
757 struct mm_struct *mm = current->mm;
758 struct vm_area_struct *vma = bprm->vma;
759 struct vm_area_struct *prev = NULL;
760 unsigned long vm_flags;
761 unsigned long stack_base;
762 unsigned long stack_size;
763 unsigned long stack_expand;
764 unsigned long rlim_stack;
765 struct mmu_gather tlb;
766 struct vma_iterator vmi;
767
768 #ifdef CONFIG_STACK_GROWSUP
769 /* Limit stack size */
770 stack_base = bprm->rlim_stack.rlim_max;
771
772 stack_base = calc_max_stack_size(stack_base);
773
774 /* Add space for stack randomization. */
775 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
776
777 /* Make sure we didn't let the argument array grow too large. */
778 if (vma->vm_end - vma->vm_start > stack_base)
779 return -ENOMEM;
780
781 stack_base = __PAGE_ALIGN(stack_top - stack_base);
782
783 stack_shift = vma->vm_start - stack_base;
784 mm->arg_start = bprm->p - stack_shift;
785 bprm->p = vma->vm_end - stack_shift;
786 #else
787 stack_top = arch_align_stack(stack_top);
788 stack_top = __PAGE_ALIGN(stack_top);
789
790 if (unlikely(stack_top < mmap_min_addr) ||
791 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
792 return -ENOMEM;
793
794 stack_shift = vma->vm_end - stack_top;
795
796 bprm->p -= stack_shift;
797 mm->arg_start = bprm->p;
798 #endif
799
800 if (bprm->loader)
801 bprm->loader -= stack_shift;
802 bprm->exec -= stack_shift;
803
804 if (mmap_write_lock_killable(mm))
805 return -EINTR;
806
807 vm_flags = VM_STACK_FLAGS;
808
809 /*
810 * Adjust stack execute permissions; explicitly enable for
811 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
812 * (arch default) otherwise.
813 */
814 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
815 vm_flags |= VM_EXEC;
816 else if (executable_stack == EXSTACK_DISABLE_X)
817 vm_flags &= ~VM_EXEC;
818 vm_flags |= mm->def_flags;
819 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
820
821 vma_iter_init(&vmi, mm, vma->vm_start);
822
823 tlb_gather_mmu(&tlb, mm);
824 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
825 vm_flags);
826 tlb_finish_mmu(&tlb);
827
828 if (ret)
829 goto out_unlock;
830 BUG_ON(prev != vma);
831
832 if (unlikely(vm_flags & VM_EXEC)) {
833 pr_warn_once("process '%pD4' started with executable stack\n",
834 bprm->file);
835 }
836
837 /* Move stack pages down in memory. */
838 if (stack_shift) {
839 ret = shift_arg_pages(vma, stack_shift);
840 if (ret)
841 goto out_unlock;
842 }
843
844 /* mprotect_fixup is overkill to remove the temporary stack flags */
845 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
846
847 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
848 stack_size = vma->vm_end - vma->vm_start;
849 /*
850 * Align this down to a page boundary as expand_stack
851 * will align it up.
852 */
853 rlim_stack = bprm->rlim_stack.rlim_cur & __PAGE_MASK;
854
855 stack_expand = min(rlim_stack, stack_size + stack_expand);
856
857 #ifdef CONFIG_STACK_GROWSUP
858 stack_base = vma->vm_start + stack_expand;
859 #else
860 stack_base = vma->vm_end - stack_expand;
861 #endif
862 current->mm->start_stack = bprm->p;
863 ret = expand_stack_locked(vma, stack_base);
864 if (ret)
865 ret = -EFAULT;
866
867 out_unlock:
868 mmap_write_unlock(mm);
869 return ret;
870 }
871 EXPORT_SYMBOL(setup_arg_pages);
872
873 #else
874
875 /*
876 * Transfer the program arguments and environment from the holding pages
877 * onto the stack. The provided stack pointer is adjusted accordingly.
878 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)879 int transfer_args_to_stack(struct linux_binprm *bprm,
880 unsigned long *sp_location)
881 {
882 unsigned long index, stop, sp;
883 int ret = 0;
884
885 stop = bprm->p >> PAGE_SHIFT;
886 sp = *sp_location;
887
888 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
889 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
890 char *src = kmap_local_page(bprm->page[index]) + offset;
891 sp -= PAGE_SIZE - offset;
892 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
893 ret = -EFAULT;
894 kunmap_local(src);
895 if (ret)
896 goto out;
897 }
898
899 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
900 *sp_location = sp;
901
902 out:
903 return ret;
904 }
905 EXPORT_SYMBOL(transfer_args_to_stack);
906
907 #endif /* CONFIG_MMU */
908
do_open_execat(int fd,struct filename * name,int flags)909 static struct file *do_open_execat(int fd, struct filename *name, int flags)
910 {
911 struct file *file;
912 int err;
913 struct open_flags open_exec_flags = {
914 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
915 .acc_mode = MAY_EXEC,
916 .intent = LOOKUP_OPEN,
917 .lookup_flags = LOOKUP_FOLLOW,
918 };
919
920 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
921 return ERR_PTR(-EINVAL);
922 if (flags & AT_SYMLINK_NOFOLLOW)
923 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
924 if (flags & AT_EMPTY_PATH)
925 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
926
927 file = do_filp_open(fd, name, &open_exec_flags);
928 if (IS_ERR(file))
929 goto out;
930
931 /*
932 * may_open() has already checked for this, so it should be
933 * impossible to trip now. But we need to be extra cautious
934 * and check again at the very end too.
935 */
936 err = -EACCES;
937 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
938 path_noexec(&file->f_path)))
939 goto exit;
940
941 err = deny_write_access(file);
942 if (err)
943 goto exit;
944
945 out:
946 return file;
947
948 exit:
949 fput(file);
950 return ERR_PTR(err);
951 }
952
open_exec(const char * name)953 struct file *open_exec(const char *name)
954 {
955 struct filename *filename = getname_kernel(name);
956 struct file *f = ERR_CAST(filename);
957
958 if (!IS_ERR(filename)) {
959 f = do_open_execat(AT_FDCWD, filename, 0);
960 putname(filename);
961 }
962 return f;
963 }
964 EXPORT_SYMBOL(open_exec);
965
966 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)967 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
968 {
969 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
970 if (res > 0)
971 flush_icache_user_range(addr, addr + len);
972 return res;
973 }
974 EXPORT_SYMBOL(read_code);
975 #endif
976
977 /*
978 * Maps the mm_struct mm into the current task struct.
979 * On success, this function returns with exec_update_lock
980 * held for writing.
981 */
exec_mmap(struct mm_struct * mm)982 static int exec_mmap(struct mm_struct *mm)
983 {
984 struct task_struct *tsk;
985 struct mm_struct *old_mm, *active_mm;
986 int ret;
987
988 /* Notify parent that we're no longer interested in the old VM */
989 tsk = current;
990 old_mm = current->mm;
991 exec_mm_release(tsk, old_mm);
992 if (old_mm)
993 sync_mm_rss(old_mm);
994
995 ret = down_write_killable(&tsk->signal->exec_update_lock);
996 if (ret)
997 return ret;
998
999 if (old_mm) {
1000 /*
1001 * If there is a pending fatal signal perhaps a signal
1002 * whose default action is to create a coredump get
1003 * out and die instead of going through with the exec.
1004 */
1005 ret = mmap_read_lock_killable(old_mm);
1006 if (ret) {
1007 up_write(&tsk->signal->exec_update_lock);
1008 return ret;
1009 }
1010 }
1011
1012 task_lock(tsk);
1013 membarrier_exec_mmap(mm);
1014
1015 local_irq_disable();
1016 active_mm = tsk->active_mm;
1017 tsk->active_mm = mm;
1018 tsk->mm = mm;
1019 mm_init_cid(mm);
1020 /*
1021 * This prevents preemption while active_mm is being loaded and
1022 * it and mm are being updated, which could cause problems for
1023 * lazy tlb mm refcounting when these are updated by context
1024 * switches. Not all architectures can handle irqs off over
1025 * activate_mm yet.
1026 */
1027 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1028 local_irq_enable();
1029 activate_mm(active_mm, mm);
1030 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1031 local_irq_enable();
1032 lru_gen_add_mm(mm);
1033 task_unlock(tsk);
1034 lru_gen_use_mm(mm);
1035 if (old_mm) {
1036 mmap_read_unlock(old_mm);
1037 BUG_ON(active_mm != old_mm);
1038 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1039 mm_update_next_owner(old_mm);
1040 mmput(old_mm);
1041 return 0;
1042 }
1043 mmdrop_lazy_tlb(active_mm);
1044 return 0;
1045 }
1046
de_thread(struct task_struct * tsk)1047 static int de_thread(struct task_struct *tsk)
1048 {
1049 struct signal_struct *sig = tsk->signal;
1050 struct sighand_struct *oldsighand = tsk->sighand;
1051 spinlock_t *lock = &oldsighand->siglock;
1052
1053 if (thread_group_empty(tsk))
1054 goto no_thread_group;
1055
1056 /*
1057 * Kill all other threads in the thread group.
1058 */
1059 spin_lock_irq(lock);
1060 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1061 /*
1062 * Another group action in progress, just
1063 * return so that the signal is processed.
1064 */
1065 spin_unlock_irq(lock);
1066 return -EAGAIN;
1067 }
1068
1069 sig->group_exec_task = tsk;
1070 sig->notify_count = zap_other_threads(tsk);
1071 if (!thread_group_leader(tsk))
1072 sig->notify_count--;
1073
1074 while (sig->notify_count) {
1075 __set_current_state(TASK_KILLABLE);
1076 spin_unlock_irq(lock);
1077 schedule();
1078 if (__fatal_signal_pending(tsk))
1079 goto killed;
1080 spin_lock_irq(lock);
1081 }
1082 spin_unlock_irq(lock);
1083
1084 /*
1085 * At this point all other threads have exited, all we have to
1086 * do is to wait for the thread group leader to become inactive,
1087 * and to assume its PID:
1088 */
1089 if (!thread_group_leader(tsk)) {
1090 struct task_struct *leader = tsk->group_leader;
1091
1092 for (;;) {
1093 cgroup_threadgroup_change_begin(tsk);
1094 write_lock_irq(&tasklist_lock);
1095 /*
1096 * Do this under tasklist_lock to ensure that
1097 * exit_notify() can't miss ->group_exec_task
1098 */
1099 sig->notify_count = -1;
1100 if (likely(leader->exit_state))
1101 break;
1102 __set_current_state(TASK_KILLABLE);
1103 write_unlock_irq(&tasklist_lock);
1104 cgroup_threadgroup_change_end(tsk);
1105 schedule();
1106 if (__fatal_signal_pending(tsk))
1107 goto killed;
1108 }
1109
1110 /*
1111 * The only record we have of the real-time age of a
1112 * process, regardless of execs it's done, is start_time.
1113 * All the past CPU time is accumulated in signal_struct
1114 * from sister threads now dead. But in this non-leader
1115 * exec, nothing survives from the original leader thread,
1116 * whose birth marks the true age of this process now.
1117 * When we take on its identity by switching to its PID, we
1118 * also take its birthdate (always earlier than our own).
1119 */
1120 tsk->start_time = leader->start_time;
1121 tsk->start_boottime = leader->start_boottime;
1122
1123 BUG_ON(!same_thread_group(leader, tsk));
1124 /*
1125 * An exec() starts a new thread group with the
1126 * TGID of the previous thread group. Rehash the
1127 * two threads with a switched PID, and release
1128 * the former thread group leader:
1129 */
1130
1131 /* Become a process group leader with the old leader's pid.
1132 * The old leader becomes a thread of the this thread group.
1133 */
1134 exchange_tids(tsk, leader);
1135 transfer_pid(leader, tsk, PIDTYPE_TGID);
1136 transfer_pid(leader, tsk, PIDTYPE_PGID);
1137 transfer_pid(leader, tsk, PIDTYPE_SID);
1138
1139 list_replace_rcu(&leader->tasks, &tsk->tasks);
1140 list_replace_init(&leader->sibling, &tsk->sibling);
1141
1142 tsk->group_leader = tsk;
1143 leader->group_leader = tsk;
1144
1145 tsk->exit_signal = SIGCHLD;
1146 leader->exit_signal = -1;
1147
1148 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1149 leader->exit_state = EXIT_DEAD;
1150
1151 /*
1152 * We are going to release_task()->ptrace_unlink() silently,
1153 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1154 * the tracer won't block again waiting for this thread.
1155 */
1156 if (unlikely(leader->ptrace))
1157 __wake_up_parent(leader, leader->parent);
1158 write_unlock_irq(&tasklist_lock);
1159 cgroup_threadgroup_change_end(tsk);
1160
1161 release_task(leader);
1162 }
1163
1164 sig->group_exec_task = NULL;
1165 sig->notify_count = 0;
1166
1167 no_thread_group:
1168 /* we have changed execution domain */
1169 tsk->exit_signal = SIGCHLD;
1170
1171 BUG_ON(!thread_group_leader(tsk));
1172 return 0;
1173
1174 killed:
1175 /* protects against exit_notify() and __exit_signal() */
1176 read_lock(&tasklist_lock);
1177 sig->group_exec_task = NULL;
1178 sig->notify_count = 0;
1179 read_unlock(&tasklist_lock);
1180 return -EAGAIN;
1181 }
1182
1183
1184 /*
1185 * This function makes sure the current process has its own signal table,
1186 * so that flush_signal_handlers can later reset the handlers without
1187 * disturbing other processes. (Other processes might share the signal
1188 * table via the CLONE_SIGHAND option to clone().)
1189 */
unshare_sighand(struct task_struct * me)1190 static int unshare_sighand(struct task_struct *me)
1191 {
1192 struct sighand_struct *oldsighand = me->sighand;
1193
1194 if (refcount_read(&oldsighand->count) != 1) {
1195 struct sighand_struct *newsighand;
1196 /*
1197 * This ->sighand is shared with the CLONE_SIGHAND
1198 * but not CLONE_THREAD task, switch to the new one.
1199 */
1200 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1201 if (!newsighand)
1202 return -ENOMEM;
1203
1204 refcount_set(&newsighand->count, 1);
1205
1206 write_lock_irq(&tasklist_lock);
1207 spin_lock(&oldsighand->siglock);
1208 memcpy(newsighand->action, oldsighand->action,
1209 sizeof(newsighand->action));
1210 rcu_assign_pointer(me->sighand, newsighand);
1211 spin_unlock(&oldsighand->siglock);
1212 write_unlock_irq(&tasklist_lock);
1213
1214 __cleanup_sighand(oldsighand);
1215 }
1216 return 0;
1217 }
1218
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1219 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1220 {
1221 task_lock(tsk);
1222 /* Always NUL terminated and zero-padded */
1223 strscpy_pad(buf, tsk->comm, buf_size);
1224 task_unlock(tsk);
1225 return buf;
1226 }
1227 EXPORT_SYMBOL_GPL(__get_task_comm);
1228
1229 /*
1230 * These functions flushes out all traces of the currently running executable
1231 * so that a new one can be started
1232 */
1233
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1234 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1235 {
1236 task_lock(tsk);
1237 trace_task_rename(tsk, buf);
1238 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1239 task_unlock(tsk);
1240 perf_event_comm(tsk, exec);
1241 trace_android_rvh_set_task_comm(tsk, exec);
1242 }
1243 EXPORT_SYMBOL_GPL(__set_task_comm);
1244
1245 /*
1246 * Calling this is the point of no return. None of the failures will be
1247 * seen by userspace since either the process is already taking a fatal
1248 * signal (via de_thread() or coredump), or will have SEGV raised
1249 * (after exec_mmap()) by search_binary_handler (see below).
1250 */
begin_new_exec(struct linux_binprm * bprm)1251 int begin_new_exec(struct linux_binprm * bprm)
1252 {
1253 struct task_struct *me = current;
1254 int retval;
1255
1256 /* Once we are committed compute the creds */
1257 retval = bprm_creds_from_file(bprm);
1258 if (retval)
1259 return retval;
1260
1261 /*
1262 * Ensure all future errors are fatal.
1263 */
1264 bprm->point_of_no_return = true;
1265
1266 /*
1267 * Make this the only thread in the thread group.
1268 */
1269 retval = de_thread(me);
1270 if (retval)
1271 goto out;
1272
1273 /*
1274 * Cancel any io_uring activity across execve
1275 */
1276 io_uring_task_cancel();
1277
1278 /* Ensure the files table is not shared. */
1279 retval = unshare_files();
1280 if (retval)
1281 goto out;
1282
1283 /*
1284 * Must be called _before_ exec_mmap() as bprm->mm is
1285 * not visible until then. Doing it here also ensures
1286 * we don't race against replace_mm_exe_file().
1287 */
1288 retval = set_mm_exe_file(bprm->mm, bprm->file);
1289 if (retval)
1290 goto out;
1291
1292 /* If the binary is not readable then enforce mm->dumpable=0 */
1293 would_dump(bprm, bprm->file);
1294 if (bprm->have_execfd)
1295 would_dump(bprm, bprm->executable);
1296
1297 /*
1298 * Release all of the old mmap stuff
1299 */
1300 acct_arg_size(bprm, 0);
1301 retval = exec_mmap(bprm->mm);
1302 if (retval)
1303 goto out;
1304
1305 bprm->mm = NULL;
1306
1307 retval = exec_task_namespaces();
1308 if (retval)
1309 goto out_unlock;
1310
1311 #ifdef CONFIG_POSIX_TIMERS
1312 spin_lock_irq(&me->sighand->siglock);
1313 posix_cpu_timers_exit(me);
1314 spin_unlock_irq(&me->sighand->siglock);
1315 exit_itimers(me);
1316 flush_itimer_signals();
1317 #endif
1318
1319 /*
1320 * Make the signal table private.
1321 */
1322 retval = unshare_sighand(me);
1323 if (retval)
1324 goto out_unlock;
1325
1326 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1327 PF_NOFREEZE | PF_NO_SETAFFINITY);
1328 flush_thread();
1329 me->personality &= ~bprm->per_clear;
1330
1331 clear_syscall_work_syscall_user_dispatch(me);
1332
1333 /*
1334 * We have to apply CLOEXEC before we change whether the process is
1335 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1336 * trying to access the should-be-closed file descriptors of a process
1337 * undergoing exec(2).
1338 */
1339 do_close_on_exec(me->files);
1340
1341 if (bprm->secureexec) {
1342 /* Make sure parent cannot signal privileged process. */
1343 me->pdeath_signal = 0;
1344
1345 /*
1346 * For secureexec, reset the stack limit to sane default to
1347 * avoid bad behavior from the prior rlimits. This has to
1348 * happen before arch_pick_mmap_layout(), which examines
1349 * RLIMIT_STACK, but after the point of no return to avoid
1350 * needing to clean up the change on failure.
1351 */
1352 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1353 bprm->rlim_stack.rlim_cur = _STK_LIM;
1354 }
1355
1356 me->sas_ss_sp = me->sas_ss_size = 0;
1357
1358 /*
1359 * Figure out dumpability. Note that this checking only of current
1360 * is wrong, but userspace depends on it. This should be testing
1361 * bprm->secureexec instead.
1362 */
1363 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1364 !(uid_eq(current_euid(), current_uid()) &&
1365 gid_eq(current_egid(), current_gid())))
1366 set_dumpable(current->mm, suid_dumpable);
1367 else
1368 set_dumpable(current->mm, SUID_DUMP_USER);
1369
1370 perf_event_exec();
1371 __set_task_comm(me, kbasename(bprm->filename), true);
1372
1373 /* An exec changes our domain. We are no longer part of the thread
1374 group */
1375 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1376 flush_signal_handlers(me, 0);
1377
1378 retval = set_cred_ucounts(bprm->cred);
1379 if (retval < 0)
1380 goto out_unlock;
1381
1382 /*
1383 * install the new credentials for this executable
1384 */
1385 security_bprm_committing_creds(bprm);
1386
1387 commit_creds(bprm->cred);
1388 bprm->cred = NULL;
1389
1390 /*
1391 * Disable monitoring for regular users
1392 * when executing setuid binaries. Must
1393 * wait until new credentials are committed
1394 * by commit_creds() above
1395 */
1396 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1397 perf_event_exit_task(me);
1398 /*
1399 * cred_guard_mutex must be held at least to this point to prevent
1400 * ptrace_attach() from altering our determination of the task's
1401 * credentials; any time after this it may be unlocked.
1402 */
1403 security_bprm_committed_creds(bprm);
1404
1405 /* Pass the opened binary to the interpreter. */
1406 if (bprm->have_execfd) {
1407 retval = get_unused_fd_flags(0);
1408 if (retval < 0)
1409 goto out_unlock;
1410 fd_install(retval, bprm->executable);
1411 bprm->executable = NULL;
1412 bprm->execfd = retval;
1413 }
1414 return 0;
1415
1416 out_unlock:
1417 up_write(&me->signal->exec_update_lock);
1418 if (!bprm->cred)
1419 mutex_unlock(&me->signal->cred_guard_mutex);
1420
1421 out:
1422 return retval;
1423 }
1424 EXPORT_SYMBOL(begin_new_exec);
1425
would_dump(struct linux_binprm * bprm,struct file * file)1426 void would_dump(struct linux_binprm *bprm, struct file *file)
1427 {
1428 struct inode *inode = file_inode(file);
1429 struct mnt_idmap *idmap = file_mnt_idmap(file);
1430 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1431 struct user_namespace *old, *user_ns;
1432 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1433
1434 /* Ensure mm->user_ns contains the executable */
1435 user_ns = old = bprm->mm->user_ns;
1436 while ((user_ns != &init_user_ns) &&
1437 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1438 user_ns = user_ns->parent;
1439
1440 if (old != user_ns) {
1441 bprm->mm->user_ns = get_user_ns(user_ns);
1442 put_user_ns(old);
1443 }
1444 }
1445 }
1446 EXPORT_SYMBOL(would_dump);
1447
setup_new_exec(struct linux_binprm * bprm)1448 void setup_new_exec(struct linux_binprm * bprm)
1449 {
1450 /* Setup things that can depend upon the personality */
1451 struct task_struct *me = current;
1452
1453 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1454
1455 arch_setup_new_exec();
1456
1457 /* Set the new mm task size. We have to do that late because it may
1458 * depend on TIF_32BIT which is only updated in flush_thread() on
1459 * some architectures like powerpc
1460 */
1461 me->mm->task_size = TASK_SIZE;
1462 up_write(&me->signal->exec_update_lock);
1463 mutex_unlock(&me->signal->cred_guard_mutex);
1464 }
1465 EXPORT_SYMBOL(setup_new_exec);
1466
1467 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1468 void finalize_exec(struct linux_binprm *bprm)
1469 {
1470 /* Store any stack rlimit changes before starting thread. */
1471 task_lock(current->group_leader);
1472 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1473 task_unlock(current->group_leader);
1474 }
1475 EXPORT_SYMBOL(finalize_exec);
1476
1477 /*
1478 * Prepare credentials and lock ->cred_guard_mutex.
1479 * setup_new_exec() commits the new creds and drops the lock.
1480 * Or, if exec fails before, free_bprm() should release ->cred
1481 * and unlock.
1482 */
prepare_bprm_creds(struct linux_binprm * bprm)1483 static int prepare_bprm_creds(struct linux_binprm *bprm)
1484 {
1485 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1486 return -ERESTARTNOINTR;
1487
1488 bprm->cred = prepare_exec_creds();
1489 if (likely(bprm->cred))
1490 return 0;
1491
1492 mutex_unlock(¤t->signal->cred_guard_mutex);
1493 return -ENOMEM;
1494 }
1495
free_bprm(struct linux_binprm * bprm)1496 static void free_bprm(struct linux_binprm *bprm)
1497 {
1498 if (bprm->mm) {
1499 acct_arg_size(bprm, 0);
1500 mmput(bprm->mm);
1501 }
1502 free_arg_pages(bprm);
1503 if (bprm->cred) {
1504 mutex_unlock(¤t->signal->cred_guard_mutex);
1505 abort_creds(bprm->cred);
1506 }
1507 if (bprm->file) {
1508 allow_write_access(bprm->file);
1509 fput(bprm->file);
1510 }
1511 if (bprm->executable)
1512 fput(bprm->executable);
1513 /* If a binfmt changed the interp, free it. */
1514 if (bprm->interp != bprm->filename)
1515 kfree(bprm->interp);
1516 kfree(bprm->fdpath);
1517 kfree(bprm);
1518 }
1519
alloc_bprm(int fd,struct filename * filename)1520 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1521 {
1522 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1523 int retval = -ENOMEM;
1524 if (!bprm)
1525 goto out;
1526
1527 if (fd == AT_FDCWD || filename->name[0] == '/') {
1528 bprm->filename = filename->name;
1529 } else {
1530 if (filename->name[0] == '\0')
1531 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1532 else
1533 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1534 fd, filename->name);
1535 if (!bprm->fdpath)
1536 goto out_free;
1537
1538 bprm->filename = bprm->fdpath;
1539 }
1540 bprm->interp = bprm->filename;
1541
1542 retval = bprm_mm_init(bprm);
1543 if (retval)
1544 goto out_free;
1545 return bprm;
1546
1547 out_free:
1548 free_bprm(bprm);
1549 out:
1550 return ERR_PTR(retval);
1551 }
1552
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1553 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1554 {
1555 /* If a binfmt changed the interp, free it first. */
1556 if (bprm->interp != bprm->filename)
1557 kfree(bprm->interp);
1558 bprm->interp = kstrdup(interp, GFP_KERNEL);
1559 if (!bprm->interp)
1560 return -ENOMEM;
1561 return 0;
1562 }
1563 EXPORT_SYMBOL(bprm_change_interp);
1564
1565 /*
1566 * determine how safe it is to execute the proposed program
1567 * - the caller must hold ->cred_guard_mutex to protect against
1568 * PTRACE_ATTACH or seccomp thread-sync
1569 */
check_unsafe_exec(struct linux_binprm * bprm)1570 static void check_unsafe_exec(struct linux_binprm *bprm)
1571 {
1572 struct task_struct *p = current, *t;
1573 unsigned n_fs;
1574
1575 if (p->ptrace)
1576 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1577
1578 /*
1579 * This isn't strictly necessary, but it makes it harder for LSMs to
1580 * mess up.
1581 */
1582 if (task_no_new_privs(current))
1583 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1584
1585 /*
1586 * If another task is sharing our fs, we cannot safely
1587 * suid exec because the differently privileged task
1588 * will be able to manipulate the current directory, etc.
1589 * It would be nice to force an unshare instead...
1590 */
1591 t = p;
1592 n_fs = 1;
1593 spin_lock(&p->fs->lock);
1594 rcu_read_lock();
1595 while_each_thread(p, t) {
1596 if (t->fs == p->fs)
1597 n_fs++;
1598 }
1599 rcu_read_unlock();
1600
1601 if (p->fs->users > n_fs)
1602 bprm->unsafe |= LSM_UNSAFE_SHARE;
1603 else
1604 p->fs->in_exec = 1;
1605 spin_unlock(&p->fs->lock);
1606 }
1607
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1608 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1609 {
1610 /* Handle suid and sgid on files */
1611 struct mnt_idmap *idmap;
1612 struct inode *inode = file_inode(file);
1613 unsigned int mode;
1614 vfsuid_t vfsuid;
1615 vfsgid_t vfsgid;
1616 int err;
1617
1618 if (!mnt_may_suid(file->f_path.mnt))
1619 return;
1620
1621 if (task_no_new_privs(current))
1622 return;
1623
1624 mode = READ_ONCE(inode->i_mode);
1625 if (!(mode & (S_ISUID|S_ISGID)))
1626 return;
1627
1628 idmap = file_mnt_idmap(file);
1629
1630 /* Be careful if suid/sgid is set */
1631 inode_lock(inode);
1632
1633 /* Atomically reload and check mode/uid/gid now that lock held. */
1634 mode = inode->i_mode;
1635 vfsuid = i_uid_into_vfsuid(idmap, inode);
1636 vfsgid = i_gid_into_vfsgid(idmap, inode);
1637 err = inode_permission(idmap, inode, MAY_EXEC);
1638 inode_unlock(inode);
1639
1640 /* Did the exec bit vanish out from under us? Give up. */
1641 if (err)
1642 return;
1643
1644 /* We ignore suid/sgid if there are no mappings for them in the ns */
1645 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1646 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1647 return;
1648
1649 if (mode & S_ISUID) {
1650 bprm->per_clear |= PER_CLEAR_ON_SETID;
1651 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1652 }
1653
1654 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1655 bprm->per_clear |= PER_CLEAR_ON_SETID;
1656 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1657 }
1658 }
1659
1660 /*
1661 * Compute brpm->cred based upon the final binary.
1662 */
bprm_creds_from_file(struct linux_binprm * bprm)1663 static int bprm_creds_from_file(struct linux_binprm *bprm)
1664 {
1665 /* Compute creds based on which file? */
1666 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1667
1668 bprm_fill_uid(bprm, file);
1669 return security_bprm_creds_from_file(bprm, file);
1670 }
1671
1672 /*
1673 * Fill the binprm structure from the inode.
1674 * Read the first BINPRM_BUF_SIZE bytes
1675 *
1676 * This may be called multiple times for binary chains (scripts for example).
1677 */
prepare_binprm(struct linux_binprm * bprm)1678 static int prepare_binprm(struct linux_binprm *bprm)
1679 {
1680 loff_t pos = 0;
1681
1682 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1683 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1684 }
1685
1686 /*
1687 * Arguments are '\0' separated strings found at the location bprm->p
1688 * points to; chop off the first by relocating brpm->p to right after
1689 * the first '\0' encountered.
1690 */
remove_arg_zero(struct linux_binprm * bprm)1691 int remove_arg_zero(struct linux_binprm *bprm)
1692 {
1693 int ret = 0;
1694 unsigned long offset;
1695 char *kaddr;
1696 struct page *page;
1697
1698 if (!bprm->argc)
1699 return 0;
1700
1701 do {
1702 offset = bprm->p & ~PAGE_MASK;
1703 page = get_arg_page(bprm, bprm->p, 0);
1704 if (!page) {
1705 ret = -EFAULT;
1706 goto out;
1707 }
1708 kaddr = kmap_local_page(page);
1709
1710 for (; offset < PAGE_SIZE && kaddr[offset];
1711 offset++, bprm->p++)
1712 ;
1713
1714 kunmap_local(kaddr);
1715 put_arg_page(page);
1716 } while (offset == PAGE_SIZE);
1717
1718 bprm->p++;
1719 bprm->argc--;
1720 ret = 0;
1721
1722 out:
1723 return ret;
1724 }
1725 EXPORT_SYMBOL(remove_arg_zero);
1726
1727 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1728 /*
1729 * cycle the list of binary formats handler, until one recognizes the image
1730 */
search_binary_handler(struct linux_binprm * bprm)1731 static int search_binary_handler(struct linux_binprm *bprm)
1732 {
1733 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1734 struct linux_binfmt *fmt;
1735 int retval;
1736
1737 retval = prepare_binprm(bprm);
1738 if (retval < 0)
1739 return retval;
1740
1741 retval = security_bprm_check(bprm);
1742 if (retval)
1743 return retval;
1744
1745 retval = -ENOENT;
1746 retry:
1747 read_lock(&binfmt_lock);
1748 list_for_each_entry(fmt, &formats, lh) {
1749 if (!try_module_get(fmt->module))
1750 continue;
1751 read_unlock(&binfmt_lock);
1752
1753 retval = fmt->load_binary(bprm);
1754
1755 read_lock(&binfmt_lock);
1756 put_binfmt(fmt);
1757 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1758 read_unlock(&binfmt_lock);
1759 return retval;
1760 }
1761 }
1762 read_unlock(&binfmt_lock);
1763
1764 if (need_retry) {
1765 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1766 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1767 return retval;
1768 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1769 return retval;
1770 need_retry = false;
1771 goto retry;
1772 }
1773
1774 return retval;
1775 }
1776
1777 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1778 static int exec_binprm(struct linux_binprm *bprm)
1779 {
1780 pid_t old_pid, old_vpid;
1781 int ret, depth;
1782
1783 /* Need to fetch pid before load_binary changes it */
1784 old_pid = current->pid;
1785 rcu_read_lock();
1786 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1787 rcu_read_unlock();
1788
1789 /* This allows 4 levels of binfmt rewrites before failing hard. */
1790 for (depth = 0;; depth++) {
1791 struct file *exec;
1792 if (depth > 5)
1793 return -ELOOP;
1794
1795 ret = search_binary_handler(bprm);
1796 if (ret < 0)
1797 return ret;
1798 if (!bprm->interpreter)
1799 break;
1800
1801 exec = bprm->file;
1802 bprm->file = bprm->interpreter;
1803 bprm->interpreter = NULL;
1804
1805 allow_write_access(exec);
1806 if (unlikely(bprm->have_execfd)) {
1807 if (bprm->executable) {
1808 fput(exec);
1809 return -ENOEXEC;
1810 }
1811 bprm->executable = exec;
1812 } else
1813 fput(exec);
1814 }
1815
1816 audit_bprm(bprm);
1817 trace_sched_process_exec(current, old_pid, bprm);
1818 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1819 proc_exec_connector(current);
1820 return 0;
1821 }
1822
1823 /*
1824 * sys_execve() executes a new program.
1825 */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1826 static int bprm_execve(struct linux_binprm *bprm,
1827 int fd, struct filename *filename, int flags)
1828 {
1829 struct file *file;
1830 int retval;
1831
1832 retval = prepare_bprm_creds(bprm);
1833 if (retval)
1834 return retval;
1835
1836 /*
1837 * Check for unsafe execution states before exec_binprm(), which
1838 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1839 * where setuid-ness is evaluated.
1840 */
1841 check_unsafe_exec(bprm);
1842 current->in_execve = 1;
1843 sched_mm_cid_before_execve(current);
1844
1845 file = do_open_execat(fd, filename, flags);
1846 retval = PTR_ERR(file);
1847 if (IS_ERR(file))
1848 goto out_unmark;
1849
1850 sched_exec();
1851
1852 bprm->file = file;
1853 /*
1854 * Record that a name derived from an O_CLOEXEC fd will be
1855 * inaccessible after exec. This allows the code in exec to
1856 * choose to fail when the executable is not mmaped into the
1857 * interpreter and an open file descriptor is not passed to
1858 * the interpreter. This makes for a better user experience
1859 * than having the interpreter start and then immediately fail
1860 * when it finds the executable is inaccessible.
1861 */
1862 if (bprm->fdpath && get_close_on_exec(fd))
1863 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1864
1865 /* Set the unchanging part of bprm->cred */
1866 retval = security_bprm_creds_for_exec(bprm);
1867 if (retval)
1868 goto out;
1869
1870 retval = exec_binprm(bprm);
1871 if (retval < 0)
1872 goto out;
1873
1874 sched_mm_cid_after_execve(current);
1875 /* execve succeeded */
1876 current->fs->in_exec = 0;
1877 current->in_execve = 0;
1878 rseq_execve(current);
1879 user_events_execve(current);
1880 acct_update_integrals(current);
1881 task_numa_free(current, false);
1882 return retval;
1883
1884 out:
1885 /*
1886 * If past the point of no return ensure the code never
1887 * returns to the userspace process. Use an existing fatal
1888 * signal if present otherwise terminate the process with
1889 * SIGSEGV.
1890 */
1891 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1892 force_fatal_sig(SIGSEGV);
1893
1894 out_unmark:
1895 sched_mm_cid_after_execve(current);
1896 current->fs->in_exec = 0;
1897 current->in_execve = 0;
1898
1899 return retval;
1900 }
1901
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1902 static int do_execveat_common(int fd, struct filename *filename,
1903 struct user_arg_ptr argv,
1904 struct user_arg_ptr envp,
1905 int flags)
1906 {
1907 struct linux_binprm *bprm;
1908 int retval;
1909
1910 if (IS_ERR(filename))
1911 return PTR_ERR(filename);
1912
1913 /*
1914 * We move the actual failure in case of RLIMIT_NPROC excess from
1915 * set*uid() to execve() because too many poorly written programs
1916 * don't check setuid() return code. Here we additionally recheck
1917 * whether NPROC limit is still exceeded.
1918 */
1919 if ((current->flags & PF_NPROC_EXCEEDED) &&
1920 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1921 retval = -EAGAIN;
1922 goto out_ret;
1923 }
1924
1925 /* We're below the limit (still or again), so we don't want to make
1926 * further execve() calls fail. */
1927 current->flags &= ~PF_NPROC_EXCEEDED;
1928
1929 bprm = alloc_bprm(fd, filename);
1930 if (IS_ERR(bprm)) {
1931 retval = PTR_ERR(bprm);
1932 goto out_ret;
1933 }
1934
1935 retval = count(argv, MAX_ARG_STRINGS);
1936 if (retval == 0)
1937 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1938 current->comm, bprm->filename);
1939 if (retval < 0)
1940 goto out_free;
1941 bprm->argc = retval;
1942
1943 retval = count(envp, MAX_ARG_STRINGS);
1944 if (retval < 0)
1945 goto out_free;
1946 bprm->envc = retval;
1947
1948 retval = bprm_stack_limits(bprm);
1949 if (retval < 0)
1950 goto out_free;
1951
1952 retval = copy_string_kernel(bprm->filename, bprm);
1953 if (retval < 0)
1954 goto out_free;
1955 bprm->exec = bprm->p;
1956
1957 retval = copy_strings(bprm->envc, envp, bprm);
1958 if (retval < 0)
1959 goto out_free;
1960
1961 retval = copy_strings(bprm->argc, argv, bprm);
1962 if (retval < 0)
1963 goto out_free;
1964
1965 /*
1966 * When argv is empty, add an empty string ("") as argv[0] to
1967 * ensure confused userspace programs that start processing
1968 * from argv[1] won't end up walking envp. See also
1969 * bprm_stack_limits().
1970 */
1971 if (bprm->argc == 0) {
1972 retval = copy_string_kernel("", bprm);
1973 if (retval < 0)
1974 goto out_free;
1975 bprm->argc = 1;
1976 }
1977
1978 retval = bprm_execve(bprm, fd, filename, flags);
1979 out_free:
1980 free_bprm(bprm);
1981
1982 out_ret:
1983 putname(filename);
1984 return retval;
1985 }
1986
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1987 int kernel_execve(const char *kernel_filename,
1988 const char *const *argv, const char *const *envp)
1989 {
1990 struct filename *filename;
1991 struct linux_binprm *bprm;
1992 int fd = AT_FDCWD;
1993 int retval;
1994
1995 /* It is non-sense for kernel threads to call execve */
1996 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1997 return -EINVAL;
1998
1999 filename = getname_kernel(kernel_filename);
2000 if (IS_ERR(filename))
2001 return PTR_ERR(filename);
2002
2003 bprm = alloc_bprm(fd, filename);
2004 if (IS_ERR(bprm)) {
2005 retval = PTR_ERR(bprm);
2006 goto out_ret;
2007 }
2008
2009 retval = count_strings_kernel(argv);
2010 if (WARN_ON_ONCE(retval == 0))
2011 retval = -EINVAL;
2012 if (retval < 0)
2013 goto out_free;
2014 bprm->argc = retval;
2015
2016 retval = count_strings_kernel(envp);
2017 if (retval < 0)
2018 goto out_free;
2019 bprm->envc = retval;
2020
2021 retval = bprm_stack_limits(bprm);
2022 if (retval < 0)
2023 goto out_free;
2024
2025 retval = copy_string_kernel(bprm->filename, bprm);
2026 if (retval < 0)
2027 goto out_free;
2028 bprm->exec = bprm->p;
2029
2030 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2031 if (retval < 0)
2032 goto out_free;
2033
2034 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2035 if (retval < 0)
2036 goto out_free;
2037
2038 retval = bprm_execve(bprm, fd, filename, 0);
2039 out_free:
2040 free_bprm(bprm);
2041 out_ret:
2042 putname(filename);
2043 return retval;
2044 }
2045
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2046 static int do_execve(struct filename *filename,
2047 const char __user *const __user *__argv,
2048 const char __user *const __user *__envp)
2049 {
2050 struct user_arg_ptr argv = { .ptr.native = __argv };
2051 struct user_arg_ptr envp = { .ptr.native = __envp };
2052 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2053 }
2054
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2055 static int do_execveat(int fd, struct filename *filename,
2056 const char __user *const __user *__argv,
2057 const char __user *const __user *__envp,
2058 int flags)
2059 {
2060 struct user_arg_ptr argv = { .ptr.native = __argv };
2061 struct user_arg_ptr envp = { .ptr.native = __envp };
2062
2063 return do_execveat_common(fd, filename, argv, envp, flags);
2064 }
2065
2066 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2067 static int compat_do_execve(struct filename *filename,
2068 const compat_uptr_t __user *__argv,
2069 const compat_uptr_t __user *__envp)
2070 {
2071 struct user_arg_ptr argv = {
2072 .is_compat = true,
2073 .ptr.compat = __argv,
2074 };
2075 struct user_arg_ptr envp = {
2076 .is_compat = true,
2077 .ptr.compat = __envp,
2078 };
2079 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2080 }
2081
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2082 static int compat_do_execveat(int fd, struct filename *filename,
2083 const compat_uptr_t __user *__argv,
2084 const compat_uptr_t __user *__envp,
2085 int flags)
2086 {
2087 struct user_arg_ptr argv = {
2088 .is_compat = true,
2089 .ptr.compat = __argv,
2090 };
2091 struct user_arg_ptr envp = {
2092 .is_compat = true,
2093 .ptr.compat = __envp,
2094 };
2095 return do_execveat_common(fd, filename, argv, envp, flags);
2096 }
2097 #endif
2098
set_binfmt(struct linux_binfmt * new)2099 void set_binfmt(struct linux_binfmt *new)
2100 {
2101 struct mm_struct *mm = current->mm;
2102
2103 if (mm->binfmt)
2104 module_put(mm->binfmt->module);
2105
2106 mm->binfmt = new;
2107 if (new)
2108 __module_get(new->module);
2109 }
2110 EXPORT_SYMBOL(set_binfmt);
2111
2112 /*
2113 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2114 */
set_dumpable(struct mm_struct * mm,int value)2115 void set_dumpable(struct mm_struct *mm, int value)
2116 {
2117 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2118 return;
2119
2120 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2121 }
2122
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2123 SYSCALL_DEFINE3(execve,
2124 const char __user *, filename,
2125 const char __user *const __user *, argv,
2126 const char __user *const __user *, envp)
2127 {
2128 return do_execve(getname(filename), argv, envp);
2129 }
2130
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2131 SYSCALL_DEFINE5(execveat,
2132 int, fd, const char __user *, filename,
2133 const char __user *const __user *, argv,
2134 const char __user *const __user *, envp,
2135 int, flags)
2136 {
2137 return do_execveat(fd,
2138 getname_uflags(filename, flags),
2139 argv, envp, flags);
2140 }
2141
2142 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2143 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2144 const compat_uptr_t __user *, argv,
2145 const compat_uptr_t __user *, envp)
2146 {
2147 return compat_do_execve(getname(filename), argv, envp);
2148 }
2149
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2150 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2151 const char __user *, filename,
2152 const compat_uptr_t __user *, argv,
2153 const compat_uptr_t __user *, envp,
2154 int, flags)
2155 {
2156 return compat_do_execveat(fd,
2157 getname_uflags(filename, flags),
2158 argv, envp, flags);
2159 }
2160 #endif
2161
2162 #ifdef CONFIG_SYSCTL
2163
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2164 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2165 void *buffer, size_t *lenp, loff_t *ppos)
2166 {
2167 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2168
2169 if (!error)
2170 validate_coredump_safety();
2171 return error;
2172 }
2173
2174 static struct ctl_table fs_exec_sysctls[] = {
2175 {
2176 .procname = "suid_dumpable",
2177 .data = &suid_dumpable,
2178 .maxlen = sizeof(int),
2179 .mode = 0644,
2180 .proc_handler = proc_dointvec_minmax_coredump,
2181 .extra1 = SYSCTL_ZERO,
2182 .extra2 = SYSCTL_TWO,
2183 },
2184 { }
2185 };
2186
init_fs_exec_sysctls(void)2187 static int __init init_fs_exec_sysctls(void)
2188 {
2189 register_sysctl_init("fs", fs_exec_sysctls);
2190 return 0;
2191 }
2192
2193 fs_initcall(init_fs_exec_sysctls);
2194 #endif /* CONFIG_SYSCTL */
2195