• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/page_size_compat.h>
70 
71 #include <linux/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/tlb.h>
74 
75 #include <trace/events/task.h>
76 #include "internal.h"
77 
78 #include <trace/events/sched.h>
79 #include <trace/hooks/sched.h>
80 
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
82 
83 int suid_dumpable = 0;
84 
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87 
__register_binfmt(struct linux_binfmt * fmt,int insert)88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
unregister_binfmt(struct linux_binfmt * fmt)98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
put_binfmt(struct linux_binfmt * fmt)107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
path_noexec(const struct path * path)112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
SYSCALL_DEFINE1(uselib,const char __user *,library)125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * may_open() has already checked for this, so it should be
149 	 * impossible to trip now. But we need to be extra cautious
150 	 * and check again at the very end too.
151 	 */
152 	error = -EACCES;
153 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 			 path_noexec(&file->f_path)))
155 		goto exit;
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176 	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	struct vm_area_struct *vma = bprm->vma;
204 	struct mm_struct *mm = bprm->mm;
205 	int ret;
206 
207 	/*
208 	 * Avoid relying on expanding the stack down in GUP (which
209 	 * does not work for STACK_GROWSUP anyway), and just do it
210 	 * by hand ahead of time.
211 	 */
212 	if (write && pos < vma->vm_start) {
213 		mmap_write_lock(mm);
214 		ret = expand_downwards(vma, pos);
215 		if (unlikely(ret < 0)) {
216 			mmap_write_unlock(mm);
217 			return NULL;
218 		}
219 		mmap_write_downgrade(mm);
220 	} else
221 		mmap_read_lock(mm);
222 
223 	/*
224 	 * We are doing an exec().  'current' is the process
225 	 * doing the exec and 'mm' is the new process's mm.
226 	 */
227 	ret = get_user_pages_remote(mm, pos, 1,
228 			write ? FOLL_WRITE : 0,
229 			&page, NULL);
230 	mmap_read_unlock(mm);
231 	if (ret <= 0)
232 		return NULL;
233 
234 	if (write)
235 		acct_arg_size(bprm, vma_pages(vma));
236 
237 	return page;
238 }
239 
put_arg_page(struct page * page)240 static void put_arg_page(struct page *page)
241 {
242 	put_page(page);
243 }
244 
free_arg_pages(struct linux_binprm * bprm)245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 		struct page *page)
251 {
252 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254 
__bprm_mm_init(struct linux_binprm * bprm)255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257 	int err;
258 	struct vm_area_struct *vma = NULL;
259 	struct mm_struct *mm = bprm->mm;
260 
261 	bprm->vma = vma = vm_area_alloc(mm);
262 	if (!vma)
263 		return -ENOMEM;
264 	vma_set_anonymous(vma);
265 
266 	if (mmap_write_lock_killable(mm)) {
267 		err = -EINTR;
268 		goto err_free;
269 	}
270 
271 	/*
272 	 * Place the stack at the largest stack address the architecture
273 	 * supports. Later, we'll move this to an appropriate place. We don't
274 	 * use STACK_TOP because that can depend on attributes which aren't
275 	 * configured yet.
276 	 */
277 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
278 	vma->vm_end = STACK_TOP_MAX;
279 	vma->vm_start = vma->vm_end - __PAGE_SIZE;
280 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
281 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
282 
283 	err = insert_vm_struct(mm, vma);
284 	if (err)
285 		goto err;
286 
287 	mm->stack_vm = mm->total_vm = 1;
288 	mmap_write_unlock(mm);
289 	bprm->p = vma->vm_end - sizeof(void *);
290 	return 0;
291 err:
292 	mmap_write_unlock(mm);
293 err_free:
294 	bprm->vma = NULL;
295 	vm_area_free(vma);
296 	return err;
297 }
298 
valid_arg_len(struct linux_binprm * bprm,long len)299 static bool valid_arg_len(struct linux_binprm *bprm, long len)
300 {
301 	return len <= MAX_ARG_STRLEN;
302 }
303 
304 #else
305 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
307 {
308 }
309 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
311 		int write)
312 {
313 	struct page *page;
314 
315 	page = bprm->page[pos / PAGE_SIZE];
316 	if (!page && write) {
317 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
318 		if (!page)
319 			return NULL;
320 		bprm->page[pos / PAGE_SIZE] = page;
321 	}
322 
323 	return page;
324 }
325 
put_arg_page(struct page * page)326 static void put_arg_page(struct page *page)
327 {
328 }
329 
free_arg_page(struct linux_binprm * bprm,int i)330 static void free_arg_page(struct linux_binprm *bprm, int i)
331 {
332 	if (bprm->page[i]) {
333 		__free_page(bprm->page[i]);
334 		bprm->page[i] = NULL;
335 	}
336 }
337 
free_arg_pages(struct linux_binprm * bprm)338 static void free_arg_pages(struct linux_binprm *bprm)
339 {
340 	int i;
341 
342 	for (i = 0; i < MAX_ARG_PAGES; i++)
343 		free_arg_page(bprm, i);
344 }
345 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
347 		struct page *page)
348 {
349 }
350 
__bprm_mm_init(struct linux_binprm * bprm)351 static int __bprm_mm_init(struct linux_binprm *bprm)
352 {
353 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
354 	return 0;
355 }
356 
valid_arg_len(struct linux_binprm * bprm,long len)357 static bool valid_arg_len(struct linux_binprm *bprm, long len)
358 {
359 	return len <= bprm->p;
360 }
361 
362 #endif /* CONFIG_MMU */
363 
364 /*
365  * Create a new mm_struct and populate it with a temporary stack
366  * vm_area_struct.  We don't have enough context at this point to set the stack
367  * flags, permissions, and offset, so we use temporary values.  We'll update
368  * them later in setup_arg_pages().
369  */
bprm_mm_init(struct linux_binprm * bprm)370 static int bprm_mm_init(struct linux_binprm *bprm)
371 {
372 	int err;
373 	struct mm_struct *mm = NULL;
374 
375 	bprm->mm = mm = mm_alloc();
376 	err = -ENOMEM;
377 	if (!mm)
378 		goto err;
379 
380 	/* Save current stack limit for all calculations made during exec. */
381 	task_lock(current->group_leader);
382 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
383 	task_unlock(current->group_leader);
384 
385 	err = __bprm_mm_init(bprm);
386 	if (err)
387 		goto err;
388 
389 	return 0;
390 
391 err:
392 	if (mm) {
393 		bprm->mm = NULL;
394 		mmdrop(mm);
395 	}
396 
397 	return err;
398 }
399 
400 struct user_arg_ptr {
401 #ifdef CONFIG_COMPAT
402 	bool is_compat;
403 #endif
404 	union {
405 		const char __user *const __user *native;
406 #ifdef CONFIG_COMPAT
407 		const compat_uptr_t __user *compat;
408 #endif
409 	} ptr;
410 };
411 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)412 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
413 {
414 	const char __user *native;
415 
416 #ifdef CONFIG_COMPAT
417 	if (unlikely(argv.is_compat)) {
418 		compat_uptr_t compat;
419 
420 		if (get_user(compat, argv.ptr.compat + nr))
421 			return ERR_PTR(-EFAULT);
422 
423 		return compat_ptr(compat);
424 	}
425 #endif
426 
427 	if (get_user(native, argv.ptr.native + nr))
428 		return ERR_PTR(-EFAULT);
429 
430 	return native;
431 }
432 
433 /*
434  * count() counts the number of strings in array ARGV.
435  */
count(struct user_arg_ptr argv,int max)436 static int count(struct user_arg_ptr argv, int max)
437 {
438 	int i = 0;
439 
440 	if (argv.ptr.native != NULL) {
441 		for (;;) {
442 			const char __user *p = get_user_arg_ptr(argv, i);
443 
444 			if (!p)
445 				break;
446 
447 			if (IS_ERR(p))
448 				return -EFAULT;
449 
450 			if (i >= max)
451 				return -E2BIG;
452 			++i;
453 
454 			if (fatal_signal_pending(current))
455 				return -ERESTARTNOHAND;
456 			cond_resched();
457 		}
458 	}
459 	return i;
460 }
461 
count_strings_kernel(const char * const * argv)462 static int count_strings_kernel(const char *const *argv)
463 {
464 	int i;
465 
466 	if (!argv)
467 		return 0;
468 
469 	for (i = 0; argv[i]; ++i) {
470 		if (i >= MAX_ARG_STRINGS)
471 			return -E2BIG;
472 		if (fatal_signal_pending(current))
473 			return -ERESTARTNOHAND;
474 		cond_resched();
475 	}
476 	return i;
477 }
478 
bprm_stack_limits(struct linux_binprm * bprm)479 static int bprm_stack_limits(struct linux_binprm *bprm)
480 {
481 	unsigned long limit, ptr_size;
482 
483 	/*
484 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
485 	 * (whichever is smaller) for the argv+env strings.
486 	 * This ensures that:
487 	 *  - the remaining binfmt code will not run out of stack space,
488 	 *  - the program will have a reasonable amount of stack left
489 	 *    to work from.
490 	 */
491 	limit = _STK_LIM / 4 * 3;
492 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
493 	/*
494 	 * We've historically supported up to 32 pages (ARG_MAX)
495 	 * of argument strings even with small stacks
496 	 */
497 	limit = max_t(unsigned long, limit, ARG_MAX);
498 	/*
499 	 * We must account for the size of all the argv and envp pointers to
500 	 * the argv and envp strings, since they will also take up space in
501 	 * the stack. They aren't stored until much later when we can't
502 	 * signal to the parent that the child has run out of stack space.
503 	 * Instead, calculate it here so it's possible to fail gracefully.
504 	 *
505 	 * In the case of argc = 0, make sure there is space for adding a
506 	 * empty string (which will bump argc to 1), to ensure confused
507 	 * userspace programs don't start processing from argv[1], thinking
508 	 * argc can never be 0, to keep them from walking envp by accident.
509 	 * See do_execveat_common().
510 	 */
511 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
512 	if (limit <= ptr_size)
513 		return -E2BIG;
514 	limit -= ptr_size;
515 
516 	bprm->argmin = bprm->p - limit;
517 	return 0;
518 }
519 
520 /*
521  * 'copy_strings()' copies argument/environment strings from the old
522  * processes's memory to the new process's stack.  The call to get_user_pages()
523  * ensures the destination page is created and not swapped out.
524  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)525 static int copy_strings(int argc, struct user_arg_ptr argv,
526 			struct linux_binprm *bprm)
527 {
528 	struct page *kmapped_page = NULL;
529 	char *kaddr = NULL;
530 	unsigned long kpos = 0;
531 	int ret;
532 
533 	while (argc-- > 0) {
534 		const char __user *str;
535 		int len;
536 		unsigned long pos;
537 
538 		ret = -EFAULT;
539 		str = get_user_arg_ptr(argv, argc);
540 		if (IS_ERR(str))
541 			goto out;
542 
543 		len = strnlen_user(str, MAX_ARG_STRLEN);
544 		if (!len)
545 			goto out;
546 
547 		ret = -E2BIG;
548 		if (!valid_arg_len(bprm, len))
549 			goto out;
550 
551 		/* We're going to work our way backwards. */
552 		pos = bprm->p;
553 		str += len;
554 		bprm->p -= len;
555 #ifdef CONFIG_MMU
556 		if (bprm->p < bprm->argmin)
557 			goto out;
558 #endif
559 
560 		while (len > 0) {
561 			int offset, bytes_to_copy;
562 
563 			if (fatal_signal_pending(current)) {
564 				ret = -ERESTARTNOHAND;
565 				goto out;
566 			}
567 			cond_resched();
568 
569 			offset = pos % PAGE_SIZE;
570 			if (offset == 0)
571 				offset = PAGE_SIZE;
572 
573 			bytes_to_copy = offset;
574 			if (bytes_to_copy > len)
575 				bytes_to_copy = len;
576 
577 			offset -= bytes_to_copy;
578 			pos -= bytes_to_copy;
579 			str -= bytes_to_copy;
580 			len -= bytes_to_copy;
581 
582 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
583 				struct page *page;
584 
585 				page = get_arg_page(bprm, pos, 1);
586 				if (!page) {
587 					ret = -E2BIG;
588 					goto out;
589 				}
590 
591 				if (kmapped_page) {
592 					flush_dcache_page(kmapped_page);
593 					kunmap_local(kaddr);
594 					put_arg_page(kmapped_page);
595 				}
596 				kmapped_page = page;
597 				kaddr = kmap_local_page(kmapped_page);
598 				kpos = pos & PAGE_MASK;
599 				flush_arg_page(bprm, kpos, kmapped_page);
600 			}
601 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
602 				ret = -EFAULT;
603 				goto out;
604 			}
605 		}
606 	}
607 	ret = 0;
608 out:
609 	if (kmapped_page) {
610 		flush_dcache_page(kmapped_page);
611 		kunmap_local(kaddr);
612 		put_arg_page(kmapped_page);
613 	}
614 	return ret;
615 }
616 
617 /*
618  * Copy and argument/environment string from the kernel to the processes stack.
619  */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)620 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
621 {
622 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
623 	unsigned long pos = bprm->p;
624 
625 	if (len == 0)
626 		return -EFAULT;
627 	if (!valid_arg_len(bprm, len))
628 		return -E2BIG;
629 
630 	/* We're going to work our way backwards. */
631 	arg += len;
632 	bprm->p -= len;
633 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
634 		return -E2BIG;
635 
636 	while (len > 0) {
637 		unsigned int bytes_to_copy = min_t(unsigned int, len,
638 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
639 		struct page *page;
640 
641 		pos -= bytes_to_copy;
642 		arg -= bytes_to_copy;
643 		len -= bytes_to_copy;
644 
645 		page = get_arg_page(bprm, pos, 1);
646 		if (!page)
647 			return -E2BIG;
648 		flush_arg_page(bprm, pos & PAGE_MASK, page);
649 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
650 		put_arg_page(page);
651 	}
652 
653 	return 0;
654 }
655 EXPORT_SYMBOL(copy_string_kernel);
656 
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)657 static int copy_strings_kernel(int argc, const char *const *argv,
658 			       struct linux_binprm *bprm)
659 {
660 	while (argc-- > 0) {
661 		int ret = copy_string_kernel(argv[argc], bprm);
662 		if (ret < 0)
663 			return ret;
664 		if (fatal_signal_pending(current))
665 			return -ERESTARTNOHAND;
666 		cond_resched();
667 	}
668 	return 0;
669 }
670 
671 #ifdef CONFIG_MMU
672 
673 /*
674  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
675  * the binfmt code determines where the new stack should reside, we shift it to
676  * its final location.  The process proceeds as follows:
677  *
678  * 1) Use shift to calculate the new vma endpoints.
679  * 2) Extend vma to cover both the old and new ranges.  This ensures the
680  *    arguments passed to subsequent functions are consistent.
681  * 3) Move vma's page tables to the new range.
682  * 4) Free up any cleared pgd range.
683  * 5) Shrink the vma to cover only the new range.
684  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)685 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
686 {
687 	struct mm_struct *mm = vma->vm_mm;
688 	unsigned long old_start = vma->vm_start;
689 	unsigned long old_end = vma->vm_end;
690 	unsigned long length = old_end - old_start;
691 	unsigned long new_start = old_start - shift;
692 	unsigned long new_end = old_end - shift;
693 	VMA_ITERATOR(vmi, mm, new_start);
694 	struct vm_area_struct *next;
695 	struct mmu_gather tlb;
696 
697 	BUG_ON(new_start > new_end);
698 
699 	/*
700 	 * ensure there are no vmas between where we want to go
701 	 * and where we are
702 	 */
703 	if (vma != vma_next(&vmi))
704 		return -EFAULT;
705 
706 	vma_iter_prev_range(&vmi);
707 	/*
708 	 * cover the whole range: [new_start, old_end)
709 	 */
710 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
711 		return -ENOMEM;
712 
713 	/*
714 	 * move the page tables downwards, on failure we rely on
715 	 * process cleanup to remove whatever mess we made.
716 	 */
717 	if (length != move_page_tables(vma, old_start,
718 				       vma, new_start, length, false))
719 		return -ENOMEM;
720 
721 	lru_add_drain();
722 	tlb_gather_mmu(&tlb, mm);
723 	next = vma_next(&vmi);
724 	if (new_end > old_start) {
725 		/*
726 		 * when the old and new regions overlap clear from new_end.
727 		 */
728 		free_pgd_range(&tlb, new_end, old_end, new_end,
729 			next ? next->vm_start : USER_PGTABLES_CEILING);
730 	} else {
731 		/*
732 		 * otherwise, clean from old_start; this is done to not touch
733 		 * the address space in [new_end, old_start) some architectures
734 		 * have constraints on va-space that make this illegal (IA64) -
735 		 * for the others its just a little faster.
736 		 */
737 		free_pgd_range(&tlb, old_start, old_end, new_end,
738 			next ? next->vm_start : USER_PGTABLES_CEILING);
739 	}
740 	tlb_finish_mmu(&tlb);
741 
742 	vma_prev(&vmi);
743 	/* Shrink the vma to just the new range */
744 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
745 }
746 
747 /*
748  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
749  * the stack is optionally relocated, and some extra space is added.
750  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)751 int setup_arg_pages(struct linux_binprm *bprm,
752 		    unsigned long stack_top,
753 		    int executable_stack)
754 {
755 	unsigned long ret;
756 	unsigned long stack_shift;
757 	struct mm_struct *mm = current->mm;
758 	struct vm_area_struct *vma = bprm->vma;
759 	struct vm_area_struct *prev = NULL;
760 	unsigned long vm_flags;
761 	unsigned long stack_base;
762 	unsigned long stack_size;
763 	unsigned long stack_expand;
764 	unsigned long rlim_stack;
765 	struct mmu_gather tlb;
766 	struct vma_iterator vmi;
767 
768 #ifdef CONFIG_STACK_GROWSUP
769 	/* Limit stack size */
770 	stack_base = bprm->rlim_stack.rlim_max;
771 
772 	stack_base = calc_max_stack_size(stack_base);
773 
774 	/* Add space for stack randomization. */
775 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
776 
777 	/* Make sure we didn't let the argument array grow too large. */
778 	if (vma->vm_end - vma->vm_start > stack_base)
779 		return -ENOMEM;
780 
781 	stack_base = __PAGE_ALIGN(stack_top - stack_base);
782 
783 	stack_shift = vma->vm_start - stack_base;
784 	mm->arg_start = bprm->p - stack_shift;
785 	bprm->p = vma->vm_end - stack_shift;
786 #else
787 	stack_top = arch_align_stack(stack_top);
788 	stack_top = __PAGE_ALIGN(stack_top);
789 
790 	if (unlikely(stack_top < mmap_min_addr) ||
791 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
792 		return -ENOMEM;
793 
794 	stack_shift = vma->vm_end - stack_top;
795 
796 	bprm->p -= stack_shift;
797 	mm->arg_start = bprm->p;
798 #endif
799 
800 	if (bprm->loader)
801 		bprm->loader -= stack_shift;
802 	bprm->exec -= stack_shift;
803 
804 	if (mmap_write_lock_killable(mm))
805 		return -EINTR;
806 
807 	vm_flags = VM_STACK_FLAGS;
808 
809 	/*
810 	 * Adjust stack execute permissions; explicitly enable for
811 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
812 	 * (arch default) otherwise.
813 	 */
814 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
815 		vm_flags |= VM_EXEC;
816 	else if (executable_stack == EXSTACK_DISABLE_X)
817 		vm_flags &= ~VM_EXEC;
818 	vm_flags |= mm->def_flags;
819 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
820 
821 	vma_iter_init(&vmi, mm, vma->vm_start);
822 
823 	tlb_gather_mmu(&tlb, mm);
824 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
825 			vm_flags);
826 	tlb_finish_mmu(&tlb);
827 
828 	if (ret)
829 		goto out_unlock;
830 	BUG_ON(prev != vma);
831 
832 	if (unlikely(vm_flags & VM_EXEC)) {
833 		pr_warn_once("process '%pD4' started with executable stack\n",
834 			     bprm->file);
835 	}
836 
837 	/* Move stack pages down in memory. */
838 	if (stack_shift) {
839 		ret = shift_arg_pages(vma, stack_shift);
840 		if (ret)
841 			goto out_unlock;
842 	}
843 
844 	/* mprotect_fixup is overkill to remove the temporary stack flags */
845 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
846 
847 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
848 	stack_size = vma->vm_end - vma->vm_start;
849 	/*
850 	 * Align this down to a page boundary as expand_stack
851 	 * will align it up.
852 	 */
853 	rlim_stack = bprm->rlim_stack.rlim_cur & __PAGE_MASK;
854 
855 	stack_expand = min(rlim_stack, stack_size + stack_expand);
856 
857 #ifdef CONFIG_STACK_GROWSUP
858 	stack_base = vma->vm_start + stack_expand;
859 #else
860 	stack_base = vma->vm_end - stack_expand;
861 #endif
862 	current->mm->start_stack = bprm->p;
863 	ret = expand_stack_locked(vma, stack_base);
864 	if (ret)
865 		ret = -EFAULT;
866 
867 out_unlock:
868 	mmap_write_unlock(mm);
869 	return ret;
870 }
871 EXPORT_SYMBOL(setup_arg_pages);
872 
873 #else
874 
875 /*
876  * Transfer the program arguments and environment from the holding pages
877  * onto the stack. The provided stack pointer is adjusted accordingly.
878  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)879 int transfer_args_to_stack(struct linux_binprm *bprm,
880 			   unsigned long *sp_location)
881 {
882 	unsigned long index, stop, sp;
883 	int ret = 0;
884 
885 	stop = bprm->p >> PAGE_SHIFT;
886 	sp = *sp_location;
887 
888 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
889 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
890 		char *src = kmap_local_page(bprm->page[index]) + offset;
891 		sp -= PAGE_SIZE - offset;
892 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
893 			ret = -EFAULT;
894 		kunmap_local(src);
895 		if (ret)
896 			goto out;
897 	}
898 
899 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
900 	*sp_location = sp;
901 
902 out:
903 	return ret;
904 }
905 EXPORT_SYMBOL(transfer_args_to_stack);
906 
907 #endif /* CONFIG_MMU */
908 
do_open_execat(int fd,struct filename * name,int flags)909 static struct file *do_open_execat(int fd, struct filename *name, int flags)
910 {
911 	struct file *file;
912 	int err;
913 	struct open_flags open_exec_flags = {
914 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
915 		.acc_mode = MAY_EXEC,
916 		.intent = LOOKUP_OPEN,
917 		.lookup_flags = LOOKUP_FOLLOW,
918 	};
919 
920 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
921 		return ERR_PTR(-EINVAL);
922 	if (flags & AT_SYMLINK_NOFOLLOW)
923 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
924 	if (flags & AT_EMPTY_PATH)
925 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
926 
927 	file = do_filp_open(fd, name, &open_exec_flags);
928 	if (IS_ERR(file))
929 		goto out;
930 
931 	/*
932 	 * may_open() has already checked for this, so it should be
933 	 * impossible to trip now. But we need to be extra cautious
934 	 * and check again at the very end too.
935 	 */
936 	err = -EACCES;
937 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
938 			 path_noexec(&file->f_path)))
939 		goto exit;
940 
941 	err = deny_write_access(file);
942 	if (err)
943 		goto exit;
944 
945 out:
946 	return file;
947 
948 exit:
949 	fput(file);
950 	return ERR_PTR(err);
951 }
952 
open_exec(const char * name)953 struct file *open_exec(const char *name)
954 {
955 	struct filename *filename = getname_kernel(name);
956 	struct file *f = ERR_CAST(filename);
957 
958 	if (!IS_ERR(filename)) {
959 		f = do_open_execat(AT_FDCWD, filename, 0);
960 		putname(filename);
961 	}
962 	return f;
963 }
964 EXPORT_SYMBOL(open_exec);
965 
966 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)967 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
968 {
969 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
970 	if (res > 0)
971 		flush_icache_user_range(addr, addr + len);
972 	return res;
973 }
974 EXPORT_SYMBOL(read_code);
975 #endif
976 
977 /*
978  * Maps the mm_struct mm into the current task struct.
979  * On success, this function returns with exec_update_lock
980  * held for writing.
981  */
exec_mmap(struct mm_struct * mm)982 static int exec_mmap(struct mm_struct *mm)
983 {
984 	struct task_struct *tsk;
985 	struct mm_struct *old_mm, *active_mm;
986 	int ret;
987 
988 	/* Notify parent that we're no longer interested in the old VM */
989 	tsk = current;
990 	old_mm = current->mm;
991 	exec_mm_release(tsk, old_mm);
992 	if (old_mm)
993 		sync_mm_rss(old_mm);
994 
995 	ret = down_write_killable(&tsk->signal->exec_update_lock);
996 	if (ret)
997 		return ret;
998 
999 	if (old_mm) {
1000 		/*
1001 		 * If there is a pending fatal signal perhaps a signal
1002 		 * whose default action is to create a coredump get
1003 		 * out and die instead of going through with the exec.
1004 		 */
1005 		ret = mmap_read_lock_killable(old_mm);
1006 		if (ret) {
1007 			up_write(&tsk->signal->exec_update_lock);
1008 			return ret;
1009 		}
1010 	}
1011 
1012 	task_lock(tsk);
1013 	membarrier_exec_mmap(mm);
1014 
1015 	local_irq_disable();
1016 	active_mm = tsk->active_mm;
1017 	tsk->active_mm = mm;
1018 	tsk->mm = mm;
1019 	mm_init_cid(mm);
1020 	/*
1021 	 * This prevents preemption while active_mm is being loaded and
1022 	 * it and mm are being updated, which could cause problems for
1023 	 * lazy tlb mm refcounting when these are updated by context
1024 	 * switches. Not all architectures can handle irqs off over
1025 	 * activate_mm yet.
1026 	 */
1027 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1028 		local_irq_enable();
1029 	activate_mm(active_mm, mm);
1030 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1031 		local_irq_enable();
1032 	lru_gen_add_mm(mm);
1033 	task_unlock(tsk);
1034 	lru_gen_use_mm(mm);
1035 	if (old_mm) {
1036 		mmap_read_unlock(old_mm);
1037 		BUG_ON(active_mm != old_mm);
1038 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1039 		mm_update_next_owner(old_mm);
1040 		mmput(old_mm);
1041 		return 0;
1042 	}
1043 	mmdrop_lazy_tlb(active_mm);
1044 	return 0;
1045 }
1046 
de_thread(struct task_struct * tsk)1047 static int de_thread(struct task_struct *tsk)
1048 {
1049 	struct signal_struct *sig = tsk->signal;
1050 	struct sighand_struct *oldsighand = tsk->sighand;
1051 	spinlock_t *lock = &oldsighand->siglock;
1052 
1053 	if (thread_group_empty(tsk))
1054 		goto no_thread_group;
1055 
1056 	/*
1057 	 * Kill all other threads in the thread group.
1058 	 */
1059 	spin_lock_irq(lock);
1060 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1061 		/*
1062 		 * Another group action in progress, just
1063 		 * return so that the signal is processed.
1064 		 */
1065 		spin_unlock_irq(lock);
1066 		return -EAGAIN;
1067 	}
1068 
1069 	sig->group_exec_task = tsk;
1070 	sig->notify_count = zap_other_threads(tsk);
1071 	if (!thread_group_leader(tsk))
1072 		sig->notify_count--;
1073 
1074 	while (sig->notify_count) {
1075 		__set_current_state(TASK_KILLABLE);
1076 		spin_unlock_irq(lock);
1077 		schedule();
1078 		if (__fatal_signal_pending(tsk))
1079 			goto killed;
1080 		spin_lock_irq(lock);
1081 	}
1082 	spin_unlock_irq(lock);
1083 
1084 	/*
1085 	 * At this point all other threads have exited, all we have to
1086 	 * do is to wait for the thread group leader to become inactive,
1087 	 * and to assume its PID:
1088 	 */
1089 	if (!thread_group_leader(tsk)) {
1090 		struct task_struct *leader = tsk->group_leader;
1091 
1092 		for (;;) {
1093 			cgroup_threadgroup_change_begin(tsk);
1094 			write_lock_irq(&tasklist_lock);
1095 			/*
1096 			 * Do this under tasklist_lock to ensure that
1097 			 * exit_notify() can't miss ->group_exec_task
1098 			 */
1099 			sig->notify_count = -1;
1100 			if (likely(leader->exit_state))
1101 				break;
1102 			__set_current_state(TASK_KILLABLE);
1103 			write_unlock_irq(&tasklist_lock);
1104 			cgroup_threadgroup_change_end(tsk);
1105 			schedule();
1106 			if (__fatal_signal_pending(tsk))
1107 				goto killed;
1108 		}
1109 
1110 		/*
1111 		 * The only record we have of the real-time age of a
1112 		 * process, regardless of execs it's done, is start_time.
1113 		 * All the past CPU time is accumulated in signal_struct
1114 		 * from sister threads now dead.  But in this non-leader
1115 		 * exec, nothing survives from the original leader thread,
1116 		 * whose birth marks the true age of this process now.
1117 		 * When we take on its identity by switching to its PID, we
1118 		 * also take its birthdate (always earlier than our own).
1119 		 */
1120 		tsk->start_time = leader->start_time;
1121 		tsk->start_boottime = leader->start_boottime;
1122 
1123 		BUG_ON(!same_thread_group(leader, tsk));
1124 		/*
1125 		 * An exec() starts a new thread group with the
1126 		 * TGID of the previous thread group. Rehash the
1127 		 * two threads with a switched PID, and release
1128 		 * the former thread group leader:
1129 		 */
1130 
1131 		/* Become a process group leader with the old leader's pid.
1132 		 * The old leader becomes a thread of the this thread group.
1133 		 */
1134 		exchange_tids(tsk, leader);
1135 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1136 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1137 		transfer_pid(leader, tsk, PIDTYPE_SID);
1138 
1139 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1140 		list_replace_init(&leader->sibling, &tsk->sibling);
1141 
1142 		tsk->group_leader = tsk;
1143 		leader->group_leader = tsk;
1144 
1145 		tsk->exit_signal = SIGCHLD;
1146 		leader->exit_signal = -1;
1147 
1148 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1149 		leader->exit_state = EXIT_DEAD;
1150 
1151 		/*
1152 		 * We are going to release_task()->ptrace_unlink() silently,
1153 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1154 		 * the tracer won't block again waiting for this thread.
1155 		 */
1156 		if (unlikely(leader->ptrace))
1157 			__wake_up_parent(leader, leader->parent);
1158 		write_unlock_irq(&tasklist_lock);
1159 		cgroup_threadgroup_change_end(tsk);
1160 
1161 		release_task(leader);
1162 	}
1163 
1164 	sig->group_exec_task = NULL;
1165 	sig->notify_count = 0;
1166 
1167 no_thread_group:
1168 	/* we have changed execution domain */
1169 	tsk->exit_signal = SIGCHLD;
1170 
1171 	BUG_ON(!thread_group_leader(tsk));
1172 	return 0;
1173 
1174 killed:
1175 	/* protects against exit_notify() and __exit_signal() */
1176 	read_lock(&tasklist_lock);
1177 	sig->group_exec_task = NULL;
1178 	sig->notify_count = 0;
1179 	read_unlock(&tasklist_lock);
1180 	return -EAGAIN;
1181 }
1182 
1183 
1184 /*
1185  * This function makes sure the current process has its own signal table,
1186  * so that flush_signal_handlers can later reset the handlers without
1187  * disturbing other processes.  (Other processes might share the signal
1188  * table via the CLONE_SIGHAND option to clone().)
1189  */
unshare_sighand(struct task_struct * me)1190 static int unshare_sighand(struct task_struct *me)
1191 {
1192 	struct sighand_struct *oldsighand = me->sighand;
1193 
1194 	if (refcount_read(&oldsighand->count) != 1) {
1195 		struct sighand_struct *newsighand;
1196 		/*
1197 		 * This ->sighand is shared with the CLONE_SIGHAND
1198 		 * but not CLONE_THREAD task, switch to the new one.
1199 		 */
1200 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1201 		if (!newsighand)
1202 			return -ENOMEM;
1203 
1204 		refcount_set(&newsighand->count, 1);
1205 
1206 		write_lock_irq(&tasklist_lock);
1207 		spin_lock(&oldsighand->siglock);
1208 		memcpy(newsighand->action, oldsighand->action,
1209 		       sizeof(newsighand->action));
1210 		rcu_assign_pointer(me->sighand, newsighand);
1211 		spin_unlock(&oldsighand->siglock);
1212 		write_unlock_irq(&tasklist_lock);
1213 
1214 		__cleanup_sighand(oldsighand);
1215 	}
1216 	return 0;
1217 }
1218 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1219 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1220 {
1221 	task_lock(tsk);
1222 	/* Always NUL terminated and zero-padded */
1223 	strscpy_pad(buf, tsk->comm, buf_size);
1224 	task_unlock(tsk);
1225 	return buf;
1226 }
1227 EXPORT_SYMBOL_GPL(__get_task_comm);
1228 
1229 /*
1230  * These functions flushes out all traces of the currently running executable
1231  * so that a new one can be started
1232  */
1233 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1234 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1235 {
1236 	task_lock(tsk);
1237 	trace_task_rename(tsk, buf);
1238 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1239 	task_unlock(tsk);
1240 	perf_event_comm(tsk, exec);
1241 	trace_android_rvh_set_task_comm(tsk, exec);
1242 }
1243 EXPORT_SYMBOL_GPL(__set_task_comm);
1244 
1245 /*
1246  * Calling this is the point of no return. None of the failures will be
1247  * seen by userspace since either the process is already taking a fatal
1248  * signal (via de_thread() or coredump), or will have SEGV raised
1249  * (after exec_mmap()) by search_binary_handler (see below).
1250  */
begin_new_exec(struct linux_binprm * bprm)1251 int begin_new_exec(struct linux_binprm * bprm)
1252 {
1253 	struct task_struct *me = current;
1254 	int retval;
1255 
1256 	/* Once we are committed compute the creds */
1257 	retval = bprm_creds_from_file(bprm);
1258 	if (retval)
1259 		return retval;
1260 
1261 	/*
1262 	 * Ensure all future errors are fatal.
1263 	 */
1264 	bprm->point_of_no_return = true;
1265 
1266 	/*
1267 	 * Make this the only thread in the thread group.
1268 	 */
1269 	retval = de_thread(me);
1270 	if (retval)
1271 		goto out;
1272 
1273 	/*
1274 	 * Cancel any io_uring activity across execve
1275 	 */
1276 	io_uring_task_cancel();
1277 
1278 	/* Ensure the files table is not shared. */
1279 	retval = unshare_files();
1280 	if (retval)
1281 		goto out;
1282 
1283 	/*
1284 	 * Must be called _before_ exec_mmap() as bprm->mm is
1285 	 * not visible until then. Doing it here also ensures
1286 	 * we don't race against replace_mm_exe_file().
1287 	 */
1288 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1289 	if (retval)
1290 		goto out;
1291 
1292 	/* If the binary is not readable then enforce mm->dumpable=0 */
1293 	would_dump(bprm, bprm->file);
1294 	if (bprm->have_execfd)
1295 		would_dump(bprm, bprm->executable);
1296 
1297 	/*
1298 	 * Release all of the old mmap stuff
1299 	 */
1300 	acct_arg_size(bprm, 0);
1301 	retval = exec_mmap(bprm->mm);
1302 	if (retval)
1303 		goto out;
1304 
1305 	bprm->mm = NULL;
1306 
1307 	retval = exec_task_namespaces();
1308 	if (retval)
1309 		goto out_unlock;
1310 
1311 #ifdef CONFIG_POSIX_TIMERS
1312 	spin_lock_irq(&me->sighand->siglock);
1313 	posix_cpu_timers_exit(me);
1314 	spin_unlock_irq(&me->sighand->siglock);
1315 	exit_itimers(me);
1316 	flush_itimer_signals();
1317 #endif
1318 
1319 	/*
1320 	 * Make the signal table private.
1321 	 */
1322 	retval = unshare_sighand(me);
1323 	if (retval)
1324 		goto out_unlock;
1325 
1326 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1327 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1328 	flush_thread();
1329 	me->personality &= ~bprm->per_clear;
1330 
1331 	clear_syscall_work_syscall_user_dispatch(me);
1332 
1333 	/*
1334 	 * We have to apply CLOEXEC before we change whether the process is
1335 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1336 	 * trying to access the should-be-closed file descriptors of a process
1337 	 * undergoing exec(2).
1338 	 */
1339 	do_close_on_exec(me->files);
1340 
1341 	if (bprm->secureexec) {
1342 		/* Make sure parent cannot signal privileged process. */
1343 		me->pdeath_signal = 0;
1344 
1345 		/*
1346 		 * For secureexec, reset the stack limit to sane default to
1347 		 * avoid bad behavior from the prior rlimits. This has to
1348 		 * happen before arch_pick_mmap_layout(), which examines
1349 		 * RLIMIT_STACK, but after the point of no return to avoid
1350 		 * needing to clean up the change on failure.
1351 		 */
1352 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1353 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1354 	}
1355 
1356 	me->sas_ss_sp = me->sas_ss_size = 0;
1357 
1358 	/*
1359 	 * Figure out dumpability. Note that this checking only of current
1360 	 * is wrong, but userspace depends on it. This should be testing
1361 	 * bprm->secureexec instead.
1362 	 */
1363 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1364 	    !(uid_eq(current_euid(), current_uid()) &&
1365 	      gid_eq(current_egid(), current_gid())))
1366 		set_dumpable(current->mm, suid_dumpable);
1367 	else
1368 		set_dumpable(current->mm, SUID_DUMP_USER);
1369 
1370 	perf_event_exec();
1371 	__set_task_comm(me, kbasename(bprm->filename), true);
1372 
1373 	/* An exec changes our domain. We are no longer part of the thread
1374 	   group */
1375 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1376 	flush_signal_handlers(me, 0);
1377 
1378 	retval = set_cred_ucounts(bprm->cred);
1379 	if (retval < 0)
1380 		goto out_unlock;
1381 
1382 	/*
1383 	 * install the new credentials for this executable
1384 	 */
1385 	security_bprm_committing_creds(bprm);
1386 
1387 	commit_creds(bprm->cred);
1388 	bprm->cred = NULL;
1389 
1390 	/*
1391 	 * Disable monitoring for regular users
1392 	 * when executing setuid binaries. Must
1393 	 * wait until new credentials are committed
1394 	 * by commit_creds() above
1395 	 */
1396 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1397 		perf_event_exit_task(me);
1398 	/*
1399 	 * cred_guard_mutex must be held at least to this point to prevent
1400 	 * ptrace_attach() from altering our determination of the task's
1401 	 * credentials; any time after this it may be unlocked.
1402 	 */
1403 	security_bprm_committed_creds(bprm);
1404 
1405 	/* Pass the opened binary to the interpreter. */
1406 	if (bprm->have_execfd) {
1407 		retval = get_unused_fd_flags(0);
1408 		if (retval < 0)
1409 			goto out_unlock;
1410 		fd_install(retval, bprm->executable);
1411 		bprm->executable = NULL;
1412 		bprm->execfd = retval;
1413 	}
1414 	return 0;
1415 
1416 out_unlock:
1417 	up_write(&me->signal->exec_update_lock);
1418 	if (!bprm->cred)
1419 		mutex_unlock(&me->signal->cred_guard_mutex);
1420 
1421 out:
1422 	return retval;
1423 }
1424 EXPORT_SYMBOL(begin_new_exec);
1425 
would_dump(struct linux_binprm * bprm,struct file * file)1426 void would_dump(struct linux_binprm *bprm, struct file *file)
1427 {
1428 	struct inode *inode = file_inode(file);
1429 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1430 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1431 		struct user_namespace *old, *user_ns;
1432 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1433 
1434 		/* Ensure mm->user_ns contains the executable */
1435 		user_ns = old = bprm->mm->user_ns;
1436 		while ((user_ns != &init_user_ns) &&
1437 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1438 			user_ns = user_ns->parent;
1439 
1440 		if (old != user_ns) {
1441 			bprm->mm->user_ns = get_user_ns(user_ns);
1442 			put_user_ns(old);
1443 		}
1444 	}
1445 }
1446 EXPORT_SYMBOL(would_dump);
1447 
setup_new_exec(struct linux_binprm * bprm)1448 void setup_new_exec(struct linux_binprm * bprm)
1449 {
1450 	/* Setup things that can depend upon the personality */
1451 	struct task_struct *me = current;
1452 
1453 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1454 
1455 	arch_setup_new_exec();
1456 
1457 	/* Set the new mm task size. We have to do that late because it may
1458 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1459 	 * some architectures like powerpc
1460 	 */
1461 	me->mm->task_size = TASK_SIZE;
1462 	up_write(&me->signal->exec_update_lock);
1463 	mutex_unlock(&me->signal->cred_guard_mutex);
1464 }
1465 EXPORT_SYMBOL(setup_new_exec);
1466 
1467 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1468 void finalize_exec(struct linux_binprm *bprm)
1469 {
1470 	/* Store any stack rlimit changes before starting thread. */
1471 	task_lock(current->group_leader);
1472 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1473 	task_unlock(current->group_leader);
1474 }
1475 EXPORT_SYMBOL(finalize_exec);
1476 
1477 /*
1478  * Prepare credentials and lock ->cred_guard_mutex.
1479  * setup_new_exec() commits the new creds and drops the lock.
1480  * Or, if exec fails before, free_bprm() should release ->cred
1481  * and unlock.
1482  */
prepare_bprm_creds(struct linux_binprm * bprm)1483 static int prepare_bprm_creds(struct linux_binprm *bprm)
1484 {
1485 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1486 		return -ERESTARTNOINTR;
1487 
1488 	bprm->cred = prepare_exec_creds();
1489 	if (likely(bprm->cred))
1490 		return 0;
1491 
1492 	mutex_unlock(&current->signal->cred_guard_mutex);
1493 	return -ENOMEM;
1494 }
1495 
free_bprm(struct linux_binprm * bprm)1496 static void free_bprm(struct linux_binprm *bprm)
1497 {
1498 	if (bprm->mm) {
1499 		acct_arg_size(bprm, 0);
1500 		mmput(bprm->mm);
1501 	}
1502 	free_arg_pages(bprm);
1503 	if (bprm->cred) {
1504 		mutex_unlock(&current->signal->cred_guard_mutex);
1505 		abort_creds(bprm->cred);
1506 	}
1507 	if (bprm->file) {
1508 		allow_write_access(bprm->file);
1509 		fput(bprm->file);
1510 	}
1511 	if (bprm->executable)
1512 		fput(bprm->executable);
1513 	/* If a binfmt changed the interp, free it. */
1514 	if (bprm->interp != bprm->filename)
1515 		kfree(bprm->interp);
1516 	kfree(bprm->fdpath);
1517 	kfree(bprm);
1518 }
1519 
alloc_bprm(int fd,struct filename * filename)1520 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1521 {
1522 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1523 	int retval = -ENOMEM;
1524 	if (!bprm)
1525 		goto out;
1526 
1527 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1528 		bprm->filename = filename->name;
1529 	} else {
1530 		if (filename->name[0] == '\0')
1531 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1532 		else
1533 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1534 						  fd, filename->name);
1535 		if (!bprm->fdpath)
1536 			goto out_free;
1537 
1538 		bprm->filename = bprm->fdpath;
1539 	}
1540 	bprm->interp = bprm->filename;
1541 
1542 	retval = bprm_mm_init(bprm);
1543 	if (retval)
1544 		goto out_free;
1545 	return bprm;
1546 
1547 out_free:
1548 	free_bprm(bprm);
1549 out:
1550 	return ERR_PTR(retval);
1551 }
1552 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1553 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1554 {
1555 	/* If a binfmt changed the interp, free it first. */
1556 	if (bprm->interp != bprm->filename)
1557 		kfree(bprm->interp);
1558 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1559 	if (!bprm->interp)
1560 		return -ENOMEM;
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL(bprm_change_interp);
1564 
1565 /*
1566  * determine how safe it is to execute the proposed program
1567  * - the caller must hold ->cred_guard_mutex to protect against
1568  *   PTRACE_ATTACH or seccomp thread-sync
1569  */
check_unsafe_exec(struct linux_binprm * bprm)1570 static void check_unsafe_exec(struct linux_binprm *bprm)
1571 {
1572 	struct task_struct *p = current, *t;
1573 	unsigned n_fs;
1574 
1575 	if (p->ptrace)
1576 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1577 
1578 	/*
1579 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1580 	 * mess up.
1581 	 */
1582 	if (task_no_new_privs(current))
1583 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1584 
1585 	/*
1586 	 * If another task is sharing our fs, we cannot safely
1587 	 * suid exec because the differently privileged task
1588 	 * will be able to manipulate the current directory, etc.
1589 	 * It would be nice to force an unshare instead...
1590 	 */
1591 	t = p;
1592 	n_fs = 1;
1593 	spin_lock(&p->fs->lock);
1594 	rcu_read_lock();
1595 	while_each_thread(p, t) {
1596 		if (t->fs == p->fs)
1597 			n_fs++;
1598 	}
1599 	rcu_read_unlock();
1600 
1601 	if (p->fs->users > n_fs)
1602 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1603 	else
1604 		p->fs->in_exec = 1;
1605 	spin_unlock(&p->fs->lock);
1606 }
1607 
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1608 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1609 {
1610 	/* Handle suid and sgid on files */
1611 	struct mnt_idmap *idmap;
1612 	struct inode *inode = file_inode(file);
1613 	unsigned int mode;
1614 	vfsuid_t vfsuid;
1615 	vfsgid_t vfsgid;
1616 	int err;
1617 
1618 	if (!mnt_may_suid(file->f_path.mnt))
1619 		return;
1620 
1621 	if (task_no_new_privs(current))
1622 		return;
1623 
1624 	mode = READ_ONCE(inode->i_mode);
1625 	if (!(mode & (S_ISUID|S_ISGID)))
1626 		return;
1627 
1628 	idmap = file_mnt_idmap(file);
1629 
1630 	/* Be careful if suid/sgid is set */
1631 	inode_lock(inode);
1632 
1633 	/* Atomically reload and check mode/uid/gid now that lock held. */
1634 	mode = inode->i_mode;
1635 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1636 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1637 	err = inode_permission(idmap, inode, MAY_EXEC);
1638 	inode_unlock(inode);
1639 
1640 	/* Did the exec bit vanish out from under us? Give up. */
1641 	if (err)
1642 		return;
1643 
1644 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1645 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1646 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1647 		return;
1648 
1649 	if (mode & S_ISUID) {
1650 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1651 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1652 	}
1653 
1654 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1655 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1656 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1657 	}
1658 }
1659 
1660 /*
1661  * Compute brpm->cred based upon the final binary.
1662  */
bprm_creds_from_file(struct linux_binprm * bprm)1663 static int bprm_creds_from_file(struct linux_binprm *bprm)
1664 {
1665 	/* Compute creds based on which file? */
1666 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1667 
1668 	bprm_fill_uid(bprm, file);
1669 	return security_bprm_creds_from_file(bprm, file);
1670 }
1671 
1672 /*
1673  * Fill the binprm structure from the inode.
1674  * Read the first BINPRM_BUF_SIZE bytes
1675  *
1676  * This may be called multiple times for binary chains (scripts for example).
1677  */
prepare_binprm(struct linux_binprm * bprm)1678 static int prepare_binprm(struct linux_binprm *bprm)
1679 {
1680 	loff_t pos = 0;
1681 
1682 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1683 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1684 }
1685 
1686 /*
1687  * Arguments are '\0' separated strings found at the location bprm->p
1688  * points to; chop off the first by relocating brpm->p to right after
1689  * the first '\0' encountered.
1690  */
remove_arg_zero(struct linux_binprm * bprm)1691 int remove_arg_zero(struct linux_binprm *bprm)
1692 {
1693 	int ret = 0;
1694 	unsigned long offset;
1695 	char *kaddr;
1696 	struct page *page;
1697 
1698 	if (!bprm->argc)
1699 		return 0;
1700 
1701 	do {
1702 		offset = bprm->p & ~PAGE_MASK;
1703 		page = get_arg_page(bprm, bprm->p, 0);
1704 		if (!page) {
1705 			ret = -EFAULT;
1706 			goto out;
1707 		}
1708 		kaddr = kmap_local_page(page);
1709 
1710 		for (; offset < PAGE_SIZE && kaddr[offset];
1711 				offset++, bprm->p++)
1712 			;
1713 
1714 		kunmap_local(kaddr);
1715 		put_arg_page(page);
1716 	} while (offset == PAGE_SIZE);
1717 
1718 	bprm->p++;
1719 	bprm->argc--;
1720 	ret = 0;
1721 
1722 out:
1723 	return ret;
1724 }
1725 EXPORT_SYMBOL(remove_arg_zero);
1726 
1727 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1728 /*
1729  * cycle the list of binary formats handler, until one recognizes the image
1730  */
search_binary_handler(struct linux_binprm * bprm)1731 static int search_binary_handler(struct linux_binprm *bprm)
1732 {
1733 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1734 	struct linux_binfmt *fmt;
1735 	int retval;
1736 
1737 	retval = prepare_binprm(bprm);
1738 	if (retval < 0)
1739 		return retval;
1740 
1741 	retval = security_bprm_check(bprm);
1742 	if (retval)
1743 		return retval;
1744 
1745 	retval = -ENOENT;
1746  retry:
1747 	read_lock(&binfmt_lock);
1748 	list_for_each_entry(fmt, &formats, lh) {
1749 		if (!try_module_get(fmt->module))
1750 			continue;
1751 		read_unlock(&binfmt_lock);
1752 
1753 		retval = fmt->load_binary(bprm);
1754 
1755 		read_lock(&binfmt_lock);
1756 		put_binfmt(fmt);
1757 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1758 			read_unlock(&binfmt_lock);
1759 			return retval;
1760 		}
1761 	}
1762 	read_unlock(&binfmt_lock);
1763 
1764 	if (need_retry) {
1765 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1766 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1767 			return retval;
1768 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1769 			return retval;
1770 		need_retry = false;
1771 		goto retry;
1772 	}
1773 
1774 	return retval;
1775 }
1776 
1777 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1778 static int exec_binprm(struct linux_binprm *bprm)
1779 {
1780 	pid_t old_pid, old_vpid;
1781 	int ret, depth;
1782 
1783 	/* Need to fetch pid before load_binary changes it */
1784 	old_pid = current->pid;
1785 	rcu_read_lock();
1786 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1787 	rcu_read_unlock();
1788 
1789 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1790 	for (depth = 0;; depth++) {
1791 		struct file *exec;
1792 		if (depth > 5)
1793 			return -ELOOP;
1794 
1795 		ret = search_binary_handler(bprm);
1796 		if (ret < 0)
1797 			return ret;
1798 		if (!bprm->interpreter)
1799 			break;
1800 
1801 		exec = bprm->file;
1802 		bprm->file = bprm->interpreter;
1803 		bprm->interpreter = NULL;
1804 
1805 		allow_write_access(exec);
1806 		if (unlikely(bprm->have_execfd)) {
1807 			if (bprm->executable) {
1808 				fput(exec);
1809 				return -ENOEXEC;
1810 			}
1811 			bprm->executable = exec;
1812 		} else
1813 			fput(exec);
1814 	}
1815 
1816 	audit_bprm(bprm);
1817 	trace_sched_process_exec(current, old_pid, bprm);
1818 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1819 	proc_exec_connector(current);
1820 	return 0;
1821 }
1822 
1823 /*
1824  * sys_execve() executes a new program.
1825  */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1826 static int bprm_execve(struct linux_binprm *bprm,
1827 		       int fd, struct filename *filename, int flags)
1828 {
1829 	struct file *file;
1830 	int retval;
1831 
1832 	retval = prepare_bprm_creds(bprm);
1833 	if (retval)
1834 		return retval;
1835 
1836 	/*
1837 	 * Check for unsafe execution states before exec_binprm(), which
1838 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1839 	 * where setuid-ness is evaluated.
1840 	 */
1841 	check_unsafe_exec(bprm);
1842 	current->in_execve = 1;
1843 	sched_mm_cid_before_execve(current);
1844 
1845 	file = do_open_execat(fd, filename, flags);
1846 	retval = PTR_ERR(file);
1847 	if (IS_ERR(file))
1848 		goto out_unmark;
1849 
1850 	sched_exec();
1851 
1852 	bprm->file = file;
1853 	/*
1854 	 * Record that a name derived from an O_CLOEXEC fd will be
1855 	 * inaccessible after exec.  This allows the code in exec to
1856 	 * choose to fail when the executable is not mmaped into the
1857 	 * interpreter and an open file descriptor is not passed to
1858 	 * the interpreter.  This makes for a better user experience
1859 	 * than having the interpreter start and then immediately fail
1860 	 * when it finds the executable is inaccessible.
1861 	 */
1862 	if (bprm->fdpath && get_close_on_exec(fd))
1863 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1864 
1865 	/* Set the unchanging part of bprm->cred */
1866 	retval = security_bprm_creds_for_exec(bprm);
1867 	if (retval)
1868 		goto out;
1869 
1870 	retval = exec_binprm(bprm);
1871 	if (retval < 0)
1872 		goto out;
1873 
1874 	sched_mm_cid_after_execve(current);
1875 	/* execve succeeded */
1876 	current->fs->in_exec = 0;
1877 	current->in_execve = 0;
1878 	rseq_execve(current);
1879 	user_events_execve(current);
1880 	acct_update_integrals(current);
1881 	task_numa_free(current, false);
1882 	return retval;
1883 
1884 out:
1885 	/*
1886 	 * If past the point of no return ensure the code never
1887 	 * returns to the userspace process.  Use an existing fatal
1888 	 * signal if present otherwise terminate the process with
1889 	 * SIGSEGV.
1890 	 */
1891 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1892 		force_fatal_sig(SIGSEGV);
1893 
1894 out_unmark:
1895 	sched_mm_cid_after_execve(current);
1896 	current->fs->in_exec = 0;
1897 	current->in_execve = 0;
1898 
1899 	return retval;
1900 }
1901 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1902 static int do_execveat_common(int fd, struct filename *filename,
1903 			      struct user_arg_ptr argv,
1904 			      struct user_arg_ptr envp,
1905 			      int flags)
1906 {
1907 	struct linux_binprm *bprm;
1908 	int retval;
1909 
1910 	if (IS_ERR(filename))
1911 		return PTR_ERR(filename);
1912 
1913 	/*
1914 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1915 	 * set*uid() to execve() because too many poorly written programs
1916 	 * don't check setuid() return code.  Here we additionally recheck
1917 	 * whether NPROC limit is still exceeded.
1918 	 */
1919 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1920 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1921 		retval = -EAGAIN;
1922 		goto out_ret;
1923 	}
1924 
1925 	/* We're below the limit (still or again), so we don't want to make
1926 	 * further execve() calls fail. */
1927 	current->flags &= ~PF_NPROC_EXCEEDED;
1928 
1929 	bprm = alloc_bprm(fd, filename);
1930 	if (IS_ERR(bprm)) {
1931 		retval = PTR_ERR(bprm);
1932 		goto out_ret;
1933 	}
1934 
1935 	retval = count(argv, MAX_ARG_STRINGS);
1936 	if (retval == 0)
1937 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1938 			     current->comm, bprm->filename);
1939 	if (retval < 0)
1940 		goto out_free;
1941 	bprm->argc = retval;
1942 
1943 	retval = count(envp, MAX_ARG_STRINGS);
1944 	if (retval < 0)
1945 		goto out_free;
1946 	bprm->envc = retval;
1947 
1948 	retval = bprm_stack_limits(bprm);
1949 	if (retval < 0)
1950 		goto out_free;
1951 
1952 	retval = copy_string_kernel(bprm->filename, bprm);
1953 	if (retval < 0)
1954 		goto out_free;
1955 	bprm->exec = bprm->p;
1956 
1957 	retval = copy_strings(bprm->envc, envp, bprm);
1958 	if (retval < 0)
1959 		goto out_free;
1960 
1961 	retval = copy_strings(bprm->argc, argv, bprm);
1962 	if (retval < 0)
1963 		goto out_free;
1964 
1965 	/*
1966 	 * When argv is empty, add an empty string ("") as argv[0] to
1967 	 * ensure confused userspace programs that start processing
1968 	 * from argv[1] won't end up walking envp. See also
1969 	 * bprm_stack_limits().
1970 	 */
1971 	if (bprm->argc == 0) {
1972 		retval = copy_string_kernel("", bprm);
1973 		if (retval < 0)
1974 			goto out_free;
1975 		bprm->argc = 1;
1976 	}
1977 
1978 	retval = bprm_execve(bprm, fd, filename, flags);
1979 out_free:
1980 	free_bprm(bprm);
1981 
1982 out_ret:
1983 	putname(filename);
1984 	return retval;
1985 }
1986 
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1987 int kernel_execve(const char *kernel_filename,
1988 		  const char *const *argv, const char *const *envp)
1989 {
1990 	struct filename *filename;
1991 	struct linux_binprm *bprm;
1992 	int fd = AT_FDCWD;
1993 	int retval;
1994 
1995 	/* It is non-sense for kernel threads to call execve */
1996 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1997 		return -EINVAL;
1998 
1999 	filename = getname_kernel(kernel_filename);
2000 	if (IS_ERR(filename))
2001 		return PTR_ERR(filename);
2002 
2003 	bprm = alloc_bprm(fd, filename);
2004 	if (IS_ERR(bprm)) {
2005 		retval = PTR_ERR(bprm);
2006 		goto out_ret;
2007 	}
2008 
2009 	retval = count_strings_kernel(argv);
2010 	if (WARN_ON_ONCE(retval == 0))
2011 		retval = -EINVAL;
2012 	if (retval < 0)
2013 		goto out_free;
2014 	bprm->argc = retval;
2015 
2016 	retval = count_strings_kernel(envp);
2017 	if (retval < 0)
2018 		goto out_free;
2019 	bprm->envc = retval;
2020 
2021 	retval = bprm_stack_limits(bprm);
2022 	if (retval < 0)
2023 		goto out_free;
2024 
2025 	retval = copy_string_kernel(bprm->filename, bprm);
2026 	if (retval < 0)
2027 		goto out_free;
2028 	bprm->exec = bprm->p;
2029 
2030 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2031 	if (retval < 0)
2032 		goto out_free;
2033 
2034 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2035 	if (retval < 0)
2036 		goto out_free;
2037 
2038 	retval = bprm_execve(bprm, fd, filename, 0);
2039 out_free:
2040 	free_bprm(bprm);
2041 out_ret:
2042 	putname(filename);
2043 	return retval;
2044 }
2045 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2046 static int do_execve(struct filename *filename,
2047 	const char __user *const __user *__argv,
2048 	const char __user *const __user *__envp)
2049 {
2050 	struct user_arg_ptr argv = { .ptr.native = __argv };
2051 	struct user_arg_ptr envp = { .ptr.native = __envp };
2052 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2053 }
2054 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2055 static int do_execveat(int fd, struct filename *filename,
2056 		const char __user *const __user *__argv,
2057 		const char __user *const __user *__envp,
2058 		int flags)
2059 {
2060 	struct user_arg_ptr argv = { .ptr.native = __argv };
2061 	struct user_arg_ptr envp = { .ptr.native = __envp };
2062 
2063 	return do_execveat_common(fd, filename, argv, envp, flags);
2064 }
2065 
2066 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2067 static int compat_do_execve(struct filename *filename,
2068 	const compat_uptr_t __user *__argv,
2069 	const compat_uptr_t __user *__envp)
2070 {
2071 	struct user_arg_ptr argv = {
2072 		.is_compat = true,
2073 		.ptr.compat = __argv,
2074 	};
2075 	struct user_arg_ptr envp = {
2076 		.is_compat = true,
2077 		.ptr.compat = __envp,
2078 	};
2079 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2080 }
2081 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2082 static int compat_do_execveat(int fd, struct filename *filename,
2083 			      const compat_uptr_t __user *__argv,
2084 			      const compat_uptr_t __user *__envp,
2085 			      int flags)
2086 {
2087 	struct user_arg_ptr argv = {
2088 		.is_compat = true,
2089 		.ptr.compat = __argv,
2090 	};
2091 	struct user_arg_ptr envp = {
2092 		.is_compat = true,
2093 		.ptr.compat = __envp,
2094 	};
2095 	return do_execveat_common(fd, filename, argv, envp, flags);
2096 }
2097 #endif
2098 
set_binfmt(struct linux_binfmt * new)2099 void set_binfmt(struct linux_binfmt *new)
2100 {
2101 	struct mm_struct *mm = current->mm;
2102 
2103 	if (mm->binfmt)
2104 		module_put(mm->binfmt->module);
2105 
2106 	mm->binfmt = new;
2107 	if (new)
2108 		__module_get(new->module);
2109 }
2110 EXPORT_SYMBOL(set_binfmt);
2111 
2112 /*
2113  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2114  */
set_dumpable(struct mm_struct * mm,int value)2115 void set_dumpable(struct mm_struct *mm, int value)
2116 {
2117 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2118 		return;
2119 
2120 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2121 }
2122 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2123 SYSCALL_DEFINE3(execve,
2124 		const char __user *, filename,
2125 		const char __user *const __user *, argv,
2126 		const char __user *const __user *, envp)
2127 {
2128 	return do_execve(getname(filename), argv, envp);
2129 }
2130 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2131 SYSCALL_DEFINE5(execveat,
2132 		int, fd, const char __user *, filename,
2133 		const char __user *const __user *, argv,
2134 		const char __user *const __user *, envp,
2135 		int, flags)
2136 {
2137 	return do_execveat(fd,
2138 			   getname_uflags(filename, flags),
2139 			   argv, envp, flags);
2140 }
2141 
2142 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2143 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2144 	const compat_uptr_t __user *, argv,
2145 	const compat_uptr_t __user *, envp)
2146 {
2147 	return compat_do_execve(getname(filename), argv, envp);
2148 }
2149 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2150 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2151 		       const char __user *, filename,
2152 		       const compat_uptr_t __user *, argv,
2153 		       const compat_uptr_t __user *, envp,
2154 		       int,  flags)
2155 {
2156 	return compat_do_execveat(fd,
2157 				  getname_uflags(filename, flags),
2158 				  argv, envp, flags);
2159 }
2160 #endif
2161 
2162 #ifdef CONFIG_SYSCTL
2163 
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2164 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2165 		void *buffer, size_t *lenp, loff_t *ppos)
2166 {
2167 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2168 
2169 	if (!error)
2170 		validate_coredump_safety();
2171 	return error;
2172 }
2173 
2174 static struct ctl_table fs_exec_sysctls[] = {
2175 	{
2176 		.procname	= "suid_dumpable",
2177 		.data		= &suid_dumpable,
2178 		.maxlen		= sizeof(int),
2179 		.mode		= 0644,
2180 		.proc_handler	= proc_dointvec_minmax_coredump,
2181 		.extra1		= SYSCTL_ZERO,
2182 		.extra2		= SYSCTL_TWO,
2183 	},
2184 	{ }
2185 };
2186 
init_fs_exec_sysctls(void)2187 static int __init init_fs_exec_sysctls(void)
2188 {
2189 	register_sysctl_init("fs", fs_exec_sysctls);
2190 	return 0;
2191 }
2192 
2193 fs_initcall(init_fs_exec_sysctls);
2194 #endif /* CONFIG_SYSCTL */
2195