1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/blk-crypto.h>
21 #include <linux/xarray.h>
22
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26 #include "blk-cgroup.h"
27
28 #define ALLOC_CACHE_THRESHOLD 16
29 #define ALLOC_CACHE_MAX 256
30
31 struct bio_alloc_cache {
32 struct bio *free_list;
33 struct bio *free_list_irq;
34 unsigned int nr;
35 unsigned int nr_irq;
36 };
37
38 static struct biovec_slab {
39 int nr_vecs;
40 char *name;
41 struct kmem_cache *slab;
42 } bvec_slabs[] __read_mostly = {
43 { .nr_vecs = 16, .name = "biovec-16" },
44 { .nr_vecs = 64, .name = "biovec-64" },
45 { .nr_vecs = 128, .name = "biovec-128" },
46 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
47 };
48
biovec_slab(unsigned short nr_vecs)49 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
50 {
51 switch (nr_vecs) {
52 /* smaller bios use inline vecs */
53 case 5 ... 16:
54 return &bvec_slabs[0];
55 case 17 ... 64:
56 return &bvec_slabs[1];
57 case 65 ... 128:
58 return &bvec_slabs[2];
59 case 129 ... BIO_MAX_VECS:
60 return &bvec_slabs[3];
61 default:
62 BUG();
63 return NULL;
64 }
65 }
66
67 /*
68 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
69 * IO code that does not need private memory pools.
70 */
71 struct bio_set fs_bio_set;
72 EXPORT_SYMBOL(fs_bio_set);
73
74 /*
75 * Our slab pool management
76 */
77 struct bio_slab {
78 struct kmem_cache *slab;
79 unsigned int slab_ref;
80 unsigned int slab_size;
81 char name[8];
82 };
83 static DEFINE_MUTEX(bio_slab_lock);
84 static DEFINE_XARRAY(bio_slabs);
85
create_bio_slab(unsigned int size)86 static struct bio_slab *create_bio_slab(unsigned int size)
87 {
88 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
89
90 if (!bslab)
91 return NULL;
92
93 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
94 bslab->slab = kmem_cache_create(bslab->name, size,
95 ARCH_KMALLOC_MINALIGN,
96 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
97 if (!bslab->slab)
98 goto fail_alloc_slab;
99
100 bslab->slab_ref = 1;
101 bslab->slab_size = size;
102
103 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
104 return bslab;
105
106 kmem_cache_destroy(bslab->slab);
107
108 fail_alloc_slab:
109 kfree(bslab);
110 return NULL;
111 }
112
bs_bio_slab_size(struct bio_set * bs)113 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
114 {
115 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
116 }
117
bio_find_or_create_slab(struct bio_set * bs)118 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
119 {
120 unsigned int size = bs_bio_slab_size(bs);
121 struct bio_slab *bslab;
122
123 mutex_lock(&bio_slab_lock);
124 bslab = xa_load(&bio_slabs, size);
125 if (bslab)
126 bslab->slab_ref++;
127 else
128 bslab = create_bio_slab(size);
129 mutex_unlock(&bio_slab_lock);
130
131 if (bslab)
132 return bslab->slab;
133 return NULL;
134 }
135
bio_put_slab(struct bio_set * bs)136 static void bio_put_slab(struct bio_set *bs)
137 {
138 struct bio_slab *bslab = NULL;
139 unsigned int slab_size = bs_bio_slab_size(bs);
140
141 mutex_lock(&bio_slab_lock);
142
143 bslab = xa_load(&bio_slabs, slab_size);
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
148
149 WARN_ON(!bslab->slab_ref);
150
151 if (--bslab->slab_ref)
152 goto out;
153
154 xa_erase(&bio_slabs, slab_size);
155
156 kmem_cache_destroy(bslab->slab);
157 kfree(bslab);
158
159 out:
160 mutex_unlock(&bio_slab_lock);
161 }
162
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)163 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
164 {
165 BUG_ON(nr_vecs > BIO_MAX_VECS);
166
167 if (nr_vecs == BIO_MAX_VECS)
168 mempool_free(bv, pool);
169 else if (nr_vecs > BIO_INLINE_VECS)
170 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
171 }
172
173 /*
174 * Make the first allocation restricted and don't dump info on allocation
175 * failures, since we'll fall back to the mempool in case of failure.
176 */
bvec_alloc_gfp(gfp_t gfp)177 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
178 {
179 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
180 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
181 }
182
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)183 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
184 gfp_t gfp_mask)
185 {
186 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
187
188 if (WARN_ON_ONCE(!bvs))
189 return NULL;
190
191 /*
192 * Upgrade the nr_vecs request to take full advantage of the allocation.
193 * We also rely on this in the bvec_free path.
194 */
195 *nr_vecs = bvs->nr_vecs;
196
197 /*
198 * Try a slab allocation first for all smaller allocations. If that
199 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
200 * The mempool is sized to handle up to BIO_MAX_VECS entries.
201 */
202 if (*nr_vecs < BIO_MAX_VECS) {
203 struct bio_vec *bvl;
204
205 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
206 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
207 return bvl;
208 *nr_vecs = BIO_MAX_VECS;
209 }
210
211 return mempool_alloc(pool, gfp_mask);
212 }
213
bio_uninit(struct bio * bio)214 void bio_uninit(struct bio *bio)
215 {
216 #ifdef CONFIG_BLK_CGROUP
217 if (bio->bi_blkg) {
218 blkg_put(bio->bi_blkg);
219 bio->bi_blkg = NULL;
220 }
221 #endif
222 if (bio_integrity(bio))
223 bio_integrity_free(bio);
224
225 bio_crypt_free_ctx(bio);
226 }
227 EXPORT_SYMBOL(bio_uninit);
228
bio_free(struct bio * bio)229 static void bio_free(struct bio *bio)
230 {
231 struct bio_set *bs = bio->bi_pool;
232 void *p = bio;
233
234 WARN_ON_ONCE(!bs);
235
236 bio_uninit(bio);
237 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
238 mempool_free(p - bs->front_pad, &bs->bio_pool);
239 }
240
241 /*
242 * Users of this function have their own bio allocation. Subsequently,
243 * they must remember to pair any call to bio_init() with bio_uninit()
244 * when IO has completed, or when the bio is released.
245 */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)246 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
247 unsigned short max_vecs, blk_opf_t opf)
248 {
249 bio->bi_next = NULL;
250 bio->bi_bdev = bdev;
251 bio->bi_opf = opf;
252 bio->bi_flags = 0;
253 bio->bi_ioprio = 0;
254 bio->bi_write_hint = 0;
255 bio->bi_status = 0;
256 bio->bi_iter.bi_sector = 0;
257 bio->bi_iter.bi_size = 0;
258 bio->bi_iter.bi_idx = 0;
259 bio->bi_iter.bi_bvec_done = 0;
260 bio->bi_end_io = NULL;
261 bio->bi_private = NULL;
262 #ifdef CONFIG_BLK_CGROUP
263 bio->bi_blkg = NULL;
264 bio->bi_issue.value = 0;
265 if (bdev)
266 bio_associate_blkg(bio);
267 #ifdef CONFIG_BLK_CGROUP_IOCOST
268 bio->bi_iocost_cost = 0;
269 #endif
270 #endif
271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
272 bio->bi_crypt_context = NULL;
273 #if IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
274 bio->bi_skip_dm_default_key = false;
275 #endif
276 #endif
277 #ifdef CONFIG_BLK_DEV_INTEGRITY
278 bio->bi_integrity = NULL;
279 #endif
280 bio->bi_vcnt = 0;
281
282 atomic_set(&bio->__bi_remaining, 1);
283 atomic_set(&bio->__bi_cnt, 1);
284 bio->bi_cookie = BLK_QC_T_NONE;
285
286 bio->bi_max_vecs = max_vecs;
287 bio->bi_io_vec = table;
288 bio->bi_pool = NULL;
289 }
290 EXPORT_SYMBOL(bio_init);
291
292 /**
293 * bio_reset - reinitialize a bio
294 * @bio: bio to reset
295 * @bdev: block device to use the bio for
296 * @opf: operation and flags for bio
297 *
298 * Description:
299 * After calling bio_reset(), @bio will be in the same state as a freshly
300 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
301 * preserved are the ones that are initialized by bio_alloc_bioset(). See
302 * comment in struct bio.
303 */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)304 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
305 {
306 bio_uninit(bio);
307 memset(bio, 0, BIO_RESET_BYTES);
308 atomic_set(&bio->__bi_remaining, 1);
309 bio->bi_bdev = bdev;
310 if (bio->bi_bdev)
311 bio_associate_blkg(bio);
312 bio->bi_opf = opf;
313 }
314 EXPORT_SYMBOL(bio_reset);
315
__bio_chain_endio(struct bio * bio)316 static struct bio *__bio_chain_endio(struct bio *bio)
317 {
318 struct bio *parent = bio->bi_private;
319
320 if (bio->bi_status && !parent->bi_status)
321 parent->bi_status = bio->bi_status;
322 bio_put(bio);
323 return parent;
324 }
325
bio_chain_endio(struct bio * bio)326 static void bio_chain_endio(struct bio *bio)
327 {
328 bio_endio(__bio_chain_endio(bio));
329 }
330
331 /**
332 * bio_chain - chain bio completions
333 * @bio: the target bio
334 * @parent: the parent bio of @bio
335 *
336 * The caller won't have a bi_end_io called when @bio completes - instead,
337 * @parent's bi_end_io won't be called until both @parent and @bio have
338 * completed; the chained bio will also be freed when it completes.
339 *
340 * The caller must not set bi_private or bi_end_io in @bio.
341 */
bio_chain(struct bio * bio,struct bio * parent)342 void bio_chain(struct bio *bio, struct bio *parent)
343 {
344 BUG_ON(bio->bi_private || bio->bi_end_io);
345
346 bio->bi_private = parent;
347 bio->bi_end_io = bio_chain_endio;
348 bio_inc_remaining(parent);
349 }
350 EXPORT_SYMBOL(bio_chain);
351
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)352 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
353 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
354 {
355 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
356
357 if (bio) {
358 bio_chain(bio, new);
359 submit_bio(bio);
360 }
361
362 return new;
363 }
364 EXPORT_SYMBOL_GPL(blk_next_bio);
365
bio_alloc_rescue(struct work_struct * work)366 static void bio_alloc_rescue(struct work_struct *work)
367 {
368 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
369 struct bio *bio;
370
371 while (1) {
372 spin_lock(&bs->rescue_lock);
373 bio = bio_list_pop(&bs->rescue_list);
374 spin_unlock(&bs->rescue_lock);
375
376 if (!bio)
377 break;
378
379 submit_bio_noacct(bio);
380 }
381 }
382
punt_bios_to_rescuer(struct bio_set * bs)383 static void punt_bios_to_rescuer(struct bio_set *bs)
384 {
385 struct bio_list punt, nopunt;
386 struct bio *bio;
387
388 if (WARN_ON_ONCE(!bs->rescue_workqueue))
389 return;
390 /*
391 * In order to guarantee forward progress we must punt only bios that
392 * were allocated from this bio_set; otherwise, if there was a bio on
393 * there for a stacking driver higher up in the stack, processing it
394 * could require allocating bios from this bio_set, and doing that from
395 * our own rescuer would be bad.
396 *
397 * Since bio lists are singly linked, pop them all instead of trying to
398 * remove from the middle of the list:
399 */
400
401 bio_list_init(&punt);
402 bio_list_init(&nopunt);
403
404 while ((bio = bio_list_pop(¤t->bio_list[0])))
405 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
406 current->bio_list[0] = nopunt;
407
408 bio_list_init(&nopunt);
409 while ((bio = bio_list_pop(¤t->bio_list[1])))
410 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
411 current->bio_list[1] = nopunt;
412
413 spin_lock(&bs->rescue_lock);
414 bio_list_merge(&bs->rescue_list, &punt);
415 spin_unlock(&bs->rescue_lock);
416
417 queue_work(bs->rescue_workqueue, &bs->rescue_work);
418 }
419
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)420 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
421 {
422 unsigned long flags;
423
424 /* cache->free_list must be empty */
425 if (WARN_ON_ONCE(cache->free_list))
426 return;
427
428 local_irq_save(flags);
429 cache->free_list = cache->free_list_irq;
430 cache->free_list_irq = NULL;
431 cache->nr += cache->nr_irq;
432 cache->nr_irq = 0;
433 local_irq_restore(flags);
434 }
435
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)436 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
437 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
438 struct bio_set *bs)
439 {
440 struct bio_alloc_cache *cache;
441 struct bio *bio;
442
443 cache = per_cpu_ptr(bs->cache, get_cpu());
444 if (!cache->free_list) {
445 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
446 bio_alloc_irq_cache_splice(cache);
447 if (!cache->free_list) {
448 put_cpu();
449 return NULL;
450 }
451 }
452 bio = cache->free_list;
453 cache->free_list = bio->bi_next;
454 cache->nr--;
455 put_cpu();
456
457 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
458 bio->bi_pool = bs;
459 return bio;
460 }
461
462 /**
463 * bio_alloc_bioset - allocate a bio for I/O
464 * @bdev: block device to allocate the bio for (can be %NULL)
465 * @nr_vecs: number of bvecs to pre-allocate
466 * @opf: operation and flags for bio
467 * @gfp_mask: the GFP_* mask given to the slab allocator
468 * @bs: the bio_set to allocate from.
469 *
470 * Allocate a bio from the mempools in @bs.
471 *
472 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
473 * allocate a bio. This is due to the mempool guarantees. To make this work,
474 * callers must never allocate more than 1 bio at a time from the general pool.
475 * Callers that need to allocate more than 1 bio must always submit the
476 * previously allocated bio for IO before attempting to allocate a new one.
477 * Failure to do so can cause deadlocks under memory pressure.
478 *
479 * Note that when running under submit_bio_noacct() (i.e. any block driver),
480 * bios are not submitted until after you return - see the code in
481 * submit_bio_noacct() that converts recursion into iteration, to prevent
482 * stack overflows.
483 *
484 * This would normally mean allocating multiple bios under submit_bio_noacct()
485 * would be susceptible to deadlocks, but we have
486 * deadlock avoidance code that resubmits any blocked bios from a rescuer
487 * thread.
488 *
489 * However, we do not guarantee forward progress for allocations from other
490 * mempools. Doing multiple allocations from the same mempool under
491 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
492 * for per bio allocations.
493 *
494 * Returns: Pointer to new bio on success, NULL on failure.
495 */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)496 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
497 blk_opf_t opf, gfp_t gfp_mask,
498 struct bio_set *bs)
499 {
500 gfp_t saved_gfp = gfp_mask;
501 struct bio *bio;
502 void *p;
503
504 /* should not use nobvec bioset for nr_vecs > 0 */
505 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
506 return NULL;
507
508 if (opf & REQ_ALLOC_CACHE) {
509 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
510 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
511 gfp_mask, bs);
512 if (bio)
513 return bio;
514 /*
515 * No cached bio available, bio returned below marked with
516 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
517 */
518 } else {
519 opf &= ~REQ_ALLOC_CACHE;
520 }
521 }
522
523 /*
524 * submit_bio_noacct() converts recursion to iteration; this means if
525 * we're running beneath it, any bios we allocate and submit will not be
526 * submitted (and thus freed) until after we return.
527 *
528 * This exposes us to a potential deadlock if we allocate multiple bios
529 * from the same bio_set() while running underneath submit_bio_noacct().
530 * If we were to allocate multiple bios (say a stacking block driver
531 * that was splitting bios), we would deadlock if we exhausted the
532 * mempool's reserve.
533 *
534 * We solve this, and guarantee forward progress, with a rescuer
535 * workqueue per bio_set. If we go to allocate and there are bios on
536 * current->bio_list, we first try the allocation without
537 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
538 * blocking to the rescuer workqueue before we retry with the original
539 * gfp_flags.
540 */
541 if (current->bio_list &&
542 (!bio_list_empty(¤t->bio_list[0]) ||
543 !bio_list_empty(¤t->bio_list[1])) &&
544 bs->rescue_workqueue)
545 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
546
547 p = mempool_alloc(&bs->bio_pool, gfp_mask);
548 if (!p && gfp_mask != saved_gfp) {
549 punt_bios_to_rescuer(bs);
550 gfp_mask = saved_gfp;
551 p = mempool_alloc(&bs->bio_pool, gfp_mask);
552 }
553 if (unlikely(!p))
554 return NULL;
555 if (!mempool_is_saturated(&bs->bio_pool))
556 opf &= ~REQ_ALLOC_CACHE;
557
558 bio = p + bs->front_pad;
559 if (nr_vecs > BIO_INLINE_VECS) {
560 struct bio_vec *bvl = NULL;
561
562 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
563 if (!bvl && gfp_mask != saved_gfp) {
564 punt_bios_to_rescuer(bs);
565 gfp_mask = saved_gfp;
566 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
567 }
568 if (unlikely(!bvl))
569 goto err_free;
570
571 bio_init(bio, bdev, bvl, nr_vecs, opf);
572 } else if (nr_vecs) {
573 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
574 } else {
575 bio_init(bio, bdev, NULL, 0, opf);
576 }
577
578 bio->bi_pool = bs;
579 return bio;
580
581 err_free:
582 mempool_free(p, &bs->bio_pool);
583 return NULL;
584 }
585 EXPORT_SYMBOL(bio_alloc_bioset);
586
587 /**
588 * bio_kmalloc - kmalloc a bio
589 * @nr_vecs: number of bio_vecs to allocate
590 * @gfp_mask: the GFP_* mask given to the slab allocator
591 *
592 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
593 * using bio_init() before use. To free a bio returned from this function use
594 * kfree() after calling bio_uninit(). A bio returned from this function can
595 * be reused by calling bio_uninit() before calling bio_init() again.
596 *
597 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
598 * function are not backed by a mempool can fail. Do not use this function
599 * for allocations in the file system I/O path.
600 *
601 * Returns: Pointer to new bio on success, NULL on failure.
602 */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)603 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
604 {
605 struct bio *bio;
606
607 if (nr_vecs > UIO_MAXIOV)
608 return NULL;
609 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
610 }
611 EXPORT_SYMBOL(bio_kmalloc);
612
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)613 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
614 {
615 struct bio_vec bv;
616 struct bvec_iter iter;
617
618 __bio_for_each_segment(bv, bio, iter, start)
619 memzero_bvec(&bv);
620 }
621 EXPORT_SYMBOL(zero_fill_bio_iter);
622
623 /**
624 * bio_truncate - truncate the bio to small size of @new_size
625 * @bio: the bio to be truncated
626 * @new_size: new size for truncating the bio
627 *
628 * Description:
629 * Truncate the bio to new size of @new_size. If bio_op(bio) is
630 * REQ_OP_READ, zero the truncated part. This function should only
631 * be used for handling corner cases, such as bio eod.
632 */
bio_truncate(struct bio * bio,unsigned new_size)633 static void bio_truncate(struct bio *bio, unsigned new_size)
634 {
635 struct bio_vec bv;
636 struct bvec_iter iter;
637 unsigned int done = 0;
638 bool truncated = false;
639
640 if (new_size >= bio->bi_iter.bi_size)
641 return;
642
643 if (bio_op(bio) != REQ_OP_READ)
644 goto exit;
645
646 bio_for_each_segment(bv, bio, iter) {
647 if (done + bv.bv_len > new_size) {
648 unsigned offset;
649
650 if (!truncated)
651 offset = new_size - done;
652 else
653 offset = 0;
654 zero_user(bv.bv_page, bv.bv_offset + offset,
655 bv.bv_len - offset);
656 truncated = true;
657 }
658 done += bv.bv_len;
659 }
660
661 exit:
662 /*
663 * Don't touch bvec table here and make it really immutable, since
664 * fs bio user has to retrieve all pages via bio_for_each_segment_all
665 * in its .end_bio() callback.
666 *
667 * It is enough to truncate bio by updating .bi_size since we can make
668 * correct bvec with the updated .bi_size for drivers.
669 */
670 bio->bi_iter.bi_size = new_size;
671 }
672
673 /**
674 * guard_bio_eod - truncate a BIO to fit the block device
675 * @bio: bio to truncate
676 *
677 * This allows us to do IO even on the odd last sectors of a device, even if the
678 * block size is some multiple of the physical sector size.
679 *
680 * We'll just truncate the bio to the size of the device, and clear the end of
681 * the buffer head manually. Truly out-of-range accesses will turn into actual
682 * I/O errors, this only handles the "we need to be able to do I/O at the final
683 * sector" case.
684 */
guard_bio_eod(struct bio * bio)685 void guard_bio_eod(struct bio *bio)
686 {
687 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
688
689 if (!maxsector)
690 return;
691
692 /*
693 * If the *whole* IO is past the end of the device,
694 * let it through, and the IO layer will turn it into
695 * an EIO.
696 */
697 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
698 return;
699
700 maxsector -= bio->bi_iter.bi_sector;
701 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
702 return;
703
704 bio_truncate(bio, maxsector << 9);
705 }
706
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)707 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
708 unsigned int nr)
709 {
710 unsigned int i = 0;
711 struct bio *bio;
712
713 while ((bio = cache->free_list) != NULL) {
714 cache->free_list = bio->bi_next;
715 cache->nr--;
716 bio_free(bio);
717 if (++i == nr)
718 break;
719 }
720 return i;
721 }
722
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)723 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
724 unsigned int nr)
725 {
726 nr -= __bio_alloc_cache_prune(cache, nr);
727 if (!READ_ONCE(cache->free_list)) {
728 bio_alloc_irq_cache_splice(cache);
729 __bio_alloc_cache_prune(cache, nr);
730 }
731 }
732
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)733 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
734 {
735 struct bio_set *bs;
736
737 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
738 if (bs->cache) {
739 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
740
741 bio_alloc_cache_prune(cache, -1U);
742 }
743 return 0;
744 }
745
bio_alloc_cache_destroy(struct bio_set * bs)746 static void bio_alloc_cache_destroy(struct bio_set *bs)
747 {
748 int cpu;
749
750 if (!bs->cache)
751 return;
752
753 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
754 for_each_possible_cpu(cpu) {
755 struct bio_alloc_cache *cache;
756
757 cache = per_cpu_ptr(bs->cache, cpu);
758 bio_alloc_cache_prune(cache, -1U);
759 }
760 free_percpu(bs->cache);
761 bs->cache = NULL;
762 }
763
bio_put_percpu_cache(struct bio * bio)764 static inline void bio_put_percpu_cache(struct bio *bio)
765 {
766 struct bio_alloc_cache *cache;
767
768 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
769 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
770 put_cpu();
771 bio_free(bio);
772 return;
773 }
774
775 bio_uninit(bio);
776
777 if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
778 bio->bi_next = cache->free_list;
779 bio->bi_bdev = NULL;
780 cache->free_list = bio;
781 cache->nr++;
782 } else {
783 unsigned long flags;
784
785 local_irq_save(flags);
786 bio->bi_next = cache->free_list_irq;
787 cache->free_list_irq = bio;
788 cache->nr_irq++;
789 local_irq_restore(flags);
790 }
791 put_cpu();
792 }
793
794 /**
795 * bio_put - release a reference to a bio
796 * @bio: bio to release reference to
797 *
798 * Description:
799 * Put a reference to a &struct bio, either one you have gotten with
800 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
801 **/
bio_put(struct bio * bio)802 void bio_put(struct bio *bio)
803 {
804 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
805 BUG_ON(!atomic_read(&bio->__bi_cnt));
806 if (!atomic_dec_and_test(&bio->__bi_cnt))
807 return;
808 }
809 if (bio->bi_opf & REQ_ALLOC_CACHE)
810 bio_put_percpu_cache(bio);
811 else
812 bio_free(bio);
813 }
814 EXPORT_SYMBOL(bio_put);
815
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)816 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
817 {
818 bio_set_flag(bio, BIO_CLONED);
819 bio->bi_ioprio = bio_src->bi_ioprio;
820 bio->bi_write_hint = bio_src->bi_write_hint;
821 bio->bi_iter = bio_src->bi_iter;
822
823 if (bio->bi_bdev) {
824 if (bio->bi_bdev == bio_src->bi_bdev &&
825 bio_flagged(bio_src, BIO_REMAPPED))
826 bio_set_flag(bio, BIO_REMAPPED);
827 bio_clone_blkg_association(bio, bio_src);
828 }
829
830 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
831 return -ENOMEM;
832 if (bio_integrity(bio_src) &&
833 bio_integrity_clone(bio, bio_src, gfp) < 0)
834 return -ENOMEM;
835 return 0;
836 }
837
838 /**
839 * bio_alloc_clone - clone a bio that shares the original bio's biovec
840 * @bdev: block_device to clone onto
841 * @bio_src: bio to clone from
842 * @gfp: allocation priority
843 * @bs: bio_set to allocate from
844 *
845 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
846 * bio, but not the actual data it points to.
847 *
848 * The caller must ensure that the return bio is not freed before @bio_src.
849 */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)850 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
851 gfp_t gfp, struct bio_set *bs)
852 {
853 struct bio *bio;
854
855 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
856 if (!bio)
857 return NULL;
858
859 if (__bio_clone(bio, bio_src, gfp) < 0) {
860 bio_put(bio);
861 return NULL;
862 }
863 bio->bi_io_vec = bio_src->bi_io_vec;
864
865 return bio;
866 }
867 EXPORT_SYMBOL(bio_alloc_clone);
868
869 /**
870 * bio_init_clone - clone a bio that shares the original bio's biovec
871 * @bdev: block_device to clone onto
872 * @bio: bio to clone into
873 * @bio_src: bio to clone from
874 * @gfp: allocation priority
875 *
876 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
877 * The caller owns the returned bio, but not the actual data it points to.
878 *
879 * The caller must ensure that @bio_src is not freed before @bio.
880 */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)881 int bio_init_clone(struct block_device *bdev, struct bio *bio,
882 struct bio *bio_src, gfp_t gfp)
883 {
884 int ret;
885
886 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
887 ret = __bio_clone(bio, bio_src, gfp);
888 if (ret)
889 bio_uninit(bio);
890 return ret;
891 }
892 EXPORT_SYMBOL(bio_init_clone);
893
894 /**
895 * bio_full - check if the bio is full
896 * @bio: bio to check
897 * @len: length of one segment to be added
898 *
899 * Return true if @bio is full and one segment with @len bytes can't be
900 * added to the bio, otherwise return false
901 */
bio_full(struct bio * bio,unsigned len)902 static inline bool bio_full(struct bio *bio, unsigned len)
903 {
904 if (bio->bi_vcnt >= bio->bi_max_vecs)
905 return true;
906 if (bio->bi_iter.bi_size > UINT_MAX - len)
907 return true;
908 return false;
909 }
910
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)911 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
912 unsigned int len, unsigned int off, bool *same_page)
913 {
914 size_t bv_end = bv->bv_offset + bv->bv_len;
915 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
916 phys_addr_t page_addr = page_to_phys(page);
917
918 if (vec_end_addr + 1 != page_addr + off)
919 return false;
920 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
921 return false;
922 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
923 return false;
924
925 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
926 if (!*same_page) {
927 if (IS_ENABLED(CONFIG_KMSAN))
928 return false;
929 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
930 return false;
931 }
932
933 bv->bv_len += len;
934 return true;
935 }
936
937 /*
938 * Try to merge a page into a segment, while obeying the hardware segment
939 * size limit. This is not for normal read/write bios, but for passthrough
940 * or Zone Append operations that we can't split.
941 */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset,bool * same_page)942 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
943 struct page *page, unsigned len, unsigned offset,
944 bool *same_page)
945 {
946 unsigned long mask = queue_segment_boundary(q);
947 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
948 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
949
950 if ((addr1 | mask) != (addr2 | mask))
951 return false;
952 if (len > queue_max_segment_size(q) - bv->bv_len)
953 return false;
954 return bvec_try_merge_page(bv, page, len, offset, same_page);
955 }
956
957 /**
958 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
959 * @q: the target queue
960 * @bio: destination bio
961 * @page: page to add
962 * @len: vec entry length
963 * @offset: vec entry offset
964 * @max_sectors: maximum number of sectors that can be added
965 * @same_page: return if the segment has been merged inside the same page
966 *
967 * Add a page to a bio while respecting the hardware max_sectors, max_segment
968 * and gap limitations.
969 */
bio_add_hw_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned int max_sectors,bool * same_page)970 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
971 struct page *page, unsigned int len, unsigned int offset,
972 unsigned int max_sectors, bool *same_page)
973 {
974 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
975 return 0;
976
977 if (((bio->bi_iter.bi_size + len) >> SECTOR_SHIFT) > max_sectors)
978 return 0;
979
980 if (bio->bi_vcnt > 0) {
981 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
982
983 if (bvec_try_merge_hw_page(q, bv, page, len, offset,
984 same_page)) {
985 bio->bi_iter.bi_size += len;
986 return len;
987 }
988
989 if (bio->bi_vcnt >=
990 min(bio->bi_max_vecs, queue_max_segments(q)))
991 return 0;
992
993 /*
994 * If the queue doesn't support SG gaps and adding this segment
995 * would create a gap, disallow it.
996 */
997 if (bvec_gap_to_prev(&q->limits, bv, offset))
998 return 0;
999 }
1000
1001 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
1002 bio->bi_vcnt++;
1003 bio->bi_iter.bi_size += len;
1004 return len;
1005 }
1006
1007 /**
1008 * bio_add_pc_page - attempt to add page to passthrough bio
1009 * @q: the target queue
1010 * @bio: destination bio
1011 * @page: page to add
1012 * @len: vec entry length
1013 * @offset: vec entry offset
1014 *
1015 * Attempt to add a page to the bio_vec maplist. This can fail for a
1016 * number of reasons, such as the bio being full or target block device
1017 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1018 * so it is always possible to add a single page to an empty bio.
1019 *
1020 * This should only be used by passthrough bios.
1021 */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1022 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1023 struct page *page, unsigned int len, unsigned int offset)
1024 {
1025 bool same_page = false;
1026 return bio_add_hw_page(q, bio, page, len, offset,
1027 queue_max_hw_sectors(q), &same_page);
1028 }
1029 EXPORT_SYMBOL(bio_add_pc_page);
1030
1031 /**
1032 * bio_add_zone_append_page - attempt to add page to zone-append bio
1033 * @bio: destination bio
1034 * @page: page to add
1035 * @len: vec entry length
1036 * @offset: vec entry offset
1037 *
1038 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1039 * for a zone-append request. This can fail for a number of reasons, such as the
1040 * bio being full or the target block device is not a zoned block device or
1041 * other limitations of the target block device. The target block device must
1042 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1043 * to an empty bio.
1044 *
1045 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1046 */
bio_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1047 int bio_add_zone_append_page(struct bio *bio, struct page *page,
1048 unsigned int len, unsigned int offset)
1049 {
1050 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1051 bool same_page = false;
1052
1053 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1054 return 0;
1055
1056 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1057 return 0;
1058
1059 return bio_add_hw_page(q, bio, page, len, offset,
1060 queue_max_zone_append_sectors(q), &same_page);
1061 }
1062 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1063
1064 /**
1065 * __bio_add_page - add page(s) to a bio in a new segment
1066 * @bio: destination bio
1067 * @page: start page to add
1068 * @len: length of the data to add, may cross pages
1069 * @off: offset of the data relative to @page, may cross pages
1070 *
1071 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1072 * that @bio has space for another bvec.
1073 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)1074 void __bio_add_page(struct bio *bio, struct page *page,
1075 unsigned int len, unsigned int off)
1076 {
1077 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1078 WARN_ON_ONCE(bio_full(bio, len));
1079
1080 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1081 bio->bi_iter.bi_size += len;
1082 bio->bi_vcnt++;
1083 }
1084 EXPORT_SYMBOL_GPL(__bio_add_page);
1085
1086 /**
1087 * bio_add_page - attempt to add page(s) to bio
1088 * @bio: destination bio
1089 * @page: start page to add
1090 * @len: vec entry length, may cross pages
1091 * @offset: vec entry offset relative to @page, may cross pages
1092 *
1093 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1094 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1095 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1096 int bio_add_page(struct bio *bio, struct page *page,
1097 unsigned int len, unsigned int offset)
1098 {
1099 bool same_page = false;
1100
1101 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1102 return 0;
1103 if (bio->bi_iter.bi_size > UINT_MAX - len)
1104 return 0;
1105
1106 if (bio->bi_vcnt > 0 &&
1107 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1108 page, len, offset, &same_page)) {
1109 bio->bi_iter.bi_size += len;
1110 return len;
1111 }
1112
1113 if (bio->bi_vcnt >= bio->bi_max_vecs)
1114 return 0;
1115 __bio_add_page(bio, page, len, offset);
1116 return len;
1117 }
1118 EXPORT_SYMBOL(bio_add_page);
1119
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1120 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1121 size_t off)
1122 {
1123 WARN_ON_ONCE(len > UINT_MAX);
1124 WARN_ON_ONCE(off > UINT_MAX);
1125 __bio_add_page(bio, &folio->page, len, off);
1126 }
1127
1128 /**
1129 * bio_add_folio - Attempt to add part of a folio to a bio.
1130 * @bio: BIO to add to.
1131 * @folio: Folio to add.
1132 * @len: How many bytes from the folio to add.
1133 * @off: First byte in this folio to add.
1134 *
1135 * Filesystems that use folios can call this function instead of calling
1136 * bio_add_page() for each page in the folio. If @off is bigger than
1137 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1138 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1139 *
1140 * Return: Whether the addition was successful.
1141 */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1142 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1143 size_t off)
1144 {
1145 if (len > UINT_MAX || off > UINT_MAX)
1146 return false;
1147 return bio_add_page(bio, &folio->page, len, off) > 0;
1148 }
1149 EXPORT_SYMBOL(bio_add_folio);
1150
__bio_release_pages(struct bio * bio,bool mark_dirty)1151 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1152 {
1153 struct folio_iter fi;
1154
1155 bio_for_each_folio_all(fi, bio) {
1156 struct page *page;
1157 size_t nr_pages;
1158
1159 if (mark_dirty) {
1160 folio_lock(fi.folio);
1161 folio_mark_dirty(fi.folio);
1162 folio_unlock(fi.folio);
1163 }
1164 page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
1165 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1166 fi.offset / PAGE_SIZE + 1;
1167 do {
1168 bio_release_page(bio, page++);
1169 } while (--nr_pages != 0);
1170 }
1171 }
1172 EXPORT_SYMBOL_GPL(__bio_release_pages);
1173
bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1174 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1175 {
1176 size_t size = iov_iter_count(iter);
1177
1178 WARN_ON_ONCE(bio->bi_max_vecs);
1179
1180 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1181 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1182 size_t max_sectors = queue_max_zone_append_sectors(q);
1183
1184 size = min(size, max_sectors << SECTOR_SHIFT);
1185 }
1186
1187 bio->bi_vcnt = iter->nr_segs;
1188 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1189 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1190 bio->bi_iter.bi_size = size;
1191 bio_set_flag(bio, BIO_CLONED);
1192 }
1193
bio_iov_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1194 static int bio_iov_add_page(struct bio *bio, struct page *page,
1195 unsigned int len, unsigned int offset)
1196 {
1197 bool same_page = false;
1198
1199 if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1200 return -EIO;
1201
1202 if (bio->bi_vcnt > 0 &&
1203 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1204 page, len, offset, &same_page)) {
1205 bio->bi_iter.bi_size += len;
1206 if (same_page)
1207 bio_release_page(bio, page);
1208 return 0;
1209 }
1210 __bio_add_page(bio, page, len, offset);
1211 return 0;
1212 }
1213
bio_iov_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1214 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1215 unsigned int len, unsigned int offset)
1216 {
1217 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1218 bool same_page = false;
1219
1220 if (bio_add_hw_page(q, bio, page, len, offset,
1221 queue_max_zone_append_sectors(q), &same_page) != len)
1222 return -EINVAL;
1223 if (same_page)
1224 bio_release_page(bio, page);
1225 return 0;
1226 }
1227
1228 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1229
1230 /**
1231 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1232 * @bio: bio to add pages to
1233 * @iter: iov iterator describing the region to be mapped
1234 *
1235 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1236 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1237 * For a multi-segment *iter, this function only adds pages from the next
1238 * non-empty segment of the iov iterator.
1239 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1240 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1241 {
1242 iov_iter_extraction_t extraction_flags = 0;
1243 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1244 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1245 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1246 struct page **pages = (struct page **)bv;
1247 ssize_t size, left;
1248 unsigned len, i = 0;
1249 size_t offset;
1250 int ret = 0;
1251
1252 /*
1253 * Move page array up in the allocated memory for the bio vecs as far as
1254 * possible so that we can start filling biovecs from the beginning
1255 * without overwriting the temporary page array.
1256 */
1257 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1258 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1259
1260 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1261 extraction_flags |= ITER_ALLOW_P2PDMA;
1262
1263 /*
1264 * Each segment in the iov is required to be a block size multiple.
1265 * However, we may not be able to get the entire segment if it spans
1266 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1267 * result to ensure the bio's total size is correct. The remainder of
1268 * the iov data will be picked up in the next bio iteration.
1269 */
1270 size = iov_iter_extract_pages(iter, &pages,
1271 UINT_MAX - bio->bi_iter.bi_size,
1272 nr_pages, extraction_flags, &offset);
1273 if (unlikely(size <= 0))
1274 return size ? size : -EFAULT;
1275
1276 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1277
1278 if (bio->bi_bdev) {
1279 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1280 iov_iter_revert(iter, trim);
1281 size -= trim;
1282 }
1283
1284 if (unlikely(!size)) {
1285 ret = -EFAULT;
1286 goto out;
1287 }
1288
1289 for (left = size, i = 0; left > 0; left -= len, i++) {
1290 struct page *page = pages[i];
1291
1292 len = min_t(size_t, PAGE_SIZE - offset, left);
1293 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1294 ret = bio_iov_add_zone_append_page(bio, page, len,
1295 offset);
1296 if (ret)
1297 break;
1298 } else
1299 bio_iov_add_page(bio, page, len, offset);
1300
1301 offset = 0;
1302 }
1303
1304 iov_iter_revert(iter, left);
1305 out:
1306 while (i < nr_pages)
1307 bio_release_page(bio, pages[i++]);
1308
1309 return ret;
1310 }
1311
1312 /**
1313 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1314 * @bio: bio to add pages to
1315 * @iter: iov iterator describing the region to be added
1316 *
1317 * This takes either an iterator pointing to user memory, or one pointing to
1318 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1319 * map them into the kernel. On IO completion, the caller should put those
1320 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1321 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1322 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1323 * completed by a call to ->ki_complete() or returns with an error other than
1324 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1325 * on IO completion. If it isn't, then pages should be released.
1326 *
1327 * The function tries, but does not guarantee, to pin as many pages as
1328 * fit into the bio, or are requested in @iter, whatever is smaller. If
1329 * MM encounters an error pinning the requested pages, it stops. Error
1330 * is returned only if 0 pages could be pinned.
1331 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1332 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1333 {
1334 int ret = 0;
1335
1336 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1337 return -EIO;
1338
1339 if (iov_iter_is_bvec(iter)) {
1340 bio_iov_bvec_set(bio, iter);
1341 iov_iter_advance(iter, bio->bi_iter.bi_size);
1342 return 0;
1343 }
1344
1345 if (iov_iter_extract_will_pin(iter))
1346 bio_set_flag(bio, BIO_PAGE_PINNED);
1347 do {
1348 ret = __bio_iov_iter_get_pages(bio, iter);
1349 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1350
1351 return bio->bi_vcnt ? 0 : ret;
1352 }
1353 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1354
submit_bio_wait_endio(struct bio * bio)1355 static void submit_bio_wait_endio(struct bio *bio)
1356 {
1357 complete(bio->bi_private);
1358 }
1359
1360 /**
1361 * submit_bio_wait - submit a bio, and wait until it completes
1362 * @bio: The &struct bio which describes the I/O
1363 *
1364 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1365 * bio_endio() on failure.
1366 *
1367 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1368 * result in bio reference to be consumed. The caller must drop the reference
1369 * on his own.
1370 */
submit_bio_wait(struct bio * bio)1371 int submit_bio_wait(struct bio *bio)
1372 {
1373 DECLARE_COMPLETION_ONSTACK_MAP(done,
1374 bio->bi_bdev->bd_disk->lockdep_map);
1375 unsigned long hang_check;
1376
1377 bio->bi_private = &done;
1378 bio->bi_end_io = submit_bio_wait_endio;
1379 bio->bi_opf |= REQ_SYNC;
1380 submit_bio(bio);
1381
1382 /* Prevent hang_check timer from firing at us during very long I/O */
1383 hang_check = sysctl_hung_task_timeout_secs;
1384 if (hang_check)
1385 while (!wait_for_completion_io_timeout(&done,
1386 hang_check * (HZ/2)))
1387 ;
1388 else
1389 wait_for_completion_io(&done);
1390
1391 return blk_status_to_errno(bio->bi_status);
1392 }
1393 EXPORT_SYMBOL(submit_bio_wait);
1394
__bio_advance(struct bio * bio,unsigned bytes)1395 void __bio_advance(struct bio *bio, unsigned bytes)
1396 {
1397 if (bio_integrity(bio))
1398 bio_integrity_advance(bio, bytes);
1399
1400 bio_crypt_advance(bio, bytes);
1401 bio_advance_iter(bio, &bio->bi_iter, bytes);
1402 }
1403 EXPORT_SYMBOL(__bio_advance);
1404
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1405 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1406 struct bio *src, struct bvec_iter *src_iter)
1407 {
1408 while (src_iter->bi_size && dst_iter->bi_size) {
1409 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1410 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1411 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1412 void *src_buf = bvec_kmap_local(&src_bv);
1413 void *dst_buf = bvec_kmap_local(&dst_bv);
1414
1415 memcpy(dst_buf, src_buf, bytes);
1416
1417 kunmap_local(dst_buf);
1418 kunmap_local(src_buf);
1419
1420 bio_advance_iter_single(src, src_iter, bytes);
1421 bio_advance_iter_single(dst, dst_iter, bytes);
1422 }
1423 }
1424 EXPORT_SYMBOL(bio_copy_data_iter);
1425
1426 /**
1427 * bio_copy_data - copy contents of data buffers from one bio to another
1428 * @src: source bio
1429 * @dst: destination bio
1430 *
1431 * Stops when it reaches the end of either @src or @dst - that is, copies
1432 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1433 */
bio_copy_data(struct bio * dst,struct bio * src)1434 void bio_copy_data(struct bio *dst, struct bio *src)
1435 {
1436 struct bvec_iter src_iter = src->bi_iter;
1437 struct bvec_iter dst_iter = dst->bi_iter;
1438
1439 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1440 }
1441 EXPORT_SYMBOL(bio_copy_data);
1442
bio_free_pages(struct bio * bio)1443 void bio_free_pages(struct bio *bio)
1444 {
1445 struct bio_vec *bvec;
1446 struct bvec_iter_all iter_all;
1447
1448 bio_for_each_segment_all(bvec, bio, iter_all)
1449 __free_page(bvec->bv_page);
1450 }
1451 EXPORT_SYMBOL(bio_free_pages);
1452
1453 /*
1454 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1455 * for performing direct-IO in BIOs.
1456 *
1457 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1458 * because the required locks are not interrupt-safe. So what we can do is to
1459 * mark the pages dirty _before_ performing IO. And in interrupt context,
1460 * check that the pages are still dirty. If so, fine. If not, redirty them
1461 * in process context.
1462 *
1463 * Note that this code is very hard to test under normal circumstances because
1464 * direct-io pins the pages with get_user_pages(). This makes
1465 * is_page_cache_freeable return false, and the VM will not clean the pages.
1466 * But other code (eg, flusher threads) could clean the pages if they are mapped
1467 * pagecache.
1468 *
1469 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1470 * deferred bio dirtying paths.
1471 */
1472
1473 /*
1474 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1475 */
bio_set_pages_dirty(struct bio * bio)1476 void bio_set_pages_dirty(struct bio *bio)
1477 {
1478 struct folio_iter fi;
1479
1480 bio_for_each_folio_all(fi, bio) {
1481 folio_lock(fi.folio);
1482 folio_mark_dirty(fi.folio);
1483 folio_unlock(fi.folio);
1484 }
1485 }
1486 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1487
1488 /*
1489 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1490 * If they are, then fine. If, however, some pages are clean then they must
1491 * have been written out during the direct-IO read. So we take another ref on
1492 * the BIO and re-dirty the pages in process context.
1493 *
1494 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1495 * here on. It will unpin each page and will run one bio_put() against the
1496 * BIO.
1497 */
1498
1499 static void bio_dirty_fn(struct work_struct *work);
1500
1501 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1502 static DEFINE_SPINLOCK(bio_dirty_lock);
1503 static struct bio *bio_dirty_list;
1504
1505 /*
1506 * This runs in process context
1507 */
bio_dirty_fn(struct work_struct * work)1508 static void bio_dirty_fn(struct work_struct *work)
1509 {
1510 struct bio *bio, *next;
1511
1512 spin_lock_irq(&bio_dirty_lock);
1513 next = bio_dirty_list;
1514 bio_dirty_list = NULL;
1515 spin_unlock_irq(&bio_dirty_lock);
1516
1517 while ((bio = next) != NULL) {
1518 next = bio->bi_private;
1519
1520 bio_release_pages(bio, true);
1521 bio_put(bio);
1522 }
1523 }
1524
bio_check_pages_dirty(struct bio * bio)1525 void bio_check_pages_dirty(struct bio *bio)
1526 {
1527 struct folio_iter fi;
1528 unsigned long flags;
1529
1530 bio_for_each_folio_all(fi, bio) {
1531 if (!folio_test_dirty(fi.folio))
1532 goto defer;
1533 }
1534
1535 bio_release_pages(bio, false);
1536 bio_put(bio);
1537 return;
1538 defer:
1539 spin_lock_irqsave(&bio_dirty_lock, flags);
1540 bio->bi_private = bio_dirty_list;
1541 bio_dirty_list = bio;
1542 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1543 schedule_work(&bio_dirty_work);
1544 }
1545 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1546
bio_remaining_done(struct bio * bio)1547 static inline bool bio_remaining_done(struct bio *bio)
1548 {
1549 /*
1550 * If we're not chaining, then ->__bi_remaining is always 1 and
1551 * we always end io on the first invocation.
1552 */
1553 if (!bio_flagged(bio, BIO_CHAIN))
1554 return true;
1555
1556 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1557
1558 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1559 bio_clear_flag(bio, BIO_CHAIN);
1560 return true;
1561 }
1562
1563 return false;
1564 }
1565
1566 /**
1567 * bio_endio - end I/O on a bio
1568 * @bio: bio
1569 *
1570 * Description:
1571 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1572 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1573 * bio unless they own it and thus know that it has an end_io function.
1574 *
1575 * bio_endio() can be called several times on a bio that has been chained
1576 * using bio_chain(). The ->bi_end_io() function will only be called the
1577 * last time.
1578 **/
bio_endio(struct bio * bio)1579 void bio_endio(struct bio *bio)
1580 {
1581 again:
1582 if (!bio_remaining_done(bio))
1583 return;
1584 if (!bio_integrity_endio(bio))
1585 return;
1586
1587 rq_qos_done_bio(bio);
1588
1589 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1590 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1591 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1592 }
1593
1594 /*
1595 * Need to have a real endio function for chained bios, otherwise
1596 * various corner cases will break (like stacking block devices that
1597 * save/restore bi_end_io) - however, we want to avoid unbounded
1598 * recursion and blowing the stack. Tail call optimization would
1599 * handle this, but compiling with frame pointers also disables
1600 * gcc's sibling call optimization.
1601 */
1602 if (bio->bi_end_io == bio_chain_endio) {
1603 bio = __bio_chain_endio(bio);
1604 goto again;
1605 }
1606
1607 blk_throtl_bio_endio(bio);
1608 /* release cgroup info */
1609 bio_uninit(bio);
1610 if (bio->bi_end_io)
1611 bio->bi_end_io(bio);
1612 }
1613 EXPORT_SYMBOL(bio_endio);
1614
1615 /**
1616 * bio_split - split a bio
1617 * @bio: bio to split
1618 * @sectors: number of sectors to split from the front of @bio
1619 * @gfp: gfp mask
1620 * @bs: bio set to allocate from
1621 *
1622 * Allocates and returns a new bio which represents @sectors from the start of
1623 * @bio, and updates @bio to represent the remaining sectors.
1624 *
1625 * Unless this is a discard request the newly allocated bio will point
1626 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1627 * neither @bio nor @bs are freed before the split bio.
1628 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1629 struct bio *bio_split(struct bio *bio, int sectors,
1630 gfp_t gfp, struct bio_set *bs)
1631 {
1632 struct bio *split;
1633
1634 BUG_ON(sectors <= 0);
1635 BUG_ON(sectors >= bio_sectors(bio));
1636
1637 /* Zone append commands cannot be split */
1638 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1639 return NULL;
1640
1641 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1642 if (!split)
1643 return NULL;
1644
1645 split->bi_iter.bi_size = sectors << 9;
1646
1647 if (bio_integrity(split))
1648 bio_integrity_trim(split);
1649
1650 bio_advance(bio, split->bi_iter.bi_size);
1651
1652 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1653 bio_set_flag(split, BIO_TRACE_COMPLETION);
1654
1655 return split;
1656 }
1657 EXPORT_SYMBOL(bio_split);
1658
1659 /**
1660 * bio_trim - trim a bio
1661 * @bio: bio to trim
1662 * @offset: number of sectors to trim from the front of @bio
1663 * @size: size we want to trim @bio to, in sectors
1664 *
1665 * This function is typically used for bios that are cloned and submitted
1666 * to the underlying device in parts.
1667 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1668 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1669 {
1670 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1671 offset + size > bio_sectors(bio)))
1672 return;
1673
1674 size <<= 9;
1675 if (offset == 0 && size == bio->bi_iter.bi_size)
1676 return;
1677
1678 bio_advance(bio, offset << 9);
1679 bio->bi_iter.bi_size = size;
1680
1681 if (bio_integrity(bio))
1682 bio_integrity_trim(bio);
1683 }
1684 EXPORT_SYMBOL_GPL(bio_trim);
1685
1686 /*
1687 * create memory pools for biovec's in a bio_set.
1688 * use the global biovec slabs created for general use.
1689 */
biovec_init_pool(mempool_t * pool,int pool_entries)1690 int biovec_init_pool(mempool_t *pool, int pool_entries)
1691 {
1692 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1693
1694 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1695 }
1696
1697 /*
1698 * bioset_exit - exit a bioset initialized with bioset_init()
1699 *
1700 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1701 * kzalloc()).
1702 */
bioset_exit(struct bio_set * bs)1703 void bioset_exit(struct bio_set *bs)
1704 {
1705 bio_alloc_cache_destroy(bs);
1706 if (bs->rescue_workqueue)
1707 destroy_workqueue(bs->rescue_workqueue);
1708 bs->rescue_workqueue = NULL;
1709
1710 mempool_exit(&bs->bio_pool);
1711 mempool_exit(&bs->bvec_pool);
1712
1713 bioset_integrity_free(bs);
1714 if (bs->bio_slab)
1715 bio_put_slab(bs);
1716 bs->bio_slab = NULL;
1717 }
1718 EXPORT_SYMBOL(bioset_exit);
1719
1720 /**
1721 * bioset_init - Initialize a bio_set
1722 * @bs: pool to initialize
1723 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1724 * @front_pad: Number of bytes to allocate in front of the returned bio
1725 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1726 * and %BIOSET_NEED_RESCUER
1727 *
1728 * Description:
1729 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1730 * to ask for a number of bytes to be allocated in front of the bio.
1731 * Front pad allocation is useful for embedding the bio inside
1732 * another structure, to avoid allocating extra data to go with the bio.
1733 * Note that the bio must be embedded at the END of that structure always,
1734 * or things will break badly.
1735 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1736 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1737 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1738 * to dispatch queued requests when the mempool runs out of space.
1739 *
1740 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1741 int bioset_init(struct bio_set *bs,
1742 unsigned int pool_size,
1743 unsigned int front_pad,
1744 int flags)
1745 {
1746 bs->front_pad = front_pad;
1747 if (flags & BIOSET_NEED_BVECS)
1748 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1749 else
1750 bs->back_pad = 0;
1751
1752 spin_lock_init(&bs->rescue_lock);
1753 bio_list_init(&bs->rescue_list);
1754 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1755
1756 bs->bio_slab = bio_find_or_create_slab(bs);
1757 if (!bs->bio_slab)
1758 return -ENOMEM;
1759
1760 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1761 goto bad;
1762
1763 if ((flags & BIOSET_NEED_BVECS) &&
1764 biovec_init_pool(&bs->bvec_pool, pool_size))
1765 goto bad;
1766
1767 if (flags & BIOSET_NEED_RESCUER) {
1768 bs->rescue_workqueue = alloc_workqueue("bioset",
1769 WQ_MEM_RECLAIM, 0);
1770 if (!bs->rescue_workqueue)
1771 goto bad;
1772 }
1773 if (flags & BIOSET_PERCPU_CACHE) {
1774 bs->cache = alloc_percpu(struct bio_alloc_cache);
1775 if (!bs->cache)
1776 goto bad;
1777 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1778 }
1779
1780 return 0;
1781 bad:
1782 bioset_exit(bs);
1783 return -ENOMEM;
1784 }
1785 EXPORT_SYMBOL(bioset_init);
1786
init_bio(void)1787 static int __init init_bio(void)
1788 {
1789 int i;
1790
1791 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1792
1793 bio_integrity_init();
1794
1795 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1796 struct biovec_slab *bvs = bvec_slabs + i;
1797
1798 bvs->slab = kmem_cache_create(bvs->name,
1799 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1800 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1801 }
1802
1803 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1804 bio_cpu_dead);
1805
1806 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1807 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1808 panic("bio: can't allocate bios\n");
1809
1810 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1811 panic("bio: can't create integrity pool\n");
1812
1813 return 0;
1814 }
1815 subsys_initcall(init_bio);
1816