1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13
14 #include <trace/events/block.h>
15
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20
bio_get_first_bvec(struct bio * bio,struct bio_vec * bv)21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25
bio_get_last_bvec(struct bio * bio,struct bio_vec * bv)26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 struct bvec_iter iter = bio->bi_iter;
29 int idx;
30
31 bio_get_first_bvec(bio, bv);
32 if (bv->bv_len == bio->bi_iter.bi_size)
33 return; /* this bio only has a single bvec */
34
35 bio_advance_iter(bio, &iter, iter.bi_size);
36
37 if (!iter.bi_bvec_done)
38 idx = iter.bi_idx - 1;
39 else /* in the middle of bvec */
40 idx = iter.bi_idx;
41
42 *bv = bio->bi_io_vec[idx];
43
44 /*
45 * iter.bi_bvec_done records actual length of the last bvec
46 * if this bio ends in the middle of one io vector
47 */
48 if (iter.bi_bvec_done)
49 bv->bv_len = iter.bi_bvec_done;
50 }
51
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)52 static inline bool bio_will_gap(struct request_queue *q,
53 struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 struct bio_vec pb, nb;
56
57 if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 return false;
59
60 /*
61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 * is quite difficult to respect the sg gap limit. We work hard to
63 * merge a huge number of small single bios in case of mkfs.
64 */
65 if (prev_rq)
66 bio_get_first_bvec(prev_rq->bio, &pb);
67 else
68 bio_get_first_bvec(prev, &pb);
69 if (pb.bv_offset & queue_virt_boundary(q))
70 return true;
71
72 /*
73 * We don't need to worry about the situation that the merged segment
74 * ends in unaligned virt boundary:
75 *
76 * - if 'pb' ends aligned, the merged segment ends aligned
77 * - if 'pb' ends unaligned, the next bio must include
78 * one single bvec of 'nb', otherwise the 'nb' can't
79 * merge with 'pb'
80 */
81 bio_get_last_bvec(prev, &pb);
82 bio_get_first_bvec(next, &nb);
83 if (biovec_phys_mergeable(q, &pb, &nb))
84 return false;
85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87
req_gap_back_merge(struct request * req,struct bio * bio)88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92
req_gap_front_merge(struct request * req,struct bio * bio)93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97
98 /*
99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100 * is defined as 'unsigned int', meantime it has to be aligned to with the
101 * logical block size, which is the minimum accepted unit by hardware.
102 */
bio_allowed_max_sectors(const struct queue_limits * lim)103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107
bio_split_discard(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs,struct bio_set * bs)108 static struct bio *bio_split_discard(struct bio *bio,
109 const struct queue_limits *lim,
110 unsigned *nsegs, struct bio_set *bs)
111 {
112 unsigned int max_discard_sectors, granularity;
113 sector_t tmp;
114 unsigned split_sectors;
115
116 *nsegs = 1;
117
118 /* Zero-sector (unknown) and one-sector granularities are the same. */
119 granularity = max(lim->discard_granularity >> 9, 1U);
120
121 max_discard_sectors =
122 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
123 max_discard_sectors -= max_discard_sectors % granularity;
124
125 if (unlikely(!max_discard_sectors)) {
126 /* XXX: warn */
127 return NULL;
128 }
129
130 if (bio_sectors(bio) <= max_discard_sectors)
131 return NULL;
132
133 split_sectors = max_discard_sectors;
134
135 /*
136 * If the next starting sector would be misaligned, stop the discard at
137 * the previous aligned sector.
138 */
139 tmp = bio->bi_iter.bi_sector + split_sectors -
140 ((lim->discard_alignment >> 9) % granularity);
141 tmp = sector_div(tmp, granularity);
142
143 if (split_sectors > tmp)
144 split_sectors -= tmp;
145
146 return bio_split(bio, split_sectors, GFP_NOIO, bs);
147 }
148
bio_split_write_zeroes(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs,struct bio_set * bs)149 static struct bio *bio_split_write_zeroes(struct bio *bio,
150 const struct queue_limits *lim,
151 unsigned *nsegs, struct bio_set *bs)
152 {
153 *nsegs = 0;
154 if (!lim->max_write_zeroes_sectors)
155 return NULL;
156 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
157 return NULL;
158 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
159 }
160
161 /*
162 * Return the maximum number of sectors from the start of a bio that may be
163 * submitted as a single request to a block device. If enough sectors remain,
164 * align the end to the physical block size. Otherwise align the end to the
165 * logical block size. This approach minimizes the number of non-aligned
166 * requests that are submitted to a block device if the start of a bio is not
167 * aligned to a physical block boundary.
168 */
get_max_io_size(struct bio * bio,const struct queue_limits * lim)169 static inline unsigned get_max_io_size(struct bio *bio,
170 const struct queue_limits *lim)
171 {
172 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
173 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
174 unsigned max_sectors = lim->max_sectors, start, end;
175
176 if (lim->chunk_sectors) {
177 max_sectors = min(max_sectors,
178 blk_chunk_sectors_left(bio->bi_iter.bi_sector,
179 lim->chunk_sectors));
180 }
181
182 start = bio->bi_iter.bi_sector & (pbs - 1);
183 end = (start + max_sectors) & ~(pbs - 1);
184 if (end > start)
185 return end - start;
186 return max_sectors & ~(lbs - 1);
187 }
188
189 /**
190 * get_max_segment_size() - maximum number of bytes to add as a single segment
191 * @lim: Request queue limits.
192 * @start_page: See below.
193 * @offset: Offset from @start_page where to add a segment.
194 *
195 * Returns the maximum number of bytes that can be added as a single segment.
196 */
get_max_segment_size(const struct queue_limits * lim,struct page * start_page,unsigned long offset)197 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
198 struct page *start_page, unsigned long offset)
199 {
200 unsigned long mask = lim->seg_boundary_mask;
201
202 offset = mask & (page_to_phys(start_page) + offset);
203
204 /*
205 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
206 * after having calculated the minimum.
207 */
208 return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1;
209 }
210
211 /**
212 * bvec_split_segs - verify whether or not a bvec should be split in the middle
213 * @lim: [in] queue limits to split based on
214 * @bv: [in] bvec to examine
215 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
216 * by the number of segments from @bv that may be appended to that
217 * bio without exceeding @max_segs
218 * @bytes: [in,out] Number of bytes in the bio being built. Incremented
219 * by the number of bytes from @bv that may be appended to that
220 * bio without exceeding @max_bytes
221 * @max_segs: [in] upper bound for *@nsegs
222 * @max_bytes: [in] upper bound for *@bytes
223 *
224 * When splitting a bio, it can happen that a bvec is encountered that is too
225 * big to fit in a single segment and hence that it has to be split in the
226 * middle. This function verifies whether or not that should happen. The value
227 * %true is returned if and only if appending the entire @bv to a bio with
228 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
229 * the block driver.
230 */
bvec_split_segs(const struct queue_limits * lim,const struct bio_vec * bv,unsigned * nsegs,unsigned * bytes,unsigned max_segs,unsigned max_bytes)231 static bool bvec_split_segs(const struct queue_limits *lim,
232 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
233 unsigned max_segs, unsigned max_bytes)
234 {
235 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
236 unsigned len = min(bv->bv_len, max_len);
237 unsigned total_len = 0;
238 unsigned seg_size = 0;
239
240 while (len && *nsegs < max_segs) {
241 seg_size = get_max_segment_size(lim, bv->bv_page,
242 bv->bv_offset + total_len);
243 seg_size = min(seg_size, len);
244
245 (*nsegs)++;
246 total_len += seg_size;
247 len -= seg_size;
248
249 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
250 break;
251 }
252
253 *bytes += total_len;
254
255 /* tell the caller to split the bvec if it is too big to fit */
256 return len > 0 || bv->bv_len > max_len;
257 }
258
259 /**
260 * bio_split_rw - split a bio in two bios
261 * @bio: [in] bio to be split
262 * @lim: [in] queue limits to split based on
263 * @segs: [out] number of segments in the bio with the first half of the sectors
264 * @bs: [in] bio set to allocate the clone from
265 * @max_bytes: [in] maximum number of bytes per bio
266 *
267 * Clone @bio, update the bi_iter of the clone to represent the first sectors
268 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
269 * following is guaranteed for the cloned bio:
270 * - That it has at most @max_bytes worth of data
271 * - That it has at most queue_max_segments(@q) segments.
272 *
273 * Except for discard requests the cloned bio will point at the bi_io_vec of
274 * the original bio. It is the responsibility of the caller to ensure that the
275 * original bio is not freed before the cloned bio. The caller is also
276 * responsible for ensuring that @bs is only destroyed after processing of the
277 * split bio has finished.
278 */
bio_split_rw(struct bio * bio,const struct queue_limits * lim,unsigned * segs,struct bio_set * bs,unsigned max_bytes)279 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
280 unsigned *segs, struct bio_set *bs, unsigned max_bytes)
281 {
282 struct bio_vec bv, bvprv, *bvprvp = NULL;
283 struct bvec_iter iter;
284 unsigned nsegs = 0, bytes = 0;
285
286 bio_for_each_bvec(bv, bio, iter) {
287 /*
288 * If the queue doesn't support SG gaps and adding this
289 * offset would create a gap, disallow it.
290 */
291 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
292 goto split;
293
294 if (nsegs < lim->max_segments &&
295 bytes + bv.bv_len <= max_bytes &&
296 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
297 /* single-page bvec optimization */
298 nsegs += blk_segments(lim, bv.bv_len);
299 bytes += bv.bv_len;
300 } else {
301 if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
302 lim->max_segments, max_bytes))
303 goto split;
304 }
305
306 bvprv = bv;
307 bvprvp = &bvprv;
308 }
309
310 *segs = nsegs;
311 return NULL;
312 split:
313 /*
314 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
315 * with EAGAIN if splitting is required and return an error pointer.
316 */
317 if (bio->bi_opf & REQ_NOWAIT) {
318 bio->bi_status = BLK_STS_AGAIN;
319 bio_endio(bio);
320 return ERR_PTR(-EAGAIN);
321 }
322
323 *segs = nsegs;
324
325 /*
326 * Individual bvecs might not be logical block aligned. Round down the
327 * split size so that each bio is properly block size aligned, even if
328 * we do not use the full hardware limits.
329 */
330 bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
331
332 /*
333 * Bio splitting may cause subtle trouble such as hang when doing sync
334 * iopoll in direct IO routine. Given performance gain of iopoll for
335 * big IO can be trival, disable iopoll when split needed.
336 */
337 bio_clear_polled(bio);
338 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
339 }
340 EXPORT_SYMBOL_GPL(bio_split_rw);
341
342 /**
343 * __bio_split_to_limits - split a bio to fit the queue limits
344 * @bio: bio to be split
345 * @lim: queue limits to split based on
346 * @nr_segs: returns the number of segments in the returned bio
347 *
348 * Check if @bio needs splitting based on the queue limits, and if so split off
349 * a bio fitting the limits from the beginning of @bio and return it. @bio is
350 * shortened to the remainder and re-submitted.
351 *
352 * The split bio is allocated from @q->bio_split, which is provided by the
353 * block layer.
354 */
__bio_split_to_limits(struct bio * bio,const struct queue_limits * lim,unsigned int * nr_segs)355 struct bio *__bio_split_to_limits(struct bio *bio,
356 const struct queue_limits *lim,
357 unsigned int *nr_segs)
358 {
359 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
360 struct bio *split;
361
362 switch (bio_op(bio)) {
363 case REQ_OP_DISCARD:
364 case REQ_OP_SECURE_ERASE:
365 split = bio_split_discard(bio, lim, nr_segs, bs);
366 break;
367 case REQ_OP_WRITE_ZEROES:
368 split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
369 break;
370 default:
371 split = bio_split_rw(bio, lim, nr_segs, bs,
372 get_max_io_size(bio, lim) << SECTOR_SHIFT);
373 if (IS_ERR(split))
374 return NULL;
375 break;
376 }
377
378 if (split) {
379 /* there isn't chance to merge the split bio */
380 split->bi_opf |= REQ_NOMERGE;
381
382 blkcg_bio_issue_init(split);
383 bio_chain(split, bio);
384 trace_block_split(split, bio->bi_iter.bi_sector);
385 submit_bio_noacct(bio);
386 return split;
387 }
388 return bio;
389 }
390
391 /**
392 * bio_split_to_limits - split a bio to fit the queue limits
393 * @bio: bio to be split
394 *
395 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
396 * if so split off a bio fitting the limits from the beginning of @bio and
397 * return it. @bio is shortened to the remainder and re-submitted.
398 *
399 * The split bio is allocated from @q->bio_split, which is provided by the
400 * block layer.
401 */
bio_split_to_limits(struct bio * bio)402 struct bio *bio_split_to_limits(struct bio *bio)
403 {
404 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
405 unsigned int nr_segs;
406
407 if (bio_may_exceed_limits(bio, lim))
408 return __bio_split_to_limits(bio, lim, &nr_segs);
409 return bio;
410 }
411 EXPORT_SYMBOL(bio_split_to_limits);
412
blk_recalc_rq_segments(struct request * rq)413 unsigned int blk_recalc_rq_segments(struct request *rq)
414 {
415 unsigned int nr_phys_segs = 0;
416 unsigned int bytes = 0;
417 struct req_iterator iter;
418 struct bio_vec bv;
419
420 if (!rq->bio)
421 return 0;
422
423 switch (bio_op(rq->bio)) {
424 case REQ_OP_DISCARD:
425 case REQ_OP_SECURE_ERASE:
426 if (queue_max_discard_segments(rq->q) > 1) {
427 struct bio *bio = rq->bio;
428
429 for_each_bio(bio)
430 nr_phys_segs++;
431 return nr_phys_segs;
432 }
433 return 1;
434 case REQ_OP_WRITE_ZEROES:
435 return 0;
436 default:
437 break;
438 }
439
440 rq_for_each_bvec(bv, rq, iter)
441 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
442 UINT_MAX, UINT_MAX);
443 return nr_phys_segs;
444 }
445
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)446 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
447 struct scatterlist *sglist)
448 {
449 if (!*sg)
450 return sglist;
451
452 /*
453 * If the driver previously mapped a shorter list, we could see a
454 * termination bit prematurely unless it fully inits the sg table
455 * on each mapping. We KNOW that there must be more entries here
456 * or the driver would be buggy, so force clear the termination bit
457 * to avoid doing a full sg_init_table() in drivers for each command.
458 */
459 sg_unmark_end(*sg);
460 return sg_next(*sg);
461 }
462
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)463 static unsigned blk_bvec_map_sg(struct request_queue *q,
464 struct bio_vec *bvec, struct scatterlist *sglist,
465 struct scatterlist **sg)
466 {
467 unsigned nbytes = bvec->bv_len;
468 unsigned nsegs = 0, total = 0;
469
470 while (nbytes > 0) {
471 unsigned offset = bvec->bv_offset + total;
472 unsigned len = min(get_max_segment_size(&q->limits,
473 bvec->bv_page, offset), nbytes);
474 struct page *page = bvec->bv_page;
475
476 /*
477 * Unfortunately a fair number of drivers barf on scatterlists
478 * that have an offset larger than PAGE_SIZE, despite other
479 * subsystems dealing with that invariant just fine. For now
480 * stick to the legacy format where we never present those from
481 * the block layer, but the code below should be removed once
482 * these offenders (mostly MMC/SD drivers) are fixed.
483 */
484 page += (offset >> PAGE_SHIFT);
485 offset &= ~PAGE_MASK;
486
487 *sg = blk_next_sg(sg, sglist);
488 sg_set_page(*sg, page, len, offset);
489
490 total += len;
491 nbytes -= len;
492 nsegs++;
493 }
494
495 return nsegs;
496 }
497
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)498 static inline int __blk_bvec_map_sg(struct bio_vec bv,
499 struct scatterlist *sglist, struct scatterlist **sg)
500 {
501 *sg = blk_next_sg(sg, sglist);
502 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
503 return 1;
504 }
505
506 /* only try to merge bvecs into one sg if they are from two bios */
507 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)508 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
509 struct bio_vec *bvprv, struct scatterlist **sg)
510 {
511
512 int nbytes = bvec->bv_len;
513
514 if (!*sg)
515 return false;
516
517 if ((*sg)->length + nbytes > queue_max_segment_size(q))
518 return false;
519
520 if (!biovec_phys_mergeable(q, bvprv, bvec))
521 return false;
522
523 (*sg)->length += nbytes;
524
525 return true;
526 }
527
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)528 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
529 struct scatterlist *sglist,
530 struct scatterlist **sg)
531 {
532 struct bio_vec bvec, bvprv = { NULL };
533 struct bvec_iter iter;
534 int nsegs = 0;
535 bool new_bio = false;
536
537 for_each_bio(bio) {
538 bio_for_each_bvec(bvec, bio, iter) {
539 /*
540 * Only try to merge bvecs from two bios given we
541 * have done bio internal merge when adding pages
542 * to bio
543 */
544 if (new_bio &&
545 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
546 goto next_bvec;
547
548 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE &&
549 (!blk_queue_sub_page_limits(&q->limits) ||
550 bvec.bv_len <= q->limits.max_segment_size))
551 /* single-segment bvec optimization */
552 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
553 else
554 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
555 next_bvec:
556 new_bio = false;
557 }
558 if (likely(bio->bi_iter.bi_size)) {
559 bvprv = bvec;
560 new_bio = true;
561 }
562 }
563
564 return nsegs;
565 }
566
567 /*
568 * map a request to scatterlist, return number of sg entries setup. Caller
569 * must make sure sg can hold rq->nr_phys_segments entries
570 */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)571 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
572 struct scatterlist *sglist, struct scatterlist **last_sg)
573 {
574 int nsegs = 0;
575
576 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
577 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
578 else if (rq->bio)
579 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
580
581 if (*last_sg)
582 sg_mark_end(*last_sg);
583
584 /*
585 * Something must have been wrong if the figured number of
586 * segment is bigger than number of req's physical segments
587 */
588 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
589
590 return nsegs;
591 }
592 EXPORT_SYMBOL(__blk_rq_map_sg);
593
blk_rq_get_max_sectors(struct request * rq,sector_t offset)594 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
595 sector_t offset)
596 {
597 struct request_queue *q = rq->q;
598 unsigned int max_sectors;
599
600 if (blk_rq_is_passthrough(rq))
601 return q->limits.max_hw_sectors;
602
603 max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
604 if (!q->limits.chunk_sectors ||
605 req_op(rq) == REQ_OP_DISCARD ||
606 req_op(rq) == REQ_OP_SECURE_ERASE)
607 return max_sectors;
608 return min(max_sectors,
609 blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
610 }
611
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)612 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
613 unsigned int nr_phys_segs)
614 {
615 if (!blk_cgroup_mergeable(req, bio))
616 goto no_merge;
617
618 if (blk_integrity_merge_bio(req->q, req, bio) == false)
619 goto no_merge;
620
621 /* discard request merge won't add new segment */
622 if (req_op(req) == REQ_OP_DISCARD)
623 return 1;
624
625 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
626 goto no_merge;
627
628 /*
629 * This will form the start of a new hw segment. Bump both
630 * counters.
631 */
632 req->nr_phys_segments += nr_phys_segs;
633 return 1;
634
635 no_merge:
636 req_set_nomerge(req->q, req);
637 return 0;
638 }
639
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)640 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
641 {
642 if (req_gap_back_merge(req, bio))
643 return 0;
644 if (blk_integrity_rq(req) &&
645 integrity_req_gap_back_merge(req, bio))
646 return 0;
647 if (!bio_crypt_ctx_back_mergeable(req, bio))
648 return 0;
649 if (blk_rq_sectors(req) + bio_sectors(bio) >
650 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
651 req_set_nomerge(req->q, req);
652 return 0;
653 }
654
655 return ll_new_hw_segment(req, bio, nr_segs);
656 }
657
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)658 static int ll_front_merge_fn(struct request *req, struct bio *bio,
659 unsigned int nr_segs)
660 {
661 if (req_gap_front_merge(req, bio))
662 return 0;
663 if (blk_integrity_rq(req) &&
664 integrity_req_gap_front_merge(req, bio))
665 return 0;
666 if (!bio_crypt_ctx_front_mergeable(req, bio))
667 return 0;
668 if (blk_rq_sectors(req) + bio_sectors(bio) >
669 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
670 req_set_nomerge(req->q, req);
671 return 0;
672 }
673
674 return ll_new_hw_segment(req, bio, nr_segs);
675 }
676
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)677 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
678 struct request *next)
679 {
680 unsigned short segments = blk_rq_nr_discard_segments(req);
681
682 if (segments >= queue_max_discard_segments(q))
683 goto no_merge;
684 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
685 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
686 goto no_merge;
687
688 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
689 return true;
690 no_merge:
691 req_set_nomerge(q, req);
692 return false;
693 }
694
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)695 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
696 struct request *next)
697 {
698 int total_phys_segments;
699
700 if (req_gap_back_merge(req, next->bio))
701 return 0;
702
703 /*
704 * Will it become too large?
705 */
706 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
707 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
708 return 0;
709
710 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
711 if (total_phys_segments > blk_rq_get_max_segments(req))
712 return 0;
713
714 if (!blk_cgroup_mergeable(req, next->bio))
715 return 0;
716
717 if (blk_integrity_merge_rq(q, req, next) == false)
718 return 0;
719
720 if (!bio_crypt_ctx_merge_rq(req, next))
721 return 0;
722
723 /* Merge is OK... */
724 req->nr_phys_segments = total_phys_segments;
725 return 1;
726 }
727
728 /**
729 * blk_rq_set_mixed_merge - mark a request as mixed merge
730 * @rq: request to mark as mixed merge
731 *
732 * Description:
733 * @rq is about to be mixed merged. Make sure the attributes
734 * which can be mixed are set in each bio and mark @rq as mixed
735 * merged.
736 */
blk_rq_set_mixed_merge(struct request * rq)737 void blk_rq_set_mixed_merge(struct request *rq)
738 {
739 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
740 struct bio *bio;
741
742 if (rq->rq_flags & RQF_MIXED_MERGE)
743 return;
744
745 /*
746 * @rq will no longer represent mixable attributes for all the
747 * contained bios. It will just track those of the first one.
748 * Distributes the attributs to each bio.
749 */
750 for (bio = rq->bio; bio; bio = bio->bi_next) {
751 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
752 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
753 bio->bi_opf |= ff;
754 }
755 rq->rq_flags |= RQF_MIXED_MERGE;
756 }
757
bio_failfast(const struct bio * bio)758 static inline blk_opf_t bio_failfast(const struct bio *bio)
759 {
760 if (bio->bi_opf & REQ_RAHEAD)
761 return REQ_FAILFAST_MASK;
762
763 return bio->bi_opf & REQ_FAILFAST_MASK;
764 }
765
766 /*
767 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
768 * as failfast, and request's failfast has to be updated in case of
769 * front merge.
770 */
blk_update_mixed_merge(struct request * req,struct bio * bio,bool front_merge)771 static inline void blk_update_mixed_merge(struct request *req,
772 struct bio *bio, bool front_merge)
773 {
774 if (req->rq_flags & RQF_MIXED_MERGE) {
775 if (bio->bi_opf & REQ_RAHEAD)
776 bio->bi_opf |= REQ_FAILFAST_MASK;
777
778 if (front_merge) {
779 req->cmd_flags &= ~REQ_FAILFAST_MASK;
780 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
781 }
782 }
783 }
784
blk_account_io_merge_request(struct request * req)785 static void blk_account_io_merge_request(struct request *req)
786 {
787 if (blk_do_io_stat(req)) {
788 part_stat_lock();
789 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
790 part_stat_local_dec(req->part,
791 in_flight[op_is_write(req_op(req))]);
792 part_stat_unlock();
793 }
794 }
795
blk_try_req_merge(struct request * req,struct request * next)796 static enum elv_merge blk_try_req_merge(struct request *req,
797 struct request *next)
798 {
799 if (blk_discard_mergable(req))
800 return ELEVATOR_DISCARD_MERGE;
801 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
802 return ELEVATOR_BACK_MERGE;
803
804 return ELEVATOR_NO_MERGE;
805 }
806
807 /*
808 * For non-mq, this has to be called with the request spinlock acquired.
809 * For mq with scheduling, the appropriate queue wide lock should be held.
810 */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)811 static struct request *attempt_merge(struct request_queue *q,
812 struct request *req, struct request *next)
813 {
814 if (!rq_mergeable(req) || !rq_mergeable(next))
815 return NULL;
816
817 if (req_op(req) != req_op(next))
818 return NULL;
819
820 if (rq_data_dir(req) != rq_data_dir(next))
821 return NULL;
822
823 /* Don't merge requests with different write hints. */
824 if (req->write_hint != next->write_hint)
825 return NULL;
826
827 if (req->ioprio != next->ioprio)
828 return NULL;
829
830 /*
831 * If we are allowed to merge, then append bio list
832 * from next to rq and release next. merge_requests_fn
833 * will have updated segment counts, update sector
834 * counts here. Handle DISCARDs separately, as they
835 * have separate settings.
836 */
837
838 switch (blk_try_req_merge(req, next)) {
839 case ELEVATOR_DISCARD_MERGE:
840 if (!req_attempt_discard_merge(q, req, next))
841 return NULL;
842 break;
843 case ELEVATOR_BACK_MERGE:
844 if (!ll_merge_requests_fn(q, req, next))
845 return NULL;
846 break;
847 default:
848 return NULL;
849 }
850
851 /*
852 * If failfast settings disagree or any of the two is already
853 * a mixed merge, mark both as mixed before proceeding. This
854 * makes sure that all involved bios have mixable attributes
855 * set properly.
856 */
857 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
858 (req->cmd_flags & REQ_FAILFAST_MASK) !=
859 (next->cmd_flags & REQ_FAILFAST_MASK)) {
860 blk_rq_set_mixed_merge(req);
861 blk_rq_set_mixed_merge(next);
862 }
863
864 /*
865 * At this point we have either done a back merge or front merge. We
866 * need the smaller start_time_ns of the merged requests to be the
867 * current request for accounting purposes.
868 */
869 if (next->start_time_ns < req->start_time_ns)
870 req->start_time_ns = next->start_time_ns;
871
872 req->biotail->bi_next = next->bio;
873 req->biotail = next->biotail;
874
875 req->__data_len += blk_rq_bytes(next);
876
877 if (!blk_discard_mergable(req))
878 elv_merge_requests(q, req, next);
879
880 blk_crypto_rq_put_keyslot(next);
881
882 /*
883 * 'next' is going away, so update stats accordingly
884 */
885 blk_account_io_merge_request(next);
886
887 trace_block_rq_merge(next);
888
889 /*
890 * ownership of bio passed from next to req, return 'next' for
891 * the caller to free
892 */
893 next->bio = NULL;
894 return next;
895 }
896
attempt_back_merge(struct request_queue * q,struct request * rq)897 static struct request *attempt_back_merge(struct request_queue *q,
898 struct request *rq)
899 {
900 struct request *next = elv_latter_request(q, rq);
901
902 if (next)
903 return attempt_merge(q, rq, next);
904
905 return NULL;
906 }
907
attempt_front_merge(struct request_queue * q,struct request * rq)908 static struct request *attempt_front_merge(struct request_queue *q,
909 struct request *rq)
910 {
911 struct request *prev = elv_former_request(q, rq);
912
913 if (prev)
914 return attempt_merge(q, prev, rq);
915
916 return NULL;
917 }
918
919 /*
920 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
921 * otherwise. The caller is responsible for freeing 'next' if the merge
922 * happened.
923 */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)924 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
925 struct request *next)
926 {
927 return attempt_merge(q, rq, next);
928 }
929
blk_rq_merge_ok(struct request * rq,struct bio * bio)930 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
931 {
932 if (!rq_mergeable(rq) || !bio_mergeable(bio))
933 return false;
934
935 if (req_op(rq) != bio_op(bio))
936 return false;
937
938 /* different data direction or already started, don't merge */
939 if (bio_data_dir(bio) != rq_data_dir(rq))
940 return false;
941
942 /* don't merge across cgroup boundaries */
943 if (!blk_cgroup_mergeable(rq, bio))
944 return false;
945
946 /* only merge integrity protected bio into ditto rq */
947 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
948 return false;
949
950 /* Only merge if the crypt contexts are compatible */
951 if (!bio_crypt_rq_ctx_compatible(rq, bio))
952 return false;
953
954 /* Don't merge requests with different write hints. */
955 if (rq->write_hint != bio->bi_write_hint)
956 return false;
957
958 if (rq->ioprio != bio_prio(bio))
959 return false;
960
961 return true;
962 }
963
blk_try_merge(struct request * rq,struct bio * bio)964 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
965 {
966 if (blk_discard_mergable(rq))
967 return ELEVATOR_DISCARD_MERGE;
968 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
969 return ELEVATOR_BACK_MERGE;
970 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
971 return ELEVATOR_FRONT_MERGE;
972 return ELEVATOR_NO_MERGE;
973 }
974
blk_account_io_merge_bio(struct request * req)975 static void blk_account_io_merge_bio(struct request *req)
976 {
977 if (!blk_do_io_stat(req))
978 return;
979
980 part_stat_lock();
981 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
982 part_stat_unlock();
983 }
984
985 enum bio_merge_status {
986 BIO_MERGE_OK,
987 BIO_MERGE_NONE,
988 BIO_MERGE_FAILED,
989 };
990
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)991 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
992 struct bio *bio, unsigned int nr_segs)
993 {
994 const blk_opf_t ff = bio_failfast(bio);
995
996 if (!ll_back_merge_fn(req, bio, nr_segs))
997 return BIO_MERGE_FAILED;
998
999 trace_block_bio_backmerge(bio);
1000 rq_qos_merge(req->q, req, bio);
1001
1002 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1003 blk_rq_set_mixed_merge(req);
1004
1005 blk_update_mixed_merge(req, bio, false);
1006
1007 req->biotail->bi_next = bio;
1008 req->biotail = bio;
1009 req->__data_len += bio->bi_iter.bi_size;
1010
1011 bio_crypt_free_ctx(bio);
1012
1013 blk_account_io_merge_bio(req);
1014 return BIO_MERGE_OK;
1015 }
1016
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)1017 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1018 struct bio *bio, unsigned int nr_segs)
1019 {
1020 const blk_opf_t ff = bio_failfast(bio);
1021
1022 if (!ll_front_merge_fn(req, bio, nr_segs))
1023 return BIO_MERGE_FAILED;
1024
1025 trace_block_bio_frontmerge(bio);
1026 rq_qos_merge(req->q, req, bio);
1027
1028 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1029 blk_rq_set_mixed_merge(req);
1030
1031 blk_update_mixed_merge(req, bio, true);
1032
1033 bio->bi_next = req->bio;
1034 req->bio = bio;
1035
1036 req->__sector = bio->bi_iter.bi_sector;
1037 req->__data_len += bio->bi_iter.bi_size;
1038
1039 bio_crypt_do_front_merge(req, bio);
1040
1041 blk_account_io_merge_bio(req);
1042 return BIO_MERGE_OK;
1043 }
1044
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1045 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1046 struct request *req, struct bio *bio)
1047 {
1048 unsigned short segments = blk_rq_nr_discard_segments(req);
1049
1050 if (segments >= queue_max_discard_segments(q))
1051 goto no_merge;
1052 if (blk_rq_sectors(req) + bio_sectors(bio) >
1053 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1054 goto no_merge;
1055
1056 rq_qos_merge(q, req, bio);
1057
1058 req->biotail->bi_next = bio;
1059 req->biotail = bio;
1060 req->__data_len += bio->bi_iter.bi_size;
1061 req->nr_phys_segments = segments + 1;
1062
1063 blk_account_io_merge_bio(req);
1064 return BIO_MERGE_OK;
1065 no_merge:
1066 req_set_nomerge(q, req);
1067 return BIO_MERGE_FAILED;
1068 }
1069
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1070 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1071 struct request *rq,
1072 struct bio *bio,
1073 unsigned int nr_segs,
1074 bool sched_allow_merge)
1075 {
1076 if (!blk_rq_merge_ok(rq, bio))
1077 return BIO_MERGE_NONE;
1078
1079 switch (blk_try_merge(rq, bio)) {
1080 case ELEVATOR_BACK_MERGE:
1081 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1082 return bio_attempt_back_merge(rq, bio, nr_segs);
1083 break;
1084 case ELEVATOR_FRONT_MERGE:
1085 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1086 return bio_attempt_front_merge(rq, bio, nr_segs);
1087 break;
1088 case ELEVATOR_DISCARD_MERGE:
1089 return bio_attempt_discard_merge(q, rq, bio);
1090 default:
1091 return BIO_MERGE_NONE;
1092 }
1093
1094 return BIO_MERGE_FAILED;
1095 }
1096
1097 /**
1098 * blk_attempt_plug_merge - try to merge with %current's plugged list
1099 * @q: request_queue new bio is being queued at
1100 * @bio: new bio being queued
1101 * @nr_segs: number of segments in @bio
1102 * from the passed in @q already in the plug list
1103 *
1104 * Determine whether @bio being queued on @q can be merged with the previous
1105 * request on %current's plugged list. Returns %true if merge was successful,
1106 * otherwise %false.
1107 *
1108 * Plugging coalesces IOs from the same issuer for the same purpose without
1109 * going through @q->queue_lock. As such it's more of an issuing mechanism
1110 * than scheduling, and the request, while may have elvpriv data, is not
1111 * added on the elevator at this point. In addition, we don't have
1112 * reliable access to the elevator outside queue lock. Only check basic
1113 * merging parameters without querying the elevator.
1114 *
1115 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1116 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)1117 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1118 unsigned int nr_segs)
1119 {
1120 struct blk_plug *plug;
1121 struct request *rq;
1122
1123 plug = blk_mq_plug(bio);
1124 if (!plug || rq_list_empty(plug->mq_list))
1125 return false;
1126
1127 rq_list_for_each(&plug->mq_list, rq) {
1128 if (rq->q == q) {
1129 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1130 BIO_MERGE_OK)
1131 return true;
1132 break;
1133 }
1134
1135 /*
1136 * Only keep iterating plug list for merges if we have multiple
1137 * queues
1138 */
1139 if (!plug->multiple_queues)
1140 break;
1141 }
1142 return false;
1143 }
1144
1145 /*
1146 * Iterate list of requests and see if we can merge this bio with any
1147 * of them.
1148 */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1149 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1150 struct bio *bio, unsigned int nr_segs)
1151 {
1152 struct request *rq;
1153 int checked = 8;
1154
1155 list_for_each_entry_reverse(rq, list, queuelist) {
1156 if (!checked--)
1157 break;
1158
1159 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1160 case BIO_MERGE_NONE:
1161 continue;
1162 case BIO_MERGE_OK:
1163 return true;
1164 case BIO_MERGE_FAILED:
1165 return false;
1166 }
1167
1168 }
1169
1170 return false;
1171 }
1172 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1173
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1174 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1175 unsigned int nr_segs, struct request **merged_request)
1176 {
1177 struct request *rq;
1178
1179 switch (elv_merge(q, &rq, bio)) {
1180 case ELEVATOR_BACK_MERGE:
1181 if (!blk_mq_sched_allow_merge(q, rq, bio))
1182 return false;
1183 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1184 return false;
1185 *merged_request = attempt_back_merge(q, rq);
1186 if (!*merged_request)
1187 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1188 return true;
1189 case ELEVATOR_FRONT_MERGE:
1190 if (!blk_mq_sched_allow_merge(q, rq, bio))
1191 return false;
1192 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1193 return false;
1194 *merged_request = attempt_front_merge(q, rq);
1195 if (!*merged_request)
1196 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1197 return true;
1198 case ELEVATOR_DISCARD_MERGE:
1199 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1200 default:
1201 return false;
1202 }
1203 }
1204 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1205