1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46
47 #include "blk.h"
48 #include "blk-mq-debugfs.h"
49 #include "blk-mq-sched.h"
50 #include "blk-pm.h"
51 #include "blk-cgroup.h"
52 #include "blk-throttle.h"
53 #include "blk-ioprio.h"
54
55 struct dentry *blk_debugfs_root;
56
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_queue);
64 EXPORT_TRACEPOINT_SYMBOL_GPL(block_getrq);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_issue);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_merge);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_requeue);
68 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_complete);
69
70 static DEFINE_IDA(blk_queue_ida);
71
72 /*
73 * For queue allocation
74 */
75 static struct kmem_cache *blk_requestq_cachep;
76
77 /*
78 * Controlling structure to kblockd
79 */
80 static struct workqueue_struct *kblockd_workqueue;
81
82 /**
83 * blk_queue_flag_set - atomically set a queue flag
84 * @flag: flag to be set
85 * @q: request queue
86 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)87 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
88 {
89 set_bit(flag, &q->queue_flags);
90 }
91 EXPORT_SYMBOL(blk_queue_flag_set);
92
93 /**
94 * blk_queue_flag_clear - atomically clear a queue flag
95 * @flag: flag to be cleared
96 * @q: request queue
97 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)98 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
99 {
100 clear_bit(flag, &q->queue_flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103
104 /**
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
108 *
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
111 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 return test_and_set_bit(flag, &q->queue_flags);
115 }
116 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
117
118 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
119 static const char *const blk_op_name[] = {
120 REQ_OP_NAME(READ),
121 REQ_OP_NAME(WRITE),
122 REQ_OP_NAME(FLUSH),
123 REQ_OP_NAME(DISCARD),
124 REQ_OP_NAME(SECURE_ERASE),
125 REQ_OP_NAME(ZONE_RESET),
126 REQ_OP_NAME(ZONE_RESET_ALL),
127 REQ_OP_NAME(ZONE_OPEN),
128 REQ_OP_NAME(ZONE_CLOSE),
129 REQ_OP_NAME(ZONE_FINISH),
130 REQ_OP_NAME(ZONE_APPEND),
131 REQ_OP_NAME(WRITE_ZEROES),
132 REQ_OP_NAME(DRV_IN),
133 REQ_OP_NAME(DRV_OUT),
134 };
135 #undef REQ_OP_NAME
136
137 /**
138 * blk_op_str - Return string XXX in the REQ_OP_XXX.
139 * @op: REQ_OP_XXX.
140 *
141 * Description: Centralize block layer function to convert REQ_OP_XXX into
142 * string format. Useful in the debugging and tracing bio or request. For
143 * invalid REQ_OP_XXX it returns string "UNKNOWN".
144 */
blk_op_str(enum req_op op)145 inline const char *blk_op_str(enum req_op op)
146 {
147 const char *op_str = "UNKNOWN";
148
149 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
150 op_str = blk_op_name[op];
151
152 return op_str;
153 }
154 EXPORT_SYMBOL_GPL(blk_op_str);
155
156 static const struct {
157 int errno;
158 const char *name;
159 } blk_errors[] = {
160 [BLK_STS_OK] = { 0, "" },
161 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
162 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
163 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
164 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
165 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
166 [BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
167 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
168 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
169 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
170 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
171 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
172 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
173
174 /* device mapper special case, should not leak out: */
175 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
176
177 /* zone device specific errors */
178 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
179 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
180
181 /* Command duration limit device-side timeout */
182 [BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
183
184 /* everything else not covered above: */
185 [BLK_STS_IOERR] = { -EIO, "I/O" },
186 };
187
errno_to_blk_status(int errno)188 blk_status_t errno_to_blk_status(int errno)
189 {
190 int i;
191
192 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
193 if (blk_errors[i].errno == errno)
194 return (__force blk_status_t)i;
195 }
196
197 return BLK_STS_IOERR;
198 }
199 EXPORT_SYMBOL_GPL(errno_to_blk_status);
200
blk_status_to_errno(blk_status_t status)201 int blk_status_to_errno(blk_status_t status)
202 {
203 int idx = (__force int)status;
204
205 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
206 return -EIO;
207 return blk_errors[idx].errno;
208 }
209 EXPORT_SYMBOL_GPL(blk_status_to_errno);
210
blk_status_to_str(blk_status_t status)211 const char *blk_status_to_str(blk_status_t status)
212 {
213 int idx = (__force int)status;
214
215 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
216 return "<null>";
217 return blk_errors[idx].name;
218 }
219 EXPORT_SYMBOL_GPL(blk_status_to_str);
220
221 /**
222 * blk_sync_queue - cancel any pending callbacks on a queue
223 * @q: the queue
224 *
225 * Description:
226 * The block layer may perform asynchronous callback activity
227 * on a queue, such as calling the unplug function after a timeout.
228 * A block device may call blk_sync_queue to ensure that any
229 * such activity is cancelled, thus allowing it to release resources
230 * that the callbacks might use. The caller must already have made sure
231 * that its ->submit_bio will not re-add plugging prior to calling
232 * this function.
233 *
234 * This function does not cancel any asynchronous activity arising
235 * out of elevator or throttling code. That would require elevator_exit()
236 * and blkcg_exit_queue() to be called with queue lock initialized.
237 *
238 */
blk_sync_queue(struct request_queue * q)239 void blk_sync_queue(struct request_queue *q)
240 {
241 del_timer_sync(&q->timeout);
242 cancel_work_sync(&q->timeout_work);
243 }
244 EXPORT_SYMBOL(blk_sync_queue);
245
246 /**
247 * blk_set_pm_only - increment pm_only counter
248 * @q: request queue pointer
249 */
blk_set_pm_only(struct request_queue * q)250 void blk_set_pm_only(struct request_queue *q)
251 {
252 atomic_inc(&q->pm_only);
253 }
254 EXPORT_SYMBOL_GPL(blk_set_pm_only);
255
blk_clear_pm_only(struct request_queue * q)256 void blk_clear_pm_only(struct request_queue *q)
257 {
258 int pm_only;
259
260 pm_only = atomic_dec_return(&q->pm_only);
261 WARN_ON_ONCE(pm_only < 0);
262 if (pm_only == 0)
263 wake_up_all(&q->mq_freeze_wq);
264 }
265 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
266
blk_free_queue_rcu(struct rcu_head * rcu_head)267 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
268 {
269 struct request_queue *q = container_of(rcu_head,
270 struct request_queue, rcu_head);
271
272 percpu_ref_exit(&q->q_usage_counter);
273 kmem_cache_free(blk_requestq_cachep, q);
274 }
275
blk_free_queue(struct request_queue * q)276 static void blk_free_queue(struct request_queue *q)
277 {
278 blk_free_queue_stats(q->stats);
279 blk_disable_sub_page_limits(&q->limits);
280 if (queue_is_mq(q))
281 blk_mq_release(q);
282
283 ida_free(&blk_queue_ida, q->id);
284 call_rcu(&q->rcu_head, blk_free_queue_rcu);
285 }
286
287 /**
288 * blk_put_queue - decrement the request_queue refcount
289 * @q: the request_queue structure to decrement the refcount for
290 *
291 * Decrements the refcount of the request_queue and free it when the refcount
292 * reaches 0.
293 */
blk_put_queue(struct request_queue * q)294 void blk_put_queue(struct request_queue *q)
295 {
296 if (refcount_dec_and_test(&q->refs))
297 blk_free_queue(q);
298 }
299 EXPORT_SYMBOL(blk_put_queue);
300
blk_queue_start_drain(struct request_queue * q)301 void blk_queue_start_drain(struct request_queue *q)
302 {
303 /*
304 * When queue DYING flag is set, we need to block new req
305 * entering queue, so we call blk_freeze_queue_start() to
306 * prevent I/O from crossing blk_queue_enter().
307 */
308 blk_freeze_queue_start(q);
309 if (queue_is_mq(q))
310 blk_mq_wake_waiters(q);
311 /* Make blk_queue_enter() reexamine the DYING flag. */
312 wake_up_all(&q->mq_freeze_wq);
313 }
314
315 /**
316 * blk_queue_enter() - try to increase q->q_usage_counter
317 * @q: request queue pointer
318 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
319 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)320 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
321 {
322 const bool pm = flags & BLK_MQ_REQ_PM;
323
324 while (!blk_try_enter_queue(q, pm)) {
325 if (flags & BLK_MQ_REQ_NOWAIT)
326 return -EAGAIN;
327
328 /*
329 * read pair of barrier in blk_freeze_queue_start(), we need to
330 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
331 * reading .mq_freeze_depth or queue dying flag, otherwise the
332 * following wait may never return if the two reads are
333 * reordered.
334 */
335 smp_rmb();
336 wait_event(q->mq_freeze_wq,
337 (!q->mq_freeze_depth &&
338 blk_pm_resume_queue(pm, q)) ||
339 blk_queue_dying(q));
340 if (blk_queue_dying(q))
341 return -ENODEV;
342 }
343
344 return 0;
345 }
346
__bio_queue_enter(struct request_queue * q,struct bio * bio)347 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
348 {
349 while (!blk_try_enter_queue(q, false)) {
350 struct gendisk *disk = bio->bi_bdev->bd_disk;
351
352 if (bio->bi_opf & REQ_NOWAIT) {
353 if (test_bit(GD_DEAD, &disk->state))
354 goto dead;
355 bio_wouldblock_error(bio);
356 return -EAGAIN;
357 }
358
359 /*
360 * read pair of barrier in blk_freeze_queue_start(), we need to
361 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
362 * reading .mq_freeze_depth or queue dying flag, otherwise the
363 * following wait may never return if the two reads are
364 * reordered.
365 */
366 smp_rmb();
367 wait_event(q->mq_freeze_wq,
368 (!q->mq_freeze_depth &&
369 blk_pm_resume_queue(false, q)) ||
370 test_bit(GD_DEAD, &disk->state));
371 if (test_bit(GD_DEAD, &disk->state))
372 goto dead;
373 }
374
375 return 0;
376 dead:
377 bio_io_error(bio);
378 return -ENODEV;
379 }
380
blk_queue_exit(struct request_queue * q)381 void blk_queue_exit(struct request_queue *q)
382 {
383 percpu_ref_put(&q->q_usage_counter);
384 }
385
blk_queue_usage_counter_release(struct percpu_ref * ref)386 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
387 {
388 struct request_queue *q =
389 container_of(ref, struct request_queue, q_usage_counter);
390
391 wake_up_all(&q->mq_freeze_wq);
392 }
393
blk_rq_timed_out_timer(struct timer_list * t)394 static void blk_rq_timed_out_timer(struct timer_list *t)
395 {
396 struct request_queue *q = from_timer(q, t, timeout);
397
398 kblockd_schedule_work(&q->timeout_work);
399 }
400
blk_timeout_work(struct work_struct * work)401 static void blk_timeout_work(struct work_struct *work)
402 {
403 }
404
blk_alloc_queue(int node_id)405 struct request_queue *blk_alloc_queue(int node_id)
406 {
407 struct request_queue *q;
408
409 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
410 node_id);
411 if (!q)
412 return NULL;
413
414 q->last_merge = NULL;
415
416 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
417 if (q->id < 0)
418 goto fail_q;
419
420 q->stats = blk_alloc_queue_stats();
421 if (!q->stats)
422 goto fail_id;
423
424 q->node = node_id;
425
426 atomic_set(&q->nr_active_requests_shared_tags, 0);
427
428 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
429 INIT_WORK(&q->timeout_work, blk_timeout_work);
430 INIT_LIST_HEAD(&q->icq_list);
431
432 refcount_set(&q->refs, 1);
433 mutex_init(&q->debugfs_mutex);
434 mutex_init(&q->sysfs_lock);
435 mutex_init(&q->sysfs_dir_lock);
436 mutex_init(&q->rq_qos_mutex);
437 spin_lock_init(&q->queue_lock);
438
439 init_waitqueue_head(&q->mq_freeze_wq);
440 mutex_init(&q->mq_freeze_lock);
441
442 blkg_init_queue(q);
443
444 /*
445 * Init percpu_ref in atomic mode so that it's faster to shutdown.
446 * See blk_register_queue() for details.
447 */
448 if (percpu_ref_init(&q->q_usage_counter,
449 blk_queue_usage_counter_release,
450 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
451 goto fail_stats;
452
453 blk_set_default_limits(&q->limits);
454 q->nr_requests = BLKDEV_DEFAULT_RQ;
455
456 return q;
457
458 fail_stats:
459 blk_free_queue_stats(q->stats);
460 fail_id:
461 ida_free(&blk_queue_ida, q->id);
462 fail_q:
463 kmem_cache_free(blk_requestq_cachep, q);
464 return NULL;
465 }
466
467 /**
468 * blk_get_queue - increment the request_queue refcount
469 * @q: the request_queue structure to increment the refcount for
470 *
471 * Increment the refcount of the request_queue kobject.
472 *
473 * Context: Any context.
474 */
blk_get_queue(struct request_queue * q)475 bool blk_get_queue(struct request_queue *q)
476 {
477 if (unlikely(blk_queue_dying(q)))
478 return false;
479 refcount_inc(&q->refs);
480 return true;
481 }
482 EXPORT_SYMBOL(blk_get_queue);
483
484 #ifdef CONFIG_FAIL_MAKE_REQUEST
485
486 static DECLARE_FAULT_ATTR(fail_make_request);
487
setup_fail_make_request(char * str)488 static int __init setup_fail_make_request(char *str)
489 {
490 return setup_fault_attr(&fail_make_request, str);
491 }
492 __setup("fail_make_request=", setup_fail_make_request);
493
should_fail_request(struct block_device * part,unsigned int bytes)494 bool should_fail_request(struct block_device *part, unsigned int bytes)
495 {
496 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
497 }
498
fail_make_request_debugfs(void)499 static int __init fail_make_request_debugfs(void)
500 {
501 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
502 NULL, &fail_make_request);
503
504 return PTR_ERR_OR_ZERO(dir);
505 }
506
507 late_initcall(fail_make_request_debugfs);
508 #endif /* CONFIG_FAIL_MAKE_REQUEST */
509
bio_check_ro(struct bio * bio)510 static inline void bio_check_ro(struct bio *bio)
511 {
512 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
513 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
514 return;
515
516 if (bio->bi_bdev->bd_ro_warned)
517 return;
518
519 bio->bi_bdev->bd_ro_warned = true;
520 /*
521 * Use ioctl to set underlying disk of raid/dm to read-only
522 * will trigger this.
523 */
524 pr_warn("Trying to write to read-only block-device %pg\n",
525 bio->bi_bdev);
526 }
527 }
528
should_fail_bio(struct bio * bio)529 static noinline int should_fail_bio(struct bio *bio)
530 {
531 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
532 return -EIO;
533 return 0;
534 }
535 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
536
537 /*
538 * Check whether this bio extends beyond the end of the device or partition.
539 * This may well happen - the kernel calls bread() without checking the size of
540 * the device, e.g., when mounting a file system.
541 */
bio_check_eod(struct bio * bio)542 static inline int bio_check_eod(struct bio *bio)
543 {
544 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
545 unsigned int nr_sectors = bio_sectors(bio);
546
547 if (nr_sectors &&
548 (nr_sectors > maxsector ||
549 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
550 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
551 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
552 current->comm, bio->bi_bdev, bio->bi_opf,
553 bio->bi_iter.bi_sector, nr_sectors, maxsector);
554 return -EIO;
555 }
556 return 0;
557 }
558
559 /*
560 * Remap block n of partition p to block n+start(p) of the disk.
561 */
blk_partition_remap(struct bio * bio)562 static int blk_partition_remap(struct bio *bio)
563 {
564 struct block_device *p = bio->bi_bdev;
565
566 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
567 return -EIO;
568 if (bio_sectors(bio)) {
569 bio->bi_iter.bi_sector += p->bd_start_sect;
570 trace_block_bio_remap(bio, p->bd_dev,
571 bio->bi_iter.bi_sector -
572 p->bd_start_sect);
573 }
574 bio_set_flag(bio, BIO_REMAPPED);
575 return 0;
576 }
577
578 /*
579 * Check write append to a zoned block device.
580 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)581 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
582 struct bio *bio)
583 {
584 int nr_sectors = bio_sectors(bio);
585
586 /* Only applicable to zoned block devices */
587 if (!bdev_is_zoned(bio->bi_bdev))
588 return BLK_STS_NOTSUPP;
589
590 /* The bio sector must point to the start of a sequential zone */
591 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
592 !bio_zone_is_seq(bio))
593 return BLK_STS_IOERR;
594
595 /*
596 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
597 * split and could result in non-contiguous sectors being written in
598 * different zones.
599 */
600 if (nr_sectors > q->limits.chunk_sectors)
601 return BLK_STS_IOERR;
602
603 /* Make sure the BIO is small enough and will not get split */
604 if (nr_sectors > q->limits.max_zone_append_sectors)
605 return BLK_STS_IOERR;
606
607 bio->bi_opf |= REQ_NOMERGE;
608
609 return BLK_STS_OK;
610 }
611
__submit_bio(struct bio * bio)612 static void __submit_bio(struct bio *bio)
613 {
614 if (unlikely(!blk_crypto_bio_prep(&bio)))
615 return;
616
617 if (!bio->bi_bdev->bd_has_submit_bio) {
618 blk_mq_submit_bio(bio);
619 } else if (likely(bio_queue_enter(bio) == 0)) {
620 struct gendisk *disk = bio->bi_bdev->bd_disk;
621
622 disk->fops->submit_bio(bio);
623 blk_queue_exit(disk->queue);
624 }
625 }
626
627 /*
628 * The loop in this function may be a bit non-obvious, and so deserves some
629 * explanation:
630 *
631 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
632 * that), so we have a list with a single bio.
633 * - We pretend that we have just taken it off a longer list, so we assign
634 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
635 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
636 * bios through a recursive call to submit_bio_noacct. If it did, we find a
637 * non-NULL value in bio_list and re-enter the loop from the top.
638 * - In this case we really did just take the bio of the top of the list (no
639 * pretending) and so remove it from bio_list, and call into ->submit_bio()
640 * again.
641 *
642 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
643 * bio_list_on_stack[1] contains bios that were submitted before the current
644 * ->submit_bio, but that haven't been processed yet.
645 */
__submit_bio_noacct(struct bio * bio)646 static void __submit_bio_noacct(struct bio *bio)
647 {
648 struct bio_list bio_list_on_stack[2];
649
650 BUG_ON(bio->bi_next);
651
652 bio_list_init(&bio_list_on_stack[0]);
653 current->bio_list = bio_list_on_stack;
654
655 do {
656 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
657 struct bio_list lower, same;
658
659 /*
660 * Create a fresh bio_list for all subordinate requests.
661 */
662 bio_list_on_stack[1] = bio_list_on_stack[0];
663 bio_list_init(&bio_list_on_stack[0]);
664
665 __submit_bio(bio);
666
667 /*
668 * Sort new bios into those for a lower level and those for the
669 * same level.
670 */
671 bio_list_init(&lower);
672 bio_list_init(&same);
673 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
674 if (q == bdev_get_queue(bio->bi_bdev))
675 bio_list_add(&same, bio);
676 else
677 bio_list_add(&lower, bio);
678
679 /*
680 * Now assemble so we handle the lowest level first.
681 */
682 bio_list_merge(&bio_list_on_stack[0], &lower);
683 bio_list_merge(&bio_list_on_stack[0], &same);
684 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
685 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
686
687 current->bio_list = NULL;
688 }
689
__submit_bio_noacct_mq(struct bio * bio)690 static void __submit_bio_noacct_mq(struct bio *bio)
691 {
692 struct bio_list bio_list[2] = { };
693
694 current->bio_list = bio_list;
695
696 do {
697 __submit_bio(bio);
698 } while ((bio = bio_list_pop(&bio_list[0])));
699
700 current->bio_list = NULL;
701 }
702
submit_bio_noacct_nocheck(struct bio * bio)703 void submit_bio_noacct_nocheck(struct bio *bio)
704 {
705 blk_cgroup_bio_start(bio);
706 blkcg_bio_issue_init(bio);
707
708 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
709 trace_block_bio_queue(bio);
710 /*
711 * Now that enqueuing has been traced, we need to trace
712 * completion as well.
713 */
714 bio_set_flag(bio, BIO_TRACE_COMPLETION);
715 }
716
717 /*
718 * We only want one ->submit_bio to be active at a time, else stack
719 * usage with stacked devices could be a problem. Use current->bio_list
720 * to collect a list of requests submited by a ->submit_bio method while
721 * it is active, and then process them after it returned.
722 */
723 if (current->bio_list)
724 bio_list_add(¤t->bio_list[0], bio);
725 else if (!bio->bi_bdev->bd_has_submit_bio)
726 __submit_bio_noacct_mq(bio);
727 else
728 __submit_bio_noacct(bio);
729 }
730
731 /**
732 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
733 * @bio: The bio describing the location in memory and on the device.
734 *
735 * This is a version of submit_bio() that shall only be used for I/O that is
736 * resubmitted to lower level drivers by stacking block drivers. All file
737 * systems and other upper level users of the block layer should use
738 * submit_bio() instead.
739 */
submit_bio_noacct(struct bio * bio)740 void submit_bio_noacct(struct bio *bio)
741 {
742 struct block_device *bdev = bio->bi_bdev;
743 struct request_queue *q = bdev_get_queue(bdev);
744 blk_status_t status = BLK_STS_IOERR;
745
746 might_sleep();
747
748 /*
749 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
750 * if queue does not support NOWAIT.
751 */
752 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
753 goto not_supported;
754
755 if (should_fail_bio(bio))
756 goto end_io;
757 bio_check_ro(bio);
758 if (!bio_flagged(bio, BIO_REMAPPED)) {
759 if (unlikely(bio_check_eod(bio)))
760 goto end_io;
761 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
762 goto end_io;
763 }
764
765 /*
766 * Filter flush bio's early so that bio based drivers without flush
767 * support don't have to worry about them.
768 */
769 if (op_is_flush(bio->bi_opf)) {
770 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
771 bio_op(bio) != REQ_OP_ZONE_APPEND))
772 goto end_io;
773 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
774 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
775 if (!bio_sectors(bio)) {
776 status = BLK_STS_OK;
777 goto end_io;
778 }
779 }
780 }
781
782 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
783 bio_clear_polled(bio);
784
785 switch (bio_op(bio)) {
786 case REQ_OP_DISCARD:
787 if (!bdev_max_discard_sectors(bdev))
788 goto not_supported;
789 break;
790 case REQ_OP_SECURE_ERASE:
791 if (!bdev_max_secure_erase_sectors(bdev))
792 goto not_supported;
793 break;
794 case REQ_OP_ZONE_APPEND:
795 status = blk_check_zone_append(q, bio);
796 if (status != BLK_STS_OK)
797 goto end_io;
798 break;
799 case REQ_OP_ZONE_RESET:
800 case REQ_OP_ZONE_OPEN:
801 case REQ_OP_ZONE_CLOSE:
802 case REQ_OP_ZONE_FINISH:
803 if (!bdev_is_zoned(bio->bi_bdev))
804 goto not_supported;
805 break;
806 case REQ_OP_ZONE_RESET_ALL:
807 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
808 goto not_supported;
809 break;
810 case REQ_OP_WRITE_ZEROES:
811 if (!q->limits.max_write_zeroes_sectors)
812 goto not_supported;
813 break;
814 default:
815 break;
816 }
817
818 if (blk_throtl_bio(bio))
819 return;
820 submit_bio_noacct_nocheck(bio);
821 return;
822
823 not_supported:
824 status = BLK_STS_NOTSUPP;
825 end_io:
826 bio->bi_status = status;
827 bio_endio(bio);
828 }
829 EXPORT_SYMBOL(submit_bio_noacct);
830
831 #ifdef CONFIG_BLK_DEV_ZONED
832 /**
833 * blk_bio_is_seq_zoned_write() - Check if @bio requires write serialization.
834 * @bio: Bio to examine.
835 *
836 * Note: REQ_OP_ZONE_APPEND bios do not require serialization.
837 */
blk_bio_is_seq_zoned_write(struct bio * bio)838 static bool blk_bio_is_seq_zoned_write(struct bio *bio)
839 {
840 return disk_zone_is_seq(bio->bi_bdev->bd_disk,
841 bio->bi_iter.bi_sector) &&
842 op_needs_zoned_write_locking(bio_op(bio));
843 }
844 #else
blk_bio_is_seq_zoned_write(struct bio * bio)845 static bool blk_bio_is_seq_zoned_write(struct bio *bio)
846 {
847 return false;
848 }
849 #endif
850
bio_set_ioprio(struct bio * bio)851 static void bio_set_ioprio(struct bio *bio)
852 {
853 /*
854 * Do not set the I/O priority of sequential zoned write bios because
855 * this could lead to reordering by the mq-deadline I/O scheduler and
856 * hence to unaligned write errors.
857 */
858 if (blk_bio_is_seq_zoned_write(bio))
859 return;
860
861 /* Nobody set ioprio so far? Initialize it based on task's nice value */
862 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
863 bio->bi_ioprio = get_current_ioprio();
864 blkcg_set_ioprio(bio);
865 }
866
867 /**
868 * submit_bio - submit a bio to the block device layer for I/O
869 * @bio: The &struct bio which describes the I/O
870 *
871 * submit_bio() is used to submit I/O requests to block devices. It is passed a
872 * fully set up &struct bio that describes the I/O that needs to be done. The
873 * bio will be send to the device described by the bi_bdev field.
874 *
875 * The success/failure status of the request, along with notification of
876 * completion, is delivered asynchronously through the ->bi_end_io() callback
877 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
878 * been called.
879 */
submit_bio(struct bio * bio)880 void submit_bio(struct bio *bio)
881 {
882 if (bio_op(bio) == REQ_OP_READ) {
883 task_io_account_read(bio->bi_iter.bi_size);
884 count_vm_events(PGPGIN, bio_sectors(bio));
885 } else if (bio_op(bio) == REQ_OP_WRITE) {
886 count_vm_events(PGPGOUT, bio_sectors(bio));
887 }
888
889 bio_set_ioprio(bio);
890 submit_bio_noacct(bio);
891 }
892 EXPORT_SYMBOL(submit_bio);
893
894 /**
895 * bio_poll - poll for BIO completions
896 * @bio: bio to poll for
897 * @iob: batches of IO
898 * @flags: BLK_POLL_* flags that control the behavior
899 *
900 * Poll for completions on queue associated with the bio. Returns number of
901 * completed entries found.
902 *
903 * Note: the caller must either be the context that submitted @bio, or
904 * be in a RCU critical section to prevent freeing of @bio.
905 */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)906 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
907 {
908 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
909 struct block_device *bdev;
910 struct request_queue *q;
911 int ret = 0;
912
913 bdev = READ_ONCE(bio->bi_bdev);
914 if (!bdev)
915 return 0;
916
917 q = bdev_get_queue(bdev);
918 if (cookie == BLK_QC_T_NONE ||
919 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
920 return 0;
921
922 /*
923 * As the requests that require a zone lock are not plugged in the
924 * first place, directly accessing the plug instead of using
925 * blk_mq_plug() should not have any consequences during flushing for
926 * zoned devices.
927 */
928 blk_flush_plug(current->plug, false);
929
930 /*
931 * We need to be able to enter a frozen queue, similar to how
932 * timeouts also need to do that. If that is blocked, then we can
933 * have pending IO when a queue freeze is started, and then the
934 * wait for the freeze to finish will wait for polled requests to
935 * timeout as the poller is preventer from entering the queue and
936 * completing them. As long as we prevent new IO from being queued,
937 * that should be all that matters.
938 */
939 if (!percpu_ref_tryget(&q->q_usage_counter))
940 return 0;
941 if (queue_is_mq(q)) {
942 ret = blk_mq_poll(q, cookie, iob, flags);
943 } else {
944 struct gendisk *disk = q->disk;
945
946 if (disk && disk->fops->poll_bio)
947 ret = disk->fops->poll_bio(bio, iob, flags);
948 }
949 blk_queue_exit(q);
950 return ret;
951 }
952 EXPORT_SYMBOL_GPL(bio_poll);
953
954 /*
955 * Helper to implement file_operations.iopoll. Requires the bio to be stored
956 * in iocb->private, and cleared before freeing the bio.
957 */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)958 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
959 unsigned int flags)
960 {
961 struct bio *bio;
962 int ret = 0;
963
964 /*
965 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
966 * point to a freshly allocated bio at this point. If that happens
967 * we have a few cases to consider:
968 *
969 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
970 * simply nothing in this case
971 * 2) the bio points to a not poll enabled device. bio_poll will catch
972 * this and return 0
973 * 3) the bio points to a poll capable device, including but not
974 * limited to the one that the original bio pointed to. In this
975 * case we will call into the actual poll method and poll for I/O,
976 * even if we don't need to, but it won't cause harm either.
977 *
978 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
979 * is still allocated. Because partitions hold a reference to the whole
980 * device bdev and thus disk, the disk is also still valid. Grabbing
981 * a reference to the queue in bio_poll() ensures the hctxs and requests
982 * are still valid as well.
983 */
984 rcu_read_lock();
985 bio = READ_ONCE(kiocb->private);
986 if (bio)
987 ret = bio_poll(bio, iob, flags);
988 rcu_read_unlock();
989
990 return ret;
991 }
992 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
993
update_io_ticks(struct block_device * part,unsigned long now,bool end)994 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
995 {
996 unsigned long stamp;
997 again:
998 stamp = READ_ONCE(part->bd_stamp);
999 if (unlikely(time_after(now, stamp)) &&
1000 likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
1001 (end || part_in_flight(part)))
1002 __part_stat_add(part, io_ticks, now - stamp);
1003
1004 if (part->bd_partno) {
1005 part = bdev_whole(part);
1006 goto again;
1007 }
1008 }
1009
bdev_start_io_acct(struct block_device * bdev,enum req_op op,unsigned long start_time)1010 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1011 unsigned long start_time)
1012 {
1013 part_stat_lock();
1014 update_io_ticks(bdev, start_time, false);
1015 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1016 part_stat_unlock();
1017
1018 return start_time;
1019 }
1020 EXPORT_SYMBOL(bdev_start_io_acct);
1021
1022 /**
1023 * bio_start_io_acct - start I/O accounting for bio based drivers
1024 * @bio: bio to start account for
1025 *
1026 * Returns the start time that should be passed back to bio_end_io_acct().
1027 */
bio_start_io_acct(struct bio * bio)1028 unsigned long bio_start_io_acct(struct bio *bio)
1029 {
1030 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1031 }
1032 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1033
bdev_end_io_acct(struct block_device * bdev,enum req_op op,unsigned int sectors,unsigned long start_time)1034 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1035 unsigned int sectors, unsigned long start_time)
1036 {
1037 const int sgrp = op_stat_group(op);
1038 unsigned long now = READ_ONCE(jiffies);
1039 unsigned long duration = now - start_time;
1040
1041 part_stat_lock();
1042 update_io_ticks(bdev, now, true);
1043 part_stat_inc(bdev, ios[sgrp]);
1044 part_stat_add(bdev, sectors[sgrp], sectors);
1045 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1046 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1047 part_stat_unlock();
1048 }
1049 EXPORT_SYMBOL(bdev_end_io_acct);
1050
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1051 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1052 struct block_device *orig_bdev)
1053 {
1054 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1055 }
1056 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1057
1058 /**
1059 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1060 * @q : the queue of the device being checked
1061 *
1062 * Description:
1063 * Check if underlying low-level drivers of a device are busy.
1064 * If the drivers want to export their busy state, they must set own
1065 * exporting function using blk_queue_lld_busy() first.
1066 *
1067 * Basically, this function is used only by request stacking drivers
1068 * to stop dispatching requests to underlying devices when underlying
1069 * devices are busy. This behavior helps more I/O merging on the queue
1070 * of the request stacking driver and prevents I/O throughput regression
1071 * on burst I/O load.
1072 *
1073 * Return:
1074 * 0 - Not busy (The request stacking driver should dispatch request)
1075 * 1 - Busy (The request stacking driver should stop dispatching request)
1076 */
blk_lld_busy(struct request_queue * q)1077 int blk_lld_busy(struct request_queue *q)
1078 {
1079 if (queue_is_mq(q) && q->mq_ops->busy)
1080 return q->mq_ops->busy(q);
1081
1082 return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(blk_lld_busy);
1085
kblockd_schedule_work(struct work_struct * work)1086 int kblockd_schedule_work(struct work_struct *work)
1087 {
1088 return queue_work(kblockd_workqueue, work);
1089 }
1090 EXPORT_SYMBOL(kblockd_schedule_work);
1091
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1092 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1093 unsigned long delay)
1094 {
1095 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1096 }
1097 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1098
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1099 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1100 {
1101 struct task_struct *tsk = current;
1102
1103 /*
1104 * If this is a nested plug, don't actually assign it.
1105 */
1106 if (tsk->plug)
1107 return;
1108
1109 plug->mq_list = NULL;
1110 plug->cached_rq = NULL;
1111 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1112 plug->rq_count = 0;
1113 plug->multiple_queues = false;
1114 plug->has_elevator = false;
1115 INIT_LIST_HEAD(&plug->cb_list);
1116
1117 /*
1118 * Store ordering should not be needed here, since a potential
1119 * preempt will imply a full memory barrier
1120 */
1121 tsk->plug = plug;
1122 }
1123
1124 /**
1125 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1126 * @plug: The &struct blk_plug that needs to be initialized
1127 *
1128 * Description:
1129 * blk_start_plug() indicates to the block layer an intent by the caller
1130 * to submit multiple I/O requests in a batch. The block layer may use
1131 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1132 * is called. However, the block layer may choose to submit requests
1133 * before a call to blk_finish_plug() if the number of queued I/Os
1134 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1135 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1136 * the task schedules (see below).
1137 *
1138 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1139 * pending I/O should the task end up blocking between blk_start_plug() and
1140 * blk_finish_plug(). This is important from a performance perspective, but
1141 * also ensures that we don't deadlock. For instance, if the task is blocking
1142 * for a memory allocation, memory reclaim could end up wanting to free a
1143 * page belonging to that request that is currently residing in our private
1144 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1145 * this kind of deadlock.
1146 */
blk_start_plug(struct blk_plug * plug)1147 void blk_start_plug(struct blk_plug *plug)
1148 {
1149 blk_start_plug_nr_ios(plug, 1);
1150 }
1151 EXPORT_SYMBOL(blk_start_plug);
1152
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1153 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1154 {
1155 LIST_HEAD(callbacks);
1156
1157 while (!list_empty(&plug->cb_list)) {
1158 list_splice_init(&plug->cb_list, &callbacks);
1159
1160 while (!list_empty(&callbacks)) {
1161 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1162 struct blk_plug_cb,
1163 list);
1164 list_del(&cb->list);
1165 cb->callback(cb, from_schedule);
1166 }
1167 }
1168 }
1169
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1170 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1171 int size)
1172 {
1173 struct blk_plug *plug = current->plug;
1174 struct blk_plug_cb *cb;
1175
1176 if (!plug)
1177 return NULL;
1178
1179 list_for_each_entry(cb, &plug->cb_list, list)
1180 if (cb->callback == unplug && cb->data == data)
1181 return cb;
1182
1183 /* Not currently on the callback list */
1184 BUG_ON(size < sizeof(*cb));
1185 cb = kzalloc(size, GFP_ATOMIC);
1186 if (cb) {
1187 cb->data = data;
1188 cb->callback = unplug;
1189 list_add(&cb->list, &plug->cb_list);
1190 }
1191 return cb;
1192 }
1193 EXPORT_SYMBOL(blk_check_plugged);
1194
__blk_flush_plug(struct blk_plug * plug,bool from_schedule)1195 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1196 {
1197 if (!list_empty(&plug->cb_list))
1198 flush_plug_callbacks(plug, from_schedule);
1199 blk_mq_flush_plug_list(plug, from_schedule);
1200 /*
1201 * Unconditionally flush out cached requests, even if the unplug
1202 * event came from schedule. Since we know hold references to the
1203 * queue for cached requests, we don't want a blocked task holding
1204 * up a queue freeze/quiesce event.
1205 */
1206 if (unlikely(!rq_list_empty(plug->cached_rq)))
1207 blk_mq_free_plug_rqs(plug);
1208 }
1209
1210 /**
1211 * blk_finish_plug - mark the end of a batch of submitted I/O
1212 * @plug: The &struct blk_plug passed to blk_start_plug()
1213 *
1214 * Description:
1215 * Indicate that a batch of I/O submissions is complete. This function
1216 * must be paired with an initial call to blk_start_plug(). The intent
1217 * is to allow the block layer to optimize I/O submission. See the
1218 * documentation for blk_start_plug() for more information.
1219 */
blk_finish_plug(struct blk_plug * plug)1220 void blk_finish_plug(struct blk_plug *plug)
1221 {
1222 if (plug == current->plug) {
1223 __blk_flush_plug(plug, false);
1224 current->plug = NULL;
1225 }
1226 }
1227 EXPORT_SYMBOL(blk_finish_plug);
1228
blk_io_schedule(void)1229 void blk_io_schedule(void)
1230 {
1231 /* Prevent hang_check timer from firing at us during very long I/O */
1232 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1233
1234 if (timeout)
1235 io_schedule_timeout(timeout);
1236 else
1237 io_schedule();
1238 }
1239 EXPORT_SYMBOL_GPL(blk_io_schedule);
1240
blk_dev_init(void)1241 int __init blk_dev_init(void)
1242 {
1243 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1244 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1245 sizeof_field(struct request, cmd_flags));
1246 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1247 sizeof_field(struct bio, bi_opf));
1248
1249 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1250 kblockd_workqueue = alloc_workqueue("kblockd",
1251 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1252 if (!kblockd_workqueue)
1253 panic("Failed to create kblockd\n");
1254
1255 blk_requestq_cachep = kmem_cache_create("request_queue",
1256 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1257
1258 blk_debugfs_root = debugfs_create_dir("block", NULL);
1259 blk_mq_debugfs_init();
1260
1261 return 0;
1262 }
1263