• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 			 struct io_comp_batch *iob, unsigned int flags);
54 
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 	return !list_empty_careful(&hctx->dispatch) ||
62 		sbitmap_any_bit_set(&hctx->ctx_map) ||
63 			blk_mq_sched_has_work(hctx);
64 }
65 
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 				     struct blk_mq_ctx *ctx)
71 {
72 	const int bit = ctx->index_hw[hctx->type];
73 
74 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 		sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 				      struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85 
86 struct mq_inflight {
87 	struct block_device *part;
88 	unsigned int inflight[2];
89 };
90 
blk_mq_check_inflight(struct request * rq,void * priv)91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 	struct mq_inflight *mi = priv;
94 
95 	if (rq->part && blk_do_io_stat(rq) &&
96 	    (!mi->part->bd_partno || rq->part == mi->part) &&
97 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 		mi->inflight[rq_data_dir(rq)]++;
99 
100 	return true;
101 }
102 
blk_mq_in_flight(struct request_queue * q,struct block_device * part)103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 		struct block_device *part)
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109 
110 	return mi.inflight[0] + mi.inflight[1];
111 }
112 
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 		unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 	inflight[0] = mi.inflight[0];
120 	inflight[1] = mi.inflight[1];
121 }
122 
blk_freeze_queue_start(struct request_queue * q)123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 	mutex_lock(&q->mq_freeze_lock);
126 	if (++q->mq_freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		mutex_unlock(&q->mq_freeze_lock);
129 		if (queue_is_mq(q))
130 			blk_mq_run_hw_queues(q, false);
131 	} else {
132 		mutex_unlock(&q->mq_freeze_lock);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136 
blk_mq_freeze_queue_wait(struct request_queue * q)137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 				     unsigned long timeout)
145 {
146 	return wait_event_timeout(q->mq_freeze_wq,
147 					percpu_ref_is_zero(&q->q_usage_counter),
148 					timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
blk_freeze_queue(struct request_queue * q)156 void blk_freeze_queue(struct request_queue *q)
157 {
158 	/*
159 	 * In the !blk_mq case we are only calling this to kill the
160 	 * q_usage_counter, otherwise this increases the freeze depth
161 	 * and waits for it to return to zero.  For this reason there is
162 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 	 * exported to drivers as the only user for unfreeze is blk_mq.
164 	 */
165 	blk_freeze_queue_start(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
blk_mq_freeze_queue(struct request_queue * q)169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 	mutex_lock(&q->mq_freeze_lock);
182 	if (force_atomic)
183 		q->q_usage_counter.data->force_atomic = true;
184 	q->mq_freeze_depth--;
185 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 	if (!q->mq_freeze_depth) {
187 		percpu_ref_resurrect(&q->q_usage_counter);
188 		wake_up_all(&q->mq_freeze_wq);
189 	}
190 	mutex_unlock(&q->mq_freeze_lock);
191 }
192 
blk_mq_unfreeze_queue(struct request_queue * q)193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 	__blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q->queue_lock, flags);
208 	if (!q->quiesce_depth++)
209 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 	spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 	if (set->flags & BLK_MQ_F_BLOCKING)
226 		synchronize_srcu(set->srcu);
227 	else
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231 
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
blk_mq_quiesce_queue(struct request_queue * q)241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 	blk_mq_quiesce_queue_nowait(q);
244 	/* nothing to wait for non-mq queues */
245 	if (queue_is_mq(q))
246 		blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
blk_mq_unquiesce_queue(struct request_queue * q)257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	unsigned long flags;
260 	bool run_queue = false;
261 
262 	spin_lock_irqsave(&q->queue_lock, flags);
263 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 		;
265 	} else if (!--q->quiesce_depth) {
266 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 		run_queue = true;
268 	}
269 	spin_unlock_irqrestore(&q->queue_lock, flags);
270 
271 	/* dispatch requests which are inserted during quiescing */
272 	if (run_queue)
273 		blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276 
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 	struct request_queue *q;
280 
281 	mutex_lock(&set->tag_list_lock);
282 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 		if (!blk_queue_skip_tagset_quiesce(q))
284 			blk_mq_quiesce_queue_nowait(q);
285 	}
286 	blk_mq_wait_quiesce_done(set);
287 	mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290 
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293 	struct request_queue *q;
294 
295 	mutex_lock(&set->tag_list_lock);
296 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 		if (!blk_queue_skip_tagset_quiesce(q))
298 			blk_mq_unquiesce_queue(q);
299 	}
300 	mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303 
blk_mq_wake_waiters(struct request_queue * q)304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306 	struct blk_mq_hw_ctx *hctx;
307 	unsigned long i;
308 
309 	queue_for_each_hw_ctx(q, hctx, i)
310 		if (blk_mq_hw_queue_mapped(hctx))
311 			blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313 
blk_rq_init(struct request_queue * q,struct request * rq)314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316 	memset(rq, 0, sizeof(*rq));
317 
318 	INIT_LIST_HEAD(&rq->queuelist);
319 	rq->q = q;
320 	rq->__sector = (sector_t) -1;
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->tag = BLK_MQ_NO_TAG;
324 	rq->internal_tag = BLK_MQ_NO_TAG;
325 	rq->start_time_ns = ktime_get_ns();
326 	rq->part = NULL;
327 	blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330 
331 /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334 	if (blk_mq_need_time_stamp(rq))
335 		rq->start_time_ns = ktime_get_ns();
336 	else
337 		rq->start_time_ns = 0;
338 
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 	if (blk_queue_rq_alloc_time(rq->q))
341 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 	else
343 		rq->alloc_time_ns = 0;
344 #endif
345 }
346 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 		struct blk_mq_tags *tags, unsigned int tag)
349 {
350 	struct blk_mq_ctx *ctx = data->ctx;
351 	struct blk_mq_hw_ctx *hctx = data->hctx;
352 	struct request_queue *q = data->q;
353 	struct request *rq = tags->static_rqs[tag];
354 
355 	rq->q = q;
356 	rq->mq_ctx = ctx;
357 	rq->mq_hctx = hctx;
358 	rq->cmd_flags = data->cmd_flags;
359 
360 	if (data->flags & BLK_MQ_REQ_PM)
361 		data->rq_flags |= RQF_PM;
362 	if (blk_queue_io_stat(q))
363 		data->rq_flags |= RQF_IO_STAT;
364 	rq->rq_flags = data->rq_flags;
365 
366 	if (data->rq_flags & RQF_SCHED_TAGS) {
367 		rq->tag = BLK_MQ_NO_TAG;
368 		rq->internal_tag = tag;
369 	} else {
370 		rq->tag = tag;
371 		rq->internal_tag = BLK_MQ_NO_TAG;
372 	}
373 	rq->timeout = 0;
374 
375 	rq->part = NULL;
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_USE_SCHED) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (e->type->ops.prepare_request)
398 			e->type->ops.prepare_request(rq);
399 	}
400 
401 	return rq;
402 }
403 
404 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407 	unsigned int tag, tag_offset;
408 	struct blk_mq_tags *tags;
409 	struct request *rq;
410 	unsigned long tag_mask;
411 	int i, nr = 0;
412 
413 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414 	if (unlikely(!tag_mask))
415 		return NULL;
416 
417 	tags = blk_mq_tags_from_data(data);
418 	for (i = 0; tag_mask; i++) {
419 		if (!(tag_mask & (1UL << i)))
420 			continue;
421 		tag = tag_offset + i;
422 		prefetch(tags->static_rqs[tag]);
423 		tag_mask &= ~(1UL << i);
424 		rq = blk_mq_rq_ctx_init(data, tags, tag);
425 		rq_list_add(data->cached_rq, rq);
426 		nr++;
427 	}
428 	/* caller already holds a reference, add for remainder */
429 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
430 	data->nr_tags -= nr;
431 
432 	return rq_list_pop(data->cached_rq);
433 }
434 
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
436 {
437 	struct request_queue *q = data->q;
438 	u64 alloc_time_ns = 0;
439 	struct request *rq;
440 	unsigned int tag;
441 
442 	/* alloc_time includes depth and tag waits */
443 	if (blk_queue_rq_alloc_time(q))
444 		alloc_time_ns = ktime_get_ns();
445 
446 	if (data->cmd_flags & REQ_NOWAIT)
447 		data->flags |= BLK_MQ_REQ_NOWAIT;
448 
449 retry:
450 	data->ctx = blk_mq_get_ctx(q);
451 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
452 
453 	if (q->elevator) {
454 		/*
455 		 * All requests use scheduler tags when an I/O scheduler is
456 		 * enabled for the queue.
457 		 */
458 		data->rq_flags |= RQF_SCHED_TAGS;
459 
460 		/*
461 		 * Flush/passthrough requests are special and go directly to the
462 		 * dispatch list.
463 		 */
464 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
465 		    !blk_op_is_passthrough(data->cmd_flags)) {
466 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
467 
468 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
469 
470 			data->rq_flags |= RQF_USE_SCHED;
471 			if (ops->limit_depth)
472 				ops->limit_depth(data->cmd_flags, data);
473 		}
474 	} else {
475 		blk_mq_tag_busy(data->hctx);
476 	}
477 
478 	if (data->flags & BLK_MQ_REQ_RESERVED)
479 		data->rq_flags |= RQF_RESV;
480 
481 	/*
482 	 * Try batched alloc if we want more than 1 tag.
483 	 */
484 	if (data->nr_tags > 1) {
485 		rq = __blk_mq_alloc_requests_batch(data);
486 		if (rq) {
487 			blk_mq_rq_time_init(rq, alloc_time_ns);
488 			return rq;
489 		}
490 		data->nr_tags = 1;
491 	}
492 
493 	/*
494 	 * Waiting allocations only fail because of an inactive hctx.  In that
495 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
496 	 * should have migrated us to an online CPU by now.
497 	 */
498 	tag = blk_mq_get_tag(data);
499 	if (tag == BLK_MQ_NO_TAG) {
500 		if (data->flags & BLK_MQ_REQ_NOWAIT)
501 			return NULL;
502 		/*
503 		 * Give up the CPU and sleep for a random short time to
504 		 * ensure that thread using a realtime scheduling class
505 		 * are migrated off the CPU, and thus off the hctx that
506 		 * is going away.
507 		 */
508 		msleep(3);
509 		goto retry;
510 	}
511 
512 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
513 	blk_mq_rq_time_init(rq, alloc_time_ns);
514 	return rq;
515 }
516 
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)517 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
518 					    struct blk_plug *plug,
519 					    blk_opf_t opf,
520 					    blk_mq_req_flags_t flags)
521 {
522 	struct blk_mq_alloc_data data = {
523 		.q		= q,
524 		.flags		= flags,
525 		.cmd_flags	= opf,
526 		.nr_tags	= plug->nr_ios,
527 		.cached_rq	= &plug->cached_rq,
528 	};
529 	struct request *rq;
530 
531 	if (blk_queue_enter(q, flags))
532 		return NULL;
533 
534 	plug->nr_ios = 1;
535 
536 	rq = __blk_mq_alloc_requests(&data);
537 	if (unlikely(!rq))
538 		blk_queue_exit(q);
539 	return rq;
540 }
541 
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)542 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
543 						   blk_opf_t opf,
544 						   blk_mq_req_flags_t flags)
545 {
546 	struct blk_plug *plug = current->plug;
547 	struct request *rq;
548 
549 	if (!plug)
550 		return NULL;
551 
552 	if (rq_list_empty(plug->cached_rq)) {
553 		if (plug->nr_ios == 1)
554 			return NULL;
555 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
556 		if (!rq)
557 			return NULL;
558 	} else {
559 		rq = rq_list_peek(&plug->cached_rq);
560 		if (!rq || rq->q != q)
561 			return NULL;
562 
563 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
564 			return NULL;
565 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
566 			return NULL;
567 
568 		plug->cached_rq = rq_list_next(rq);
569 		blk_mq_rq_time_init(rq, 0);
570 	}
571 
572 	rq->cmd_flags = opf;
573 	INIT_LIST_HEAD(&rq->queuelist);
574 	return rq;
575 }
576 
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)577 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
578 		blk_mq_req_flags_t flags)
579 {
580 	struct request *rq;
581 
582 	rq = blk_mq_alloc_cached_request(q, opf, flags);
583 	if (!rq) {
584 		struct blk_mq_alloc_data data = {
585 			.q		= q,
586 			.flags		= flags,
587 			.cmd_flags	= opf,
588 			.nr_tags	= 1,
589 		};
590 		int ret;
591 
592 		ret = blk_queue_enter(q, flags);
593 		if (ret)
594 			return ERR_PTR(ret);
595 
596 		rq = __blk_mq_alloc_requests(&data);
597 		if (!rq)
598 			goto out_queue_exit;
599 	}
600 	rq->__data_len = 0;
601 	rq->__sector = (sector_t) -1;
602 	rq->bio = rq->biotail = NULL;
603 	return rq;
604 out_queue_exit:
605 	blk_queue_exit(q);
606 	return ERR_PTR(-EWOULDBLOCK);
607 }
608 EXPORT_SYMBOL(blk_mq_alloc_request);
609 
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)610 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
611 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
612 {
613 	struct blk_mq_alloc_data data = {
614 		.q		= q,
615 		.flags		= flags,
616 		.cmd_flags	= opf,
617 		.nr_tags	= 1,
618 	};
619 	u64 alloc_time_ns = 0;
620 	struct request *rq;
621 	unsigned int cpu;
622 	unsigned int tag;
623 	int ret;
624 
625 	/* alloc_time includes depth and tag waits */
626 	if (blk_queue_rq_alloc_time(q))
627 		alloc_time_ns = ktime_get_ns();
628 
629 	/*
630 	 * If the tag allocator sleeps we could get an allocation for a
631 	 * different hardware context.  No need to complicate the low level
632 	 * allocator for this for the rare use case of a command tied to
633 	 * a specific queue.
634 	 */
635 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
636 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
637 		return ERR_PTR(-EINVAL);
638 
639 	if (hctx_idx >= q->nr_hw_queues)
640 		return ERR_PTR(-EIO);
641 
642 	ret = blk_queue_enter(q, flags);
643 	if (ret)
644 		return ERR_PTR(ret);
645 
646 	/*
647 	 * Check if the hardware context is actually mapped to anything.
648 	 * If not tell the caller that it should skip this queue.
649 	 */
650 	ret = -EXDEV;
651 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
652 	if (!blk_mq_hw_queue_mapped(data.hctx))
653 		goto out_queue_exit;
654 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
655 	if (cpu >= nr_cpu_ids)
656 		goto out_queue_exit;
657 	data.ctx = __blk_mq_get_ctx(q, cpu);
658 
659 	if (q->elevator)
660 		data.rq_flags |= RQF_SCHED_TAGS;
661 	else
662 		blk_mq_tag_busy(data.hctx);
663 
664 	if (flags & BLK_MQ_REQ_RESERVED)
665 		data.rq_flags |= RQF_RESV;
666 
667 	ret = -EWOULDBLOCK;
668 	tag = blk_mq_get_tag(&data);
669 	if (tag == BLK_MQ_NO_TAG)
670 		goto out_queue_exit;
671 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
672 	blk_mq_rq_time_init(rq, alloc_time_ns);
673 	rq->__data_len = 0;
674 	rq->__sector = (sector_t) -1;
675 	rq->bio = rq->biotail = NULL;
676 	return rq;
677 
678 out_queue_exit:
679 	blk_queue_exit(q);
680 	return ERR_PTR(ret);
681 }
682 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
683 
blk_mq_finish_request(struct request * rq)684 static void blk_mq_finish_request(struct request *rq)
685 {
686 	struct request_queue *q = rq->q;
687 
688 	if (rq->rq_flags & RQF_USE_SCHED) {
689 		q->elevator->type->ops.finish_request(rq);
690 		/*
691 		 * For postflush request that may need to be
692 		 * completed twice, we should clear this flag
693 		 * to avoid double finish_request() on the rq.
694 		 */
695 		rq->rq_flags &= ~RQF_USE_SCHED;
696 	}
697 }
698 
__blk_mq_free_request(struct request * rq)699 static void __blk_mq_free_request(struct request *rq)
700 {
701 	struct request_queue *q = rq->q;
702 	struct blk_mq_ctx *ctx = rq->mq_ctx;
703 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
704 	const int sched_tag = rq->internal_tag;
705 
706 	blk_crypto_free_request(rq);
707 	blk_pm_mark_last_busy(rq);
708 	rq->mq_hctx = NULL;
709 
710 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
711 		__blk_mq_dec_active_requests(hctx);
712 
713 	if (rq->tag != BLK_MQ_NO_TAG)
714 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
715 	if (sched_tag != BLK_MQ_NO_TAG)
716 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
717 	blk_mq_sched_restart(hctx);
718 	blk_queue_exit(q);
719 }
720 
blk_mq_free_request(struct request * rq)721 void blk_mq_free_request(struct request *rq)
722 {
723 	struct request_queue *q = rq->q;
724 
725 	blk_mq_finish_request(rq);
726 
727 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
728 		laptop_io_completion(q->disk->bdi);
729 
730 	rq_qos_done(q, rq);
731 
732 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
733 	if (req_ref_put_and_test(rq))
734 		__blk_mq_free_request(rq);
735 }
736 EXPORT_SYMBOL_GPL(blk_mq_free_request);
737 
blk_mq_free_plug_rqs(struct blk_plug * plug)738 void blk_mq_free_plug_rqs(struct blk_plug *plug)
739 {
740 	struct request *rq;
741 
742 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
743 		blk_mq_free_request(rq);
744 }
745 
blk_dump_rq_flags(struct request * rq,char * msg)746 void blk_dump_rq_flags(struct request *rq, char *msg)
747 {
748 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
749 		rq->q->disk ? rq->q->disk->disk_name : "?",
750 		(__force unsigned long long) rq->cmd_flags);
751 
752 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
753 	       (unsigned long long)blk_rq_pos(rq),
754 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
755 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
756 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
757 }
758 EXPORT_SYMBOL(blk_dump_rq_flags);
759 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)760 static void req_bio_endio(struct request *rq, struct bio *bio,
761 			  unsigned int nbytes, blk_status_t error)
762 {
763 	if (unlikely(error)) {
764 		bio->bi_status = error;
765 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
766 		/*
767 		 * Partial zone append completions cannot be supported as the
768 		 * BIO fragments may end up not being written sequentially.
769 		 */
770 		if (bio->bi_iter.bi_size != nbytes)
771 			bio->bi_status = BLK_STS_IOERR;
772 		else
773 			bio->bi_iter.bi_sector = rq->__sector;
774 	}
775 
776 	bio_advance(bio, nbytes);
777 
778 	if (unlikely(rq->rq_flags & RQF_QUIET))
779 		bio_set_flag(bio, BIO_QUIET);
780 	/* don't actually finish bio if it's part of flush sequence */
781 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
782 		bio_endio(bio);
783 }
784 
blk_account_io_completion(struct request * req,unsigned int bytes)785 static void blk_account_io_completion(struct request *req, unsigned int bytes)
786 {
787 	if (req->part && blk_do_io_stat(req)) {
788 		const int sgrp = op_stat_group(req_op(req));
789 
790 		part_stat_lock();
791 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
792 		part_stat_unlock();
793 	}
794 }
795 
blk_print_req_error(struct request * req,blk_status_t status)796 static void blk_print_req_error(struct request *req, blk_status_t status)
797 {
798 	printk_ratelimited(KERN_ERR
799 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
800 		"phys_seg %u prio class %u\n",
801 		blk_status_to_str(status),
802 		req->q->disk ? req->q->disk->disk_name : "?",
803 		blk_rq_pos(req), (__force u32)req_op(req),
804 		blk_op_str(req_op(req)),
805 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
806 		req->nr_phys_segments,
807 		IOPRIO_PRIO_CLASS(req->ioprio));
808 }
809 
810 /*
811  * Fully end IO on a request. Does not support partial completions, or
812  * errors.
813  */
blk_complete_request(struct request * req)814 static void blk_complete_request(struct request *req)
815 {
816 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
817 	int total_bytes = blk_rq_bytes(req);
818 	struct bio *bio = req->bio;
819 
820 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
821 
822 	if (!bio)
823 		return;
824 
825 #ifdef CONFIG_BLK_DEV_INTEGRITY
826 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
827 		req->q->integrity.profile->complete_fn(req, total_bytes);
828 #endif
829 
830 	/*
831 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
832 	 * bio_endio().  Therefore, the keyslot must be released before that.
833 	 */
834 	blk_crypto_rq_put_keyslot(req);
835 
836 	blk_account_io_completion(req, total_bytes);
837 
838 	do {
839 		struct bio *next = bio->bi_next;
840 
841 		/* Completion has already been traced */
842 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
843 
844 		if (req_op(req) == REQ_OP_ZONE_APPEND)
845 			bio->bi_iter.bi_sector = req->__sector;
846 
847 		if (!is_flush)
848 			bio_endio(bio);
849 		bio = next;
850 	} while (bio);
851 
852 	/*
853 	 * Reset counters so that the request stacking driver
854 	 * can find how many bytes remain in the request
855 	 * later.
856 	 */
857 	if (!req->end_io) {
858 		req->bio = NULL;
859 		req->__data_len = 0;
860 	}
861 }
862 
863 /**
864  * blk_update_request - Complete multiple bytes without completing the request
865  * @req:      the request being processed
866  * @error:    block status code
867  * @nr_bytes: number of bytes to complete for @req
868  *
869  * Description:
870  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
871  *     the request structure even if @req doesn't have leftover.
872  *     If @req has leftover, sets it up for the next range of segments.
873  *
874  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
875  *     %false return from this function.
876  *
877  * Note:
878  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
879  *      except in the consistency check at the end of this function.
880  *
881  * Return:
882  *     %false - this request doesn't have any more data
883  *     %true  - this request has more data
884  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)885 bool blk_update_request(struct request *req, blk_status_t error,
886 		unsigned int nr_bytes)
887 {
888 	int total_bytes;
889 
890 	trace_block_rq_complete(req, error, nr_bytes);
891 
892 	if (!req->bio)
893 		return false;
894 
895 #ifdef CONFIG_BLK_DEV_INTEGRITY
896 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
897 	    error == BLK_STS_OK)
898 		req->q->integrity.profile->complete_fn(req, nr_bytes);
899 #endif
900 
901 	/*
902 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
903 	 * bio_endio().  Therefore, the keyslot must be released before that.
904 	 */
905 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
906 		__blk_crypto_rq_put_keyslot(req);
907 
908 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
909 		     !(req->rq_flags & RQF_QUIET)) &&
910 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
911 		blk_print_req_error(req, error);
912 		trace_block_rq_error(req, error, nr_bytes);
913 	}
914 
915 	blk_account_io_completion(req, nr_bytes);
916 
917 	total_bytes = 0;
918 	while (req->bio) {
919 		struct bio *bio = req->bio;
920 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921 
922 		if (bio_bytes == bio->bi_iter.bi_size)
923 			req->bio = bio->bi_next;
924 
925 		/* Completion has already been traced */
926 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927 		req_bio_endio(req, bio, bio_bytes, error);
928 
929 		total_bytes += bio_bytes;
930 		nr_bytes -= bio_bytes;
931 
932 		if (!nr_bytes)
933 			break;
934 	}
935 
936 	/*
937 	 * completely done
938 	 */
939 	if (!req->bio) {
940 		/*
941 		 * Reset counters so that the request stacking driver
942 		 * can find how many bytes remain in the request
943 		 * later.
944 		 */
945 		req->__data_len = 0;
946 		return false;
947 	}
948 
949 	req->__data_len -= total_bytes;
950 
951 	/* update sector only for requests with clear definition of sector */
952 	if (!blk_rq_is_passthrough(req))
953 		req->__sector += total_bytes >> 9;
954 
955 	/* mixed attributes always follow the first bio */
956 	if (req->rq_flags & RQF_MIXED_MERGE) {
957 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
958 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959 	}
960 
961 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962 		/*
963 		 * If total number of sectors is less than the first segment
964 		 * size, something has gone terribly wrong.
965 		 */
966 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967 			blk_dump_rq_flags(req, "request botched");
968 			req->__data_len = blk_rq_cur_bytes(req);
969 		}
970 
971 		/* recalculate the number of segments */
972 		req->nr_phys_segments = blk_recalc_rq_segments(req);
973 	}
974 
975 	return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978 
blk_account_io_done(struct request * req,u64 now)979 static inline void blk_account_io_done(struct request *req, u64 now)
980 {
981 	trace_block_io_done(req);
982 
983 	/*
984 	 * Account IO completion.  flush_rq isn't accounted as a
985 	 * normal IO on queueing nor completion.  Accounting the
986 	 * containing request is enough.
987 	 */
988 	if (blk_do_io_stat(req) && req->part &&
989 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
990 		const int sgrp = op_stat_group(req_op(req));
991 
992 		part_stat_lock();
993 		update_io_ticks(req->part, jiffies, true);
994 		part_stat_inc(req->part, ios[sgrp]);
995 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
996 		part_stat_local_dec(req->part,
997 				    in_flight[op_is_write(req_op(req))]);
998 		part_stat_unlock();
999 	}
1000 }
1001 
blk_account_io_start(struct request * req)1002 static inline void blk_account_io_start(struct request *req)
1003 {
1004 	trace_block_io_start(req);
1005 
1006 	if (blk_do_io_stat(req)) {
1007 		/*
1008 		 * All non-passthrough requests are created from a bio with one
1009 		 * exception: when a flush command that is part of a flush sequence
1010 		 * generated by the state machine in blk-flush.c is cloned onto the
1011 		 * lower device by dm-multipath we can get here without a bio.
1012 		 */
1013 		if (req->bio)
1014 			req->part = req->bio->bi_bdev;
1015 		else
1016 			req->part = req->q->disk->part0;
1017 
1018 		part_stat_lock();
1019 		update_io_ticks(req->part, jiffies, false);
1020 		part_stat_local_inc(req->part,
1021 				    in_flight[op_is_write(req_op(req))]);
1022 		part_stat_unlock();
1023 	}
1024 }
1025 
__blk_mq_end_request_acct(struct request * rq,u64 now)1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028 	if (rq->rq_flags & RQF_STATS)
1029 		blk_stat_add(rq, now);
1030 
1031 	blk_mq_sched_completed_request(rq, now);
1032 	blk_account_io_done(rq, now);
1033 }
1034 
__blk_mq_end_request(struct request * rq,blk_status_t error)1035 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1036 {
1037 	if (blk_mq_need_time_stamp(rq))
1038 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1039 
1040 	blk_mq_finish_request(rq);
1041 
1042 	if (rq->end_io) {
1043 		rq_qos_done(rq->q, rq);
1044 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045 			blk_mq_free_request(rq);
1046 	} else {
1047 		blk_mq_free_request(rq);
1048 	}
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051 
blk_mq_end_request(struct request * rq,blk_status_t error)1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055 		BUG();
1056 	__blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059 
1060 #define TAG_COMP_BATCH		32
1061 
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063 					  int *tag_array, int nr_tags)
1064 {
1065 	struct request_queue *q = hctx->queue;
1066 
1067 	/*
1068 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1069 	 * update hctx->nr_active in batch
1070 	 */
1071 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1072 		__blk_mq_sub_active_requests(hctx, nr_tags);
1073 
1074 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077 
blk_mq_end_request_batch(struct io_comp_batch * iob)1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1081 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1082 	struct request *rq;
1083 	u64 now = 0;
1084 
1085 	if (iob->need_ts)
1086 		now = ktime_get_ns();
1087 
1088 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089 		prefetch(rq->bio);
1090 		prefetch(rq->rq_next);
1091 
1092 		blk_complete_request(rq);
1093 		if (iob->need_ts)
1094 			__blk_mq_end_request_acct(rq, now);
1095 
1096 		blk_mq_finish_request(rq);
1097 
1098 		rq_qos_done(rq->q, rq);
1099 
1100 		/*
1101 		 * If end_io handler returns NONE, then it still has
1102 		 * ownership of the request.
1103 		 */
1104 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1105 			continue;
1106 
1107 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1108 		if (!req_ref_put_and_test(rq))
1109 			continue;
1110 
1111 		blk_crypto_free_request(rq);
1112 		blk_pm_mark_last_busy(rq);
1113 
1114 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1115 			if (cur_hctx)
1116 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1117 			nr_tags = 0;
1118 			cur_hctx = rq->mq_hctx;
1119 		}
1120 		tags[nr_tags++] = rq->tag;
1121 	}
1122 
1123 	if (nr_tags)
1124 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1125 }
1126 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1127 
blk_complete_reqs(struct llist_head * list)1128 static void blk_complete_reqs(struct llist_head *list)
1129 {
1130 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1131 	struct request *rq, *next;
1132 
1133 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1134 		rq->q->mq_ops->complete(rq);
1135 }
1136 
blk_done_softirq(struct softirq_action * h)1137 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1138 {
1139 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1140 }
1141 
blk_softirq_cpu_dead(unsigned int cpu)1142 static int blk_softirq_cpu_dead(unsigned int cpu)
1143 {
1144 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1145 	return 0;
1146 }
1147 
__blk_mq_complete_request_remote(void * data)1148 static void __blk_mq_complete_request_remote(void *data)
1149 {
1150 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1151 }
1152 
blk_mq_complete_need_ipi(struct request * rq)1153 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1154 {
1155 	int cpu = raw_smp_processor_id();
1156 
1157 	if (!IS_ENABLED(CONFIG_SMP) ||
1158 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1159 		return false;
1160 	/*
1161 	 * With force threaded interrupts enabled, raising softirq from an SMP
1162 	 * function call will always result in waking the ksoftirqd thread.
1163 	 * This is probably worse than completing the request on a different
1164 	 * cache domain.
1165 	 */
1166 	if (force_irqthreads())
1167 		return false;
1168 
1169 	/* same CPU or cache domain and capacity?  Complete locally */
1170 	if (cpu == rq->mq_ctx->cpu ||
1171 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1172 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1173 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1174 		return false;
1175 
1176 	/* don't try to IPI to an offline CPU */
1177 	return cpu_online(rq->mq_ctx->cpu);
1178 }
1179 
blk_mq_complete_send_ipi(struct request * rq)1180 static void blk_mq_complete_send_ipi(struct request *rq)
1181 {
1182 	unsigned int cpu;
1183 
1184 	cpu = rq->mq_ctx->cpu;
1185 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1186 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1187 }
1188 
blk_mq_raise_softirq(struct request * rq)1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191 	struct llist_head *list;
1192 
1193 	preempt_disable();
1194 	list = this_cpu_ptr(&blk_cpu_done);
1195 	if (llist_add(&rq->ipi_list, list))
1196 		raise_softirq(BLOCK_SOFTIRQ);
1197 	preempt_enable();
1198 }
1199 
blk_mq_complete_request_remote(struct request * rq)1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203 
1204 	/*
1205 	 * For request which hctx has only one ctx mapping,
1206 	 * or a polled request, always complete locally,
1207 	 * it's pointless to redirect the completion.
1208 	 */
1209 	if ((rq->mq_hctx->nr_ctx == 1 &&
1210 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1211 	     rq->cmd_flags & REQ_POLLED)
1212 		return false;
1213 
1214 	if (blk_mq_complete_need_ipi(rq)) {
1215 		blk_mq_complete_send_ipi(rq);
1216 		return true;
1217 	}
1218 
1219 	if (rq->q->nr_hw_queues == 1) {
1220 		blk_mq_raise_softirq(rq);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226 
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:		the request being processed
1230  *
1231  * Description:
1232  *	Complete a request by scheduling the ->complete_rq operation.
1233  **/
blk_mq_complete_request(struct request * rq)1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236 	if (!blk_mq_complete_request_remote(rq))
1237 		rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240 
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
blk_mq_start_request(struct request * rq)1249 void blk_mq_start_request(struct request *rq)
1250 {
1251 	struct request_queue *q = rq->q;
1252 
1253 	trace_block_rq_issue(rq);
1254 
1255 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256 		rq->io_start_time_ns = ktime_get_ns();
1257 		rq->stats_sectors = blk_rq_sectors(rq);
1258 		rq->rq_flags |= RQF_STATS;
1259 		rq_qos_issue(q, rq);
1260 	}
1261 
1262 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263 
1264 	blk_add_timer(rq);
1265 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266 
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269 		q->integrity.profile->prepare_fn(rq);
1270 #endif
1271 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275 
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
blk_plug_max_rq_count(struct blk_plug * plug)1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283 	if (plug->multiple_queues)
1284 		return BLK_MAX_REQUEST_COUNT * 2;
1285 	return BLK_MAX_REQUEST_COUNT;
1286 }
1287 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290 	struct request *last = rq_list_peek(&plug->mq_list);
1291 
1292 	if (!plug->rq_count) {
1293 		trace_block_plug(rq->q);
1294 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295 		   (!blk_queue_nomerges(rq->q) &&
1296 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297 		blk_mq_flush_plug_list(plug, false);
1298 		last = NULL;
1299 		trace_block_plug(rq->q);
1300 	}
1301 
1302 	if (!plug->multiple_queues && last && last->q != rq->q)
1303 		plug->multiple_queues = true;
1304 	/*
1305 	 * Any request allocated from sched tags can't be issued to
1306 	 * ->queue_rqs() directly
1307 	 */
1308 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1309 		plug->has_elevator = true;
1310 	rq->rq_next = NULL;
1311 	rq_list_add(&plug->mq_list, rq);
1312 	plug->rq_count++;
1313 }
1314 
1315 /**
1316  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1317  * @rq:		request to insert
1318  * @at_head:    insert request at head or tail of queue
1319  *
1320  * Description:
1321  *    Insert a fully prepared request at the back of the I/O scheduler queue
1322  *    for execution.  Don't wait for completion.
1323  *
1324  * Note:
1325  *    This function will invoke @done directly if the queue is dead.
1326  */
blk_execute_rq_nowait(struct request * rq,bool at_head)1327 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1328 {
1329 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1330 
1331 	WARN_ON(irqs_disabled());
1332 	WARN_ON(!blk_rq_is_passthrough(rq));
1333 
1334 	blk_account_io_start(rq);
1335 
1336 	/*
1337 	 * As plugging can be enabled for passthrough requests on a zoned
1338 	 * device, directly accessing the plug instead of using blk_mq_plug()
1339 	 * should not have any consequences.
1340 	 */
1341 	if (current->plug && !at_head) {
1342 		blk_add_rq_to_plug(current->plug, rq);
1343 		return;
1344 	}
1345 
1346 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1347 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1348 }
1349 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1350 
1351 struct blk_rq_wait {
1352 	struct completion done;
1353 	blk_status_t ret;
1354 };
1355 
blk_end_sync_rq(struct request * rq,blk_status_t ret)1356 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1357 {
1358 	struct blk_rq_wait *wait = rq->end_io_data;
1359 
1360 	wait->ret = ret;
1361 	complete(&wait->done);
1362 	return RQ_END_IO_NONE;
1363 }
1364 
blk_rq_is_poll(struct request * rq)1365 bool blk_rq_is_poll(struct request *rq)
1366 {
1367 	if (!rq->mq_hctx)
1368 		return false;
1369 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1370 		return false;
1371 	return true;
1372 }
1373 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1374 
blk_rq_poll_completion(struct request * rq,struct completion * wait)1375 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1376 {
1377 	do {
1378 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1379 		cond_resched();
1380 	} while (!completion_done(wait));
1381 }
1382 
1383 /**
1384  * blk_execute_rq - insert a request into queue for execution
1385  * @rq:		request to insert
1386  * @at_head:    insert request at head or tail of queue
1387  *
1388  * Description:
1389  *    Insert a fully prepared request at the back of the I/O scheduler queue
1390  *    for execution and wait for completion.
1391  * Return: The blk_status_t result provided to blk_mq_end_request().
1392  */
blk_execute_rq(struct request * rq,bool at_head)1393 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1394 {
1395 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1396 	struct blk_rq_wait wait = {
1397 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1398 	};
1399 
1400 	WARN_ON(irqs_disabled());
1401 	WARN_ON(!blk_rq_is_passthrough(rq));
1402 
1403 	rq->end_io_data = &wait;
1404 	rq->end_io = blk_end_sync_rq;
1405 
1406 	blk_account_io_start(rq);
1407 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1408 	blk_mq_run_hw_queue(hctx, false);
1409 
1410 	if (blk_rq_is_poll(rq)) {
1411 		blk_rq_poll_completion(rq, &wait.done);
1412 	} else {
1413 		/*
1414 		 * Prevent hang_check timer from firing at us during very long
1415 		 * I/O
1416 		 */
1417 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1418 
1419 		if (hang_check)
1420 			while (!wait_for_completion_io_timeout(&wait.done,
1421 					hang_check * (HZ/2)))
1422 				;
1423 		else
1424 			wait_for_completion_io(&wait.done);
1425 	}
1426 
1427 	return wait.ret;
1428 }
1429 EXPORT_SYMBOL(blk_execute_rq);
1430 
__blk_mq_requeue_request(struct request * rq)1431 static void __blk_mq_requeue_request(struct request *rq)
1432 {
1433 	struct request_queue *q = rq->q;
1434 
1435 	blk_mq_put_driver_tag(rq);
1436 
1437 	trace_block_rq_requeue(rq);
1438 	rq_qos_requeue(q, rq);
1439 
1440 	if (blk_mq_request_started(rq)) {
1441 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1442 		rq->rq_flags &= ~RQF_TIMED_OUT;
1443 	}
1444 }
1445 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1446 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1447 {
1448 	struct request_queue *q = rq->q;
1449 	unsigned long flags;
1450 
1451 	__blk_mq_requeue_request(rq);
1452 
1453 	/* this request will be re-inserted to io scheduler queue */
1454 	blk_mq_sched_requeue_request(rq);
1455 
1456 	spin_lock_irqsave(&q->requeue_lock, flags);
1457 	list_add_tail(&rq->queuelist, &q->requeue_list);
1458 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1459 
1460 	if (kick_requeue_list)
1461 		blk_mq_kick_requeue_list(q);
1462 }
1463 EXPORT_SYMBOL(blk_mq_requeue_request);
1464 
blk_mq_requeue_work(struct work_struct * work)1465 static void blk_mq_requeue_work(struct work_struct *work)
1466 {
1467 	struct request_queue *q =
1468 		container_of(work, struct request_queue, requeue_work.work);
1469 	LIST_HEAD(rq_list);
1470 	LIST_HEAD(flush_list);
1471 	struct request *rq;
1472 
1473 	spin_lock_irq(&q->requeue_lock);
1474 	list_splice_init(&q->requeue_list, &rq_list);
1475 	list_splice_init(&q->flush_list, &flush_list);
1476 	spin_unlock_irq(&q->requeue_lock);
1477 
1478 	while (!list_empty(&rq_list)) {
1479 		rq = list_entry(rq_list.next, struct request, queuelist);
1480 		/*
1481 		 * If RQF_DONTPREP ist set, the request has been started by the
1482 		 * driver already and might have driver-specific data allocated
1483 		 * already.  Insert it into the hctx dispatch list to avoid
1484 		 * block layer merges for the request.
1485 		 */
1486 		if (rq->rq_flags & RQF_DONTPREP) {
1487 			list_del_init(&rq->queuelist);
1488 			blk_mq_request_bypass_insert(rq, 0);
1489 		} else {
1490 			list_del_init(&rq->queuelist);
1491 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1492 		}
1493 	}
1494 
1495 	while (!list_empty(&flush_list)) {
1496 		rq = list_entry(flush_list.next, struct request, queuelist);
1497 		list_del_init(&rq->queuelist);
1498 		blk_mq_insert_request(rq, 0);
1499 	}
1500 
1501 	blk_mq_run_hw_queues(q, false);
1502 }
1503 
blk_mq_kick_requeue_list(struct request_queue * q)1504 void blk_mq_kick_requeue_list(struct request_queue *q)
1505 {
1506 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1507 }
1508 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1509 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1510 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1511 				    unsigned long msecs)
1512 {
1513 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1514 				    msecs_to_jiffies(msecs));
1515 }
1516 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1517 
blk_is_flush_data_rq(struct request * rq)1518 static bool blk_is_flush_data_rq(struct request *rq)
1519 {
1520 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1521 }
1522 
blk_mq_rq_inflight(struct request * rq,void * priv)1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1524 {
1525 	/*
1526 	 * If we find a request that isn't idle we know the queue is busy
1527 	 * as it's checked in the iter.
1528 	 * Return false to stop the iteration.
1529 	 *
1530 	 * In case of queue quiesce, if one flush data request is completed,
1531 	 * don't count it as inflight given the flush sequence is suspended,
1532 	 * and the original flush data request is invisible to driver, just
1533 	 * like other pending requests because of quiesce
1534 	 */
1535 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1536 				blk_is_flush_data_rq(rq) &&
1537 				blk_mq_request_completed(rq))) {
1538 		bool *busy = priv;
1539 
1540 		*busy = true;
1541 		return false;
1542 	}
1543 
1544 	return true;
1545 }
1546 
blk_mq_queue_inflight(struct request_queue * q)1547 bool blk_mq_queue_inflight(struct request_queue *q)
1548 {
1549 	bool busy = false;
1550 
1551 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1552 	return busy;
1553 }
1554 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1555 
blk_mq_rq_timed_out(struct request * req)1556 static void blk_mq_rq_timed_out(struct request *req)
1557 {
1558 	req->rq_flags |= RQF_TIMED_OUT;
1559 	if (req->q->mq_ops->timeout) {
1560 		enum blk_eh_timer_return ret;
1561 
1562 		ret = req->q->mq_ops->timeout(req);
1563 		if (ret == BLK_EH_DONE)
1564 			return;
1565 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1566 	}
1567 
1568 	blk_add_timer(req);
1569 }
1570 
1571 struct blk_expired_data {
1572 	bool has_timedout_rq;
1573 	unsigned long next;
1574 	unsigned long timeout_start;
1575 };
1576 
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1577 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1578 {
1579 	unsigned long deadline;
1580 
1581 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1582 		return false;
1583 	if (rq->rq_flags & RQF_TIMED_OUT)
1584 		return false;
1585 
1586 	deadline = READ_ONCE(rq->deadline);
1587 	if (time_after_eq(expired->timeout_start, deadline))
1588 		return true;
1589 
1590 	if (expired->next == 0)
1591 		expired->next = deadline;
1592 	else if (time_after(expired->next, deadline))
1593 		expired->next = deadline;
1594 	return false;
1595 }
1596 
blk_mq_put_rq_ref(struct request * rq)1597 void blk_mq_put_rq_ref(struct request *rq)
1598 {
1599 	if (is_flush_rq(rq)) {
1600 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1601 			blk_mq_free_request(rq);
1602 	} else if (req_ref_put_and_test(rq)) {
1603 		__blk_mq_free_request(rq);
1604 	}
1605 }
1606 
blk_mq_check_expired(struct request * rq,void * priv)1607 static bool blk_mq_check_expired(struct request *rq, void *priv)
1608 {
1609 	struct blk_expired_data *expired = priv;
1610 
1611 	/*
1612 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1613 	 * be reallocated underneath the timeout handler's processing, then
1614 	 * the expire check is reliable. If the request is not expired, then
1615 	 * it was completed and reallocated as a new request after returning
1616 	 * from blk_mq_check_expired().
1617 	 */
1618 	if (blk_mq_req_expired(rq, expired)) {
1619 		expired->has_timedout_rq = true;
1620 		return false;
1621 	}
1622 	return true;
1623 }
1624 
blk_mq_handle_expired(struct request * rq,void * priv)1625 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1626 {
1627 	struct blk_expired_data *expired = priv;
1628 
1629 	if (blk_mq_req_expired(rq, expired))
1630 		blk_mq_rq_timed_out(rq);
1631 	return true;
1632 }
1633 
blk_mq_timeout_work(struct work_struct * work)1634 static void blk_mq_timeout_work(struct work_struct *work)
1635 {
1636 	struct request_queue *q =
1637 		container_of(work, struct request_queue, timeout_work);
1638 	struct blk_expired_data expired = {
1639 		.timeout_start = jiffies,
1640 	};
1641 	struct blk_mq_hw_ctx *hctx;
1642 	unsigned long i;
1643 
1644 	/* A deadlock might occur if a request is stuck requiring a
1645 	 * timeout at the same time a queue freeze is waiting
1646 	 * completion, since the timeout code would not be able to
1647 	 * acquire the queue reference here.
1648 	 *
1649 	 * That's why we don't use blk_queue_enter here; instead, we use
1650 	 * percpu_ref_tryget directly, because we need to be able to
1651 	 * obtain a reference even in the short window between the queue
1652 	 * starting to freeze, by dropping the first reference in
1653 	 * blk_freeze_queue_start, and the moment the last request is
1654 	 * consumed, marked by the instant q_usage_counter reaches
1655 	 * zero.
1656 	 */
1657 	if (!percpu_ref_tryget(&q->q_usage_counter))
1658 		return;
1659 
1660 	/* check if there is any timed-out request */
1661 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1662 	if (expired.has_timedout_rq) {
1663 		/*
1664 		 * Before walking tags, we must ensure any submit started
1665 		 * before the current time has finished. Since the submit
1666 		 * uses srcu or rcu, wait for a synchronization point to
1667 		 * ensure all running submits have finished
1668 		 */
1669 		blk_mq_wait_quiesce_done(q->tag_set);
1670 
1671 		expired.next = 0;
1672 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1673 	}
1674 
1675 	if (expired.next != 0) {
1676 		mod_timer(&q->timeout, expired.next);
1677 	} else {
1678 		/*
1679 		 * Request timeouts are handled as a forward rolling timer. If
1680 		 * we end up here it means that no requests are pending and
1681 		 * also that no request has been pending for a while. Mark
1682 		 * each hctx as idle.
1683 		 */
1684 		queue_for_each_hw_ctx(q, hctx, i) {
1685 			/* the hctx may be unmapped, so check it here */
1686 			if (blk_mq_hw_queue_mapped(hctx))
1687 				blk_mq_tag_idle(hctx);
1688 		}
1689 	}
1690 	blk_queue_exit(q);
1691 }
1692 
1693 struct flush_busy_ctx_data {
1694 	struct blk_mq_hw_ctx *hctx;
1695 	struct list_head *list;
1696 };
1697 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1698 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1699 {
1700 	struct flush_busy_ctx_data *flush_data = data;
1701 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1702 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1703 	enum hctx_type type = hctx->type;
1704 
1705 	spin_lock(&ctx->lock);
1706 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1707 	sbitmap_clear_bit(sb, bitnr);
1708 	spin_unlock(&ctx->lock);
1709 	return true;
1710 }
1711 
1712 /*
1713  * Process software queues that have been marked busy, splicing them
1714  * to the for-dispatch
1715  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1716 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1717 {
1718 	struct flush_busy_ctx_data data = {
1719 		.hctx = hctx,
1720 		.list = list,
1721 	};
1722 
1723 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1724 }
1725 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1726 
1727 struct dispatch_rq_data {
1728 	struct blk_mq_hw_ctx *hctx;
1729 	struct request *rq;
1730 };
1731 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1732 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1733 		void *data)
1734 {
1735 	struct dispatch_rq_data *dispatch_data = data;
1736 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1737 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1738 	enum hctx_type type = hctx->type;
1739 
1740 	spin_lock(&ctx->lock);
1741 	if (!list_empty(&ctx->rq_lists[type])) {
1742 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1743 		list_del_init(&dispatch_data->rq->queuelist);
1744 		if (list_empty(&ctx->rq_lists[type]))
1745 			sbitmap_clear_bit(sb, bitnr);
1746 	}
1747 	spin_unlock(&ctx->lock);
1748 
1749 	return !dispatch_data->rq;
1750 }
1751 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1752 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1753 					struct blk_mq_ctx *start)
1754 {
1755 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1756 	struct dispatch_rq_data data = {
1757 		.hctx = hctx,
1758 		.rq   = NULL,
1759 	};
1760 
1761 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1762 			       dispatch_rq_from_ctx, &data);
1763 
1764 	return data.rq;
1765 }
1766 
__blk_mq_alloc_driver_tag(struct request * rq)1767 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1768 {
1769 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1770 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1771 	int tag;
1772 
1773 	blk_mq_tag_busy(rq->mq_hctx);
1774 
1775 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1776 		bt = &rq->mq_hctx->tags->breserved_tags;
1777 		tag_offset = 0;
1778 	}
1779 
1780 	tag = __sbitmap_queue_get(bt);
1781 	if (tag == BLK_MQ_NO_TAG)
1782 		return false;
1783 
1784 	rq->tag = tag + tag_offset;
1785 	return true;
1786 }
1787 
__blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1788 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1789 {
1790 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1791 		return false;
1792 
1793 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1794 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1795 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1796 		__blk_mq_inc_active_requests(hctx);
1797 	}
1798 	hctx->tags->rqs[rq->tag] = rq;
1799 	return true;
1800 }
1801 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1802 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1803 				int flags, void *key)
1804 {
1805 	struct blk_mq_hw_ctx *hctx;
1806 
1807 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1808 
1809 	spin_lock(&hctx->dispatch_wait_lock);
1810 	if (!list_empty(&wait->entry)) {
1811 		struct sbitmap_queue *sbq;
1812 
1813 		list_del_init(&wait->entry);
1814 		sbq = &hctx->tags->bitmap_tags;
1815 		atomic_dec(&sbq->ws_active);
1816 	}
1817 	spin_unlock(&hctx->dispatch_wait_lock);
1818 
1819 	blk_mq_run_hw_queue(hctx, true);
1820 	return 1;
1821 }
1822 
1823 /*
1824  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1825  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1826  * restart. For both cases, take care to check the condition again after
1827  * marking us as waiting.
1828  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1829 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1830 				 struct request *rq)
1831 {
1832 	struct sbitmap_queue *sbq;
1833 	struct wait_queue_head *wq;
1834 	wait_queue_entry_t *wait;
1835 	bool ret;
1836 
1837 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1838 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1839 		blk_mq_sched_mark_restart_hctx(hctx);
1840 
1841 		/*
1842 		 * It's possible that a tag was freed in the window between the
1843 		 * allocation failure and adding the hardware queue to the wait
1844 		 * queue.
1845 		 *
1846 		 * Don't clear RESTART here, someone else could have set it.
1847 		 * At most this will cost an extra queue run.
1848 		 */
1849 		return blk_mq_get_driver_tag(rq);
1850 	}
1851 
1852 	wait = &hctx->dispatch_wait;
1853 	if (!list_empty_careful(&wait->entry))
1854 		return false;
1855 
1856 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1857 		sbq = &hctx->tags->breserved_tags;
1858 	else
1859 		sbq = &hctx->tags->bitmap_tags;
1860 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1861 
1862 	spin_lock_irq(&wq->lock);
1863 	spin_lock(&hctx->dispatch_wait_lock);
1864 	if (!list_empty(&wait->entry)) {
1865 		spin_unlock(&hctx->dispatch_wait_lock);
1866 		spin_unlock_irq(&wq->lock);
1867 		return false;
1868 	}
1869 
1870 	atomic_inc(&sbq->ws_active);
1871 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1872 	__add_wait_queue(wq, wait);
1873 
1874 	/*
1875 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1876 	 * not imply barrier in case of failure.
1877 	 *
1878 	 * Order adding us to wait queue and allocating driver tag.
1879 	 *
1880 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1881 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1882 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1883 	 *
1884 	 * Otherwise, re-order of adding wait queue and getting driver tag
1885 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1886 	 * the waitqueue_active() may not observe us in wait queue.
1887 	 */
1888 	smp_mb();
1889 
1890 	/*
1891 	 * It's possible that a tag was freed in the window between the
1892 	 * allocation failure and adding the hardware queue to the wait
1893 	 * queue.
1894 	 */
1895 	ret = blk_mq_get_driver_tag(rq);
1896 	if (!ret) {
1897 		spin_unlock(&hctx->dispatch_wait_lock);
1898 		spin_unlock_irq(&wq->lock);
1899 		return false;
1900 	}
1901 
1902 	/*
1903 	 * We got a tag, remove ourselves from the wait queue to ensure
1904 	 * someone else gets the wakeup.
1905 	 */
1906 	list_del_init(&wait->entry);
1907 	atomic_dec(&sbq->ws_active);
1908 	spin_unlock(&hctx->dispatch_wait_lock);
1909 	spin_unlock_irq(&wq->lock);
1910 
1911 	return true;
1912 }
1913 
1914 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1915 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1916 /*
1917  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1918  * - EWMA is one simple way to compute running average value
1919  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1920  * - take 4 as factor for avoiding to get too small(0) result, and this
1921  *   factor doesn't matter because EWMA decreases exponentially
1922  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1923 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1924 {
1925 	unsigned int ewma;
1926 
1927 	ewma = hctx->dispatch_busy;
1928 
1929 	if (!ewma && !busy)
1930 		return;
1931 
1932 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1933 	if (busy)
1934 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1935 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1936 
1937 	hctx->dispatch_busy = ewma;
1938 }
1939 
1940 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1941 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1942 static void blk_mq_handle_dev_resource(struct request *rq,
1943 				       struct list_head *list)
1944 {
1945 	list_add(&rq->queuelist, list);
1946 	__blk_mq_requeue_request(rq);
1947 }
1948 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1949 static void blk_mq_handle_zone_resource(struct request *rq,
1950 					struct list_head *zone_list)
1951 {
1952 	/*
1953 	 * If we end up here it is because we cannot dispatch a request to a
1954 	 * specific zone due to LLD level zone-write locking or other zone
1955 	 * related resource not being available. In this case, set the request
1956 	 * aside in zone_list for retrying it later.
1957 	 */
1958 	list_add(&rq->queuelist, zone_list);
1959 	__blk_mq_requeue_request(rq);
1960 }
1961 
1962 enum prep_dispatch {
1963 	PREP_DISPATCH_OK,
1964 	PREP_DISPATCH_NO_TAG,
1965 	PREP_DISPATCH_NO_BUDGET,
1966 };
1967 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1968 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1969 						  bool need_budget)
1970 {
1971 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1972 	int budget_token = -1;
1973 
1974 	if (need_budget) {
1975 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1976 		if (budget_token < 0) {
1977 			blk_mq_put_driver_tag(rq);
1978 			return PREP_DISPATCH_NO_BUDGET;
1979 		}
1980 		blk_mq_set_rq_budget_token(rq, budget_token);
1981 	}
1982 
1983 	if (!blk_mq_get_driver_tag(rq)) {
1984 		/*
1985 		 * The initial allocation attempt failed, so we need to
1986 		 * rerun the hardware queue when a tag is freed. The
1987 		 * waitqueue takes care of that. If the queue is run
1988 		 * before we add this entry back on the dispatch list,
1989 		 * we'll re-run it below.
1990 		 */
1991 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1992 			/*
1993 			 * All budgets not got from this function will be put
1994 			 * together during handling partial dispatch
1995 			 */
1996 			if (need_budget)
1997 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1998 			return PREP_DISPATCH_NO_TAG;
1999 		}
2000 	}
2001 
2002 	return PREP_DISPATCH_OK;
2003 }
2004 
2005 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2006 static void blk_mq_release_budgets(struct request_queue *q,
2007 		struct list_head *list)
2008 {
2009 	struct request *rq;
2010 
2011 	list_for_each_entry(rq, list, queuelist) {
2012 		int budget_token = blk_mq_get_rq_budget_token(rq);
2013 
2014 		if (budget_token >= 0)
2015 			blk_mq_put_dispatch_budget(q, budget_token);
2016 	}
2017 }
2018 
2019 /*
2020  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2021  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2022  * details)
2023  * Attention, we should explicitly call this in unusual cases:
2024  *  1) did not queue everything initially scheduled to queue
2025  *  2) the last attempt to queue a request failed
2026  */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2027 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2028 			      bool from_schedule)
2029 {
2030 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2031 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2032 		hctx->queue->mq_ops->commit_rqs(hctx);
2033 	}
2034 }
2035 
2036 /*
2037  * Returns true if we did some work AND can potentially do more.
2038  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)2039 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2040 			     unsigned int nr_budgets)
2041 {
2042 	enum prep_dispatch prep;
2043 	struct request_queue *q = hctx->queue;
2044 	struct request *rq;
2045 	int queued;
2046 	blk_status_t ret = BLK_STS_OK;
2047 	LIST_HEAD(zone_list);
2048 	bool needs_resource = false;
2049 
2050 	if (list_empty(list))
2051 		return false;
2052 
2053 	/*
2054 	 * Now process all the entries, sending them to the driver.
2055 	 */
2056 	queued = 0;
2057 	do {
2058 		struct blk_mq_queue_data bd;
2059 
2060 		rq = list_first_entry(list, struct request, queuelist);
2061 
2062 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2063 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2064 		if (prep != PREP_DISPATCH_OK)
2065 			break;
2066 
2067 		list_del_init(&rq->queuelist);
2068 
2069 		bd.rq = rq;
2070 		bd.last = list_empty(list);
2071 
2072 		/*
2073 		 * once the request is queued to lld, no need to cover the
2074 		 * budget any more
2075 		 */
2076 		if (nr_budgets)
2077 			nr_budgets--;
2078 		ret = q->mq_ops->queue_rq(hctx, &bd);
2079 		switch (ret) {
2080 		case BLK_STS_OK:
2081 			queued++;
2082 			break;
2083 		case BLK_STS_RESOURCE:
2084 			needs_resource = true;
2085 			fallthrough;
2086 		case BLK_STS_DEV_RESOURCE:
2087 			blk_mq_handle_dev_resource(rq, list);
2088 			goto out;
2089 		case BLK_STS_ZONE_RESOURCE:
2090 			/*
2091 			 * Move the request to zone_list and keep going through
2092 			 * the dispatch list to find more requests the drive can
2093 			 * accept.
2094 			 */
2095 			blk_mq_handle_zone_resource(rq, &zone_list);
2096 			needs_resource = true;
2097 			break;
2098 		default:
2099 			blk_mq_end_request(rq, ret);
2100 		}
2101 	} while (!list_empty(list));
2102 out:
2103 	if (!list_empty(&zone_list))
2104 		list_splice_tail_init(&zone_list, list);
2105 
2106 	/* If we didn't flush the entire list, we could have told the driver
2107 	 * there was more coming, but that turned out to be a lie.
2108 	 */
2109 	if (!list_empty(list) || ret != BLK_STS_OK)
2110 		blk_mq_commit_rqs(hctx, queued, false);
2111 
2112 	/*
2113 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2114 	 * that is where we will continue on next queue run.
2115 	 */
2116 	if (!list_empty(list)) {
2117 		bool needs_restart;
2118 		/* For non-shared tags, the RESTART check will suffice */
2119 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2120 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2121 			blk_mq_is_shared_tags(hctx->flags));
2122 
2123 		if (nr_budgets)
2124 			blk_mq_release_budgets(q, list);
2125 
2126 		spin_lock(&hctx->lock);
2127 		list_splice_tail_init(list, &hctx->dispatch);
2128 		spin_unlock(&hctx->lock);
2129 
2130 		/*
2131 		 * Order adding requests to hctx->dispatch and checking
2132 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2133 		 * in blk_mq_sched_restart(). Avoid restart code path to
2134 		 * miss the new added requests to hctx->dispatch, meantime
2135 		 * SCHED_RESTART is observed here.
2136 		 */
2137 		smp_mb();
2138 
2139 		/*
2140 		 * If SCHED_RESTART was set by the caller of this function and
2141 		 * it is no longer set that means that it was cleared by another
2142 		 * thread and hence that a queue rerun is needed.
2143 		 *
2144 		 * If 'no_tag' is set, that means that we failed getting
2145 		 * a driver tag with an I/O scheduler attached. If our dispatch
2146 		 * waitqueue is no longer active, ensure that we run the queue
2147 		 * AFTER adding our entries back to the list.
2148 		 *
2149 		 * If no I/O scheduler has been configured it is possible that
2150 		 * the hardware queue got stopped and restarted before requests
2151 		 * were pushed back onto the dispatch list. Rerun the queue to
2152 		 * avoid starvation. Notes:
2153 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2154 		 *   been stopped before rerunning a queue.
2155 		 * - Some but not all block drivers stop a queue before
2156 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2157 		 *   and dm-rq.
2158 		 *
2159 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2160 		 * bit is set, run queue after a delay to avoid IO stalls
2161 		 * that could otherwise occur if the queue is idle.  We'll do
2162 		 * similar if we couldn't get budget or couldn't lock a zone
2163 		 * and SCHED_RESTART is set.
2164 		 */
2165 		needs_restart = blk_mq_sched_needs_restart(hctx);
2166 		if (prep == PREP_DISPATCH_NO_BUDGET)
2167 			needs_resource = true;
2168 		if (!needs_restart ||
2169 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2170 			blk_mq_run_hw_queue(hctx, true);
2171 		else if (needs_resource)
2172 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2173 
2174 		blk_mq_update_dispatch_busy(hctx, true);
2175 		return false;
2176 	}
2177 
2178 	blk_mq_update_dispatch_busy(hctx, false);
2179 	return true;
2180 }
2181 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2182 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2183 {
2184 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2185 
2186 	if (cpu >= nr_cpu_ids)
2187 		cpu = cpumask_first(hctx->cpumask);
2188 	return cpu;
2189 }
2190 
2191 /*
2192  * It'd be great if the workqueue API had a way to pass
2193  * in a mask and had some smarts for more clever placement.
2194  * For now we just round-robin here, switching for every
2195  * BLK_MQ_CPU_WORK_BATCH queued items.
2196  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2197 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2198 {
2199 	bool tried = false;
2200 	int next_cpu = hctx->next_cpu;
2201 
2202 	if (hctx->queue->nr_hw_queues == 1)
2203 		return WORK_CPU_UNBOUND;
2204 
2205 	if (--hctx->next_cpu_batch <= 0) {
2206 select_cpu:
2207 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2208 				cpu_online_mask);
2209 		if (next_cpu >= nr_cpu_ids)
2210 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2211 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2212 	}
2213 
2214 	/*
2215 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2216 	 * and it should only happen in the path of handling CPU DEAD.
2217 	 */
2218 	if (!cpu_online(next_cpu)) {
2219 		if (!tried) {
2220 			tried = true;
2221 			goto select_cpu;
2222 		}
2223 
2224 		/*
2225 		 * Make sure to re-select CPU next time once after CPUs
2226 		 * in hctx->cpumask become online again.
2227 		 */
2228 		hctx->next_cpu = next_cpu;
2229 		hctx->next_cpu_batch = 1;
2230 		return WORK_CPU_UNBOUND;
2231 	}
2232 
2233 	hctx->next_cpu = next_cpu;
2234 	return next_cpu;
2235 }
2236 
2237 /**
2238  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2239  * @hctx: Pointer to the hardware queue to run.
2240  * @msecs: Milliseconds of delay to wait before running the queue.
2241  *
2242  * Run a hardware queue asynchronously with a delay of @msecs.
2243  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2244 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2245 {
2246 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2247 		return;
2248 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2249 				    msecs_to_jiffies(msecs));
2250 }
2251 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2252 
2253 /**
2254  * blk_mq_run_hw_queue - Start to run a hardware queue.
2255  * @hctx: Pointer to the hardware queue to run.
2256  * @async: If we want to run the queue asynchronously.
2257  *
2258  * Check if the request queue is not in a quiesced state and if there are
2259  * pending requests to be sent. If this is true, run the queue to send requests
2260  * to hardware.
2261  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2262 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2263 {
2264 	bool need_run;
2265 
2266 	/*
2267 	 * We can't run the queue inline with interrupts disabled.
2268 	 */
2269 	WARN_ON_ONCE(!async && in_interrupt());
2270 
2271 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2272 
2273 	/*
2274 	 * When queue is quiesced, we may be switching io scheduler, or
2275 	 * updating nr_hw_queues, or other things, and we can't run queue
2276 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2277 	 *
2278 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2279 	 * quiesced.
2280 	 */
2281 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2282 		need_run = !blk_queue_quiesced(hctx->queue) &&
2283 		blk_mq_hctx_has_pending(hctx));
2284 
2285 	if (!need_run)
2286 		return;
2287 
2288 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2289 		blk_mq_delay_run_hw_queue(hctx, 0);
2290 		return;
2291 	}
2292 
2293 	blk_mq_run_dispatch_ops(hctx->queue,
2294 				blk_mq_sched_dispatch_requests(hctx));
2295 }
2296 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2297 
2298 /*
2299  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2300  * scheduler.
2301  */
blk_mq_get_sq_hctx(struct request_queue * q)2302 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2303 {
2304 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2305 	/*
2306 	 * If the IO scheduler does not respect hardware queues when
2307 	 * dispatching, we just don't bother with multiple HW queues and
2308 	 * dispatch from hctx for the current CPU since running multiple queues
2309 	 * just causes lock contention inside the scheduler and pointless cache
2310 	 * bouncing.
2311 	 */
2312 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2313 
2314 	if (!blk_mq_hctx_stopped(hctx))
2315 		return hctx;
2316 	return NULL;
2317 }
2318 
2319 /**
2320  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2321  * @q: Pointer to the request queue to run.
2322  * @async: If we want to run the queue asynchronously.
2323  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2324 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2325 {
2326 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2327 	unsigned long i;
2328 
2329 	sq_hctx = NULL;
2330 	if (blk_queue_sq_sched(q))
2331 		sq_hctx = blk_mq_get_sq_hctx(q);
2332 	queue_for_each_hw_ctx(q, hctx, i) {
2333 		if (blk_mq_hctx_stopped(hctx))
2334 			continue;
2335 		/*
2336 		 * Dispatch from this hctx either if there's no hctx preferred
2337 		 * by IO scheduler or if it has requests that bypass the
2338 		 * scheduler.
2339 		 */
2340 		if (!sq_hctx || sq_hctx == hctx ||
2341 		    !list_empty_careful(&hctx->dispatch))
2342 			blk_mq_run_hw_queue(hctx, async);
2343 	}
2344 }
2345 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2346 
2347 /**
2348  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2349  * @q: Pointer to the request queue to run.
2350  * @msecs: Milliseconds of delay to wait before running the queues.
2351  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2352 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2353 {
2354 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2355 	unsigned long i;
2356 
2357 	sq_hctx = NULL;
2358 	if (blk_queue_sq_sched(q))
2359 		sq_hctx = blk_mq_get_sq_hctx(q);
2360 	queue_for_each_hw_ctx(q, hctx, i) {
2361 		if (blk_mq_hctx_stopped(hctx))
2362 			continue;
2363 		/*
2364 		 * If there is already a run_work pending, leave the
2365 		 * pending delay untouched. Otherwise, a hctx can stall
2366 		 * if another hctx is re-delaying the other's work
2367 		 * before the work executes.
2368 		 */
2369 		if (delayed_work_pending(&hctx->run_work))
2370 			continue;
2371 		/*
2372 		 * Dispatch from this hctx either if there's no hctx preferred
2373 		 * by IO scheduler or if it has requests that bypass the
2374 		 * scheduler.
2375 		 */
2376 		if (!sq_hctx || sq_hctx == hctx ||
2377 		    !list_empty_careful(&hctx->dispatch))
2378 			blk_mq_delay_run_hw_queue(hctx, msecs);
2379 	}
2380 }
2381 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2382 
2383 /*
2384  * This function is often used for pausing .queue_rq() by driver when
2385  * there isn't enough resource or some conditions aren't satisfied, and
2386  * BLK_STS_RESOURCE is usually returned.
2387  *
2388  * We do not guarantee that dispatch can be drained or blocked
2389  * after blk_mq_stop_hw_queue() returns. Please use
2390  * blk_mq_quiesce_queue() for that requirement.
2391  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2392 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2393 {
2394 	cancel_delayed_work(&hctx->run_work);
2395 
2396 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2397 }
2398 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2399 
2400 /*
2401  * This function is often used for pausing .queue_rq() by driver when
2402  * there isn't enough resource or some conditions aren't satisfied, and
2403  * BLK_STS_RESOURCE is usually returned.
2404  *
2405  * We do not guarantee that dispatch can be drained or blocked
2406  * after blk_mq_stop_hw_queues() returns. Please use
2407  * blk_mq_quiesce_queue() for that requirement.
2408  */
blk_mq_stop_hw_queues(struct request_queue * q)2409 void blk_mq_stop_hw_queues(struct request_queue *q)
2410 {
2411 	struct blk_mq_hw_ctx *hctx;
2412 	unsigned long i;
2413 
2414 	queue_for_each_hw_ctx(q, hctx, i)
2415 		blk_mq_stop_hw_queue(hctx);
2416 }
2417 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2418 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2419 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2420 {
2421 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2422 
2423 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2424 }
2425 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2426 
blk_mq_start_hw_queues(struct request_queue * q)2427 void blk_mq_start_hw_queues(struct request_queue *q)
2428 {
2429 	struct blk_mq_hw_ctx *hctx;
2430 	unsigned long i;
2431 
2432 	queue_for_each_hw_ctx(q, hctx, i)
2433 		blk_mq_start_hw_queue(hctx);
2434 }
2435 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2436 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2437 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2438 {
2439 	if (!blk_mq_hctx_stopped(hctx))
2440 		return;
2441 
2442 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2443 	blk_mq_run_hw_queue(hctx, async);
2444 }
2445 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2446 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2447 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2448 {
2449 	struct blk_mq_hw_ctx *hctx;
2450 	unsigned long i;
2451 
2452 	queue_for_each_hw_ctx(q, hctx, i)
2453 		blk_mq_start_stopped_hw_queue(hctx, async ||
2454 					(hctx->flags & BLK_MQ_F_BLOCKING));
2455 }
2456 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2457 
blk_mq_run_work_fn(struct work_struct * work)2458 static void blk_mq_run_work_fn(struct work_struct *work)
2459 {
2460 	struct blk_mq_hw_ctx *hctx =
2461 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2462 
2463 	blk_mq_run_dispatch_ops(hctx->queue,
2464 				blk_mq_sched_dispatch_requests(hctx));
2465 }
2466 
2467 /**
2468  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2469  * @rq: Pointer to request to be inserted.
2470  * @flags: BLK_MQ_INSERT_*
2471  *
2472  * Should only be used carefully, when the caller knows we want to
2473  * bypass a potential IO scheduler on the target device.
2474  */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2475 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2476 {
2477 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2478 
2479 	spin_lock(&hctx->lock);
2480 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2481 		list_add(&rq->queuelist, &hctx->dispatch);
2482 	else
2483 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2484 	spin_unlock(&hctx->lock);
2485 }
2486 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2487 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2488 		struct blk_mq_ctx *ctx, struct list_head *list,
2489 		bool run_queue_async)
2490 {
2491 	struct request *rq;
2492 	enum hctx_type type = hctx->type;
2493 
2494 	/*
2495 	 * Try to issue requests directly if the hw queue isn't busy to save an
2496 	 * extra enqueue & dequeue to the sw queue.
2497 	 */
2498 	if (!hctx->dispatch_busy && !run_queue_async) {
2499 		blk_mq_run_dispatch_ops(hctx->queue,
2500 			blk_mq_try_issue_list_directly(hctx, list));
2501 		if (list_empty(list))
2502 			goto out;
2503 	}
2504 
2505 	/*
2506 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2507 	 * offline now
2508 	 */
2509 	list_for_each_entry(rq, list, queuelist) {
2510 		BUG_ON(rq->mq_ctx != ctx);
2511 		trace_block_rq_insert(rq);
2512 		if (rq->cmd_flags & REQ_NOWAIT)
2513 			run_queue_async = true;
2514 	}
2515 
2516 	spin_lock(&ctx->lock);
2517 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2518 	blk_mq_hctx_mark_pending(hctx, ctx);
2519 	spin_unlock(&ctx->lock);
2520 out:
2521 	blk_mq_run_hw_queue(hctx, run_queue_async);
2522 }
2523 
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2524 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2525 {
2526 	struct request_queue *q = rq->q;
2527 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2528 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2529 
2530 	if (blk_rq_is_passthrough(rq)) {
2531 		/*
2532 		 * Passthrough request have to be added to hctx->dispatch
2533 		 * directly.  The device may be in a situation where it can't
2534 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2535 		 * them, which gets them added to hctx->dispatch.
2536 		 *
2537 		 * If a passthrough request is required to unblock the queues,
2538 		 * and it is added to the scheduler queue, there is no chance to
2539 		 * dispatch it given we prioritize requests in hctx->dispatch.
2540 		 */
2541 		blk_mq_request_bypass_insert(rq, flags);
2542 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2543 		/*
2544 		 * Firstly normal IO request is inserted to scheduler queue or
2545 		 * sw queue, meantime we add flush request to dispatch queue(
2546 		 * hctx->dispatch) directly and there is at most one in-flight
2547 		 * flush request for each hw queue, so it doesn't matter to add
2548 		 * flush request to tail or front of the dispatch queue.
2549 		 *
2550 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2551 		 * command, and queueing it will fail when there is any
2552 		 * in-flight normal IO request(NCQ command). When adding flush
2553 		 * rq to the front of hctx->dispatch, it is easier to introduce
2554 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2555 		 * compared with adding to the tail of dispatch queue, then
2556 		 * chance of flush merge is increased, and less flush requests
2557 		 * will be issued to controller. It is observed that ~10% time
2558 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2559 		 * drive when adding flush rq to the front of hctx->dispatch.
2560 		 *
2561 		 * Simply queue flush rq to the front of hctx->dispatch so that
2562 		 * intensive flush workloads can benefit in case of NCQ HW.
2563 		 */
2564 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2565 	} else if (q->elevator) {
2566 		LIST_HEAD(list);
2567 
2568 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2569 
2570 		list_add(&rq->queuelist, &list);
2571 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2572 	} else {
2573 		trace_block_rq_insert(rq);
2574 
2575 		spin_lock(&ctx->lock);
2576 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2577 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2578 		else
2579 			list_add_tail(&rq->queuelist,
2580 				      &ctx->rq_lists[hctx->type]);
2581 		blk_mq_hctx_mark_pending(hctx, ctx);
2582 		spin_unlock(&ctx->lock);
2583 	}
2584 }
2585 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2586 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2587 		unsigned int nr_segs)
2588 {
2589 	int err;
2590 
2591 	if (bio->bi_opf & REQ_RAHEAD)
2592 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2593 
2594 	rq->__sector = bio->bi_iter.bi_sector;
2595 	rq->write_hint = bio->bi_write_hint;
2596 	blk_rq_bio_prep(rq, bio, nr_segs);
2597 
2598 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2599 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2600 	WARN_ON_ONCE(err);
2601 
2602 	blk_account_io_start(rq);
2603 }
2604 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2605 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2606 					    struct request *rq, bool last)
2607 {
2608 	struct request_queue *q = rq->q;
2609 	struct blk_mq_queue_data bd = {
2610 		.rq = rq,
2611 		.last = last,
2612 	};
2613 	blk_status_t ret;
2614 
2615 	/*
2616 	 * For OK queue, we are done. For error, caller may kill it.
2617 	 * Any other error (busy), just add it to our list as we
2618 	 * previously would have done.
2619 	 */
2620 	ret = q->mq_ops->queue_rq(hctx, &bd);
2621 	switch (ret) {
2622 	case BLK_STS_OK:
2623 		blk_mq_update_dispatch_busy(hctx, false);
2624 		break;
2625 	case BLK_STS_RESOURCE:
2626 	case BLK_STS_DEV_RESOURCE:
2627 		blk_mq_update_dispatch_busy(hctx, true);
2628 		__blk_mq_requeue_request(rq);
2629 		break;
2630 	default:
2631 		blk_mq_update_dispatch_busy(hctx, false);
2632 		break;
2633 	}
2634 
2635 	return ret;
2636 }
2637 
blk_mq_get_budget_and_tag(struct request * rq)2638 static bool blk_mq_get_budget_and_tag(struct request *rq)
2639 {
2640 	int budget_token;
2641 
2642 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2643 	if (budget_token < 0)
2644 		return false;
2645 	blk_mq_set_rq_budget_token(rq, budget_token);
2646 	if (!blk_mq_get_driver_tag(rq)) {
2647 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2648 		return false;
2649 	}
2650 	return true;
2651 }
2652 
2653 /**
2654  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2655  * @hctx: Pointer of the associated hardware queue.
2656  * @rq: Pointer to request to be sent.
2657  *
2658  * If the device has enough resources to accept a new request now, send the
2659  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2660  * we can try send it another time in the future. Requests inserted at this
2661  * queue have higher priority.
2662  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2663 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2664 		struct request *rq)
2665 {
2666 	blk_status_t ret;
2667 
2668 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2669 		blk_mq_insert_request(rq, 0);
2670 		return;
2671 	}
2672 
2673 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2674 		blk_mq_insert_request(rq, 0);
2675 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2676 		return;
2677 	}
2678 
2679 	ret = __blk_mq_issue_directly(hctx, rq, true);
2680 	switch (ret) {
2681 	case BLK_STS_OK:
2682 		break;
2683 	case BLK_STS_RESOURCE:
2684 	case BLK_STS_DEV_RESOURCE:
2685 		blk_mq_request_bypass_insert(rq, 0);
2686 		blk_mq_run_hw_queue(hctx, false);
2687 		break;
2688 	default:
2689 		blk_mq_end_request(rq, ret);
2690 		break;
2691 	}
2692 }
2693 
blk_mq_request_issue_directly(struct request * rq,bool last)2694 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2695 {
2696 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2697 
2698 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2699 		blk_mq_insert_request(rq, 0);
2700 		return BLK_STS_OK;
2701 	}
2702 
2703 	if (!blk_mq_get_budget_and_tag(rq))
2704 		return BLK_STS_RESOURCE;
2705 	return __blk_mq_issue_directly(hctx, rq, last);
2706 }
2707 
blk_mq_plug_issue_direct(struct blk_plug * plug)2708 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2709 {
2710 	struct blk_mq_hw_ctx *hctx = NULL;
2711 	struct request *rq;
2712 	int queued = 0;
2713 	blk_status_t ret = BLK_STS_OK;
2714 
2715 	while ((rq = rq_list_pop(&plug->mq_list))) {
2716 		bool last = rq_list_empty(plug->mq_list);
2717 
2718 		if (hctx != rq->mq_hctx) {
2719 			if (hctx) {
2720 				blk_mq_commit_rqs(hctx, queued, false);
2721 				queued = 0;
2722 			}
2723 			hctx = rq->mq_hctx;
2724 		}
2725 
2726 		ret = blk_mq_request_issue_directly(rq, last);
2727 		switch (ret) {
2728 		case BLK_STS_OK:
2729 			queued++;
2730 			break;
2731 		case BLK_STS_RESOURCE:
2732 		case BLK_STS_DEV_RESOURCE:
2733 			blk_mq_request_bypass_insert(rq, 0);
2734 			blk_mq_run_hw_queue(hctx, false);
2735 			goto out;
2736 		default:
2737 			blk_mq_end_request(rq, ret);
2738 			break;
2739 		}
2740 	}
2741 
2742 out:
2743 	if (ret != BLK_STS_OK)
2744 		blk_mq_commit_rqs(hctx, queued, false);
2745 }
2746 
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2747 static void __blk_mq_flush_plug_list(struct request_queue *q,
2748 				     struct blk_plug *plug)
2749 {
2750 	if (blk_queue_quiesced(q))
2751 		return;
2752 	q->mq_ops->queue_rqs(&plug->mq_list);
2753 }
2754 
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2755 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2756 {
2757 	struct blk_mq_hw_ctx *this_hctx = NULL;
2758 	struct blk_mq_ctx *this_ctx = NULL;
2759 	struct request *requeue_list = NULL;
2760 	struct request **requeue_lastp = &requeue_list;
2761 	unsigned int depth = 0;
2762 	bool is_passthrough = false;
2763 	LIST_HEAD(list);
2764 
2765 	do {
2766 		struct request *rq = rq_list_pop(&plug->mq_list);
2767 
2768 		if (!this_hctx) {
2769 			this_hctx = rq->mq_hctx;
2770 			this_ctx = rq->mq_ctx;
2771 			is_passthrough = blk_rq_is_passthrough(rq);
2772 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2773 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2774 			rq_list_add_tail(&requeue_lastp, rq);
2775 			continue;
2776 		}
2777 		list_add(&rq->queuelist, &list);
2778 		depth++;
2779 	} while (!rq_list_empty(plug->mq_list));
2780 
2781 	plug->mq_list = requeue_list;
2782 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2783 
2784 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2785 	/* passthrough requests should never be issued to the I/O scheduler */
2786 	if (is_passthrough) {
2787 		spin_lock(&this_hctx->lock);
2788 		list_splice_tail_init(&list, &this_hctx->dispatch);
2789 		spin_unlock(&this_hctx->lock);
2790 		blk_mq_run_hw_queue(this_hctx, from_sched);
2791 	} else if (this_hctx->queue->elevator) {
2792 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2793 				&list, 0);
2794 		blk_mq_run_hw_queue(this_hctx, from_sched);
2795 	} else {
2796 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2797 	}
2798 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2799 }
2800 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2801 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2802 {
2803 	struct request *rq;
2804 
2805 	/*
2806 	 * We may have been called recursively midway through handling
2807 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2808 	 * To avoid mq_list changing under our feet, clear rq_count early and
2809 	 * bail out specifically if rq_count is 0 rather than checking
2810 	 * whether the mq_list is empty.
2811 	 */
2812 	if (plug->rq_count == 0)
2813 		return;
2814 	plug->rq_count = 0;
2815 
2816 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2817 		struct request_queue *q;
2818 
2819 		rq = rq_list_peek(&plug->mq_list);
2820 		q = rq->q;
2821 
2822 		/*
2823 		 * Peek first request and see if we have a ->queue_rqs() hook.
2824 		 * If we do, we can dispatch the whole plug list in one go. We
2825 		 * already know at this point that all requests belong to the
2826 		 * same queue, caller must ensure that's the case.
2827 		 *
2828 		 * Since we pass off the full list to the driver at this point,
2829 		 * we do not increment the active request count for the queue.
2830 		 * Bypass shared tags for now because of that.
2831 		 */
2832 		if (q->mq_ops->queue_rqs &&
2833 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2834 			blk_mq_run_dispatch_ops(q,
2835 				__blk_mq_flush_plug_list(q, plug));
2836 			if (rq_list_empty(plug->mq_list))
2837 				return;
2838 		}
2839 
2840 		blk_mq_run_dispatch_ops(q,
2841 				blk_mq_plug_issue_direct(plug));
2842 		if (rq_list_empty(plug->mq_list))
2843 			return;
2844 	}
2845 
2846 	do {
2847 		blk_mq_dispatch_plug_list(plug, from_schedule);
2848 	} while (!rq_list_empty(plug->mq_list));
2849 }
2850 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2851 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2852 		struct list_head *list)
2853 {
2854 	int queued = 0;
2855 	blk_status_t ret = BLK_STS_OK;
2856 
2857 	while (!list_empty(list)) {
2858 		struct request *rq = list_first_entry(list, struct request,
2859 				queuelist);
2860 
2861 		list_del_init(&rq->queuelist);
2862 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2863 		switch (ret) {
2864 		case BLK_STS_OK:
2865 			queued++;
2866 			break;
2867 		case BLK_STS_RESOURCE:
2868 		case BLK_STS_DEV_RESOURCE:
2869 			blk_mq_request_bypass_insert(rq, 0);
2870 			if (list_empty(list))
2871 				blk_mq_run_hw_queue(hctx, false);
2872 			goto out;
2873 		default:
2874 			blk_mq_end_request(rq, ret);
2875 			break;
2876 		}
2877 	}
2878 
2879 out:
2880 	if (ret != BLK_STS_OK)
2881 		blk_mq_commit_rqs(hctx, queued, false);
2882 }
2883 
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2884 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2885 				     struct bio *bio, unsigned int nr_segs)
2886 {
2887 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2888 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2889 			return true;
2890 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2891 			return true;
2892 	}
2893 	return false;
2894 }
2895 
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2896 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2897 					       struct blk_plug *plug,
2898 					       struct bio *bio,
2899 					       unsigned int nsegs)
2900 {
2901 	struct blk_mq_alloc_data data = {
2902 		.q		= q,
2903 		.nr_tags	= 1,
2904 		.cmd_flags	= bio->bi_opf,
2905 	};
2906 	struct request *rq;
2907 
2908 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2909 		return NULL;
2910 
2911 	rq_qos_throttle(q, bio);
2912 
2913 	if (plug) {
2914 		data.nr_tags = plug->nr_ios;
2915 		plug->nr_ios = 1;
2916 		data.cached_rq = &plug->cached_rq;
2917 	}
2918 
2919 	rq = __blk_mq_alloc_requests(&data);
2920 	if (rq)
2921 		return rq;
2922 	rq_qos_cleanup(q, bio);
2923 	if (bio->bi_opf & REQ_NOWAIT)
2924 		bio_wouldblock_error(bio);
2925 	return NULL;
2926 }
2927 
2928 /* return true if this @rq can be used for @bio */
blk_mq_can_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)2929 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2930 		struct bio *bio)
2931 {
2932 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2933 	enum hctx_type hctx_type = rq->mq_hctx->type;
2934 
2935 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2936 
2937 	if (type != hctx_type &&
2938 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2939 		return false;
2940 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2941 		return false;
2942 
2943 	/*
2944 	 * If any qos ->throttle() end up blocking, we will have flushed the
2945 	 * plug and hence killed the cached_rq list as well. Pop this entry
2946 	 * before we throttle.
2947 	 */
2948 	plug->cached_rq = rq_list_next(rq);
2949 	rq_qos_throttle(rq->q, bio);
2950 
2951 	blk_mq_rq_time_init(rq, 0);
2952 	rq->cmd_flags = bio->bi_opf;
2953 	INIT_LIST_HEAD(&rq->queuelist);
2954 	return true;
2955 }
2956 
2957 /**
2958  * blk_mq_submit_bio - Create and send a request to block device.
2959  * @bio: Bio pointer.
2960  *
2961  * Builds up a request structure from @q and @bio and send to the device. The
2962  * request may not be queued directly to hardware if:
2963  * * This request can be merged with another one
2964  * * We want to place request at plug queue for possible future merging
2965  * * There is an IO scheduler active at this queue
2966  *
2967  * It will not queue the request if there is an error with the bio, or at the
2968  * request creation.
2969  */
blk_mq_submit_bio(struct bio * bio)2970 void blk_mq_submit_bio(struct bio *bio)
2971 {
2972 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2973 	struct blk_plug *plug = blk_mq_plug(bio);
2974 	const int is_sync = op_is_sync(bio->bi_opf);
2975 	struct blk_mq_hw_ctx *hctx;
2976 	struct request *rq = NULL;
2977 	unsigned int nr_segs = 1;
2978 	blk_status_t ret;
2979 
2980 	bio = blk_queue_bounce(bio, q);
2981 
2982 	if (plug) {
2983 		rq = rq_list_peek(&plug->cached_rq);
2984 		if (rq && rq->q != q)
2985 			rq = NULL;
2986 	}
2987 	if (rq) {
2988 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2989 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2990 			if (!bio)
2991 				return;
2992 		} else if (bio->bi_vcnt == 1) {
2993 			nr_segs = blk_segments(&q->limits, bio->bi_io_vec[0].bv_len);
2994 		}
2995 		if (!bio_integrity_prep(bio))
2996 			return;
2997 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2998 			return;
2999 		if (blk_mq_can_use_cached_rq(rq, plug, bio))
3000 			goto done;
3001 		percpu_ref_get(&q->q_usage_counter);
3002 	} else {
3003 		if (unlikely(bio_queue_enter(bio)))
3004 			return;
3005 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3006 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3007 			if (!bio)
3008 				goto fail;
3009 		} else if (bio->bi_vcnt == 1) {
3010 			nr_segs = blk_segments(&q->limits, bio->bi_io_vec[0].bv_len);
3011 		}
3012 		if (!bio_integrity_prep(bio))
3013 			goto fail;
3014 	}
3015 
3016 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3017 	if (unlikely(!rq)) {
3018 fail:
3019 		blk_queue_exit(q);
3020 		return;
3021 	}
3022 
3023 done:
3024 	trace_block_getrq(bio);
3025 
3026 	rq_qos_track(q, rq, bio);
3027 
3028 	blk_mq_bio_to_request(rq, bio, nr_segs);
3029 
3030 	ret = blk_crypto_rq_get_keyslot(rq);
3031 	if (ret != BLK_STS_OK) {
3032 		bio->bi_status = ret;
3033 		bio_endio(bio);
3034 		blk_mq_free_request(rq);
3035 		return;
3036 	}
3037 
3038 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3039 		return;
3040 
3041 	if (plug) {
3042 		blk_add_rq_to_plug(plug, rq);
3043 		return;
3044 	}
3045 
3046 	hctx = rq->mq_hctx;
3047 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3048 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3049 		blk_mq_insert_request(rq, 0);
3050 		blk_mq_run_hw_queue(hctx, true);
3051 	} else {
3052 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3053 	}
3054 }
3055 
3056 #ifdef CONFIG_BLK_MQ_STACKING
3057 /**
3058  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3059  * @rq: the request being queued
3060  */
blk_insert_cloned_request(struct request * rq)3061 blk_status_t blk_insert_cloned_request(struct request *rq)
3062 {
3063 	struct request_queue *q = rq->q;
3064 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3065 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3066 	blk_status_t ret;
3067 
3068 	if (blk_rq_sectors(rq) > max_sectors) {
3069 		/*
3070 		 * SCSI device does not have a good way to return if
3071 		 * Write Same/Zero is actually supported. If a device rejects
3072 		 * a non-read/write command (discard, write same,etc.) the
3073 		 * low-level device driver will set the relevant queue limit to
3074 		 * 0 to prevent blk-lib from issuing more of the offending
3075 		 * operations. Commands queued prior to the queue limit being
3076 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3077 		 * errors being propagated to upper layers.
3078 		 */
3079 		if (max_sectors == 0)
3080 			return BLK_STS_NOTSUPP;
3081 
3082 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3083 			__func__, blk_rq_sectors(rq), max_sectors);
3084 		return BLK_STS_IOERR;
3085 	}
3086 
3087 	/*
3088 	 * The queue settings related to segment counting may differ from the
3089 	 * original queue.
3090 	 */
3091 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3092 	if (rq->nr_phys_segments > max_segments) {
3093 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3094 			__func__, rq->nr_phys_segments, max_segments);
3095 		return BLK_STS_IOERR;
3096 	}
3097 
3098 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3099 		return BLK_STS_IOERR;
3100 
3101 	ret = blk_crypto_rq_get_keyslot(rq);
3102 	if (ret != BLK_STS_OK)
3103 		return ret;
3104 
3105 	blk_account_io_start(rq);
3106 
3107 	/*
3108 	 * Since we have a scheduler attached on the top device,
3109 	 * bypass a potential scheduler on the bottom device for
3110 	 * insert.
3111 	 */
3112 	blk_mq_run_dispatch_ops(q,
3113 			ret = blk_mq_request_issue_directly(rq, true));
3114 	if (ret)
3115 		blk_account_io_done(rq, ktime_get_ns());
3116 	return ret;
3117 }
3118 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3119 
3120 /**
3121  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3122  * @rq: the clone request to be cleaned up
3123  *
3124  * Description:
3125  *     Free all bios in @rq for a cloned request.
3126  */
blk_rq_unprep_clone(struct request * rq)3127 void blk_rq_unprep_clone(struct request *rq)
3128 {
3129 	struct bio *bio;
3130 
3131 	while ((bio = rq->bio) != NULL) {
3132 		rq->bio = bio->bi_next;
3133 
3134 		bio_put(bio);
3135 	}
3136 }
3137 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3138 
3139 /**
3140  * blk_rq_prep_clone - Helper function to setup clone request
3141  * @rq: the request to be setup
3142  * @rq_src: original request to be cloned
3143  * @bs: bio_set that bios for clone are allocated from
3144  * @gfp_mask: memory allocation mask for bio
3145  * @bio_ctr: setup function to be called for each clone bio.
3146  *           Returns %0 for success, non %0 for failure.
3147  * @data: private data to be passed to @bio_ctr
3148  *
3149  * Description:
3150  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3151  *     Also, pages which the original bios are pointing to are not copied
3152  *     and the cloned bios just point same pages.
3153  *     So cloned bios must be completed before original bios, which means
3154  *     the caller must complete @rq before @rq_src.
3155  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3156 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3157 		      struct bio_set *bs, gfp_t gfp_mask,
3158 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3159 		      void *data)
3160 {
3161 	struct bio *bio, *bio_src;
3162 
3163 	if (!bs)
3164 		bs = &fs_bio_set;
3165 
3166 	__rq_for_each_bio(bio_src, rq_src) {
3167 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3168 				      bs);
3169 		if (!bio)
3170 			goto free_and_out;
3171 
3172 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3173 			goto free_and_out;
3174 
3175 		if (rq->bio) {
3176 			rq->biotail->bi_next = bio;
3177 			rq->biotail = bio;
3178 		} else {
3179 			rq->bio = rq->biotail = bio;
3180 		}
3181 		bio = NULL;
3182 	}
3183 
3184 	/* Copy attributes of the original request to the clone request. */
3185 	rq->__sector = blk_rq_pos(rq_src);
3186 	rq->__data_len = blk_rq_bytes(rq_src);
3187 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3188 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3189 		rq->special_vec = rq_src->special_vec;
3190 	}
3191 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3192 	rq->ioprio = rq_src->ioprio;
3193 	rq->write_hint = rq_src->write_hint;
3194 
3195 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3196 		goto free_and_out;
3197 
3198 	return 0;
3199 
3200 free_and_out:
3201 	if (bio)
3202 		bio_put(bio);
3203 	blk_rq_unprep_clone(rq);
3204 
3205 	return -ENOMEM;
3206 }
3207 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3208 #endif /* CONFIG_BLK_MQ_STACKING */
3209 
3210 /*
3211  * Steal bios from a request and add them to a bio list.
3212  * The request must not have been partially completed before.
3213  */
blk_steal_bios(struct bio_list * list,struct request * rq)3214 void blk_steal_bios(struct bio_list *list, struct request *rq)
3215 {
3216 	if (rq->bio) {
3217 		if (list->tail)
3218 			list->tail->bi_next = rq->bio;
3219 		else
3220 			list->head = rq->bio;
3221 		list->tail = rq->biotail;
3222 
3223 		rq->bio = NULL;
3224 		rq->biotail = NULL;
3225 	}
3226 
3227 	rq->__data_len = 0;
3228 }
3229 EXPORT_SYMBOL_GPL(blk_steal_bios);
3230 
order_to_size(unsigned int order)3231 static size_t order_to_size(unsigned int order)
3232 {
3233 	return (size_t)PAGE_SIZE << order;
3234 }
3235 
3236 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3237 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3238 				    struct blk_mq_tags *tags)
3239 {
3240 	struct page *page;
3241 	unsigned long flags;
3242 
3243 	/*
3244 	 * There is no need to clear mapping if driver tags is not initialized
3245 	 * or the mapping belongs to the driver tags.
3246 	 */
3247 	if (!drv_tags || drv_tags == tags)
3248 		return;
3249 
3250 	list_for_each_entry(page, &tags->page_list, lru) {
3251 		unsigned long start = (unsigned long)page_address(page);
3252 		unsigned long end = start + order_to_size(page->private);
3253 		int i;
3254 
3255 		for (i = 0; i < drv_tags->nr_tags; i++) {
3256 			struct request *rq = drv_tags->rqs[i];
3257 			unsigned long rq_addr = (unsigned long)rq;
3258 
3259 			if (rq_addr >= start && rq_addr < end) {
3260 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3261 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3262 			}
3263 		}
3264 	}
3265 
3266 	/*
3267 	 * Wait until all pending iteration is done.
3268 	 *
3269 	 * Request reference is cleared and it is guaranteed to be observed
3270 	 * after the ->lock is released.
3271 	 */
3272 	spin_lock_irqsave(&drv_tags->lock, flags);
3273 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3274 }
3275 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3276 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3277 		     unsigned int hctx_idx)
3278 {
3279 	struct blk_mq_tags *drv_tags;
3280 	struct page *page;
3281 
3282 	if (list_empty(&tags->page_list))
3283 		return;
3284 
3285 	if (blk_mq_is_shared_tags(set->flags))
3286 		drv_tags = set->shared_tags;
3287 	else
3288 		drv_tags = set->tags[hctx_idx];
3289 
3290 	if (tags->static_rqs && set->ops->exit_request) {
3291 		int i;
3292 
3293 		for (i = 0; i < tags->nr_tags; i++) {
3294 			struct request *rq = tags->static_rqs[i];
3295 
3296 			if (!rq)
3297 				continue;
3298 			set->ops->exit_request(set, rq, hctx_idx);
3299 			tags->static_rqs[i] = NULL;
3300 		}
3301 	}
3302 
3303 	blk_mq_clear_rq_mapping(drv_tags, tags);
3304 
3305 	while (!list_empty(&tags->page_list)) {
3306 		page = list_first_entry(&tags->page_list, struct page, lru);
3307 		list_del_init(&page->lru);
3308 		/*
3309 		 * Remove kmemleak object previously allocated in
3310 		 * blk_mq_alloc_rqs().
3311 		 */
3312 		kmemleak_free(page_address(page));
3313 		__free_pages(page, page->private);
3314 	}
3315 }
3316 
blk_mq_free_rq_map(struct blk_mq_tags * tags)3317 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3318 {
3319 	kfree(tags->rqs);
3320 	tags->rqs = NULL;
3321 	kfree(tags->static_rqs);
3322 	tags->static_rqs = NULL;
3323 
3324 	blk_mq_free_tags(tags);
3325 }
3326 
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3327 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3328 		unsigned int hctx_idx)
3329 {
3330 	int i;
3331 
3332 	for (i = 0; i < set->nr_maps; i++) {
3333 		unsigned int start = set->map[i].queue_offset;
3334 		unsigned int end = start + set->map[i].nr_queues;
3335 
3336 		if (hctx_idx >= start && hctx_idx < end)
3337 			break;
3338 	}
3339 
3340 	if (i >= set->nr_maps)
3341 		i = HCTX_TYPE_DEFAULT;
3342 
3343 	return i;
3344 }
3345 
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3346 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3347 		unsigned int hctx_idx)
3348 {
3349 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3350 
3351 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3352 }
3353 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3354 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3355 					       unsigned int hctx_idx,
3356 					       unsigned int nr_tags,
3357 					       unsigned int reserved_tags)
3358 {
3359 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3360 	struct blk_mq_tags *tags;
3361 
3362 	if (node == NUMA_NO_NODE)
3363 		node = set->numa_node;
3364 
3365 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3366 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3367 	if (!tags)
3368 		return NULL;
3369 
3370 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3371 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3372 				 node);
3373 	if (!tags->rqs)
3374 		goto err_free_tags;
3375 
3376 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3377 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3378 					node);
3379 	if (!tags->static_rqs)
3380 		goto err_free_rqs;
3381 
3382 	return tags;
3383 
3384 err_free_rqs:
3385 	kfree(tags->rqs);
3386 err_free_tags:
3387 	blk_mq_free_tags(tags);
3388 	return NULL;
3389 }
3390 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3391 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3392 			       unsigned int hctx_idx, int node)
3393 {
3394 	int ret;
3395 
3396 	if (set->ops->init_request) {
3397 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3398 		if (ret)
3399 			return ret;
3400 	}
3401 
3402 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3403 	return 0;
3404 }
3405 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3406 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3407 			    struct blk_mq_tags *tags,
3408 			    unsigned int hctx_idx, unsigned int depth)
3409 {
3410 	unsigned int i, j, entries_per_page, max_order = 4;
3411 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3412 	size_t rq_size, left;
3413 
3414 	if (node == NUMA_NO_NODE)
3415 		node = set->numa_node;
3416 
3417 	INIT_LIST_HEAD(&tags->page_list);
3418 
3419 	/*
3420 	 * rq_size is the size of the request plus driver payload, rounded
3421 	 * to the cacheline size
3422 	 */
3423 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3424 				cache_line_size());
3425 	left = rq_size * depth;
3426 
3427 	for (i = 0; i < depth; ) {
3428 		int this_order = max_order;
3429 		struct page *page;
3430 		int to_do;
3431 		void *p;
3432 
3433 		while (this_order && left < order_to_size(this_order - 1))
3434 			this_order--;
3435 
3436 		do {
3437 			page = alloc_pages_node(node,
3438 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3439 				this_order);
3440 			if (page)
3441 				break;
3442 			if (!this_order--)
3443 				break;
3444 			if (order_to_size(this_order) < rq_size)
3445 				break;
3446 		} while (1);
3447 
3448 		if (!page)
3449 			goto fail;
3450 
3451 		page->private = this_order;
3452 		list_add_tail(&page->lru, &tags->page_list);
3453 
3454 		p = page_address(page);
3455 		/*
3456 		 * Allow kmemleak to scan these pages as they contain pointers
3457 		 * to additional allocations like via ops->init_request().
3458 		 */
3459 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3460 		entries_per_page = order_to_size(this_order) / rq_size;
3461 		to_do = min(entries_per_page, depth - i);
3462 		left -= to_do * rq_size;
3463 		for (j = 0; j < to_do; j++) {
3464 			struct request *rq = p;
3465 
3466 			tags->static_rqs[i] = rq;
3467 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3468 				tags->static_rqs[i] = NULL;
3469 				goto fail;
3470 			}
3471 
3472 			p += rq_size;
3473 			i++;
3474 		}
3475 	}
3476 	return 0;
3477 
3478 fail:
3479 	blk_mq_free_rqs(set, tags, hctx_idx);
3480 	return -ENOMEM;
3481 }
3482 
3483 struct rq_iter_data {
3484 	struct blk_mq_hw_ctx *hctx;
3485 	bool has_rq;
3486 };
3487 
blk_mq_has_request(struct request * rq,void * data)3488 static bool blk_mq_has_request(struct request *rq, void *data)
3489 {
3490 	struct rq_iter_data *iter_data = data;
3491 
3492 	if (rq->mq_hctx != iter_data->hctx)
3493 		return true;
3494 	iter_data->has_rq = true;
3495 	return false;
3496 }
3497 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3498 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3499 {
3500 	struct blk_mq_tags *tags = hctx->sched_tags ?
3501 			hctx->sched_tags : hctx->tags;
3502 	struct rq_iter_data data = {
3503 		.hctx	= hctx,
3504 	};
3505 
3506 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3507 	return data.has_rq;
3508 }
3509 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)3510 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3511 		struct blk_mq_hw_ctx *hctx)
3512 {
3513 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3514 		return false;
3515 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3516 		return false;
3517 	return true;
3518 }
3519 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3520 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3521 {
3522 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3523 			struct blk_mq_hw_ctx, cpuhp_online);
3524 
3525 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3526 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3527 		return 0;
3528 
3529 	/*
3530 	 * Prevent new request from being allocated on the current hctx.
3531 	 *
3532 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3533 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3534 	 * seen once we return from the tag allocator.
3535 	 */
3536 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3537 	smp_mb__after_atomic();
3538 
3539 	/*
3540 	 * Try to grab a reference to the queue and wait for any outstanding
3541 	 * requests.  If we could not grab a reference the queue has been
3542 	 * frozen and there are no requests.
3543 	 */
3544 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3545 		while (blk_mq_hctx_has_requests(hctx))
3546 			msleep(5);
3547 		percpu_ref_put(&hctx->queue->q_usage_counter);
3548 	}
3549 
3550 	return 0;
3551 }
3552 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3553 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3554 {
3555 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3556 			struct blk_mq_hw_ctx, cpuhp_online);
3557 
3558 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3559 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3560 	return 0;
3561 }
3562 
3563 /*
3564  * 'cpu' is going away. splice any existing rq_list entries from this
3565  * software queue to the hw queue dispatch list, and ensure that it
3566  * gets run.
3567  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3568 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3569 {
3570 	struct blk_mq_hw_ctx *hctx;
3571 	struct blk_mq_ctx *ctx;
3572 	LIST_HEAD(tmp);
3573 	enum hctx_type type;
3574 
3575 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3576 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3577 		return 0;
3578 
3579 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3580 	type = hctx->type;
3581 
3582 	spin_lock(&ctx->lock);
3583 	if (!list_empty(&ctx->rq_lists[type])) {
3584 		list_splice_init(&ctx->rq_lists[type], &tmp);
3585 		blk_mq_hctx_clear_pending(hctx, ctx);
3586 	}
3587 	spin_unlock(&ctx->lock);
3588 
3589 	if (list_empty(&tmp))
3590 		return 0;
3591 
3592 	spin_lock(&hctx->lock);
3593 	list_splice_tail_init(&tmp, &hctx->dispatch);
3594 	spin_unlock(&hctx->lock);
3595 
3596 	blk_mq_run_hw_queue(hctx, true);
3597 	return 0;
3598 }
3599 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3600 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3601 {
3602 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3603 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3604 						    &hctx->cpuhp_online);
3605 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3606 					    &hctx->cpuhp_dead);
3607 }
3608 
3609 /*
3610  * Before freeing hw queue, clearing the flush request reference in
3611  * tags->rqs[] for avoiding potential UAF.
3612  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3613 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3614 		unsigned int queue_depth, struct request *flush_rq)
3615 {
3616 	int i;
3617 	unsigned long flags;
3618 
3619 	/* The hw queue may not be mapped yet */
3620 	if (!tags)
3621 		return;
3622 
3623 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3624 
3625 	for (i = 0; i < queue_depth; i++)
3626 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3627 
3628 	/*
3629 	 * Wait until all pending iteration is done.
3630 	 *
3631 	 * Request reference is cleared and it is guaranteed to be observed
3632 	 * after the ->lock is released.
3633 	 */
3634 	spin_lock_irqsave(&tags->lock, flags);
3635 	spin_unlock_irqrestore(&tags->lock, flags);
3636 }
3637 
3638 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3639 static void blk_mq_exit_hctx(struct request_queue *q,
3640 		struct blk_mq_tag_set *set,
3641 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3642 {
3643 	struct request *flush_rq = hctx->fq->flush_rq;
3644 
3645 	if (blk_mq_hw_queue_mapped(hctx))
3646 		blk_mq_tag_idle(hctx);
3647 
3648 	if (blk_queue_init_done(q))
3649 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3650 				set->queue_depth, flush_rq);
3651 	if (set->ops->exit_request)
3652 		set->ops->exit_request(set, flush_rq, hctx_idx);
3653 
3654 	if (set->ops->exit_hctx)
3655 		set->ops->exit_hctx(hctx, hctx_idx);
3656 
3657 	blk_mq_remove_cpuhp(hctx);
3658 
3659 	xa_erase(&q->hctx_table, hctx_idx);
3660 
3661 	spin_lock(&q->unused_hctx_lock);
3662 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3663 	spin_unlock(&q->unused_hctx_lock);
3664 }
3665 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3666 static void blk_mq_exit_hw_queues(struct request_queue *q,
3667 		struct blk_mq_tag_set *set, int nr_queue)
3668 {
3669 	struct blk_mq_hw_ctx *hctx;
3670 	unsigned long i;
3671 
3672 	queue_for_each_hw_ctx(q, hctx, i) {
3673 		if (i == nr_queue)
3674 			break;
3675 		blk_mq_exit_hctx(q, set, hctx, i);
3676 	}
3677 }
3678 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3679 static int blk_mq_init_hctx(struct request_queue *q,
3680 		struct blk_mq_tag_set *set,
3681 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3682 {
3683 	hctx->queue_num = hctx_idx;
3684 
3685 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3686 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3687 				&hctx->cpuhp_online);
3688 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3689 
3690 	hctx->tags = set->tags[hctx_idx];
3691 
3692 	if (set->ops->init_hctx &&
3693 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3694 		goto unregister_cpu_notifier;
3695 
3696 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3697 				hctx->numa_node))
3698 		goto exit_hctx;
3699 
3700 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3701 		goto exit_flush_rq;
3702 
3703 	return 0;
3704 
3705  exit_flush_rq:
3706 	if (set->ops->exit_request)
3707 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3708  exit_hctx:
3709 	if (set->ops->exit_hctx)
3710 		set->ops->exit_hctx(hctx, hctx_idx);
3711  unregister_cpu_notifier:
3712 	blk_mq_remove_cpuhp(hctx);
3713 	return -1;
3714 }
3715 
3716 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3717 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3718 		int node)
3719 {
3720 	struct blk_mq_hw_ctx *hctx;
3721 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3722 
3723 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3724 	if (!hctx)
3725 		goto fail_alloc_hctx;
3726 
3727 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3728 		goto free_hctx;
3729 
3730 	atomic_set(&hctx->nr_active, 0);
3731 	if (node == NUMA_NO_NODE)
3732 		node = set->numa_node;
3733 	hctx->numa_node = node;
3734 
3735 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3736 	spin_lock_init(&hctx->lock);
3737 	INIT_LIST_HEAD(&hctx->dispatch);
3738 	hctx->queue = q;
3739 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3740 
3741 	INIT_LIST_HEAD(&hctx->hctx_list);
3742 
3743 	/*
3744 	 * Allocate space for all possible cpus to avoid allocation at
3745 	 * runtime
3746 	 */
3747 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3748 			gfp, node);
3749 	if (!hctx->ctxs)
3750 		goto free_cpumask;
3751 
3752 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3753 				gfp, node, false, false))
3754 		goto free_ctxs;
3755 	hctx->nr_ctx = 0;
3756 
3757 	spin_lock_init(&hctx->dispatch_wait_lock);
3758 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3759 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3760 
3761 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3762 	if (!hctx->fq)
3763 		goto free_bitmap;
3764 
3765 	blk_mq_hctx_kobj_init(hctx);
3766 
3767 	return hctx;
3768 
3769  free_bitmap:
3770 	sbitmap_free(&hctx->ctx_map);
3771  free_ctxs:
3772 	kfree(hctx->ctxs);
3773  free_cpumask:
3774 	free_cpumask_var(hctx->cpumask);
3775  free_hctx:
3776 	kfree(hctx);
3777  fail_alloc_hctx:
3778 	return NULL;
3779 }
3780 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3781 static void blk_mq_init_cpu_queues(struct request_queue *q,
3782 				   unsigned int nr_hw_queues)
3783 {
3784 	struct blk_mq_tag_set *set = q->tag_set;
3785 	unsigned int i, j;
3786 
3787 	for_each_possible_cpu(i) {
3788 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3789 		struct blk_mq_hw_ctx *hctx;
3790 		int k;
3791 
3792 		__ctx->cpu = i;
3793 		spin_lock_init(&__ctx->lock);
3794 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3795 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3796 
3797 		__ctx->queue = q;
3798 
3799 		/*
3800 		 * Set local node, IFF we have more than one hw queue. If
3801 		 * not, we remain on the home node of the device
3802 		 */
3803 		for (j = 0; j < set->nr_maps; j++) {
3804 			hctx = blk_mq_map_queue_type(q, j, i);
3805 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3806 				hctx->numa_node = cpu_to_node(i);
3807 		}
3808 	}
3809 }
3810 
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3811 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3812 					     unsigned int hctx_idx,
3813 					     unsigned int depth)
3814 {
3815 	struct blk_mq_tags *tags;
3816 	int ret;
3817 
3818 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3819 	if (!tags)
3820 		return NULL;
3821 
3822 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3823 	if (ret) {
3824 		blk_mq_free_rq_map(tags);
3825 		return NULL;
3826 	}
3827 
3828 	return tags;
3829 }
3830 
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3831 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3832 				       int hctx_idx)
3833 {
3834 	if (blk_mq_is_shared_tags(set->flags)) {
3835 		set->tags[hctx_idx] = set->shared_tags;
3836 
3837 		return true;
3838 	}
3839 
3840 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3841 						       set->queue_depth);
3842 
3843 	return set->tags[hctx_idx];
3844 }
3845 
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3846 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3847 			     struct blk_mq_tags *tags,
3848 			     unsigned int hctx_idx)
3849 {
3850 	if (tags) {
3851 		blk_mq_free_rqs(set, tags, hctx_idx);
3852 		blk_mq_free_rq_map(tags);
3853 	}
3854 }
3855 
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3856 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3857 				      unsigned int hctx_idx)
3858 {
3859 	if (!blk_mq_is_shared_tags(set->flags))
3860 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3861 
3862 	set->tags[hctx_idx] = NULL;
3863 }
3864 
blk_mq_map_swqueue(struct request_queue * q)3865 static void blk_mq_map_swqueue(struct request_queue *q)
3866 {
3867 	unsigned int j, hctx_idx;
3868 	unsigned long i;
3869 	struct blk_mq_hw_ctx *hctx;
3870 	struct blk_mq_ctx *ctx;
3871 	struct blk_mq_tag_set *set = q->tag_set;
3872 
3873 	queue_for_each_hw_ctx(q, hctx, i) {
3874 		cpumask_clear(hctx->cpumask);
3875 		hctx->nr_ctx = 0;
3876 		hctx->dispatch_from = NULL;
3877 	}
3878 
3879 	/*
3880 	 * Map software to hardware queues.
3881 	 *
3882 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3883 	 */
3884 	for_each_possible_cpu(i) {
3885 
3886 		ctx = per_cpu_ptr(q->queue_ctx, i);
3887 		for (j = 0; j < set->nr_maps; j++) {
3888 			if (!set->map[j].nr_queues) {
3889 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3890 						HCTX_TYPE_DEFAULT, i);
3891 				continue;
3892 			}
3893 			hctx_idx = set->map[j].mq_map[i];
3894 			/* unmapped hw queue can be remapped after CPU topo changed */
3895 			if (!set->tags[hctx_idx] &&
3896 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3897 				/*
3898 				 * If tags initialization fail for some hctx,
3899 				 * that hctx won't be brought online.  In this
3900 				 * case, remap the current ctx to hctx[0] which
3901 				 * is guaranteed to always have tags allocated
3902 				 */
3903 				set->map[j].mq_map[i] = 0;
3904 			}
3905 
3906 			hctx = blk_mq_map_queue_type(q, j, i);
3907 			ctx->hctxs[j] = hctx;
3908 			/*
3909 			 * If the CPU is already set in the mask, then we've
3910 			 * mapped this one already. This can happen if
3911 			 * devices share queues across queue maps.
3912 			 */
3913 			if (cpumask_test_cpu(i, hctx->cpumask))
3914 				continue;
3915 
3916 			cpumask_set_cpu(i, hctx->cpumask);
3917 			hctx->type = j;
3918 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3919 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3920 
3921 			/*
3922 			 * If the nr_ctx type overflows, we have exceeded the
3923 			 * amount of sw queues we can support.
3924 			 */
3925 			BUG_ON(!hctx->nr_ctx);
3926 		}
3927 
3928 		for (; j < HCTX_MAX_TYPES; j++)
3929 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3930 					HCTX_TYPE_DEFAULT, i);
3931 	}
3932 
3933 	queue_for_each_hw_ctx(q, hctx, i) {
3934 		/*
3935 		 * If no software queues are mapped to this hardware queue,
3936 		 * disable it and free the request entries.
3937 		 */
3938 		if (!hctx->nr_ctx) {
3939 			/* Never unmap queue 0.  We need it as a
3940 			 * fallback in case of a new remap fails
3941 			 * allocation
3942 			 */
3943 			if (i)
3944 				__blk_mq_free_map_and_rqs(set, i);
3945 
3946 			hctx->tags = NULL;
3947 			continue;
3948 		}
3949 
3950 		hctx->tags = set->tags[i];
3951 		WARN_ON(!hctx->tags);
3952 
3953 		/*
3954 		 * Set the map size to the number of mapped software queues.
3955 		 * This is more accurate and more efficient than looping
3956 		 * over all possibly mapped software queues.
3957 		 */
3958 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3959 
3960 		/*
3961 		 * Initialize batch roundrobin counts
3962 		 */
3963 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3964 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3965 	}
3966 }
3967 
3968 /*
3969  * Caller needs to ensure that we're either frozen/quiesced, or that
3970  * the queue isn't live yet.
3971  */
queue_set_hctx_shared(struct request_queue * q,bool shared)3972 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3973 {
3974 	struct blk_mq_hw_ctx *hctx;
3975 	unsigned long i;
3976 
3977 	queue_for_each_hw_ctx(q, hctx, i) {
3978 		if (shared) {
3979 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3980 		} else {
3981 			blk_mq_tag_idle(hctx);
3982 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3983 		}
3984 	}
3985 }
3986 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3987 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3988 					 bool shared)
3989 {
3990 	struct request_queue *q;
3991 
3992 	lockdep_assert_held(&set->tag_list_lock);
3993 
3994 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3995 		blk_mq_freeze_queue(q);
3996 		queue_set_hctx_shared(q, shared);
3997 		blk_mq_unfreeze_queue(q);
3998 	}
3999 }
4000 
blk_mq_del_queue_tag_set(struct request_queue * q)4001 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4002 {
4003 	struct blk_mq_tag_set *set = q->tag_set;
4004 
4005 	mutex_lock(&set->tag_list_lock);
4006 	list_del(&q->tag_set_list);
4007 	if (list_is_singular(&set->tag_list)) {
4008 		/* just transitioned to unshared */
4009 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4010 		/* update existing queue */
4011 		blk_mq_update_tag_set_shared(set, false);
4012 	}
4013 	mutex_unlock(&set->tag_list_lock);
4014 	INIT_LIST_HEAD(&q->tag_set_list);
4015 }
4016 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4017 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4018 				     struct request_queue *q)
4019 {
4020 	mutex_lock(&set->tag_list_lock);
4021 
4022 	/*
4023 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4024 	 */
4025 	if (!list_empty(&set->tag_list) &&
4026 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4027 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4028 		/* update existing queue */
4029 		blk_mq_update_tag_set_shared(set, true);
4030 	}
4031 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4032 		queue_set_hctx_shared(q, true);
4033 	list_add_tail(&q->tag_set_list, &set->tag_list);
4034 
4035 	mutex_unlock(&set->tag_list_lock);
4036 }
4037 
4038 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4039 static int blk_mq_alloc_ctxs(struct request_queue *q)
4040 {
4041 	struct blk_mq_ctxs *ctxs;
4042 	int cpu;
4043 
4044 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4045 	if (!ctxs)
4046 		return -ENOMEM;
4047 
4048 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4049 	if (!ctxs->queue_ctx)
4050 		goto fail;
4051 
4052 	for_each_possible_cpu(cpu) {
4053 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4054 		ctx->ctxs = ctxs;
4055 	}
4056 
4057 	q->mq_kobj = &ctxs->kobj;
4058 	q->queue_ctx = ctxs->queue_ctx;
4059 
4060 	return 0;
4061  fail:
4062 	kfree(ctxs);
4063 	return -ENOMEM;
4064 }
4065 
4066 /*
4067  * It is the actual release handler for mq, but we do it from
4068  * request queue's release handler for avoiding use-after-free
4069  * and headache because q->mq_kobj shouldn't have been introduced,
4070  * but we can't group ctx/kctx kobj without it.
4071  */
blk_mq_release(struct request_queue * q)4072 void blk_mq_release(struct request_queue *q)
4073 {
4074 	struct blk_mq_hw_ctx *hctx, *next;
4075 	unsigned long i;
4076 
4077 	queue_for_each_hw_ctx(q, hctx, i)
4078 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4079 
4080 	/* all hctx are in .unused_hctx_list now */
4081 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4082 		list_del_init(&hctx->hctx_list);
4083 		kobject_put(&hctx->kobj);
4084 	}
4085 
4086 	xa_destroy(&q->hctx_table);
4087 
4088 	/*
4089 	 * release .mq_kobj and sw queue's kobject now because
4090 	 * both share lifetime with request queue.
4091 	 */
4092 	blk_mq_sysfs_deinit(q);
4093 }
4094 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)4095 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4096 		void *queuedata)
4097 {
4098 	struct request_queue *q;
4099 	int ret;
4100 
4101 	q = blk_alloc_queue(set->numa_node);
4102 	if (!q)
4103 		return ERR_PTR(-ENOMEM);
4104 	q->queuedata = queuedata;
4105 	ret = blk_mq_init_allocated_queue(set, q);
4106 	if (ret) {
4107 		blk_put_queue(q);
4108 		return ERR_PTR(ret);
4109 	}
4110 	return q;
4111 }
4112 
blk_mq_init_queue(struct blk_mq_tag_set * set)4113 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4114 {
4115 	return blk_mq_init_queue_data(set, NULL);
4116 }
4117 EXPORT_SYMBOL(blk_mq_init_queue);
4118 
4119 /**
4120  * blk_mq_destroy_queue - shutdown a request queue
4121  * @q: request queue to shutdown
4122  *
4123  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4124  * requests will be failed with -ENODEV. The caller is responsible for dropping
4125  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4126  *
4127  * Context: can sleep
4128  */
blk_mq_destroy_queue(struct request_queue * q)4129 void blk_mq_destroy_queue(struct request_queue *q)
4130 {
4131 	WARN_ON_ONCE(!queue_is_mq(q));
4132 	WARN_ON_ONCE(blk_queue_registered(q));
4133 
4134 	might_sleep();
4135 
4136 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4137 	blk_queue_start_drain(q);
4138 	blk_mq_freeze_queue_wait(q);
4139 
4140 	blk_sync_queue(q);
4141 	blk_mq_cancel_work_sync(q);
4142 	blk_mq_exit_queue(q);
4143 }
4144 EXPORT_SYMBOL(blk_mq_destroy_queue);
4145 
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)4146 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4147 		struct lock_class_key *lkclass)
4148 {
4149 	struct request_queue *q;
4150 	struct gendisk *disk;
4151 
4152 	q = blk_mq_init_queue_data(set, queuedata);
4153 	if (IS_ERR(q))
4154 		return ERR_CAST(q);
4155 
4156 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4157 	if (!disk) {
4158 		blk_mq_destroy_queue(q);
4159 		blk_put_queue(q);
4160 		return ERR_PTR(-ENOMEM);
4161 	}
4162 	set_bit(GD_OWNS_QUEUE, &disk->state);
4163 	return disk;
4164 }
4165 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4166 
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4167 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4168 		struct lock_class_key *lkclass)
4169 {
4170 	struct gendisk *disk;
4171 
4172 	if (!blk_get_queue(q))
4173 		return NULL;
4174 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4175 	if (!disk)
4176 		blk_put_queue(q);
4177 	return disk;
4178 }
4179 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4180 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4181 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4182 		struct blk_mq_tag_set *set, struct request_queue *q,
4183 		int hctx_idx, int node)
4184 {
4185 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4186 
4187 	/* reuse dead hctx first */
4188 	spin_lock(&q->unused_hctx_lock);
4189 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4190 		if (tmp->numa_node == node) {
4191 			hctx = tmp;
4192 			break;
4193 		}
4194 	}
4195 	if (hctx)
4196 		list_del_init(&hctx->hctx_list);
4197 	spin_unlock(&q->unused_hctx_lock);
4198 
4199 	if (!hctx)
4200 		hctx = blk_mq_alloc_hctx(q, set, node);
4201 	if (!hctx)
4202 		goto fail;
4203 
4204 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4205 		goto free_hctx;
4206 
4207 	return hctx;
4208 
4209  free_hctx:
4210 	kobject_put(&hctx->kobj);
4211  fail:
4212 	return NULL;
4213 }
4214 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4215 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4216 						struct request_queue *q)
4217 {
4218 	struct blk_mq_hw_ctx *hctx;
4219 	unsigned long i, j;
4220 
4221 	/* protect against switching io scheduler  */
4222 	mutex_lock(&q->sysfs_lock);
4223 	for (i = 0; i < set->nr_hw_queues; i++) {
4224 		int old_node;
4225 		int node = blk_mq_get_hctx_node(set, i);
4226 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4227 
4228 		if (old_hctx) {
4229 			old_node = old_hctx->numa_node;
4230 			blk_mq_exit_hctx(q, set, old_hctx, i);
4231 		}
4232 
4233 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4234 			if (!old_hctx)
4235 				break;
4236 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4237 					node, old_node);
4238 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4239 			WARN_ON_ONCE(!hctx);
4240 		}
4241 	}
4242 	/*
4243 	 * Increasing nr_hw_queues fails. Free the newly allocated
4244 	 * hctxs and keep the previous q->nr_hw_queues.
4245 	 */
4246 	if (i != set->nr_hw_queues) {
4247 		j = q->nr_hw_queues;
4248 	} else {
4249 		j = i;
4250 		q->nr_hw_queues = set->nr_hw_queues;
4251 	}
4252 
4253 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4254 		blk_mq_exit_hctx(q, set, hctx, j);
4255 	mutex_unlock(&q->sysfs_lock);
4256 }
4257 
blk_mq_update_poll_flag(struct request_queue * q)4258 static void blk_mq_update_poll_flag(struct request_queue *q)
4259 {
4260 	struct blk_mq_tag_set *set = q->tag_set;
4261 
4262 	if (set->nr_maps > HCTX_TYPE_POLL &&
4263 	    set->map[HCTX_TYPE_POLL].nr_queues)
4264 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4265 	else
4266 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4267 }
4268 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4269 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4270 		struct request_queue *q)
4271 {
4272 	/* mark the queue as mq asap */
4273 	q->mq_ops = set->ops;
4274 
4275 	if (blk_mq_alloc_ctxs(q))
4276 		goto err_exit;
4277 
4278 	/* init q->mq_kobj and sw queues' kobjects */
4279 	blk_mq_sysfs_init(q);
4280 
4281 	INIT_LIST_HEAD(&q->unused_hctx_list);
4282 	spin_lock_init(&q->unused_hctx_lock);
4283 
4284 	xa_init(&q->hctx_table);
4285 
4286 	blk_mq_realloc_hw_ctxs(set, q);
4287 	if (!q->nr_hw_queues)
4288 		goto err_hctxs;
4289 
4290 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4291 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4292 
4293 	q->tag_set = set;
4294 
4295 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4296 	blk_mq_update_poll_flag(q);
4297 
4298 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4299 	INIT_LIST_HEAD(&q->flush_list);
4300 	INIT_LIST_HEAD(&q->requeue_list);
4301 	spin_lock_init(&q->requeue_lock);
4302 
4303 	q->nr_requests = set->queue_depth;
4304 
4305 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4306 	blk_mq_add_queue_tag_set(set, q);
4307 	blk_mq_map_swqueue(q);
4308 	return 0;
4309 
4310 err_hctxs:
4311 	blk_mq_release(q);
4312 err_exit:
4313 	q->mq_ops = NULL;
4314 	return -ENOMEM;
4315 }
4316 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4317 
4318 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4319 void blk_mq_exit_queue(struct request_queue *q)
4320 {
4321 	struct blk_mq_tag_set *set = q->tag_set;
4322 
4323 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4324 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4325 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4326 	blk_mq_del_queue_tag_set(q);
4327 }
4328 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4329 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4330 {
4331 	int i;
4332 
4333 	if (blk_mq_is_shared_tags(set->flags)) {
4334 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4335 						BLK_MQ_NO_HCTX_IDX,
4336 						set->queue_depth);
4337 		if (!set->shared_tags)
4338 			return -ENOMEM;
4339 	}
4340 
4341 	for (i = 0; i < set->nr_hw_queues; i++) {
4342 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4343 			goto out_unwind;
4344 		cond_resched();
4345 	}
4346 
4347 	return 0;
4348 
4349 out_unwind:
4350 	while (--i >= 0)
4351 		__blk_mq_free_map_and_rqs(set, i);
4352 
4353 	if (blk_mq_is_shared_tags(set->flags)) {
4354 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4355 					BLK_MQ_NO_HCTX_IDX);
4356 	}
4357 
4358 	return -ENOMEM;
4359 }
4360 
4361 /*
4362  * Allocate the request maps associated with this tag_set. Note that this
4363  * may reduce the depth asked for, if memory is tight. set->queue_depth
4364  * will be updated to reflect the allocated depth.
4365  */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4366 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4367 {
4368 	unsigned int depth;
4369 	int err;
4370 
4371 	depth = set->queue_depth;
4372 	do {
4373 		err = __blk_mq_alloc_rq_maps(set);
4374 		if (!err)
4375 			break;
4376 
4377 		set->queue_depth >>= 1;
4378 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4379 			err = -ENOMEM;
4380 			break;
4381 		}
4382 	} while (set->queue_depth);
4383 
4384 	if (!set->queue_depth || err) {
4385 		pr_err("blk-mq: failed to allocate request map\n");
4386 		return -ENOMEM;
4387 	}
4388 
4389 	if (depth != set->queue_depth)
4390 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4391 						depth, set->queue_depth);
4392 
4393 	return 0;
4394 }
4395 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4396 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4397 {
4398 	/*
4399 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4400 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4401 	 * number of hardware queues.
4402 	 */
4403 	if (set->nr_maps == 1)
4404 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4405 
4406 	if (set->ops->map_queues && !is_kdump_kernel()) {
4407 		int i;
4408 
4409 		/*
4410 		 * transport .map_queues is usually done in the following
4411 		 * way:
4412 		 *
4413 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4414 		 * 	mask = get_cpu_mask(queue)
4415 		 * 	for_each_cpu(cpu, mask)
4416 		 * 		set->map[x].mq_map[cpu] = queue;
4417 		 * }
4418 		 *
4419 		 * When we need to remap, the table has to be cleared for
4420 		 * killing stale mapping since one CPU may not be mapped
4421 		 * to any hw queue.
4422 		 */
4423 		for (i = 0; i < set->nr_maps; i++)
4424 			blk_mq_clear_mq_map(&set->map[i]);
4425 
4426 		set->ops->map_queues(set);
4427 	} else {
4428 		BUG_ON(set->nr_maps > 1);
4429 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4430 	}
4431 }
4432 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4433 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4434 				       int new_nr_hw_queues)
4435 {
4436 	struct blk_mq_tags **new_tags;
4437 	int i;
4438 
4439 	if (set->nr_hw_queues >= new_nr_hw_queues)
4440 		goto done;
4441 
4442 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4443 				GFP_KERNEL, set->numa_node);
4444 	if (!new_tags)
4445 		return -ENOMEM;
4446 
4447 	if (set->tags)
4448 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4449 		       sizeof(*set->tags));
4450 	kfree(set->tags);
4451 	set->tags = new_tags;
4452 
4453 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4454 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4455 			while (--i >= set->nr_hw_queues)
4456 				__blk_mq_free_map_and_rqs(set, i);
4457 			return -ENOMEM;
4458 		}
4459 		cond_resched();
4460 	}
4461 
4462 done:
4463 	set->nr_hw_queues = new_nr_hw_queues;
4464 	return 0;
4465 }
4466 
4467 /*
4468  * Alloc a tag set to be associated with one or more request queues.
4469  * May fail with EINVAL for various error conditions. May adjust the
4470  * requested depth down, if it's too large. In that case, the set
4471  * value will be stored in set->queue_depth.
4472  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4473 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4474 {
4475 	int i, ret;
4476 
4477 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4478 
4479 	if (!set->nr_hw_queues)
4480 		return -EINVAL;
4481 	if (!set->queue_depth)
4482 		return -EINVAL;
4483 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4484 		return -EINVAL;
4485 
4486 	if (!set->ops->queue_rq)
4487 		return -EINVAL;
4488 
4489 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4490 		return -EINVAL;
4491 
4492 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4493 		pr_info("blk-mq: reduced tag depth to %u\n",
4494 			BLK_MQ_MAX_DEPTH);
4495 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4496 	}
4497 
4498 	if (!set->nr_maps)
4499 		set->nr_maps = 1;
4500 	else if (set->nr_maps > HCTX_MAX_TYPES)
4501 		return -EINVAL;
4502 
4503 	/*
4504 	 * If a crashdump is active, then we are potentially in a very
4505 	 * memory constrained environment. Limit us to 1 queue and
4506 	 * 64 tags to prevent using too much memory.
4507 	 */
4508 	if (is_kdump_kernel()) {
4509 		set->nr_hw_queues = 1;
4510 		set->nr_maps = 1;
4511 		set->queue_depth = min(64U, set->queue_depth);
4512 	}
4513 	/*
4514 	 * There is no use for more h/w queues than cpus if we just have
4515 	 * a single map
4516 	 */
4517 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4518 		set->nr_hw_queues = nr_cpu_ids;
4519 
4520 	if (set->flags & BLK_MQ_F_BLOCKING) {
4521 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4522 		if (!set->srcu)
4523 			return -ENOMEM;
4524 		ret = init_srcu_struct(set->srcu);
4525 		if (ret)
4526 			goto out_free_srcu;
4527 	}
4528 
4529 	ret = -ENOMEM;
4530 	set->tags = kcalloc_node(set->nr_hw_queues,
4531 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4532 				 set->numa_node);
4533 	if (!set->tags)
4534 		goto out_cleanup_srcu;
4535 
4536 	for (i = 0; i < set->nr_maps; i++) {
4537 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4538 						  sizeof(set->map[i].mq_map[0]),
4539 						  GFP_KERNEL, set->numa_node);
4540 		if (!set->map[i].mq_map)
4541 			goto out_free_mq_map;
4542 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4543 	}
4544 
4545 	blk_mq_update_queue_map(set);
4546 
4547 	ret = blk_mq_alloc_set_map_and_rqs(set);
4548 	if (ret)
4549 		goto out_free_mq_map;
4550 
4551 	mutex_init(&set->tag_list_lock);
4552 	INIT_LIST_HEAD(&set->tag_list);
4553 
4554 	return 0;
4555 
4556 out_free_mq_map:
4557 	for (i = 0; i < set->nr_maps; i++) {
4558 		kfree(set->map[i].mq_map);
4559 		set->map[i].mq_map = NULL;
4560 	}
4561 	kfree(set->tags);
4562 	set->tags = NULL;
4563 out_cleanup_srcu:
4564 	if (set->flags & BLK_MQ_F_BLOCKING)
4565 		cleanup_srcu_struct(set->srcu);
4566 out_free_srcu:
4567 	if (set->flags & BLK_MQ_F_BLOCKING)
4568 		kfree(set->srcu);
4569 	return ret;
4570 }
4571 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4572 
4573 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4574 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4575 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4576 		unsigned int set_flags)
4577 {
4578 	memset(set, 0, sizeof(*set));
4579 	set->ops = ops;
4580 	set->nr_hw_queues = 1;
4581 	set->nr_maps = 1;
4582 	set->queue_depth = queue_depth;
4583 	set->numa_node = NUMA_NO_NODE;
4584 	set->flags = set_flags;
4585 	return blk_mq_alloc_tag_set(set);
4586 }
4587 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4588 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4589 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4590 {
4591 	int i, j;
4592 
4593 	for (i = 0; i < set->nr_hw_queues; i++)
4594 		__blk_mq_free_map_and_rqs(set, i);
4595 
4596 	if (blk_mq_is_shared_tags(set->flags)) {
4597 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4598 					BLK_MQ_NO_HCTX_IDX);
4599 	}
4600 
4601 	for (j = 0; j < set->nr_maps; j++) {
4602 		kfree(set->map[j].mq_map);
4603 		set->map[j].mq_map = NULL;
4604 	}
4605 
4606 	kfree(set->tags);
4607 	set->tags = NULL;
4608 	if (set->flags & BLK_MQ_F_BLOCKING) {
4609 		cleanup_srcu_struct(set->srcu);
4610 		kfree(set->srcu);
4611 	}
4612 }
4613 EXPORT_SYMBOL(blk_mq_free_tag_set);
4614 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4615 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4616 {
4617 	struct blk_mq_tag_set *set = q->tag_set;
4618 	struct blk_mq_hw_ctx *hctx;
4619 	int ret;
4620 	unsigned long i;
4621 
4622 	if (!set)
4623 		return -EINVAL;
4624 
4625 	if (q->nr_requests == nr)
4626 		return 0;
4627 
4628 	blk_mq_freeze_queue(q);
4629 	blk_mq_quiesce_queue(q);
4630 
4631 	ret = 0;
4632 	queue_for_each_hw_ctx(q, hctx, i) {
4633 		if (!hctx->tags)
4634 			continue;
4635 		/*
4636 		 * If we're using an MQ scheduler, just update the scheduler
4637 		 * queue depth. This is similar to what the old code would do.
4638 		 */
4639 		if (hctx->sched_tags) {
4640 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4641 						      nr, true);
4642 		} else {
4643 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4644 						      false);
4645 		}
4646 		if (ret)
4647 			break;
4648 		if (q->elevator && q->elevator->type->ops.depth_updated)
4649 			q->elevator->type->ops.depth_updated(hctx);
4650 	}
4651 	if (!ret) {
4652 		q->nr_requests = nr;
4653 		if (blk_mq_is_shared_tags(set->flags)) {
4654 			if (q->elevator)
4655 				blk_mq_tag_update_sched_shared_tags(q);
4656 			else
4657 				blk_mq_tag_resize_shared_tags(set, nr);
4658 		}
4659 	}
4660 
4661 	blk_mq_unquiesce_queue(q);
4662 	blk_mq_unfreeze_queue(q);
4663 
4664 	return ret;
4665 }
4666 
4667 /*
4668  * request_queue and elevator_type pair.
4669  * It is just used by __blk_mq_update_nr_hw_queues to cache
4670  * the elevator_type associated with a request_queue.
4671  */
4672 struct blk_mq_qe_pair {
4673 	struct list_head node;
4674 	struct request_queue *q;
4675 	struct elevator_type *type;
4676 };
4677 
4678 /*
4679  * Cache the elevator_type in qe pair list and switch the
4680  * io scheduler to 'none'
4681  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4682 static bool blk_mq_elv_switch_none(struct list_head *head,
4683 		struct request_queue *q)
4684 {
4685 	struct blk_mq_qe_pair *qe;
4686 
4687 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4688 	if (!qe)
4689 		return false;
4690 
4691 	/* q->elevator needs protection from ->sysfs_lock */
4692 	mutex_lock(&q->sysfs_lock);
4693 
4694 	/* the check has to be done with holding sysfs_lock */
4695 	if (!q->elevator) {
4696 		kfree(qe);
4697 		goto unlock;
4698 	}
4699 
4700 	INIT_LIST_HEAD(&qe->node);
4701 	qe->q = q;
4702 	qe->type = q->elevator->type;
4703 	/* keep a reference to the elevator module as we'll switch back */
4704 	__elevator_get(qe->type);
4705 	list_add(&qe->node, head);
4706 	elevator_disable(q);
4707 unlock:
4708 	mutex_unlock(&q->sysfs_lock);
4709 
4710 	return true;
4711 }
4712 
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4713 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4714 						struct request_queue *q)
4715 {
4716 	struct blk_mq_qe_pair *qe;
4717 
4718 	list_for_each_entry(qe, head, node)
4719 		if (qe->q == q)
4720 			return qe;
4721 
4722 	return NULL;
4723 }
4724 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4725 static void blk_mq_elv_switch_back(struct list_head *head,
4726 				  struct request_queue *q)
4727 {
4728 	struct blk_mq_qe_pair *qe;
4729 	struct elevator_type *t;
4730 
4731 	qe = blk_lookup_qe_pair(head, q);
4732 	if (!qe)
4733 		return;
4734 	t = qe->type;
4735 	list_del(&qe->node);
4736 	kfree(qe);
4737 
4738 	mutex_lock(&q->sysfs_lock);
4739 	elevator_switch(q, t);
4740 	/* drop the reference acquired in blk_mq_elv_switch_none */
4741 	elevator_put(t);
4742 	mutex_unlock(&q->sysfs_lock);
4743 }
4744 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4745 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4746 							int nr_hw_queues)
4747 {
4748 	struct request_queue *q;
4749 	LIST_HEAD(head);
4750 	int prev_nr_hw_queues = set->nr_hw_queues;
4751 	int i;
4752 
4753 	lockdep_assert_held(&set->tag_list_lock);
4754 
4755 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4756 		nr_hw_queues = nr_cpu_ids;
4757 	if (nr_hw_queues < 1)
4758 		return;
4759 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4760 		return;
4761 
4762 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4763 		blk_mq_freeze_queue(q);
4764 	/*
4765 	 * Switch IO scheduler to 'none', cleaning up the data associated
4766 	 * with the previous scheduler. We will switch back once we are done
4767 	 * updating the new sw to hw queue mappings.
4768 	 */
4769 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4770 		if (!blk_mq_elv_switch_none(&head, q))
4771 			goto switch_back;
4772 
4773 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4774 		blk_mq_debugfs_unregister_hctxs(q);
4775 		blk_mq_sysfs_unregister_hctxs(q);
4776 	}
4777 
4778 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4779 		goto reregister;
4780 
4781 fallback:
4782 	blk_mq_update_queue_map(set);
4783 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4784 		blk_mq_realloc_hw_ctxs(set, q);
4785 		blk_mq_update_poll_flag(q);
4786 		if (q->nr_hw_queues != set->nr_hw_queues) {
4787 			int i = prev_nr_hw_queues;
4788 
4789 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4790 					nr_hw_queues, prev_nr_hw_queues);
4791 			for (; i < set->nr_hw_queues; i++)
4792 				__blk_mq_free_map_and_rqs(set, i);
4793 
4794 			set->nr_hw_queues = prev_nr_hw_queues;
4795 			goto fallback;
4796 		}
4797 		blk_mq_map_swqueue(q);
4798 	}
4799 
4800 reregister:
4801 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4802 		blk_mq_sysfs_register_hctxs(q);
4803 		blk_mq_debugfs_register_hctxs(q);
4804 	}
4805 
4806 switch_back:
4807 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4808 		blk_mq_elv_switch_back(&head, q);
4809 
4810 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4811 		blk_mq_unfreeze_queue(q);
4812 
4813 	/* Free the excess tags when nr_hw_queues shrink. */
4814 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4815 		__blk_mq_free_map_and_rqs(set, i);
4816 }
4817 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4818 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4819 {
4820 	mutex_lock(&set->tag_list_lock);
4821 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4822 	mutex_unlock(&set->tag_list_lock);
4823 }
4824 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4825 
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)4826 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4827 			 struct io_comp_batch *iob, unsigned int flags)
4828 {
4829 	long state = get_current_state();
4830 	int ret;
4831 
4832 	do {
4833 		ret = q->mq_ops->poll(hctx, iob);
4834 		if (ret > 0) {
4835 			__set_current_state(TASK_RUNNING);
4836 			return ret;
4837 		}
4838 
4839 		if (signal_pending_state(state, current))
4840 			__set_current_state(TASK_RUNNING);
4841 		if (task_is_running(current))
4842 			return 1;
4843 
4844 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4845 			break;
4846 		cpu_relax();
4847 	} while (!need_resched());
4848 
4849 	__set_current_state(TASK_RUNNING);
4850 	return 0;
4851 }
4852 
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4853 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4854 		struct io_comp_batch *iob, unsigned int flags)
4855 {
4856 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4857 
4858 	return blk_hctx_poll(q, hctx, iob, flags);
4859 }
4860 
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)4861 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4862 		unsigned int poll_flags)
4863 {
4864 	struct request_queue *q = rq->q;
4865 	int ret;
4866 
4867 	if (!blk_rq_is_poll(rq))
4868 		return 0;
4869 	if (!percpu_ref_tryget(&q->q_usage_counter))
4870 		return 0;
4871 
4872 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4873 	blk_queue_exit(q);
4874 
4875 	return ret;
4876 }
4877 EXPORT_SYMBOL_GPL(blk_rq_poll);
4878 
blk_mq_rq_cpu(struct request * rq)4879 unsigned int blk_mq_rq_cpu(struct request *rq)
4880 {
4881 	return rq->mq_ctx->cpu;
4882 }
4883 EXPORT_SYMBOL(blk_mq_rq_cpu);
4884 
blk_mq_cancel_work_sync(struct request_queue * q)4885 void blk_mq_cancel_work_sync(struct request_queue *q)
4886 {
4887 	struct blk_mq_hw_ctx *hctx;
4888 	unsigned long i;
4889 
4890 	cancel_delayed_work_sync(&q->requeue_work);
4891 
4892 	queue_for_each_hw_ctx(q, hctx, i)
4893 		cancel_delayed_work_sync(&hctx->run_work);
4894 }
4895 
blk_mq_init(void)4896 static int __init blk_mq_init(void)
4897 {
4898 	int i;
4899 
4900 	for_each_possible_cpu(i)
4901 		init_llist_head(&per_cpu(blk_cpu_done, i));
4902 	for_each_possible_cpu(i)
4903 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4904 			 __blk_mq_complete_request_remote, NULL);
4905 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4906 
4907 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4908 				  "block/softirq:dead", NULL,
4909 				  blk_softirq_cpu_dead);
4910 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4911 				blk_mq_hctx_notify_dead);
4912 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4913 				blk_mq_hctx_notify_online,
4914 				blk_mq_hctx_notify_offline);
4915 	return 0;
4916 }
4917 subsys_initcall(blk_mq_init);
4918