• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 
6 #define pr_fmt(fmt)  "%s: " fmt, __func__
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagemap.h>
14 #include <linux/backing-dev-defs.h>
15 #include <linux/gcd.h>
16 #include <linux/lcm.h>
17 #include <linux/jiffies.h>
18 #include <linux/gfp.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "blk.h"
22 #include "blk-rq-qos.h"
23 #include "blk-wbt.h"
24 
25 /* Protects blk_nr_sub_page_limit_queues and blk_sub_page_limits changes. */
26 static DEFINE_MUTEX(blk_sub_page_limit_lock);
27 static uint32_t blk_nr_sub_page_limit_queues;
28 DEFINE_STATIC_KEY_FALSE(blk_sub_page_limits);
29 
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)30 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
31 {
32 	q->rq_timeout = timeout;
33 }
34 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
35 
36 /**
37  * blk_set_default_limits - reset limits to default values
38  * @lim:  the queue_limits structure to reset
39  *
40  * Description:
41  *   Returns a queue_limit struct to its default state.
42  */
blk_set_default_limits(struct queue_limits * lim)43 void blk_set_default_limits(struct queue_limits *lim)
44 {
45 	lim->max_segments = BLK_MAX_SEGMENTS;
46 	lim->max_discard_segments = 1;
47 	lim->max_integrity_segments = 0;
48 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
49 	lim->virt_boundary_mask = 0;
50 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
51 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
52 	lim->max_user_sectors = lim->max_dev_sectors = 0;
53 	lim->chunk_sectors = 0;
54 	lim->max_write_zeroes_sectors = 0;
55 	lim->max_zone_append_sectors = 0;
56 	lim->max_discard_sectors = 0;
57 	lim->max_hw_discard_sectors = 0;
58 	lim->max_secure_erase_sectors = 0;
59 	lim->discard_granularity = 0;
60 	lim->discard_alignment = 0;
61 	lim->discard_misaligned = 0;
62 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
63 	lim->bounce = BLK_BOUNCE_NONE;
64 	lim->alignment_offset = 0;
65 	lim->io_opt = 0;
66 	lim->misaligned = 0;
67 	lim->zoned = BLK_ZONED_NONE;
68 	lim->zone_write_granularity = 0;
69 	lim->dma_alignment = 511;
70 	lim->sub_page_limits = false;
71 }
72 
73 /**
74  * blk_set_stacking_limits - set default limits for stacking devices
75  * @lim:  the queue_limits structure to reset
76  *
77  * Description:
78  *   Returns a queue_limit struct to its default state. Should be used
79  *   by stacking drivers like DM that have no internal limits.
80  */
blk_set_stacking_limits(struct queue_limits * lim)81 void blk_set_stacking_limits(struct queue_limits *lim)
82 {
83 	blk_set_default_limits(lim);
84 
85 	/* Inherit limits from component devices */
86 	lim->max_segments = USHRT_MAX;
87 	lim->max_discard_segments = USHRT_MAX;
88 	lim->max_hw_sectors = UINT_MAX;
89 	lim->max_segment_size = UINT_MAX;
90 	lim->max_sectors = UINT_MAX;
91 	lim->max_dev_sectors = UINT_MAX;
92 	lim->max_write_zeroes_sectors = UINT_MAX;
93 	lim->max_zone_append_sectors = UINT_MAX;
94 }
95 EXPORT_SYMBOL(blk_set_stacking_limits);
96 
97 /**
98  * blk_queue_bounce_limit - set bounce buffer limit for queue
99  * @q: the request queue for the device
100  * @bounce: bounce limit to enforce
101  *
102  * Description:
103  *    Force bouncing for ISA DMA ranges or highmem.
104  *
105  *    DEPRECATED, don't use in new code.
106  **/
blk_queue_bounce_limit(struct request_queue * q,enum blk_bounce bounce)107 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
108 {
109 	q->limits.bounce = bounce;
110 }
111 EXPORT_SYMBOL(blk_queue_bounce_limit);
112 
113 /* For debugfs. */
blk_sub_page_limit_queues_get(void * data,u64 * val)114 int blk_sub_page_limit_queues_get(void *data, u64 *val)
115 {
116 	*val = READ_ONCE(blk_nr_sub_page_limit_queues);
117 
118 	return 0;
119 }
120 
121 /**
122  * blk_enable_sub_page_limits - enable support for limits below the page size
123  * @lim: request queue limits for which to enable support of these features.
124  *
125  * Enable support for max_segment_size values smaller than PAGE_SIZE and for
126  * max_hw_sectors values below PAGE_SIZE >> SECTOR_SHIFT. Support for these
127  * features is not enabled all the time because of the runtime overhead of these
128  * features.
129  */
blk_enable_sub_page_limits(struct queue_limits * lim)130 static void blk_enable_sub_page_limits(struct queue_limits *lim)
131 {
132 	if (lim->sub_page_limits)
133 		return;
134 
135 	lim->sub_page_limits = true;
136 
137 	mutex_lock(&blk_sub_page_limit_lock);
138 	if (++blk_nr_sub_page_limit_queues == 1)
139 		static_branch_enable(&blk_sub_page_limits);
140 	mutex_unlock(&blk_sub_page_limit_lock);
141 }
142 
143 /**
144  * blk_disable_sub_page_limits - disable support for limits below the page size
145  * @lim: request queue limits for which to enable support of these features.
146  *
147  * max_segment_size values smaller than PAGE_SIZE and for max_hw_sectors values
148  * below PAGE_SIZE >> SECTOR_SHIFT. Support for these features is not enabled
149  * all the time because of the runtime overhead of these features.
150  */
blk_disable_sub_page_limits(struct queue_limits * lim)151 void blk_disable_sub_page_limits(struct queue_limits *lim)
152 {
153 	if (!lim->sub_page_limits)
154 		return;
155 
156 	lim->sub_page_limits = false;
157 
158 	mutex_lock(&blk_sub_page_limit_lock);
159 	WARN_ON_ONCE(blk_nr_sub_page_limit_queues <= 0);
160 	if (--blk_nr_sub_page_limit_queues == 0)
161 		static_branch_disable(&blk_sub_page_limits);
162 	mutex_unlock(&blk_sub_page_limit_lock);
163 }
164 
165 /**
166  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
167  * @q:  the request queue for the device
168  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
169  *
170  * Description:
171  *    Enables a low level driver to set a hard upper limit,
172  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
173  *    the device driver based upon the capabilities of the I/O
174  *    controller.
175  *
176  *    max_dev_sectors is a hard limit imposed by the storage device for
177  *    READ/WRITE requests. It is set by the disk driver.
178  *
179  *    max_sectors is a soft limit imposed by the block layer for
180  *    filesystem type requests.  This value can be overridden on a
181  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
182  *    The soft limit can not exceed max_hw_sectors.
183  **/
blk_queue_max_hw_sectors(struct request_queue * q,unsigned int max_hw_sectors)184 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
185 {
186 	struct queue_limits *limits = &q->limits;
187 	unsigned int min_max_hw_sectors = PAGE_SIZE >> SECTOR_SHIFT;
188 	unsigned int max_sectors;
189 
190 	if (max_hw_sectors < min_max_hw_sectors) {
191 		blk_enable_sub_page_limits(limits);
192 		min_max_hw_sectors = 1;
193 	}
194 
195 	if (max_hw_sectors < min_max_hw_sectors) {
196 		max_hw_sectors = min_max_hw_sectors;
197 		pr_info("set to minimum %u\n", max_hw_sectors);
198 	}
199 
200 	max_hw_sectors = round_down(max_hw_sectors,
201 				    limits->logical_block_size >> SECTOR_SHIFT);
202 	limits->max_hw_sectors = max_hw_sectors;
203 
204 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
205 
206 	if (limits->max_user_sectors)
207 		max_sectors = min(max_sectors, limits->max_user_sectors);
208 	else
209 		max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS);
210 
211 	max_sectors = round_down(max_sectors,
212 				 limits->logical_block_size >> SECTOR_SHIFT);
213 	limits->max_sectors = max_sectors;
214 
215 	if (!q->disk)
216 		return;
217 	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
218 }
219 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
220 
221 /**
222  * blk_queue_chunk_sectors - set size of the chunk for this queue
223  * @q:  the request queue for the device
224  * @chunk_sectors:  chunk sectors in the usual 512b unit
225  *
226  * Description:
227  *    If a driver doesn't want IOs to cross a given chunk size, it can set
228  *    this limit and prevent merging across chunks. Note that the block layer
229  *    must accept a page worth of data at any offset. So if the crossing of
230  *    chunks is a hard limitation in the driver, it must still be prepared
231  *    to split single page bios.
232  **/
blk_queue_chunk_sectors(struct request_queue * q,unsigned int chunk_sectors)233 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
234 {
235 	q->limits.chunk_sectors = chunk_sectors;
236 }
237 EXPORT_SYMBOL(blk_queue_chunk_sectors);
238 
239 /**
240  * blk_queue_max_discard_sectors - set max sectors for a single discard
241  * @q:  the request queue for the device
242  * @max_discard_sectors: maximum number of sectors to discard
243  **/
blk_queue_max_discard_sectors(struct request_queue * q,unsigned int max_discard_sectors)244 void blk_queue_max_discard_sectors(struct request_queue *q,
245 		unsigned int max_discard_sectors)
246 {
247 	q->limits.max_hw_discard_sectors = max_discard_sectors;
248 	q->limits.max_discard_sectors = max_discard_sectors;
249 }
250 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
251 
252 /**
253  * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
254  * @q:  the request queue for the device
255  * @max_sectors: maximum number of sectors to secure_erase
256  **/
blk_queue_max_secure_erase_sectors(struct request_queue * q,unsigned int max_sectors)257 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
258 		unsigned int max_sectors)
259 {
260 	q->limits.max_secure_erase_sectors = max_sectors;
261 }
262 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
263 
264 /**
265  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
266  *                                      write zeroes
267  * @q:  the request queue for the device
268  * @max_write_zeroes_sectors: maximum number of sectors to write per command
269  **/
blk_queue_max_write_zeroes_sectors(struct request_queue * q,unsigned int max_write_zeroes_sectors)270 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
271 		unsigned int max_write_zeroes_sectors)
272 {
273 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
274 }
275 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
276 
277 /**
278  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
279  * @q:  the request queue for the device
280  * @max_zone_append_sectors: maximum number of sectors to write per command
281  **/
blk_queue_max_zone_append_sectors(struct request_queue * q,unsigned int max_zone_append_sectors)282 void blk_queue_max_zone_append_sectors(struct request_queue *q,
283 		unsigned int max_zone_append_sectors)
284 {
285 	unsigned int max_sectors;
286 
287 	if (WARN_ON(!blk_queue_is_zoned(q)))
288 		return;
289 
290 	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
291 	max_sectors = min(q->limits.chunk_sectors, max_sectors);
292 
293 	/*
294 	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
295 	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
296 	 * or the max_hw_sectors limit not set.
297 	 */
298 	WARN_ON(!max_sectors);
299 
300 	q->limits.max_zone_append_sectors = max_sectors;
301 }
302 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
303 
304 /**
305  * blk_queue_max_segments - set max hw segments for a request for this queue
306  * @q:  the request queue for the device
307  * @max_segments:  max number of segments
308  *
309  * Description:
310  *    Enables a low level driver to set an upper limit on the number of
311  *    hw data segments in a request.
312  **/
blk_queue_max_segments(struct request_queue * q,unsigned short max_segments)313 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
314 {
315 	if (!max_segments) {
316 		max_segments = 1;
317 		pr_info("set to minimum %u\n", max_segments);
318 	}
319 
320 	q->limits.max_segments = max_segments;
321 }
322 EXPORT_SYMBOL(blk_queue_max_segments);
323 
324 /**
325  * blk_queue_max_discard_segments - set max segments for discard requests
326  * @q:  the request queue for the device
327  * @max_segments:  max number of segments
328  *
329  * Description:
330  *    Enables a low level driver to set an upper limit on the number of
331  *    segments in a discard request.
332  **/
blk_queue_max_discard_segments(struct request_queue * q,unsigned short max_segments)333 void blk_queue_max_discard_segments(struct request_queue *q,
334 		unsigned short max_segments)
335 {
336 	q->limits.max_discard_segments = max_segments;
337 }
338 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
339 
340 /**
341  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
342  * @q:  the request queue for the device
343  * @max_size:  max size of segment in bytes
344  *
345  * Description:
346  *    Enables a low level driver to set an upper limit on the size of a
347  *    coalesced segment
348  **/
blk_queue_max_segment_size(struct request_queue * q,unsigned int max_size)349 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
350 {
351 	unsigned int min_max_segment_size = PAGE_SIZE;
352 
353 	if (max_size < min_max_segment_size) {
354 		blk_enable_sub_page_limits(&q->limits);
355 		min_max_segment_size = SECTOR_SIZE;
356 	}
357 
358 	if (max_size < min_max_segment_size) {
359 		max_size = min_max_segment_size;
360 		pr_info("set to minimum %u\n", max_size);
361 	}
362 
363 	/* see blk_queue_virt_boundary() for the explanation */
364 	WARN_ON_ONCE(q->limits.virt_boundary_mask);
365 
366 	q->limits.max_segment_size = max_size;
367 }
368 EXPORT_SYMBOL(blk_queue_max_segment_size);
369 
370 /**
371  * blk_queue_logical_block_size - set logical block size for the queue
372  * @q:  the request queue for the device
373  * @size:  the logical block size, in bytes
374  *
375  * Description:
376  *   This should be set to the lowest possible block size that the
377  *   storage device can address.  The default of 512 covers most
378  *   hardware.
379  **/
blk_queue_logical_block_size(struct request_queue * q,unsigned int size)380 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
381 {
382 	struct queue_limits *limits = &q->limits;
383 
384 	limits->logical_block_size = size;
385 
386 	if (limits->physical_block_size < size)
387 		limits->physical_block_size = size;
388 
389 	if (limits->io_min < limits->physical_block_size)
390 		limits->io_min = limits->physical_block_size;
391 
392 	limits->max_hw_sectors =
393 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
394 	limits->max_sectors =
395 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
396 }
397 EXPORT_SYMBOL(blk_queue_logical_block_size);
398 
399 /**
400  * blk_queue_physical_block_size - set physical block size for the queue
401  * @q:  the request queue for the device
402  * @size:  the physical block size, in bytes
403  *
404  * Description:
405  *   This should be set to the lowest possible sector size that the
406  *   hardware can operate on without reverting to read-modify-write
407  *   operations.
408  */
blk_queue_physical_block_size(struct request_queue * q,unsigned int size)409 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
410 {
411 	q->limits.physical_block_size = size;
412 
413 	if (q->limits.physical_block_size < q->limits.logical_block_size)
414 		q->limits.physical_block_size = q->limits.logical_block_size;
415 
416 	if (q->limits.io_min < q->limits.physical_block_size)
417 		q->limits.io_min = q->limits.physical_block_size;
418 }
419 EXPORT_SYMBOL(blk_queue_physical_block_size);
420 
421 /**
422  * blk_queue_zone_write_granularity - set zone write granularity for the queue
423  * @q:  the request queue for the zoned device
424  * @size:  the zone write granularity size, in bytes
425  *
426  * Description:
427  *   This should be set to the lowest possible size allowing to write in
428  *   sequential zones of a zoned block device.
429  */
blk_queue_zone_write_granularity(struct request_queue * q,unsigned int size)430 void blk_queue_zone_write_granularity(struct request_queue *q,
431 				      unsigned int size)
432 {
433 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
434 		return;
435 
436 	q->limits.zone_write_granularity = size;
437 
438 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
439 		q->limits.zone_write_granularity = q->limits.logical_block_size;
440 }
441 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
442 
443 /**
444  * blk_queue_alignment_offset - set physical block alignment offset
445  * @q:	the request queue for the device
446  * @offset: alignment offset in bytes
447  *
448  * Description:
449  *   Some devices are naturally misaligned to compensate for things like
450  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
451  *   should call this function for devices whose first sector is not
452  *   naturally aligned.
453  */
blk_queue_alignment_offset(struct request_queue * q,unsigned int offset)454 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
455 {
456 	q->limits.alignment_offset =
457 		offset & (q->limits.physical_block_size - 1);
458 	q->limits.misaligned = 0;
459 }
460 EXPORT_SYMBOL(blk_queue_alignment_offset);
461 
disk_update_readahead(struct gendisk * disk)462 void disk_update_readahead(struct gendisk *disk)
463 {
464 	struct request_queue *q = disk->queue;
465 
466 	/*
467 	 * For read-ahead of large files to be effective, we need to read ahead
468 	 * at least twice the optimal I/O size.
469 	 */
470 	disk->bdi->ra_pages =
471 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
472 	disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
473 }
474 EXPORT_SYMBOL_GPL(disk_update_readahead);
475 
476 /**
477  * blk_limits_io_min - set minimum request size for a device
478  * @limits: the queue limits
479  * @min:  smallest I/O size in bytes
480  *
481  * Description:
482  *   Some devices have an internal block size bigger than the reported
483  *   hardware sector size.  This function can be used to signal the
484  *   smallest I/O the device can perform without incurring a performance
485  *   penalty.
486  */
blk_limits_io_min(struct queue_limits * limits,unsigned int min)487 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
488 {
489 	limits->io_min = min;
490 
491 	if (limits->io_min < limits->logical_block_size)
492 		limits->io_min = limits->logical_block_size;
493 
494 	if (limits->io_min < limits->physical_block_size)
495 		limits->io_min = limits->physical_block_size;
496 }
497 EXPORT_SYMBOL(blk_limits_io_min);
498 
499 /**
500  * blk_queue_io_min - set minimum request size for the queue
501  * @q:	the request queue for the device
502  * @min:  smallest I/O size in bytes
503  *
504  * Description:
505  *   Storage devices may report a granularity or preferred minimum I/O
506  *   size which is the smallest request the device can perform without
507  *   incurring a performance penalty.  For disk drives this is often the
508  *   physical block size.  For RAID arrays it is often the stripe chunk
509  *   size.  A properly aligned multiple of minimum_io_size is the
510  *   preferred request size for workloads where a high number of I/O
511  *   operations is desired.
512  */
blk_queue_io_min(struct request_queue * q,unsigned int min)513 void blk_queue_io_min(struct request_queue *q, unsigned int min)
514 {
515 	blk_limits_io_min(&q->limits, min);
516 }
517 EXPORT_SYMBOL(blk_queue_io_min);
518 
519 /**
520  * blk_limits_io_opt - set optimal request size for a device
521  * @limits: the queue limits
522  * @opt:  smallest I/O size in bytes
523  *
524  * Description:
525  *   Storage devices may report an optimal I/O size, which is the
526  *   device's preferred unit for sustained I/O.  This is rarely reported
527  *   for disk drives.  For RAID arrays it is usually the stripe width or
528  *   the internal track size.  A properly aligned multiple of
529  *   optimal_io_size is the preferred request size for workloads where
530  *   sustained throughput is desired.
531  */
blk_limits_io_opt(struct queue_limits * limits,unsigned int opt)532 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
533 {
534 	limits->io_opt = opt;
535 }
536 EXPORT_SYMBOL(blk_limits_io_opt);
537 
538 /**
539  * blk_queue_io_opt - set optimal request size for the queue
540  * @q:	the request queue for the device
541  * @opt:  optimal request size in bytes
542  *
543  * Description:
544  *   Storage devices may report an optimal I/O size, which is the
545  *   device's preferred unit for sustained I/O.  This is rarely reported
546  *   for disk drives.  For RAID arrays it is usually the stripe width or
547  *   the internal track size.  A properly aligned multiple of
548  *   optimal_io_size is the preferred request size for workloads where
549  *   sustained throughput is desired.
550  */
blk_queue_io_opt(struct request_queue * q,unsigned int opt)551 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
552 {
553 	blk_limits_io_opt(&q->limits, opt);
554 	if (!q->disk)
555 		return;
556 	q->disk->bdi->ra_pages =
557 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
558 }
559 EXPORT_SYMBOL(blk_queue_io_opt);
560 
queue_limit_alignment_offset(const struct queue_limits * lim,sector_t sector)561 static int queue_limit_alignment_offset(const struct queue_limits *lim,
562 		sector_t sector)
563 {
564 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
565 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
566 		<< SECTOR_SHIFT;
567 
568 	return (granularity + lim->alignment_offset - alignment) % granularity;
569 }
570 
queue_limit_discard_alignment(const struct queue_limits * lim,sector_t sector)571 static unsigned int queue_limit_discard_alignment(
572 		const struct queue_limits *lim, sector_t sector)
573 {
574 	unsigned int alignment, granularity, offset;
575 
576 	if (!lim->max_discard_sectors)
577 		return 0;
578 
579 	/* Why are these in bytes, not sectors? */
580 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
581 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
582 	if (!granularity)
583 		return 0;
584 
585 	/* Offset of the partition start in 'granularity' sectors */
586 	offset = sector_div(sector, granularity);
587 
588 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
589 	offset = (granularity + alignment - offset) % granularity;
590 
591 	/* Turn it back into bytes, gaah */
592 	return offset << SECTOR_SHIFT;
593 }
594 
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)595 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
596 {
597 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
598 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
599 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
600 	return sectors;
601 }
602 
603 /**
604  * blk_stack_limits - adjust queue_limits for stacked devices
605  * @t:	the stacking driver limits (top device)
606  * @b:  the underlying queue limits (bottom, component device)
607  * @start:  first data sector within component device
608  *
609  * Description:
610  *    This function is used by stacking drivers like MD and DM to ensure
611  *    that all component devices have compatible block sizes and
612  *    alignments.  The stacking driver must provide a queue_limits
613  *    struct (top) and then iteratively call the stacking function for
614  *    all component (bottom) devices.  The stacking function will
615  *    attempt to combine the values and ensure proper alignment.
616  *
617  *    Returns 0 if the top and bottom queue_limits are compatible.  The
618  *    top device's block sizes and alignment offsets may be adjusted to
619  *    ensure alignment with the bottom device. If no compatible sizes
620  *    and alignments exist, -1 is returned and the resulting top
621  *    queue_limits will have the misaligned flag set to indicate that
622  *    the alignment_offset is undefined.
623  */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)624 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
625 		     sector_t start)
626 {
627 	unsigned int top, bottom, alignment, ret = 0;
628 
629 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
630 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
631 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
632 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
633 					b->max_write_zeroes_sectors);
634 	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
635 					b->max_zone_append_sectors);
636 	t->bounce = max(t->bounce, b->bounce);
637 
638 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
639 					    b->seg_boundary_mask);
640 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
641 					    b->virt_boundary_mask);
642 
643 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
644 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
645 					       b->max_discard_segments);
646 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
647 						 b->max_integrity_segments);
648 
649 	t->max_segment_size = min_not_zero(t->max_segment_size,
650 					   b->max_segment_size);
651 
652 	t->misaligned |= b->misaligned;
653 
654 	alignment = queue_limit_alignment_offset(b, start);
655 
656 	/* Bottom device has different alignment.  Check that it is
657 	 * compatible with the current top alignment.
658 	 */
659 	if (t->alignment_offset != alignment) {
660 
661 		top = max(t->physical_block_size, t->io_min)
662 			+ t->alignment_offset;
663 		bottom = max(b->physical_block_size, b->io_min) + alignment;
664 
665 		/* Verify that top and bottom intervals line up */
666 		if (max(top, bottom) % min(top, bottom)) {
667 			t->misaligned = 1;
668 			ret = -1;
669 		}
670 	}
671 
672 	t->logical_block_size = max(t->logical_block_size,
673 				    b->logical_block_size);
674 
675 	t->physical_block_size = max(t->physical_block_size,
676 				     b->physical_block_size);
677 
678 	t->io_min = max(t->io_min, b->io_min);
679 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
680 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
681 
682 	/* Set non-power-of-2 compatible chunk_sectors boundary */
683 	if (b->chunk_sectors)
684 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
685 
686 	/* Physical block size a multiple of the logical block size? */
687 	if (t->physical_block_size & (t->logical_block_size - 1)) {
688 		t->physical_block_size = t->logical_block_size;
689 		t->misaligned = 1;
690 		ret = -1;
691 	}
692 
693 	/* Minimum I/O a multiple of the physical block size? */
694 	if (t->io_min & (t->physical_block_size - 1)) {
695 		t->io_min = t->physical_block_size;
696 		t->misaligned = 1;
697 		ret = -1;
698 	}
699 
700 	/* Optimal I/O a multiple of the physical block size? */
701 	if (t->io_opt & (t->physical_block_size - 1)) {
702 		t->io_opt = 0;
703 		t->misaligned = 1;
704 		ret = -1;
705 	}
706 
707 	/* chunk_sectors a multiple of the physical block size? */
708 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
709 		t->chunk_sectors = 0;
710 		t->misaligned = 1;
711 		ret = -1;
712 	}
713 
714 	t->raid_partial_stripes_expensive =
715 		max(t->raid_partial_stripes_expensive,
716 		    b->raid_partial_stripes_expensive);
717 
718 	/* Find lowest common alignment_offset */
719 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
720 		% max(t->physical_block_size, t->io_min);
721 
722 	/* Verify that new alignment_offset is on a logical block boundary */
723 	if (t->alignment_offset & (t->logical_block_size - 1)) {
724 		t->misaligned = 1;
725 		ret = -1;
726 	}
727 
728 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
729 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
730 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
731 
732 	/* Discard alignment and granularity */
733 	if (b->discard_granularity) {
734 		alignment = queue_limit_discard_alignment(b, start);
735 
736 		if (t->discard_granularity != 0 &&
737 		    t->discard_alignment != alignment) {
738 			top = t->discard_granularity + t->discard_alignment;
739 			bottom = b->discard_granularity + alignment;
740 
741 			/* Verify that top and bottom intervals line up */
742 			if ((max(top, bottom) % min(top, bottom)) != 0)
743 				t->discard_misaligned = 1;
744 		}
745 
746 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
747 						      b->max_discard_sectors);
748 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
749 							 b->max_hw_discard_sectors);
750 		t->discard_granularity = max(t->discard_granularity,
751 					     b->discard_granularity);
752 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
753 			t->discard_granularity;
754 	}
755 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
756 						   b->max_secure_erase_sectors);
757 	t->zone_write_granularity = max(t->zone_write_granularity,
758 					b->zone_write_granularity);
759 	t->zoned = max(t->zoned, b->zoned);
760 	if (!t->zoned) {
761 		t->zone_write_granularity = 0;
762 		t->max_zone_append_sectors = 0;
763 	}
764 	return ret;
765 }
766 EXPORT_SYMBOL(blk_stack_limits);
767 
768 /**
769  * disk_stack_limits - adjust queue limits for stacked drivers
770  * @disk:  MD/DM gendisk (top)
771  * @bdev:  the underlying block device (bottom)
772  * @offset:  offset to beginning of data within component device
773  *
774  * Description:
775  *    Merges the limits for a top level gendisk and a bottom level
776  *    block_device.
777  */
disk_stack_limits(struct gendisk * disk,struct block_device * bdev,sector_t offset)778 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
779 		       sector_t offset)
780 {
781 	struct request_queue *t = disk->queue;
782 
783 	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
784 			get_start_sect(bdev) + (offset >> 9)) < 0)
785 		pr_notice("%s: Warning: Device %pg is misaligned\n",
786 			disk->disk_name, bdev);
787 
788 	disk_update_readahead(disk);
789 }
790 EXPORT_SYMBOL(disk_stack_limits);
791 
792 /**
793  * blk_queue_update_dma_pad - update pad mask
794  * @q:     the request queue for the device
795  * @mask:  pad mask
796  *
797  * Update dma pad mask.
798  *
799  * Appending pad buffer to a request modifies the last entry of a
800  * scatter list such that it includes the pad buffer.
801  **/
blk_queue_update_dma_pad(struct request_queue * q,unsigned int mask)802 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
803 {
804 	if (mask > q->dma_pad_mask)
805 		q->dma_pad_mask = mask;
806 }
807 EXPORT_SYMBOL(blk_queue_update_dma_pad);
808 
809 /**
810  * blk_queue_segment_boundary - set boundary rules for segment merging
811  * @q:  the request queue for the device
812  * @mask:  the memory boundary mask
813  **/
blk_queue_segment_boundary(struct request_queue * q,unsigned long mask)814 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
815 {
816 	if (mask < PAGE_SIZE - 1) {
817 		mask = PAGE_SIZE - 1;
818 		pr_info("set to minimum %lx\n", mask);
819 	}
820 
821 	q->limits.seg_boundary_mask = mask;
822 }
823 EXPORT_SYMBOL(blk_queue_segment_boundary);
824 
825 /**
826  * blk_queue_virt_boundary - set boundary rules for bio merging
827  * @q:  the request queue for the device
828  * @mask:  the memory boundary mask
829  **/
blk_queue_virt_boundary(struct request_queue * q,unsigned long mask)830 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
831 {
832 	q->limits.virt_boundary_mask = mask;
833 
834 	/*
835 	 * Devices that require a virtual boundary do not support scatter/gather
836 	 * I/O natively, but instead require a descriptor list entry for each
837 	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
838 	 * of that they are not limited by our notion of "segment size".
839 	 */
840 	if (mask)
841 		q->limits.max_segment_size = UINT_MAX;
842 }
843 EXPORT_SYMBOL(blk_queue_virt_boundary);
844 
845 /**
846  * blk_queue_dma_alignment - set dma length and memory alignment
847  * @q:     the request queue for the device
848  * @mask:  alignment mask
849  *
850  * description:
851  *    set required memory and length alignment for direct dma transactions.
852  *    this is used when building direct io requests for the queue.
853  *
854  **/
blk_queue_dma_alignment(struct request_queue * q,int mask)855 void blk_queue_dma_alignment(struct request_queue *q, int mask)
856 {
857 	q->limits.dma_alignment = mask;
858 }
859 EXPORT_SYMBOL(blk_queue_dma_alignment);
860 
861 /**
862  * blk_queue_update_dma_alignment - update dma length and memory alignment
863  * @q:     the request queue for the device
864  * @mask:  alignment mask
865  *
866  * description:
867  *    update required memory and length alignment for direct dma transactions.
868  *    If the requested alignment is larger than the current alignment, then
869  *    the current queue alignment is updated to the new value, otherwise it
870  *    is left alone.  The design of this is to allow multiple objects
871  *    (driver, device, transport etc) to set their respective
872  *    alignments without having them interfere.
873  *
874  **/
blk_queue_update_dma_alignment(struct request_queue * q,int mask)875 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
876 {
877 	BUG_ON(mask > PAGE_SIZE);
878 
879 	if (mask > q->limits.dma_alignment)
880 		q->limits.dma_alignment = mask;
881 }
882 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
883 
884 /**
885  * blk_set_queue_depth - tell the block layer about the device queue depth
886  * @q:		the request queue for the device
887  * @depth:		queue depth
888  *
889  */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)890 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
891 {
892 	q->queue_depth = depth;
893 	rq_qos_queue_depth_changed(q);
894 }
895 EXPORT_SYMBOL(blk_set_queue_depth);
896 
897 /**
898  * blk_queue_write_cache - configure queue's write cache
899  * @q:		the request queue for the device
900  * @wc:		write back cache on or off
901  * @fua:	device supports FUA writes, if true
902  *
903  * Tell the block layer about the write cache of @q.
904  */
blk_queue_write_cache(struct request_queue * q,bool wc,bool fua)905 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
906 {
907 	if (wc) {
908 		blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
909 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
910 	} else {
911 		blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
912 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
913 	}
914 	if (fua)
915 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
916 	else
917 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
918 
919 	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
920 }
921 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
922 
923 /**
924  * blk_queue_required_elevator_features - Set a queue required elevator features
925  * @q:		the request queue for the target device
926  * @features:	Required elevator features OR'ed together
927  *
928  * Tell the block layer that for the device controlled through @q, only the
929  * only elevators that can be used are those that implement at least the set of
930  * features specified by @features.
931  */
blk_queue_required_elevator_features(struct request_queue * q,unsigned int features)932 void blk_queue_required_elevator_features(struct request_queue *q,
933 					  unsigned int features)
934 {
935 	q->required_elevator_features = features;
936 }
937 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
938 
939 /**
940  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
941  * @q:		the request queue for the device
942  * @dev:	the device pointer for dma
943  *
944  * Tell the block layer about merging the segments by dma map of @q.
945  */
blk_queue_can_use_dma_map_merging(struct request_queue * q,struct device * dev)946 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
947 				       struct device *dev)
948 {
949 	unsigned long boundary = dma_get_merge_boundary(dev);
950 
951 	if (!boundary)
952 		return false;
953 
954 	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
955 	blk_queue_virt_boundary(q, boundary);
956 
957 	return true;
958 }
959 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
960 
disk_has_partitions(struct gendisk * disk)961 static bool disk_has_partitions(struct gendisk *disk)
962 {
963 	unsigned long idx;
964 	struct block_device *part;
965 	bool ret = false;
966 
967 	rcu_read_lock();
968 	xa_for_each(&disk->part_tbl, idx, part) {
969 		if (bdev_is_partition(part)) {
970 			ret = true;
971 			break;
972 		}
973 	}
974 	rcu_read_unlock();
975 
976 	return ret;
977 }
978 
979 /**
980  * disk_set_zoned - configure the zoned model for a disk
981  * @disk:	the gendisk of the queue to configure
982  * @model:	the zoned model to set
983  *
984  * Set the zoned model of @disk to @model.
985  *
986  * When @model is BLK_ZONED_HM (host managed), this should be called only
987  * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
988  * If @model specifies BLK_ZONED_HA (host aware), the effective model used
989  * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
990  * on the disk.
991  */
disk_set_zoned(struct gendisk * disk,enum blk_zoned_model model)992 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
993 {
994 	struct request_queue *q = disk->queue;
995 	unsigned int old_model = q->limits.zoned;
996 
997 	switch (model) {
998 	case BLK_ZONED_HM:
999 		/*
1000 		 * Host managed devices are supported only if
1001 		 * CONFIG_BLK_DEV_ZONED is enabled.
1002 		 */
1003 		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
1004 		break;
1005 	case BLK_ZONED_HA:
1006 		/*
1007 		 * Host aware devices can be treated either as regular block
1008 		 * devices (similar to drive managed devices) or as zoned block
1009 		 * devices to take advantage of the zone command set, similarly
1010 		 * to host managed devices. We try the latter if there are no
1011 		 * partitions and zoned block device support is enabled, else
1012 		 * we do nothing special as far as the block layer is concerned.
1013 		 */
1014 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
1015 		    disk_has_partitions(disk))
1016 			model = BLK_ZONED_NONE;
1017 		break;
1018 	case BLK_ZONED_NONE:
1019 	default:
1020 		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
1021 			model = BLK_ZONED_NONE;
1022 		break;
1023 	}
1024 
1025 	q->limits.zoned = model;
1026 	if (model != BLK_ZONED_NONE) {
1027 		/*
1028 		 * Set the zone write granularity to the device logical block
1029 		 * size by default. The driver can change this value if needed.
1030 		 */
1031 		blk_queue_zone_write_granularity(q,
1032 						queue_logical_block_size(q));
1033 	} else if (old_model != BLK_ZONED_NONE) {
1034 		disk_clear_zone_settings(disk);
1035 	}
1036 }
1037 EXPORT_SYMBOL_GPL(disk_set_zoned);
1038 
bdev_alignment_offset(struct block_device * bdev)1039 int bdev_alignment_offset(struct block_device *bdev)
1040 {
1041 	struct request_queue *q = bdev_get_queue(bdev);
1042 
1043 	if (q->limits.misaligned)
1044 		return -1;
1045 	if (bdev_is_partition(bdev))
1046 		return queue_limit_alignment_offset(&q->limits,
1047 				bdev->bd_start_sect);
1048 	return q->limits.alignment_offset;
1049 }
1050 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1051 
bdev_discard_alignment(struct block_device * bdev)1052 unsigned int bdev_discard_alignment(struct block_device *bdev)
1053 {
1054 	struct request_queue *q = bdev_get_queue(bdev);
1055 
1056 	if (bdev_is_partition(bdev))
1057 		return queue_limit_discard_alignment(&q->limits,
1058 				bdev->bd_start_sect);
1059 	return q->limits.discard_alignment;
1060 }
1061 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
1062