• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 
41 #include <asm/barrier.h>
42 #include <asm/unaligned.h>
43 
44 /* Registers */
45 #define BPF_R0	regs[BPF_REG_0]
46 #define BPF_R1	regs[BPF_REG_1]
47 #define BPF_R2	regs[BPF_REG_2]
48 #define BPF_R3	regs[BPF_REG_3]
49 #define BPF_R4	regs[BPF_REG_4]
50 #define BPF_R5	regs[BPF_REG_5]
51 #define BPF_R6	regs[BPF_REG_6]
52 #define BPF_R7	regs[BPF_REG_7]
53 #define BPF_R8	regs[BPF_REG_8]
54 #define BPF_R9	regs[BPF_REG_9]
55 #define BPF_R10	regs[BPF_REG_10]
56 
57 /* Named registers */
58 #define DST	regs[insn->dst_reg]
59 #define SRC	regs[insn->src_reg]
60 #define FP	regs[BPF_REG_FP]
61 #define AX	regs[BPF_REG_AX]
62 #define ARG1	regs[BPF_REG_ARG1]
63 #define CTX	regs[BPF_REG_CTX]
64 #define OFF	insn->off
65 #define IMM	insn->imm
66 
67 struct bpf_mem_alloc bpf_global_ma;
68 bool bpf_global_ma_set;
69 
70 /* No hurry in this branch
71  *
72  * Exported for the bpf jit load helper.
73  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)74 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
75 {
76 	u8 *ptr = NULL;
77 
78 	if (k >= SKF_NET_OFF) {
79 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
80 	} else if (k >= SKF_LL_OFF) {
81 		if (unlikely(!skb_mac_header_was_set(skb)))
82 			return NULL;
83 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
84 	}
85 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
86 		return ptr;
87 
88 	return NULL;
89 }
90 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)91 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
92 {
93 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
94 	struct bpf_prog_aux *aux;
95 	struct bpf_prog *fp;
96 
97 	size = round_up(size, PAGE_SIZE);
98 	fp = __vmalloc(size, gfp_flags);
99 	if (fp == NULL)
100 		return NULL;
101 
102 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
103 	if (aux == NULL) {
104 		vfree(fp);
105 		return NULL;
106 	}
107 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
108 	if (!fp->active) {
109 		vfree(fp);
110 		kfree(aux);
111 		return NULL;
112 	}
113 
114 	fp->pages = size / PAGE_SIZE;
115 	fp->aux = aux;
116 	fp->aux->prog = fp;
117 	fp->jit_requested = ebpf_jit_enabled();
118 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
119 #ifdef CONFIG_CGROUP_BPF
120 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
121 #endif
122 
123 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
124 	mutex_init(&fp->aux->used_maps_mutex);
125 	mutex_init(&fp->aux->dst_mutex);
126 
127 	return fp;
128 }
129 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)130 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
131 {
132 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
133 	struct bpf_prog *prog;
134 	int cpu;
135 
136 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
137 	if (!prog)
138 		return NULL;
139 
140 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
141 	if (!prog->stats) {
142 		free_percpu(prog->active);
143 		kfree(prog->aux);
144 		vfree(prog);
145 		return NULL;
146 	}
147 
148 	for_each_possible_cpu(cpu) {
149 		struct bpf_prog_stats *pstats;
150 
151 		pstats = per_cpu_ptr(prog->stats, cpu);
152 		u64_stats_init(&pstats->syncp);
153 	}
154 	return prog;
155 }
156 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
157 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)158 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
159 {
160 	if (!prog->aux->nr_linfo || !prog->jit_requested)
161 		return 0;
162 
163 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
164 					  sizeof(*prog->aux->jited_linfo),
165 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
166 	if (!prog->aux->jited_linfo)
167 		return -ENOMEM;
168 
169 	return 0;
170 }
171 
bpf_prog_jit_attempt_done(struct bpf_prog * prog)172 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
173 {
174 	if (prog->aux->jited_linfo &&
175 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
176 		kvfree(prog->aux->jited_linfo);
177 		prog->aux->jited_linfo = NULL;
178 	}
179 
180 	kfree(prog->aux->kfunc_tab);
181 	prog->aux->kfunc_tab = NULL;
182 }
183 
184 /* The jit engine is responsible to provide an array
185  * for insn_off to the jited_off mapping (insn_to_jit_off).
186  *
187  * The idx to this array is the insn_off.  Hence, the insn_off
188  * here is relative to the prog itself instead of the main prog.
189  * This array has one entry for each xlated bpf insn.
190  *
191  * jited_off is the byte off to the end of the jited insn.
192  *
193  * Hence, with
194  * insn_start:
195  *      The first bpf insn off of the prog.  The insn off
196  *      here is relative to the main prog.
197  *      e.g. if prog is a subprog, insn_start > 0
198  * linfo_idx:
199  *      The prog's idx to prog->aux->linfo and jited_linfo
200  *
201  * jited_linfo[linfo_idx] = prog->bpf_func
202  *
203  * For i > linfo_idx,
204  *
205  * jited_linfo[i] = prog->bpf_func +
206  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
207  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)208 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
209 			       const u32 *insn_to_jit_off)
210 {
211 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
212 	const struct bpf_line_info *linfo;
213 	void **jited_linfo;
214 
215 	if (!prog->aux->jited_linfo)
216 		/* Userspace did not provide linfo */
217 		return;
218 
219 	linfo_idx = prog->aux->linfo_idx;
220 	linfo = &prog->aux->linfo[linfo_idx];
221 	insn_start = linfo[0].insn_off;
222 	insn_end = insn_start + prog->len;
223 
224 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
225 	jited_linfo[0] = prog->bpf_func;
226 
227 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
228 
229 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
230 		/* The verifier ensures that linfo[i].insn_off is
231 		 * strictly increasing
232 		 */
233 		jited_linfo[i] = prog->bpf_func +
234 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
235 }
236 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)237 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
238 				  gfp_t gfp_extra_flags)
239 {
240 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
241 	struct bpf_prog *fp;
242 	u32 pages;
243 
244 	size = round_up(size, PAGE_SIZE);
245 	pages = size / PAGE_SIZE;
246 	if (pages <= fp_old->pages)
247 		return fp_old;
248 
249 	fp = __vmalloc(size, gfp_flags);
250 	if (fp) {
251 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
252 		fp->pages = pages;
253 		fp->aux->prog = fp;
254 
255 		/* We keep fp->aux from fp_old around in the new
256 		 * reallocated structure.
257 		 */
258 		fp_old->aux = NULL;
259 		fp_old->stats = NULL;
260 		fp_old->active = NULL;
261 		__bpf_prog_free(fp_old);
262 	}
263 
264 	return fp;
265 }
266 
__bpf_prog_free(struct bpf_prog * fp)267 void __bpf_prog_free(struct bpf_prog *fp)
268 {
269 	if (fp->aux) {
270 		mutex_destroy(&fp->aux->used_maps_mutex);
271 		mutex_destroy(&fp->aux->dst_mutex);
272 		kfree(fp->aux->poke_tab);
273 		kfree(fp->aux);
274 	}
275 	free_percpu(fp->stats);
276 	free_percpu(fp->active);
277 	vfree(fp);
278 }
279 
bpf_prog_calc_tag(struct bpf_prog * fp)280 int bpf_prog_calc_tag(struct bpf_prog *fp)
281 {
282 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
283 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
284 	u32 digest[SHA1_DIGEST_WORDS];
285 	u32 ws[SHA1_WORKSPACE_WORDS];
286 	u32 i, bsize, psize, blocks;
287 	struct bpf_insn *dst;
288 	bool was_ld_map;
289 	u8 *raw, *todo;
290 	__be32 *result;
291 	__be64 *bits;
292 
293 	raw = vmalloc(raw_size);
294 	if (!raw)
295 		return -ENOMEM;
296 
297 	sha1_init(digest);
298 	memset(ws, 0, sizeof(ws));
299 
300 	/* We need to take out the map fd for the digest calculation
301 	 * since they are unstable from user space side.
302 	 */
303 	dst = (void *)raw;
304 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
305 		dst[i] = fp->insnsi[i];
306 		if (!was_ld_map &&
307 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
308 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
309 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
310 			was_ld_map = true;
311 			dst[i].imm = 0;
312 		} else if (was_ld_map &&
313 			   dst[i].code == 0 &&
314 			   dst[i].dst_reg == 0 &&
315 			   dst[i].src_reg == 0 &&
316 			   dst[i].off == 0) {
317 			was_ld_map = false;
318 			dst[i].imm = 0;
319 		} else {
320 			was_ld_map = false;
321 		}
322 	}
323 
324 	psize = bpf_prog_insn_size(fp);
325 	memset(&raw[psize], 0, raw_size - psize);
326 	raw[psize++] = 0x80;
327 
328 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
329 	blocks = bsize / SHA1_BLOCK_SIZE;
330 	todo   = raw;
331 	if (bsize - psize >= sizeof(__be64)) {
332 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
333 	} else {
334 		bits = (__be64 *)(todo + bsize + bits_offset);
335 		blocks++;
336 	}
337 	*bits = cpu_to_be64((psize - 1) << 3);
338 
339 	while (blocks--) {
340 		sha1_transform(digest, todo, ws);
341 		todo += SHA1_BLOCK_SIZE;
342 	}
343 
344 	result = (__force __be32 *)digest;
345 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
346 		result[i] = cpu_to_be32(digest[i]);
347 	memcpy(fp->tag, result, sizeof(fp->tag));
348 
349 	vfree(raw);
350 	return 0;
351 }
352 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)353 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
354 				s32 end_new, s32 curr, const bool probe_pass)
355 {
356 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
357 	s32 delta = end_new - end_old;
358 	s64 imm = insn->imm;
359 
360 	if (curr < pos && curr + imm + 1 >= end_old)
361 		imm += delta;
362 	else if (curr >= end_new && curr + imm + 1 < end_new)
363 		imm -= delta;
364 	if (imm < imm_min || imm > imm_max)
365 		return -ERANGE;
366 	if (!probe_pass)
367 		insn->imm = imm;
368 	return 0;
369 }
370 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)371 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
372 				s32 end_new, s32 curr, const bool probe_pass)
373 {
374 	s64 off_min, off_max, off;
375 	s32 delta = end_new - end_old;
376 
377 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
378 		off = insn->imm;
379 		off_min = S32_MIN;
380 		off_max = S32_MAX;
381 	} else {
382 		off = insn->off;
383 		off_min = S16_MIN;
384 		off_max = S16_MAX;
385 	}
386 
387 	if (curr < pos && curr + off + 1 >= end_old)
388 		off += delta;
389 	else if (curr >= end_new && curr + off + 1 < end_new)
390 		off -= delta;
391 	if (off < off_min || off > off_max)
392 		return -ERANGE;
393 	if (!probe_pass) {
394 		if (insn->code == (BPF_JMP32 | BPF_JA))
395 			insn->imm = off;
396 		else
397 			insn->off = off;
398 	}
399 	return 0;
400 }
401 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)402 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
403 			    s32 end_new, const bool probe_pass)
404 {
405 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
406 	struct bpf_insn *insn = prog->insnsi;
407 	int ret = 0;
408 
409 	for (i = 0; i < insn_cnt; i++, insn++) {
410 		u8 code;
411 
412 		/* In the probing pass we still operate on the original,
413 		 * unpatched image in order to check overflows before we
414 		 * do any other adjustments. Therefore skip the patchlet.
415 		 */
416 		if (probe_pass && i == pos) {
417 			i = end_new;
418 			insn = prog->insnsi + end_old;
419 		}
420 		if (bpf_pseudo_func(insn)) {
421 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
422 						   end_new, i, probe_pass);
423 			if (ret)
424 				return ret;
425 			continue;
426 		}
427 		code = insn->code;
428 		if ((BPF_CLASS(code) != BPF_JMP &&
429 		     BPF_CLASS(code) != BPF_JMP32) ||
430 		    BPF_OP(code) == BPF_EXIT)
431 			continue;
432 		/* Adjust offset of jmps if we cross patch boundaries. */
433 		if (BPF_OP(code) == BPF_CALL) {
434 			if (insn->src_reg != BPF_PSEUDO_CALL)
435 				continue;
436 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
437 						   end_new, i, probe_pass);
438 		} else {
439 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
440 						   end_new, i, probe_pass);
441 		}
442 		if (ret)
443 			break;
444 	}
445 
446 	return ret;
447 }
448 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)449 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
450 {
451 	struct bpf_line_info *linfo;
452 	u32 i, nr_linfo;
453 
454 	nr_linfo = prog->aux->nr_linfo;
455 	if (!nr_linfo || !delta)
456 		return;
457 
458 	linfo = prog->aux->linfo;
459 
460 	for (i = 0; i < nr_linfo; i++)
461 		if (off < linfo[i].insn_off)
462 			break;
463 
464 	/* Push all off < linfo[i].insn_off by delta */
465 	for (; i < nr_linfo; i++)
466 		linfo[i].insn_off += delta;
467 }
468 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)469 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
470 				       const struct bpf_insn *patch, u32 len)
471 {
472 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
473 	const u32 cnt_max = S16_MAX;
474 	struct bpf_prog *prog_adj;
475 	int err;
476 
477 	/* Since our patchlet doesn't expand the image, we're done. */
478 	if (insn_delta == 0) {
479 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
480 		return prog;
481 	}
482 
483 	insn_adj_cnt = prog->len + insn_delta;
484 
485 	/* Reject anything that would potentially let the insn->off
486 	 * target overflow when we have excessive program expansions.
487 	 * We need to probe here before we do any reallocation where
488 	 * we afterwards may not fail anymore.
489 	 */
490 	if (insn_adj_cnt > cnt_max &&
491 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
492 		return ERR_PTR(err);
493 
494 	/* Several new instructions need to be inserted. Make room
495 	 * for them. Likely, there's no need for a new allocation as
496 	 * last page could have large enough tailroom.
497 	 */
498 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
499 				    GFP_USER);
500 	if (!prog_adj)
501 		return ERR_PTR(-ENOMEM);
502 
503 	prog_adj->len = insn_adj_cnt;
504 
505 	/* Patching happens in 3 steps:
506 	 *
507 	 * 1) Move over tail of insnsi from next instruction onwards,
508 	 *    so we can patch the single target insn with one or more
509 	 *    new ones (patching is always from 1 to n insns, n > 0).
510 	 * 2) Inject new instructions at the target location.
511 	 * 3) Adjust branch offsets if necessary.
512 	 */
513 	insn_rest = insn_adj_cnt - off - len;
514 
515 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
516 		sizeof(*patch) * insn_rest);
517 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
518 
519 	/* We are guaranteed to not fail at this point, otherwise
520 	 * the ship has sailed to reverse to the original state. An
521 	 * overflow cannot happen at this point.
522 	 */
523 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
524 
525 	bpf_adj_linfo(prog_adj, off, insn_delta);
526 
527 	return prog_adj;
528 }
529 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)530 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
531 {
532 	/* Branch offsets can't overflow when program is shrinking, no need
533 	 * to call bpf_adj_branches(..., true) here
534 	 */
535 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
536 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
537 	prog->len -= cnt;
538 
539 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
540 }
541 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)542 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
543 {
544 	int i;
545 
546 	for (i = 0; i < fp->aux->func_cnt; i++)
547 		bpf_prog_kallsyms_del(fp->aux->func[i]);
548 }
549 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)550 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
551 {
552 	bpf_prog_kallsyms_del_subprogs(fp);
553 	bpf_prog_kallsyms_del(fp);
554 }
555 
556 #ifdef CONFIG_BPF_JIT
557 /* All BPF JIT sysctl knobs here. */
558 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
559 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
560 int bpf_jit_harden   __read_mostly;
561 long bpf_jit_limit   __read_mostly;
562 long bpf_jit_limit_max __read_mostly;
563 
564 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)565 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
566 {
567 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
568 
569 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
570 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
571 }
572 
573 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)574 bpf_prog_ksym_set_name(struct bpf_prog *prog)
575 {
576 	char *sym = prog->aux->ksym.name;
577 	const char *end = sym + KSYM_NAME_LEN;
578 	const struct btf_type *type;
579 	const char *func_name;
580 
581 	BUILD_BUG_ON(sizeof("bpf_prog_") +
582 		     sizeof(prog->tag) * 2 +
583 		     /* name has been null terminated.
584 		      * We should need +1 for the '_' preceding
585 		      * the name.  However, the null character
586 		      * is double counted between the name and the
587 		      * sizeof("bpf_prog_") above, so we omit
588 		      * the +1 here.
589 		      */
590 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
591 
592 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
593 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
594 
595 	/* prog->aux->name will be ignored if full btf name is available */
596 	if (prog->aux->func_info_cnt) {
597 		type = btf_type_by_id(prog->aux->btf,
598 				      prog->aux->func_info[prog->aux->func_idx].type_id);
599 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
600 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
601 		return;
602 	}
603 
604 	if (prog->aux->name[0])
605 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
606 	else
607 		*sym = 0;
608 }
609 
bpf_get_ksym_start(struct latch_tree_node * n)610 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
611 {
612 	return container_of(n, struct bpf_ksym, tnode)->start;
613 }
614 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)615 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
616 					  struct latch_tree_node *b)
617 {
618 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
619 }
620 
bpf_tree_comp(void * key,struct latch_tree_node * n)621 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
622 {
623 	unsigned long val = (unsigned long)key;
624 	const struct bpf_ksym *ksym;
625 
626 	ksym = container_of(n, struct bpf_ksym, tnode);
627 
628 	if (val < ksym->start)
629 		return -1;
630 	/* Ensure that we detect return addresses as part of the program, when
631 	 * the final instruction is a call for a program part of the stack
632 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
633 	 */
634 	if (val > ksym->end)
635 		return  1;
636 
637 	return 0;
638 }
639 
640 static const struct latch_tree_ops bpf_tree_ops = {
641 	.less	= bpf_tree_less,
642 	.comp	= bpf_tree_comp,
643 };
644 
645 static DEFINE_SPINLOCK(bpf_lock);
646 static LIST_HEAD(bpf_kallsyms);
647 static struct latch_tree_root bpf_tree __cacheline_aligned;
648 
bpf_ksym_add(struct bpf_ksym * ksym)649 void bpf_ksym_add(struct bpf_ksym *ksym)
650 {
651 	spin_lock_bh(&bpf_lock);
652 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
653 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
654 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
655 	spin_unlock_bh(&bpf_lock);
656 }
657 
__bpf_ksym_del(struct bpf_ksym * ksym)658 static void __bpf_ksym_del(struct bpf_ksym *ksym)
659 {
660 	if (list_empty(&ksym->lnode))
661 		return;
662 
663 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
664 	list_del_rcu(&ksym->lnode);
665 }
666 
bpf_ksym_del(struct bpf_ksym * ksym)667 void bpf_ksym_del(struct bpf_ksym *ksym)
668 {
669 	spin_lock_bh(&bpf_lock);
670 	__bpf_ksym_del(ksym);
671 	spin_unlock_bh(&bpf_lock);
672 }
673 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)674 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
675 {
676 	return fp->jited && !bpf_prog_was_classic(fp);
677 }
678 
bpf_prog_kallsyms_add(struct bpf_prog * fp)679 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
680 {
681 	if (!bpf_prog_kallsyms_candidate(fp) ||
682 	    !bpf_capable())
683 		return;
684 
685 	bpf_prog_ksym_set_addr(fp);
686 	bpf_prog_ksym_set_name(fp);
687 	fp->aux->ksym.prog = true;
688 
689 	bpf_ksym_add(&fp->aux->ksym);
690 }
691 
bpf_prog_kallsyms_del(struct bpf_prog * fp)692 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
693 {
694 	if (!bpf_prog_kallsyms_candidate(fp))
695 		return;
696 
697 	bpf_ksym_del(&fp->aux->ksym);
698 }
699 
bpf_ksym_find(unsigned long addr)700 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
701 {
702 	struct latch_tree_node *n;
703 
704 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
705 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
706 }
707 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)708 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
709 				 unsigned long *off, char *sym)
710 {
711 	struct bpf_ksym *ksym;
712 	char *ret = NULL;
713 
714 	rcu_read_lock();
715 	ksym = bpf_ksym_find(addr);
716 	if (ksym) {
717 		unsigned long symbol_start = ksym->start;
718 		unsigned long symbol_end = ksym->end;
719 
720 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
721 
722 		ret = sym;
723 		if (size)
724 			*size = symbol_end - symbol_start;
725 		if (off)
726 			*off  = addr - symbol_start;
727 	}
728 	rcu_read_unlock();
729 
730 	return ret;
731 }
732 
is_bpf_text_address(unsigned long addr)733 bool is_bpf_text_address(unsigned long addr)
734 {
735 	bool ret;
736 
737 	rcu_read_lock();
738 	ret = bpf_ksym_find(addr) != NULL;
739 	rcu_read_unlock();
740 
741 	return ret;
742 }
743 
bpf_prog_ksym_find(unsigned long addr)744 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
745 {
746 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
747 
748 	return ksym && ksym->prog ?
749 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
750 	       NULL;
751 }
752 
search_bpf_extables(unsigned long addr)753 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
754 {
755 	const struct exception_table_entry *e = NULL;
756 	struct bpf_prog *prog;
757 
758 	rcu_read_lock();
759 	prog = bpf_prog_ksym_find(addr);
760 	if (!prog)
761 		goto out;
762 	if (!prog->aux->num_exentries)
763 		goto out;
764 
765 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
766 out:
767 	rcu_read_unlock();
768 	return e;
769 }
770 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)771 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
772 		    char *sym)
773 {
774 	struct bpf_ksym *ksym;
775 	unsigned int it = 0;
776 	int ret = -ERANGE;
777 
778 	if (!bpf_jit_kallsyms_enabled())
779 		return ret;
780 
781 	rcu_read_lock();
782 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
783 		if (it++ != symnum)
784 			continue;
785 
786 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
787 
788 		*value = ksym->start;
789 		*type  = BPF_SYM_ELF_TYPE;
790 
791 		ret = 0;
792 		break;
793 	}
794 	rcu_read_unlock();
795 
796 	return ret;
797 }
798 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)799 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
800 				struct bpf_jit_poke_descriptor *poke)
801 {
802 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
803 	static const u32 poke_tab_max = 1024;
804 	u32 slot = prog->aux->size_poke_tab;
805 	u32 size = slot + 1;
806 
807 	if (size > poke_tab_max)
808 		return -ENOSPC;
809 	if (poke->tailcall_target || poke->tailcall_target_stable ||
810 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
811 		return -EINVAL;
812 
813 	switch (poke->reason) {
814 	case BPF_POKE_REASON_TAIL_CALL:
815 		if (!poke->tail_call.map)
816 			return -EINVAL;
817 		break;
818 	default:
819 		return -EINVAL;
820 	}
821 
822 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
823 	if (!tab)
824 		return -ENOMEM;
825 
826 	memcpy(&tab[slot], poke, sizeof(*poke));
827 	prog->aux->size_poke_tab = size;
828 	prog->aux->poke_tab = tab;
829 
830 	return slot;
831 }
832 
833 /*
834  * BPF program pack allocator.
835  *
836  * Most BPF programs are pretty small. Allocating a hole page for each
837  * program is sometime a waste. Many small bpf program also adds pressure
838  * to instruction TLB. To solve this issue, we introduce a BPF program pack
839  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
840  * to host BPF programs.
841  */
842 #define BPF_PROG_CHUNK_SHIFT	6
843 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
844 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
845 
846 struct bpf_prog_pack {
847 	struct list_head list;
848 	void *ptr;
849 	unsigned long bitmap[];
850 };
851 
bpf_jit_fill_hole_with_zero(void * area,unsigned int size)852 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
853 {
854 	memset(area, 0, size);
855 }
856 
857 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
858 
859 static DEFINE_MUTEX(pack_mutex);
860 static LIST_HEAD(pack_list);
861 
862 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
863  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
864  */
865 #ifdef PMD_SIZE
866 /* PMD_SIZE is really big for some archs. It doesn't make sense to
867  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
868  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
869  * greater than or equal to 2MB.
870  */
871 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
872 #else
873 #define BPF_PROG_PACK_SIZE PAGE_SIZE
874 #endif
875 
876 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
877 
alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)878 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
879 {
880 	struct bpf_prog_pack *pack;
881 
882 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
883 		       GFP_KERNEL);
884 	if (!pack)
885 		return NULL;
886 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
887 	if (!pack->ptr) {
888 		kfree(pack);
889 		return NULL;
890 	}
891 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
892 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
893 	list_add_tail(&pack->list, &pack_list);
894 
895 	set_vm_flush_reset_perms(pack->ptr);
896 	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
897 	return pack;
898 }
899 
bpf_prog_pack_alloc(u32 size,bpf_jit_fill_hole_t bpf_fill_ill_insns)900 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
901 {
902 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
903 	struct bpf_prog_pack *pack;
904 	unsigned long pos;
905 	void *ptr = NULL;
906 
907 	mutex_lock(&pack_mutex);
908 	if (size > BPF_PROG_PACK_SIZE) {
909 		size = round_up(size, PAGE_SIZE);
910 		ptr = bpf_jit_alloc_exec(size);
911 		if (ptr) {
912 			bpf_fill_ill_insns(ptr, size);
913 			set_vm_flush_reset_perms(ptr);
914 			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
915 		}
916 		goto out;
917 	}
918 	list_for_each_entry(pack, &pack_list, list) {
919 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
920 						 nbits, 0);
921 		if (pos < BPF_PROG_CHUNK_COUNT)
922 			goto found_free_area;
923 	}
924 
925 	pack = alloc_new_pack(bpf_fill_ill_insns);
926 	if (!pack)
927 		goto out;
928 
929 	pos = 0;
930 
931 found_free_area:
932 	bitmap_set(pack->bitmap, pos, nbits);
933 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
934 
935 out:
936 	mutex_unlock(&pack_mutex);
937 	return ptr;
938 }
939 
bpf_prog_pack_free(struct bpf_binary_header * hdr)940 void bpf_prog_pack_free(struct bpf_binary_header *hdr)
941 {
942 	struct bpf_prog_pack *pack = NULL, *tmp;
943 	unsigned int nbits;
944 	unsigned long pos;
945 
946 	mutex_lock(&pack_mutex);
947 	if (hdr->size > BPF_PROG_PACK_SIZE) {
948 		bpf_jit_free_exec(hdr);
949 		goto out;
950 	}
951 
952 	list_for_each_entry(tmp, &pack_list, list) {
953 		if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
954 			pack = tmp;
955 			break;
956 		}
957 	}
958 
959 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
960 		goto out;
961 
962 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
963 	pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
964 
965 	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
966 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
967 
968 	bitmap_clear(pack->bitmap, pos, nbits);
969 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
970 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
971 		list_del(&pack->list);
972 		bpf_jit_free_exec(pack->ptr);
973 		kfree(pack);
974 	}
975 out:
976 	mutex_unlock(&pack_mutex);
977 }
978 
979 static atomic_long_t bpf_jit_current;
980 
981 /* Can be overridden by an arch's JIT compiler if it has a custom,
982  * dedicated BPF backend memory area, or if neither of the two
983  * below apply.
984  */
bpf_jit_alloc_exec_limit(void)985 u64 __weak bpf_jit_alloc_exec_limit(void)
986 {
987 #if defined(MODULES_VADDR)
988 	return MODULES_END - MODULES_VADDR;
989 #else
990 	return VMALLOC_END - VMALLOC_START;
991 #endif
992 }
993 
bpf_jit_charge_init(void)994 static int __init bpf_jit_charge_init(void)
995 {
996 	/* Only used as heuristic here to derive limit. */
997 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
998 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
999 					    PAGE_SIZE), LONG_MAX);
1000 	return 0;
1001 }
1002 pure_initcall(bpf_jit_charge_init);
1003 
bpf_jit_charge_modmem(u32 size)1004 int bpf_jit_charge_modmem(u32 size)
1005 {
1006 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1007 		if (!bpf_capable()) {
1008 			atomic_long_sub(size, &bpf_jit_current);
1009 			return -EPERM;
1010 		}
1011 	}
1012 
1013 	return 0;
1014 }
1015 
bpf_jit_uncharge_modmem(u32 size)1016 void bpf_jit_uncharge_modmem(u32 size)
1017 {
1018 	atomic_long_sub(size, &bpf_jit_current);
1019 }
1020 
bpf_jit_alloc_exec(unsigned long size)1021 void *__weak bpf_jit_alloc_exec(unsigned long size)
1022 {
1023 	return module_alloc(size);
1024 }
1025 
bpf_jit_free_exec(void * addr)1026 void __weak bpf_jit_free_exec(void *addr)
1027 {
1028 	module_memfree(addr);
1029 }
1030 
1031 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)1032 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1033 		     unsigned int alignment,
1034 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1035 {
1036 	struct bpf_binary_header *hdr;
1037 	u32 size, hole, start;
1038 
1039 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1040 		     alignment > BPF_IMAGE_ALIGNMENT);
1041 
1042 	/* Most of BPF filters are really small, but if some of them
1043 	 * fill a page, allow at least 128 extra bytes to insert a
1044 	 * random section of illegal instructions.
1045 	 */
1046 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1047 
1048 	if (bpf_jit_charge_modmem(size))
1049 		return NULL;
1050 	hdr = bpf_jit_alloc_exec(size);
1051 	if (!hdr) {
1052 		bpf_jit_uncharge_modmem(size);
1053 		return NULL;
1054 	}
1055 
1056 	/* Fill space with illegal/arch-dep instructions. */
1057 	bpf_fill_ill_insns(hdr, size);
1058 
1059 	hdr->size = size;
1060 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1061 		     PAGE_SIZE - sizeof(*hdr));
1062 	start = get_random_u32_below(hole) & ~(alignment - 1);
1063 
1064 	/* Leave a random number of instructions before BPF code. */
1065 	*image_ptr = &hdr->image[start];
1066 
1067 	return hdr;
1068 }
1069 
bpf_jit_binary_free(struct bpf_binary_header * hdr)1070 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1071 {
1072 	u32 size = hdr->size;
1073 
1074 	bpf_jit_free_exec(hdr);
1075 	bpf_jit_uncharge_modmem(size);
1076 }
1077 
1078 /* Allocate jit binary from bpf_prog_pack allocator.
1079  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1080  * to the memory. To solve this problem, a RW buffer is also allocated at
1081  * as the same time. The JIT engine should calculate offsets based on the
1082  * RO memory address, but write JITed program to the RW buffer. Once the
1083  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1084  * the JITed program to the RO memory.
1085  */
1086 struct bpf_binary_header *
bpf_jit_binary_pack_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,struct bpf_binary_header ** rw_header,u8 ** rw_image,bpf_jit_fill_hole_t bpf_fill_ill_insns)1087 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1088 			  unsigned int alignment,
1089 			  struct bpf_binary_header **rw_header,
1090 			  u8 **rw_image,
1091 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1092 {
1093 	struct bpf_binary_header *ro_header;
1094 	u32 size, hole, start;
1095 
1096 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1097 		     alignment > BPF_IMAGE_ALIGNMENT);
1098 
1099 	/* add 16 bytes for a random section of illegal instructions */
1100 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1101 
1102 	if (bpf_jit_charge_modmem(size))
1103 		return NULL;
1104 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1105 	if (!ro_header) {
1106 		bpf_jit_uncharge_modmem(size);
1107 		return NULL;
1108 	}
1109 
1110 	*rw_header = kvmalloc(size, GFP_KERNEL);
1111 	if (!*rw_header) {
1112 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1113 		bpf_prog_pack_free(ro_header);
1114 		bpf_jit_uncharge_modmem(size);
1115 		return NULL;
1116 	}
1117 
1118 	/* Fill space with illegal/arch-dep instructions. */
1119 	bpf_fill_ill_insns(*rw_header, size);
1120 	(*rw_header)->size = size;
1121 
1122 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1123 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1124 	start = get_random_u32_below(hole) & ~(alignment - 1);
1125 
1126 	*image_ptr = &ro_header->image[start];
1127 	*rw_image = &(*rw_header)->image[start];
1128 
1129 	return ro_header;
1130 }
1131 
1132 /* Copy JITed text from rw_header to its final location, the ro_header. */
bpf_jit_binary_pack_finalize(struct bpf_prog * prog,struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1133 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1134 				 struct bpf_binary_header *ro_header,
1135 				 struct bpf_binary_header *rw_header)
1136 {
1137 	void *ptr;
1138 
1139 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1140 
1141 	kvfree(rw_header);
1142 
1143 	if (IS_ERR(ptr)) {
1144 		bpf_prog_pack_free(ro_header);
1145 		return PTR_ERR(ptr);
1146 	}
1147 	return 0;
1148 }
1149 
1150 /* bpf_jit_binary_pack_free is called in two different scenarios:
1151  *   1) when the program is freed after;
1152  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1153  * For case 2), we need to free both the RO memory and the RW buffer.
1154  *
1155  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1156  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1157  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1158  * bpf_arch_text_copy (when jit fails).
1159  */
bpf_jit_binary_pack_free(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1160 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1161 			      struct bpf_binary_header *rw_header)
1162 {
1163 	u32 size = ro_header->size;
1164 
1165 	bpf_prog_pack_free(ro_header);
1166 	kvfree(rw_header);
1167 	bpf_jit_uncharge_modmem(size);
1168 }
1169 
1170 struct bpf_binary_header *
bpf_jit_binary_pack_hdr(const struct bpf_prog * fp)1171 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1172 {
1173 	unsigned long real_start = (unsigned long)fp->bpf_func;
1174 	unsigned long addr;
1175 
1176 	addr = real_start & BPF_PROG_CHUNK_MASK;
1177 	return (void *)addr;
1178 }
1179 
1180 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)1181 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1182 {
1183 	unsigned long real_start = (unsigned long)fp->bpf_func;
1184 	unsigned long addr;
1185 
1186 	addr = real_start & PAGE_MASK;
1187 	return (void *)addr;
1188 }
1189 
1190 /* This symbol is only overridden by archs that have different
1191  * requirements than the usual eBPF JITs, f.e. when they only
1192  * implement cBPF JIT, do not set images read-only, etc.
1193  */
bpf_jit_free(struct bpf_prog * fp)1194 void __weak bpf_jit_free(struct bpf_prog *fp)
1195 {
1196 	if (fp->jited) {
1197 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1198 
1199 		bpf_jit_binary_free(hdr);
1200 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1201 	}
1202 
1203 	bpf_prog_unlock_free(fp);
1204 }
1205 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)1206 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1207 			  const struct bpf_insn *insn, bool extra_pass,
1208 			  u64 *func_addr, bool *func_addr_fixed)
1209 {
1210 	s16 off = insn->off;
1211 	s32 imm = insn->imm;
1212 	u8 *addr;
1213 	int err;
1214 
1215 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1216 	if (!*func_addr_fixed) {
1217 		/* Place-holder address till the last pass has collected
1218 		 * all addresses for JITed subprograms in which case we
1219 		 * can pick them up from prog->aux.
1220 		 */
1221 		if (!extra_pass)
1222 			addr = NULL;
1223 		else if (prog->aux->func &&
1224 			 off >= 0 && off < prog->aux->func_cnt)
1225 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1226 		else
1227 			return -EINVAL;
1228 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1229 		   bpf_jit_supports_far_kfunc_call()) {
1230 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1231 		if (err)
1232 			return err;
1233 	} else {
1234 		/* Address of a BPF helper call. Since part of the core
1235 		 * kernel, it's always at a fixed location. __bpf_call_base
1236 		 * and the helper with imm relative to it are both in core
1237 		 * kernel.
1238 		 */
1239 		addr = (u8 *)__bpf_call_base + imm;
1240 	}
1241 
1242 	*func_addr = (unsigned long)addr;
1243 	return 0;
1244 }
1245 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)1246 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1247 			      const struct bpf_insn *aux,
1248 			      struct bpf_insn *to_buff,
1249 			      bool emit_zext)
1250 {
1251 	struct bpf_insn *to = to_buff;
1252 	u32 imm_rnd = get_random_u32();
1253 	s16 off;
1254 
1255 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1256 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1257 
1258 	/* Constraints on AX register:
1259 	 *
1260 	 * AX register is inaccessible from user space. It is mapped in
1261 	 * all JITs, and used here for constant blinding rewrites. It is
1262 	 * typically "stateless" meaning its contents are only valid within
1263 	 * the executed instruction, but not across several instructions.
1264 	 * There are a few exceptions however which are further detailed
1265 	 * below.
1266 	 *
1267 	 * Constant blinding is only used by JITs, not in the interpreter.
1268 	 * The interpreter uses AX in some occasions as a local temporary
1269 	 * register e.g. in DIV or MOD instructions.
1270 	 *
1271 	 * In restricted circumstances, the verifier can also use the AX
1272 	 * register for rewrites as long as they do not interfere with
1273 	 * the above cases!
1274 	 */
1275 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1276 		goto out;
1277 
1278 	if (from->imm == 0 &&
1279 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1280 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1281 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1282 		goto out;
1283 	}
1284 
1285 	switch (from->code) {
1286 	case BPF_ALU | BPF_ADD | BPF_K:
1287 	case BPF_ALU | BPF_SUB | BPF_K:
1288 	case BPF_ALU | BPF_AND | BPF_K:
1289 	case BPF_ALU | BPF_OR  | BPF_K:
1290 	case BPF_ALU | BPF_XOR | BPF_K:
1291 	case BPF_ALU | BPF_MUL | BPF_K:
1292 	case BPF_ALU | BPF_MOV | BPF_K:
1293 	case BPF_ALU | BPF_DIV | BPF_K:
1294 	case BPF_ALU | BPF_MOD | BPF_K:
1295 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1296 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1297 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1298 		break;
1299 
1300 	case BPF_ALU64 | BPF_ADD | BPF_K:
1301 	case BPF_ALU64 | BPF_SUB | BPF_K:
1302 	case BPF_ALU64 | BPF_AND | BPF_K:
1303 	case BPF_ALU64 | BPF_OR  | BPF_K:
1304 	case BPF_ALU64 | BPF_XOR | BPF_K:
1305 	case BPF_ALU64 | BPF_MUL | BPF_K:
1306 	case BPF_ALU64 | BPF_MOV | BPF_K:
1307 	case BPF_ALU64 | BPF_DIV | BPF_K:
1308 	case BPF_ALU64 | BPF_MOD | BPF_K:
1309 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1310 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1311 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1312 		break;
1313 
1314 	case BPF_JMP | BPF_JEQ  | BPF_K:
1315 	case BPF_JMP | BPF_JNE  | BPF_K:
1316 	case BPF_JMP | BPF_JGT  | BPF_K:
1317 	case BPF_JMP | BPF_JLT  | BPF_K:
1318 	case BPF_JMP | BPF_JGE  | BPF_K:
1319 	case BPF_JMP | BPF_JLE  | BPF_K:
1320 	case BPF_JMP | BPF_JSGT | BPF_K:
1321 	case BPF_JMP | BPF_JSLT | BPF_K:
1322 	case BPF_JMP | BPF_JSGE | BPF_K:
1323 	case BPF_JMP | BPF_JSLE | BPF_K:
1324 	case BPF_JMP | BPF_JSET | BPF_K:
1325 		/* Accommodate for extra offset in case of a backjump. */
1326 		off = from->off;
1327 		if (off < 0)
1328 			off -= 2;
1329 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1330 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1331 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1332 		break;
1333 
1334 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1335 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1336 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1337 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1338 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1339 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1340 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1341 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1342 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1343 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1344 	case BPF_JMP32 | BPF_JSET | BPF_K:
1345 		/* Accommodate for extra offset in case of a backjump. */
1346 		off = from->off;
1347 		if (off < 0)
1348 			off -= 2;
1349 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1350 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1351 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1352 				      off);
1353 		break;
1354 
1355 	case BPF_LD | BPF_IMM | BPF_DW:
1356 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1357 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1358 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1359 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1360 		break;
1361 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1362 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1363 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1364 		if (emit_zext)
1365 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1366 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1367 		break;
1368 
1369 	case BPF_ST | BPF_MEM | BPF_DW:
1370 	case BPF_ST | BPF_MEM | BPF_W:
1371 	case BPF_ST | BPF_MEM | BPF_H:
1372 	case BPF_ST | BPF_MEM | BPF_B:
1373 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1374 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1375 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1376 		break;
1377 	}
1378 out:
1379 	return to - to_buff;
1380 }
1381 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1382 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1383 					      gfp_t gfp_extra_flags)
1384 {
1385 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1386 	struct bpf_prog *fp;
1387 
1388 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1389 	if (fp != NULL) {
1390 		/* aux->prog still points to the fp_other one, so
1391 		 * when promoting the clone to the real program,
1392 		 * this still needs to be adapted.
1393 		 */
1394 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1395 	}
1396 
1397 	return fp;
1398 }
1399 
bpf_prog_clone_free(struct bpf_prog * fp)1400 static void bpf_prog_clone_free(struct bpf_prog *fp)
1401 {
1402 	/* aux was stolen by the other clone, so we cannot free
1403 	 * it from this path! It will be freed eventually by the
1404 	 * other program on release.
1405 	 *
1406 	 * At this point, we don't need a deferred release since
1407 	 * clone is guaranteed to not be locked.
1408 	 */
1409 	fp->aux = NULL;
1410 	fp->stats = NULL;
1411 	fp->active = NULL;
1412 	__bpf_prog_free(fp);
1413 }
1414 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1415 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1416 {
1417 	/* We have to repoint aux->prog to self, as we don't
1418 	 * know whether fp here is the clone or the original.
1419 	 */
1420 	fp->aux->prog = fp;
1421 	bpf_prog_clone_free(fp_other);
1422 }
1423 
bpf_jit_blind_constants(struct bpf_prog * prog)1424 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1425 {
1426 	struct bpf_insn insn_buff[16], aux[2];
1427 	struct bpf_prog *clone, *tmp;
1428 	int insn_delta, insn_cnt;
1429 	struct bpf_insn *insn;
1430 	int i, rewritten;
1431 
1432 	if (!prog->blinding_requested || prog->blinded)
1433 		return prog;
1434 
1435 	clone = bpf_prog_clone_create(prog, GFP_USER);
1436 	if (!clone)
1437 		return ERR_PTR(-ENOMEM);
1438 
1439 	insn_cnt = clone->len;
1440 	insn = clone->insnsi;
1441 
1442 	for (i = 0; i < insn_cnt; i++, insn++) {
1443 		if (bpf_pseudo_func(insn)) {
1444 			/* ld_imm64 with an address of bpf subprog is not
1445 			 * a user controlled constant. Don't randomize it,
1446 			 * since it will conflict with jit_subprogs() logic.
1447 			 */
1448 			insn++;
1449 			i++;
1450 			continue;
1451 		}
1452 
1453 		/* We temporarily need to hold the original ld64 insn
1454 		 * so that we can still access the first part in the
1455 		 * second blinding run.
1456 		 */
1457 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1458 		    insn[1].code == 0)
1459 			memcpy(aux, insn, sizeof(aux));
1460 
1461 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1462 						clone->aux->verifier_zext);
1463 		if (!rewritten)
1464 			continue;
1465 
1466 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1467 		if (IS_ERR(tmp)) {
1468 			/* Patching may have repointed aux->prog during
1469 			 * realloc from the original one, so we need to
1470 			 * fix it up here on error.
1471 			 */
1472 			bpf_jit_prog_release_other(prog, clone);
1473 			return tmp;
1474 		}
1475 
1476 		clone = tmp;
1477 		insn_delta = rewritten - 1;
1478 
1479 		/* Walk new program and skip insns we just inserted. */
1480 		insn = clone->insnsi + i + insn_delta;
1481 		insn_cnt += insn_delta;
1482 		i        += insn_delta;
1483 	}
1484 
1485 	clone->blinded = 1;
1486 	return clone;
1487 }
1488 #endif /* CONFIG_BPF_JIT */
1489 
1490 /* Base function for offset calculation. Needs to go into .text section,
1491  * therefore keeping it non-static as well; will also be used by JITs
1492  * anyway later on, so do not let the compiler omit it. This also needs
1493  * to go into kallsyms for correlation from e.g. bpftool, so naming
1494  * must not change.
1495  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1496 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1497 {
1498 	return 0;
1499 }
1500 EXPORT_SYMBOL_GPL(__bpf_call_base);
1501 
1502 /* All UAPI available opcodes. */
1503 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1504 	/* 32 bit ALU operations. */		\
1505 	/*   Register based. */			\
1506 	INSN_3(ALU, ADD,  X),			\
1507 	INSN_3(ALU, SUB,  X),			\
1508 	INSN_3(ALU, AND,  X),			\
1509 	INSN_3(ALU, OR,   X),			\
1510 	INSN_3(ALU, LSH,  X),			\
1511 	INSN_3(ALU, RSH,  X),			\
1512 	INSN_3(ALU, XOR,  X),			\
1513 	INSN_3(ALU, MUL,  X),			\
1514 	INSN_3(ALU, MOV,  X),			\
1515 	INSN_3(ALU, ARSH, X),			\
1516 	INSN_3(ALU, DIV,  X),			\
1517 	INSN_3(ALU, MOD,  X),			\
1518 	INSN_2(ALU, NEG),			\
1519 	INSN_3(ALU, END, TO_BE),		\
1520 	INSN_3(ALU, END, TO_LE),		\
1521 	/*   Immediate based. */		\
1522 	INSN_3(ALU, ADD,  K),			\
1523 	INSN_3(ALU, SUB,  K),			\
1524 	INSN_3(ALU, AND,  K),			\
1525 	INSN_3(ALU, OR,   K),			\
1526 	INSN_3(ALU, LSH,  K),			\
1527 	INSN_3(ALU, RSH,  K),			\
1528 	INSN_3(ALU, XOR,  K),			\
1529 	INSN_3(ALU, MUL,  K),			\
1530 	INSN_3(ALU, MOV,  K),			\
1531 	INSN_3(ALU, ARSH, K),			\
1532 	INSN_3(ALU, DIV,  K),			\
1533 	INSN_3(ALU, MOD,  K),			\
1534 	/* 64 bit ALU operations. */		\
1535 	/*   Register based. */			\
1536 	INSN_3(ALU64, ADD,  X),			\
1537 	INSN_3(ALU64, SUB,  X),			\
1538 	INSN_3(ALU64, AND,  X),			\
1539 	INSN_3(ALU64, OR,   X),			\
1540 	INSN_3(ALU64, LSH,  X),			\
1541 	INSN_3(ALU64, RSH,  X),			\
1542 	INSN_3(ALU64, XOR,  X),			\
1543 	INSN_3(ALU64, MUL,  X),			\
1544 	INSN_3(ALU64, MOV,  X),			\
1545 	INSN_3(ALU64, ARSH, X),			\
1546 	INSN_3(ALU64, DIV,  X),			\
1547 	INSN_3(ALU64, MOD,  X),			\
1548 	INSN_2(ALU64, NEG),			\
1549 	INSN_3(ALU64, END, TO_LE),		\
1550 	/*   Immediate based. */		\
1551 	INSN_3(ALU64, ADD,  K),			\
1552 	INSN_3(ALU64, SUB,  K),			\
1553 	INSN_3(ALU64, AND,  K),			\
1554 	INSN_3(ALU64, OR,   K),			\
1555 	INSN_3(ALU64, LSH,  K),			\
1556 	INSN_3(ALU64, RSH,  K),			\
1557 	INSN_3(ALU64, XOR,  K),			\
1558 	INSN_3(ALU64, MUL,  K),			\
1559 	INSN_3(ALU64, MOV,  K),			\
1560 	INSN_3(ALU64, ARSH, K),			\
1561 	INSN_3(ALU64, DIV,  K),			\
1562 	INSN_3(ALU64, MOD,  K),			\
1563 	/* Call instruction. */			\
1564 	INSN_2(JMP, CALL),			\
1565 	/* Exit instruction. */			\
1566 	INSN_2(JMP, EXIT),			\
1567 	/* 32-bit Jump instructions. */		\
1568 	/*   Register based. */			\
1569 	INSN_3(JMP32, JEQ,  X),			\
1570 	INSN_3(JMP32, JNE,  X),			\
1571 	INSN_3(JMP32, JGT,  X),			\
1572 	INSN_3(JMP32, JLT,  X),			\
1573 	INSN_3(JMP32, JGE,  X),			\
1574 	INSN_3(JMP32, JLE,  X),			\
1575 	INSN_3(JMP32, JSGT, X),			\
1576 	INSN_3(JMP32, JSLT, X),			\
1577 	INSN_3(JMP32, JSGE, X),			\
1578 	INSN_3(JMP32, JSLE, X),			\
1579 	INSN_3(JMP32, JSET, X),			\
1580 	/*   Immediate based. */		\
1581 	INSN_3(JMP32, JEQ,  K),			\
1582 	INSN_3(JMP32, JNE,  K),			\
1583 	INSN_3(JMP32, JGT,  K),			\
1584 	INSN_3(JMP32, JLT,  K),			\
1585 	INSN_3(JMP32, JGE,  K),			\
1586 	INSN_3(JMP32, JLE,  K),			\
1587 	INSN_3(JMP32, JSGT, K),			\
1588 	INSN_3(JMP32, JSLT, K),			\
1589 	INSN_3(JMP32, JSGE, K),			\
1590 	INSN_3(JMP32, JSLE, K),			\
1591 	INSN_3(JMP32, JSET, K),			\
1592 	/* Jump instructions. */		\
1593 	/*   Register based. */			\
1594 	INSN_3(JMP, JEQ,  X),			\
1595 	INSN_3(JMP, JNE,  X),			\
1596 	INSN_3(JMP, JGT,  X),			\
1597 	INSN_3(JMP, JLT,  X),			\
1598 	INSN_3(JMP, JGE,  X),			\
1599 	INSN_3(JMP, JLE,  X),			\
1600 	INSN_3(JMP, JSGT, X),			\
1601 	INSN_3(JMP, JSLT, X),			\
1602 	INSN_3(JMP, JSGE, X),			\
1603 	INSN_3(JMP, JSLE, X),			\
1604 	INSN_3(JMP, JSET, X),			\
1605 	/*   Immediate based. */		\
1606 	INSN_3(JMP, JEQ,  K),			\
1607 	INSN_3(JMP, JNE,  K),			\
1608 	INSN_3(JMP, JGT,  K),			\
1609 	INSN_3(JMP, JLT,  K),			\
1610 	INSN_3(JMP, JGE,  K),			\
1611 	INSN_3(JMP, JLE,  K),			\
1612 	INSN_3(JMP, JSGT, K),			\
1613 	INSN_3(JMP, JSLT, K),			\
1614 	INSN_3(JMP, JSGE, K),			\
1615 	INSN_3(JMP, JSLE, K),			\
1616 	INSN_3(JMP, JSET, K),			\
1617 	INSN_2(JMP, JA),			\
1618 	INSN_2(JMP32, JA),			\
1619 	/* Store instructions. */		\
1620 	/*   Register based. */			\
1621 	INSN_3(STX, MEM,  B),			\
1622 	INSN_3(STX, MEM,  H),			\
1623 	INSN_3(STX, MEM,  W),			\
1624 	INSN_3(STX, MEM,  DW),			\
1625 	INSN_3(STX, ATOMIC, W),			\
1626 	INSN_3(STX, ATOMIC, DW),		\
1627 	/*   Immediate based. */		\
1628 	INSN_3(ST, MEM, B),			\
1629 	INSN_3(ST, MEM, H),			\
1630 	INSN_3(ST, MEM, W),			\
1631 	INSN_3(ST, MEM, DW),			\
1632 	/* Load instructions. */		\
1633 	/*   Register based. */			\
1634 	INSN_3(LDX, MEM, B),			\
1635 	INSN_3(LDX, MEM, H),			\
1636 	INSN_3(LDX, MEM, W),			\
1637 	INSN_3(LDX, MEM, DW),			\
1638 	INSN_3(LDX, MEMSX, B),			\
1639 	INSN_3(LDX, MEMSX, H),			\
1640 	INSN_3(LDX, MEMSX, W),			\
1641 	/*   Immediate based. */		\
1642 	INSN_3(LD, IMM, DW)
1643 
bpf_opcode_in_insntable(u8 code)1644 bool bpf_opcode_in_insntable(u8 code)
1645 {
1646 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1647 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1648 	static const bool public_insntable[256] = {
1649 		[0 ... 255] = false,
1650 		/* Now overwrite non-defaults ... */
1651 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1652 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1653 		[BPF_LD | BPF_ABS | BPF_B] = true,
1654 		[BPF_LD | BPF_ABS | BPF_H] = true,
1655 		[BPF_LD | BPF_ABS | BPF_W] = true,
1656 		[BPF_LD | BPF_IND | BPF_B] = true,
1657 		[BPF_LD | BPF_IND | BPF_H] = true,
1658 		[BPF_LD | BPF_IND | BPF_W] = true,
1659 	};
1660 #undef BPF_INSN_3_TBL
1661 #undef BPF_INSN_2_TBL
1662 	return public_insntable[code];
1663 }
1664 
1665 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1666 /**
1667  *	___bpf_prog_run - run eBPF program on a given context
1668  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1669  *	@insn: is the array of eBPF instructions
1670  *
1671  * Decode and execute eBPF instructions.
1672  *
1673  * Return: whatever value is in %BPF_R0 at program exit
1674  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1675 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1676 {
1677 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1678 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1679 	static const void * const jumptable[256] __annotate_jump_table = {
1680 		[0 ... 255] = &&default_label,
1681 		/* Now overwrite non-defaults ... */
1682 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1683 		/* Non-UAPI available opcodes. */
1684 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1685 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1686 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1687 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1688 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1689 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1690 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1691 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1692 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1693 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1694 	};
1695 #undef BPF_INSN_3_LBL
1696 #undef BPF_INSN_2_LBL
1697 	u32 tail_call_cnt = 0;
1698 
1699 #define CONT	 ({ insn++; goto select_insn; })
1700 #define CONT_JMP ({ insn++; goto select_insn; })
1701 
1702 select_insn:
1703 	goto *jumptable[insn->code];
1704 
1705 	/* Explicitly mask the register-based shift amounts with 63 or 31
1706 	 * to avoid undefined behavior. Normally this won't affect the
1707 	 * generated code, for example, in case of native 64 bit archs such
1708 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1709 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1710 	 * the BPF shift operations to machine instructions which produce
1711 	 * implementation-defined results in such a case; the resulting
1712 	 * contents of the register may be arbitrary, but program behaviour
1713 	 * as a whole remains defined. In other words, in case of JIT backends,
1714 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1715 	 */
1716 	/* ALU (shifts) */
1717 #define SHT(OPCODE, OP)					\
1718 	ALU64_##OPCODE##_X:				\
1719 		DST = DST OP (SRC & 63);		\
1720 		CONT;					\
1721 	ALU_##OPCODE##_X:				\
1722 		DST = (u32) DST OP ((u32) SRC & 31);	\
1723 		CONT;					\
1724 	ALU64_##OPCODE##_K:				\
1725 		DST = DST OP IMM;			\
1726 		CONT;					\
1727 	ALU_##OPCODE##_K:				\
1728 		DST = (u32) DST OP (u32) IMM;		\
1729 		CONT;
1730 	/* ALU (rest) */
1731 #define ALU(OPCODE, OP)					\
1732 	ALU64_##OPCODE##_X:				\
1733 		DST = DST OP SRC;			\
1734 		CONT;					\
1735 	ALU_##OPCODE##_X:				\
1736 		DST = (u32) DST OP (u32) SRC;		\
1737 		CONT;					\
1738 	ALU64_##OPCODE##_K:				\
1739 		DST = DST OP IMM;			\
1740 		CONT;					\
1741 	ALU_##OPCODE##_K:				\
1742 		DST = (u32) DST OP (u32) IMM;		\
1743 		CONT;
1744 	ALU(ADD,  +)
1745 	ALU(SUB,  -)
1746 	ALU(AND,  &)
1747 	ALU(OR,   |)
1748 	ALU(XOR,  ^)
1749 	ALU(MUL,  *)
1750 	SHT(LSH, <<)
1751 	SHT(RSH, >>)
1752 #undef SHT
1753 #undef ALU
1754 	ALU_NEG:
1755 		DST = (u32) -DST;
1756 		CONT;
1757 	ALU64_NEG:
1758 		DST = -DST;
1759 		CONT;
1760 	ALU_MOV_X:
1761 		switch (OFF) {
1762 		case 0:
1763 			DST = (u32) SRC;
1764 			break;
1765 		case 8:
1766 			DST = (u32)(s8) SRC;
1767 			break;
1768 		case 16:
1769 			DST = (u32)(s16) SRC;
1770 			break;
1771 		}
1772 		CONT;
1773 	ALU_MOV_K:
1774 		DST = (u32) IMM;
1775 		CONT;
1776 	ALU64_MOV_X:
1777 		switch (OFF) {
1778 		case 0:
1779 			DST = SRC;
1780 			break;
1781 		case 8:
1782 			DST = (s8) SRC;
1783 			break;
1784 		case 16:
1785 			DST = (s16) SRC;
1786 			break;
1787 		case 32:
1788 			DST = (s32) SRC;
1789 			break;
1790 		}
1791 		CONT;
1792 	ALU64_MOV_K:
1793 		DST = IMM;
1794 		CONT;
1795 	LD_IMM_DW:
1796 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1797 		insn++;
1798 		CONT;
1799 	ALU_ARSH_X:
1800 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1801 		CONT;
1802 	ALU_ARSH_K:
1803 		DST = (u64) (u32) (((s32) DST) >> IMM);
1804 		CONT;
1805 	ALU64_ARSH_X:
1806 		(*(s64 *) &DST) >>= (SRC & 63);
1807 		CONT;
1808 	ALU64_ARSH_K:
1809 		(*(s64 *) &DST) >>= IMM;
1810 		CONT;
1811 	ALU64_MOD_X:
1812 		switch (OFF) {
1813 		case 0:
1814 			div64_u64_rem(DST, SRC, &AX);
1815 			DST = AX;
1816 			break;
1817 		case 1:
1818 			AX = div64_s64(DST, SRC);
1819 			DST = DST - AX * SRC;
1820 			break;
1821 		}
1822 		CONT;
1823 	ALU_MOD_X:
1824 		switch (OFF) {
1825 		case 0:
1826 			AX = (u32) DST;
1827 			DST = do_div(AX, (u32) SRC);
1828 			break;
1829 		case 1:
1830 			AX = abs((s32)DST);
1831 			AX = do_div(AX, abs((s32)SRC));
1832 			if ((s32)DST < 0)
1833 				DST = (u32)-AX;
1834 			else
1835 				DST = (u32)AX;
1836 			break;
1837 		}
1838 		CONT;
1839 	ALU64_MOD_K:
1840 		switch (OFF) {
1841 		case 0:
1842 			div64_u64_rem(DST, IMM, &AX);
1843 			DST = AX;
1844 			break;
1845 		case 1:
1846 			AX = div64_s64(DST, IMM);
1847 			DST = DST - AX * IMM;
1848 			break;
1849 		}
1850 		CONT;
1851 	ALU_MOD_K:
1852 		switch (OFF) {
1853 		case 0:
1854 			AX = (u32) DST;
1855 			DST = do_div(AX, (u32) IMM);
1856 			break;
1857 		case 1:
1858 			AX = abs((s32)DST);
1859 			AX = do_div(AX, abs((s32)IMM));
1860 			if ((s32)DST < 0)
1861 				DST = (u32)-AX;
1862 			else
1863 				DST = (u32)AX;
1864 			break;
1865 		}
1866 		CONT;
1867 	ALU64_DIV_X:
1868 		switch (OFF) {
1869 		case 0:
1870 			DST = div64_u64(DST, SRC);
1871 			break;
1872 		case 1:
1873 			DST = div64_s64(DST, SRC);
1874 			break;
1875 		}
1876 		CONT;
1877 	ALU_DIV_X:
1878 		switch (OFF) {
1879 		case 0:
1880 			AX = (u32) DST;
1881 			do_div(AX, (u32) SRC);
1882 			DST = (u32) AX;
1883 			break;
1884 		case 1:
1885 			AX = abs((s32)DST);
1886 			do_div(AX, abs((s32)SRC));
1887 			if (((s32)DST < 0) == ((s32)SRC < 0))
1888 				DST = (u32)AX;
1889 			else
1890 				DST = (u32)-AX;
1891 			break;
1892 		}
1893 		CONT;
1894 	ALU64_DIV_K:
1895 		switch (OFF) {
1896 		case 0:
1897 			DST = div64_u64(DST, IMM);
1898 			break;
1899 		case 1:
1900 			DST = div64_s64(DST, IMM);
1901 			break;
1902 		}
1903 		CONT;
1904 	ALU_DIV_K:
1905 		switch (OFF) {
1906 		case 0:
1907 			AX = (u32) DST;
1908 			do_div(AX, (u32) IMM);
1909 			DST = (u32) AX;
1910 			break;
1911 		case 1:
1912 			AX = abs((s32)DST);
1913 			do_div(AX, abs((s32)IMM));
1914 			if (((s32)DST < 0) == ((s32)IMM < 0))
1915 				DST = (u32)AX;
1916 			else
1917 				DST = (u32)-AX;
1918 			break;
1919 		}
1920 		CONT;
1921 	ALU_END_TO_BE:
1922 		switch (IMM) {
1923 		case 16:
1924 			DST = (__force u16) cpu_to_be16(DST);
1925 			break;
1926 		case 32:
1927 			DST = (__force u32) cpu_to_be32(DST);
1928 			break;
1929 		case 64:
1930 			DST = (__force u64) cpu_to_be64(DST);
1931 			break;
1932 		}
1933 		CONT;
1934 	ALU_END_TO_LE:
1935 		switch (IMM) {
1936 		case 16:
1937 			DST = (__force u16) cpu_to_le16(DST);
1938 			break;
1939 		case 32:
1940 			DST = (__force u32) cpu_to_le32(DST);
1941 			break;
1942 		case 64:
1943 			DST = (__force u64) cpu_to_le64(DST);
1944 			break;
1945 		}
1946 		CONT;
1947 	ALU64_END_TO_LE:
1948 		switch (IMM) {
1949 		case 16:
1950 			DST = (__force u16) __swab16(DST);
1951 			break;
1952 		case 32:
1953 			DST = (__force u32) __swab32(DST);
1954 			break;
1955 		case 64:
1956 			DST = (__force u64) __swab64(DST);
1957 			break;
1958 		}
1959 		CONT;
1960 
1961 	/* CALL */
1962 	JMP_CALL:
1963 		/* Function call scratches BPF_R1-BPF_R5 registers,
1964 		 * preserves BPF_R6-BPF_R9, and stores return value
1965 		 * into BPF_R0.
1966 		 */
1967 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1968 						       BPF_R4, BPF_R5);
1969 		CONT;
1970 
1971 	JMP_CALL_ARGS:
1972 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1973 							    BPF_R3, BPF_R4,
1974 							    BPF_R5,
1975 							    insn + insn->off + 1);
1976 		CONT;
1977 
1978 	JMP_TAIL_CALL: {
1979 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1980 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1981 		struct bpf_prog *prog;
1982 		u32 index = BPF_R3;
1983 
1984 		if (unlikely(index >= array->map.max_entries))
1985 			goto out;
1986 
1987 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1988 			goto out;
1989 
1990 		tail_call_cnt++;
1991 
1992 		prog = READ_ONCE(array->ptrs[index]);
1993 		if (!prog)
1994 			goto out;
1995 
1996 		/* ARG1 at this point is guaranteed to point to CTX from
1997 		 * the verifier side due to the fact that the tail call is
1998 		 * handled like a helper, that is, bpf_tail_call_proto,
1999 		 * where arg1_type is ARG_PTR_TO_CTX.
2000 		 */
2001 		insn = prog->insnsi;
2002 		goto select_insn;
2003 out:
2004 		CONT;
2005 	}
2006 	JMP_JA:
2007 		insn += insn->off;
2008 		CONT;
2009 	JMP32_JA:
2010 		insn += insn->imm;
2011 		CONT;
2012 	JMP_EXIT:
2013 		return BPF_R0;
2014 	/* JMP */
2015 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2016 	JMP_##OPCODE##_X:					\
2017 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2018 			insn += insn->off;			\
2019 			CONT_JMP;				\
2020 		}						\
2021 		CONT;						\
2022 	JMP32_##OPCODE##_X:					\
2023 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2024 			insn += insn->off;			\
2025 			CONT_JMP;				\
2026 		}						\
2027 		CONT;						\
2028 	JMP_##OPCODE##_K:					\
2029 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2030 			insn += insn->off;			\
2031 			CONT_JMP;				\
2032 		}						\
2033 		CONT;						\
2034 	JMP32_##OPCODE##_K:					\
2035 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2036 			insn += insn->off;			\
2037 			CONT_JMP;				\
2038 		}						\
2039 		CONT;
2040 	COND_JMP(u, JEQ, ==)
2041 	COND_JMP(u, JNE, !=)
2042 	COND_JMP(u, JGT, >)
2043 	COND_JMP(u, JLT, <)
2044 	COND_JMP(u, JGE, >=)
2045 	COND_JMP(u, JLE, <=)
2046 	COND_JMP(u, JSET, &)
2047 	COND_JMP(s, JSGT, >)
2048 	COND_JMP(s, JSLT, <)
2049 	COND_JMP(s, JSGE, >=)
2050 	COND_JMP(s, JSLE, <=)
2051 #undef COND_JMP
2052 	/* ST, STX and LDX*/
2053 	ST_NOSPEC:
2054 		/* Speculation barrier for mitigating Speculative Store Bypass.
2055 		 * In case of arm64, we rely on the firmware mitigation as
2056 		 * controlled via the ssbd kernel parameter. Whenever the
2057 		 * mitigation is enabled, it works for all of the kernel code
2058 		 * with no need to provide any additional instructions here.
2059 		 * In case of x86, we use 'lfence' insn for mitigation. We
2060 		 * reuse preexisting logic from Spectre v1 mitigation that
2061 		 * happens to produce the required code on x86 for v4 as well.
2062 		 */
2063 		barrier_nospec();
2064 		CONT;
2065 #define LDST(SIZEOP, SIZE)						\
2066 	STX_MEM_##SIZEOP:						\
2067 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2068 		CONT;							\
2069 	ST_MEM_##SIZEOP:						\
2070 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2071 		CONT;							\
2072 	LDX_MEM_##SIZEOP:						\
2073 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2074 		CONT;							\
2075 	LDX_PROBE_MEM_##SIZEOP:						\
2076 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2077 			      (const void *)(long) (SRC + insn->off));	\
2078 		DST = *((SIZE *)&DST);					\
2079 		CONT;
2080 
2081 	LDST(B,   u8)
2082 	LDST(H,  u16)
2083 	LDST(W,  u32)
2084 	LDST(DW, u64)
2085 #undef LDST
2086 
2087 #define LDSX(SIZEOP, SIZE)						\
2088 	LDX_MEMSX_##SIZEOP:						\
2089 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2090 		CONT;							\
2091 	LDX_PROBE_MEMSX_##SIZEOP:					\
2092 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2093 				      (const void *)(long) (SRC + insn->off));	\
2094 		DST = *((SIZE *)&DST);					\
2095 		CONT;
2096 
2097 	LDSX(B,   s8)
2098 	LDSX(H,  s16)
2099 	LDSX(W,  s32)
2100 #undef LDSX
2101 
2102 #define ATOMIC_ALU_OP(BOP, KOP)						\
2103 		case BOP:						\
2104 			if (BPF_SIZE(insn->code) == BPF_W)		\
2105 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2106 					     (DST + insn->off));	\
2107 			else						\
2108 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2109 					       (DST + insn->off));	\
2110 			break;						\
2111 		case BOP | BPF_FETCH:					\
2112 			if (BPF_SIZE(insn->code) == BPF_W)		\
2113 				SRC = (u32) atomic_fetch_##KOP(		\
2114 					(u32) SRC,			\
2115 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2116 			else						\
2117 				SRC = (u64) atomic64_fetch_##KOP(	\
2118 					(u64) SRC,			\
2119 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2120 			break;
2121 
2122 	STX_ATOMIC_DW:
2123 	STX_ATOMIC_W:
2124 		switch (IMM) {
2125 		ATOMIC_ALU_OP(BPF_ADD, add)
2126 		ATOMIC_ALU_OP(BPF_AND, and)
2127 		ATOMIC_ALU_OP(BPF_OR, or)
2128 		ATOMIC_ALU_OP(BPF_XOR, xor)
2129 #undef ATOMIC_ALU_OP
2130 
2131 		case BPF_XCHG:
2132 			if (BPF_SIZE(insn->code) == BPF_W)
2133 				SRC = (u32) atomic_xchg(
2134 					(atomic_t *)(unsigned long) (DST + insn->off),
2135 					(u32) SRC);
2136 			else
2137 				SRC = (u64) atomic64_xchg(
2138 					(atomic64_t *)(unsigned long) (DST + insn->off),
2139 					(u64) SRC);
2140 			break;
2141 		case BPF_CMPXCHG:
2142 			if (BPF_SIZE(insn->code) == BPF_W)
2143 				BPF_R0 = (u32) atomic_cmpxchg(
2144 					(atomic_t *)(unsigned long) (DST + insn->off),
2145 					(u32) BPF_R0, (u32) SRC);
2146 			else
2147 				BPF_R0 = (u64) atomic64_cmpxchg(
2148 					(atomic64_t *)(unsigned long) (DST + insn->off),
2149 					(u64) BPF_R0, (u64) SRC);
2150 			break;
2151 
2152 		default:
2153 			goto default_label;
2154 		}
2155 		CONT;
2156 
2157 	default_label:
2158 		/* If we ever reach this, we have a bug somewhere. Die hard here
2159 		 * instead of just returning 0; we could be somewhere in a subprog,
2160 		 * so execution could continue otherwise which we do /not/ want.
2161 		 *
2162 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2163 		 */
2164 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2165 			insn->code, insn->imm);
2166 		BUG_ON(1);
2167 		return 0;
2168 }
2169 
2170 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2171 #define DEFINE_BPF_PROG_RUN(stack_size) \
2172 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2173 { \
2174 	u64 stack[stack_size / sizeof(u64)]; \
2175 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2176 \
2177 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2178 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2179 	ARG1 = (u64) (unsigned long) ctx; \
2180 	return ___bpf_prog_run(regs, insn); \
2181 }
2182 
2183 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2184 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2185 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2186 				      const struct bpf_insn *insn) \
2187 { \
2188 	u64 stack[stack_size / sizeof(u64)]; \
2189 	u64 regs[MAX_BPF_EXT_REG]; \
2190 \
2191 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2192 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2193 	BPF_R1 = r1; \
2194 	BPF_R2 = r2; \
2195 	BPF_R3 = r3; \
2196 	BPF_R4 = r4; \
2197 	BPF_R5 = r5; \
2198 	return ___bpf_prog_run(regs, insn); \
2199 }
2200 
2201 #define EVAL1(FN, X) FN(X)
2202 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2203 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2204 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2205 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2206 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2207 
2208 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2209 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2210 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2211 
2212 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2213 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2214 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2215 
2216 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2217 
2218 static unsigned int (*interpreters[])(const void *ctx,
2219 				      const struct bpf_insn *insn) = {
2220 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2221 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2222 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2223 };
2224 #undef PROG_NAME_LIST
2225 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2226 static __maybe_unused
2227 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2228 			   const struct bpf_insn *insn) = {
2229 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2230 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2231 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2232 };
2233 #undef PROG_NAME_LIST
2234 
2235 #ifdef CONFIG_BPF_SYSCALL
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)2236 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2237 {
2238 	stack_depth = max_t(u32, stack_depth, 1);
2239 	insn->off = (s16) insn->imm;
2240 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2241 		__bpf_call_base_args;
2242 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2243 }
2244 #endif
2245 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)2246 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2247 					 const struct bpf_insn *insn)
2248 {
2249 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2250 	 * is not working properly, so warn about it!
2251 	 */
2252 	WARN_ON_ONCE(1);
2253 	return 0;
2254 }
2255 #endif
2256 
bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2257 bool bpf_prog_map_compatible(struct bpf_map *map,
2258 			     const struct bpf_prog *fp)
2259 {
2260 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2261 	bool ret;
2262 
2263 	if (fp->kprobe_override)
2264 		return false;
2265 
2266 	/* XDP programs inserted into maps are not guaranteed to run on
2267 	 * a particular netdev (and can run outside driver context entirely
2268 	 * in the case of devmap and cpumap). Until device checks
2269 	 * are implemented, prohibit adding dev-bound programs to program maps.
2270 	 */
2271 	if (bpf_prog_is_dev_bound(fp->aux))
2272 		return false;
2273 
2274 	spin_lock(&map->owner.lock);
2275 	if (!map->owner.type) {
2276 		/* There's no owner yet where we could check for
2277 		 * compatibility.
2278 		 */
2279 		map->owner.type  = prog_type;
2280 		map->owner.jited = fp->jited;
2281 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2282 		ret = true;
2283 	} else {
2284 		ret = map->owner.type  == prog_type &&
2285 		      map->owner.jited == fp->jited &&
2286 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2287 	}
2288 	spin_unlock(&map->owner.lock);
2289 
2290 	return ret;
2291 }
2292 
bpf_check_tail_call(const struct bpf_prog * fp)2293 static int bpf_check_tail_call(const struct bpf_prog *fp)
2294 {
2295 	struct bpf_prog_aux *aux = fp->aux;
2296 	int i, ret = 0;
2297 
2298 	mutex_lock(&aux->used_maps_mutex);
2299 	for (i = 0; i < aux->used_map_cnt; i++) {
2300 		struct bpf_map *map = aux->used_maps[i];
2301 
2302 		if (!map_type_contains_progs(map))
2303 			continue;
2304 
2305 		if (!bpf_prog_map_compatible(map, fp)) {
2306 			ret = -EINVAL;
2307 			goto out;
2308 		}
2309 	}
2310 
2311 out:
2312 	mutex_unlock(&aux->used_maps_mutex);
2313 	return ret;
2314 }
2315 
bpf_prog_select_func(struct bpf_prog * fp)2316 static void bpf_prog_select_func(struct bpf_prog *fp)
2317 {
2318 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2319 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2320 
2321 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2322 #else
2323 	fp->bpf_func = __bpf_prog_ret0_warn;
2324 #endif
2325 }
2326 
2327 /**
2328  *	bpf_prog_select_runtime - select exec runtime for BPF program
2329  *	@fp: bpf_prog populated with BPF program
2330  *	@err: pointer to error variable
2331  *
2332  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2333  * The BPF program will be executed via bpf_prog_run() function.
2334  *
2335  * Return: the &fp argument along with &err set to 0 for success or
2336  * a negative errno code on failure
2337  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)2338 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2339 {
2340 	/* In case of BPF to BPF calls, verifier did all the prep
2341 	 * work with regards to JITing, etc.
2342 	 */
2343 	bool jit_needed = false;
2344 
2345 	if (fp->bpf_func)
2346 		goto finalize;
2347 
2348 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2349 	    bpf_prog_has_kfunc_call(fp))
2350 		jit_needed = true;
2351 
2352 	bpf_prog_select_func(fp);
2353 
2354 	/* eBPF JITs can rewrite the program in case constant
2355 	 * blinding is active. However, in case of error during
2356 	 * blinding, bpf_int_jit_compile() must always return a
2357 	 * valid program, which in this case would simply not
2358 	 * be JITed, but falls back to the interpreter.
2359 	 */
2360 	if (!bpf_prog_is_offloaded(fp->aux)) {
2361 		*err = bpf_prog_alloc_jited_linfo(fp);
2362 		if (*err)
2363 			return fp;
2364 
2365 		fp = bpf_int_jit_compile(fp);
2366 		bpf_prog_jit_attempt_done(fp);
2367 		if (!fp->jited && jit_needed) {
2368 			*err = -ENOTSUPP;
2369 			return fp;
2370 		}
2371 	} else {
2372 		*err = bpf_prog_offload_compile(fp);
2373 		if (*err)
2374 			return fp;
2375 	}
2376 
2377 finalize:
2378 	bpf_prog_lock_ro(fp);
2379 
2380 	/* The tail call compatibility check can only be done at
2381 	 * this late stage as we need to determine, if we deal
2382 	 * with JITed or non JITed program concatenations and not
2383 	 * all eBPF JITs might immediately support all features.
2384 	 */
2385 	*err = bpf_check_tail_call(fp);
2386 
2387 	return fp;
2388 }
2389 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2390 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)2391 static unsigned int __bpf_prog_ret1(const void *ctx,
2392 				    const struct bpf_insn *insn)
2393 {
2394 	return 1;
2395 }
2396 
2397 static struct bpf_prog_dummy {
2398 	struct bpf_prog prog;
2399 } dummy_bpf_prog = {
2400 	.prog = {
2401 		.bpf_func = __bpf_prog_ret1,
2402 	},
2403 };
2404 
2405 struct bpf_empty_prog_array bpf_empty_prog_array = {
2406 	.null_prog = NULL,
2407 };
2408 EXPORT_SYMBOL(bpf_empty_prog_array);
2409 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)2410 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2411 {
2412 	if (prog_cnt)
2413 		return kzalloc(sizeof(struct bpf_prog_array) +
2414 			       sizeof(struct bpf_prog_array_item) *
2415 			       (prog_cnt + 1),
2416 			       flags);
2417 
2418 	return &bpf_empty_prog_array.hdr;
2419 }
2420 
bpf_prog_array_free(struct bpf_prog_array * progs)2421 void bpf_prog_array_free(struct bpf_prog_array *progs)
2422 {
2423 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2424 		return;
2425 	kfree_rcu(progs, rcu);
2426 }
2427 
__bpf_prog_array_free_sleepable_cb(struct rcu_head * rcu)2428 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2429 {
2430 	struct bpf_prog_array *progs;
2431 
2432 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2433 	 * no need to call kfree_rcu(), just call kfree() directly.
2434 	 */
2435 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2436 	if (rcu_trace_implies_rcu_gp())
2437 		kfree(progs);
2438 	else
2439 		kfree_rcu(progs, rcu);
2440 }
2441 
bpf_prog_array_free_sleepable(struct bpf_prog_array * progs)2442 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2443 {
2444 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2445 		return;
2446 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2447 }
2448 
bpf_prog_array_length(struct bpf_prog_array * array)2449 int bpf_prog_array_length(struct bpf_prog_array *array)
2450 {
2451 	struct bpf_prog_array_item *item;
2452 	u32 cnt = 0;
2453 
2454 	for (item = array->items; item->prog; item++)
2455 		if (item->prog != &dummy_bpf_prog.prog)
2456 			cnt++;
2457 	return cnt;
2458 }
2459 
bpf_prog_array_is_empty(struct bpf_prog_array * array)2460 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2461 {
2462 	struct bpf_prog_array_item *item;
2463 
2464 	for (item = array->items; item->prog; item++)
2465 		if (item->prog != &dummy_bpf_prog.prog)
2466 			return false;
2467 	return true;
2468 }
2469 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2470 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2471 				     u32 *prog_ids,
2472 				     u32 request_cnt)
2473 {
2474 	struct bpf_prog_array_item *item;
2475 	int i = 0;
2476 
2477 	for (item = array->items; item->prog; item++) {
2478 		if (item->prog == &dummy_bpf_prog.prog)
2479 			continue;
2480 		prog_ids[i] = item->prog->aux->id;
2481 		if (++i == request_cnt) {
2482 			item++;
2483 			break;
2484 		}
2485 	}
2486 
2487 	return !!(item->prog);
2488 }
2489 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2490 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2491 				__u32 __user *prog_ids, u32 cnt)
2492 {
2493 	unsigned long err = 0;
2494 	bool nospc;
2495 	u32 *ids;
2496 
2497 	/* users of this function are doing:
2498 	 * cnt = bpf_prog_array_length();
2499 	 * if (cnt > 0)
2500 	 *     bpf_prog_array_copy_to_user(..., cnt);
2501 	 * so below kcalloc doesn't need extra cnt > 0 check.
2502 	 */
2503 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2504 	if (!ids)
2505 		return -ENOMEM;
2506 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2507 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2508 	kfree(ids);
2509 	if (err)
2510 		return -EFAULT;
2511 	if (nospc)
2512 		return -ENOSPC;
2513 	return 0;
2514 }
2515 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2516 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2517 				struct bpf_prog *old_prog)
2518 {
2519 	struct bpf_prog_array_item *item;
2520 
2521 	for (item = array->items; item->prog; item++)
2522 		if (item->prog == old_prog) {
2523 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2524 			break;
2525 		}
2526 }
2527 
2528 /**
2529  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2530  *                                   index into the program array with
2531  *                                   a dummy no-op program.
2532  * @array: a bpf_prog_array
2533  * @index: the index of the program to replace
2534  *
2535  * Skips over dummy programs, by not counting them, when calculating
2536  * the position of the program to replace.
2537  *
2538  * Return:
2539  * * 0		- Success
2540  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2541  * * -ENOENT	- Index out of range
2542  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2543 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2544 {
2545 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2546 }
2547 
2548 /**
2549  * bpf_prog_array_update_at() - Updates the program at the given index
2550  *                              into the program array.
2551  * @array: a bpf_prog_array
2552  * @index: the index of the program to update
2553  * @prog: the program to insert into the array
2554  *
2555  * Skips over dummy programs, by not counting them, when calculating
2556  * the position of the program to update.
2557  *
2558  * Return:
2559  * * 0		- Success
2560  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2561  * * -ENOENT	- Index out of range
2562  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2563 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2564 			     struct bpf_prog *prog)
2565 {
2566 	struct bpf_prog_array_item *item;
2567 
2568 	if (unlikely(index < 0))
2569 		return -EINVAL;
2570 
2571 	for (item = array->items; item->prog; item++) {
2572 		if (item->prog == &dummy_bpf_prog.prog)
2573 			continue;
2574 		if (!index) {
2575 			WRITE_ONCE(item->prog, prog);
2576 			return 0;
2577 		}
2578 		index--;
2579 	}
2580 	return -ENOENT;
2581 }
2582 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2583 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2584 			struct bpf_prog *exclude_prog,
2585 			struct bpf_prog *include_prog,
2586 			u64 bpf_cookie,
2587 			struct bpf_prog_array **new_array)
2588 {
2589 	int new_prog_cnt, carry_prog_cnt = 0;
2590 	struct bpf_prog_array_item *existing, *new;
2591 	struct bpf_prog_array *array;
2592 	bool found_exclude = false;
2593 
2594 	/* Figure out how many existing progs we need to carry over to
2595 	 * the new array.
2596 	 */
2597 	if (old_array) {
2598 		existing = old_array->items;
2599 		for (; existing->prog; existing++) {
2600 			if (existing->prog == exclude_prog) {
2601 				found_exclude = true;
2602 				continue;
2603 			}
2604 			if (existing->prog != &dummy_bpf_prog.prog)
2605 				carry_prog_cnt++;
2606 			if (existing->prog == include_prog)
2607 				return -EEXIST;
2608 		}
2609 	}
2610 
2611 	if (exclude_prog && !found_exclude)
2612 		return -ENOENT;
2613 
2614 	/* How many progs (not NULL) will be in the new array? */
2615 	new_prog_cnt = carry_prog_cnt;
2616 	if (include_prog)
2617 		new_prog_cnt += 1;
2618 
2619 	/* Do we have any prog (not NULL) in the new array? */
2620 	if (!new_prog_cnt) {
2621 		*new_array = NULL;
2622 		return 0;
2623 	}
2624 
2625 	/* +1 as the end of prog_array is marked with NULL */
2626 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2627 	if (!array)
2628 		return -ENOMEM;
2629 	new = array->items;
2630 
2631 	/* Fill in the new prog array */
2632 	if (carry_prog_cnt) {
2633 		existing = old_array->items;
2634 		for (; existing->prog; existing++) {
2635 			if (existing->prog == exclude_prog ||
2636 			    existing->prog == &dummy_bpf_prog.prog)
2637 				continue;
2638 
2639 			new->prog = existing->prog;
2640 			new->bpf_cookie = existing->bpf_cookie;
2641 			new++;
2642 		}
2643 	}
2644 	if (include_prog) {
2645 		new->prog = include_prog;
2646 		new->bpf_cookie = bpf_cookie;
2647 		new++;
2648 	}
2649 	new->prog = NULL;
2650 	*new_array = array;
2651 	return 0;
2652 }
2653 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2654 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2655 			     u32 *prog_ids, u32 request_cnt,
2656 			     u32 *prog_cnt)
2657 {
2658 	u32 cnt = 0;
2659 
2660 	if (array)
2661 		cnt = bpf_prog_array_length(array);
2662 
2663 	*prog_cnt = cnt;
2664 
2665 	/* return early if user requested only program count or nothing to copy */
2666 	if (!request_cnt || !cnt)
2667 		return 0;
2668 
2669 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2670 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2671 								     : 0;
2672 }
2673 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2674 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2675 			  struct bpf_map **used_maps, u32 len)
2676 {
2677 	struct bpf_map *map;
2678 	u32 i;
2679 
2680 	for (i = 0; i < len; i++) {
2681 		map = used_maps[i];
2682 		if (map->ops->map_poke_untrack)
2683 			map->ops->map_poke_untrack(map, aux);
2684 		bpf_map_put(map);
2685 	}
2686 }
2687 
bpf_free_used_maps(struct bpf_prog_aux * aux)2688 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2689 {
2690 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2691 	kfree(aux->used_maps);
2692 }
2693 
__bpf_free_used_btfs(struct bpf_prog_aux * aux,struct btf_mod_pair * used_btfs,u32 len)2694 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2695 			  struct btf_mod_pair *used_btfs, u32 len)
2696 {
2697 #ifdef CONFIG_BPF_SYSCALL
2698 	struct btf_mod_pair *btf_mod;
2699 	u32 i;
2700 
2701 	for (i = 0; i < len; i++) {
2702 		btf_mod = &used_btfs[i];
2703 		if (btf_mod->module)
2704 			module_put(btf_mod->module);
2705 		btf_put(btf_mod->btf);
2706 	}
2707 #endif
2708 }
2709 
bpf_free_used_btfs(struct bpf_prog_aux * aux)2710 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2711 {
2712 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2713 	kfree(aux->used_btfs);
2714 }
2715 
bpf_prog_free_deferred(struct work_struct * work)2716 static void bpf_prog_free_deferred(struct work_struct *work)
2717 {
2718 	struct bpf_prog_aux *aux;
2719 	int i;
2720 
2721 	aux = container_of(work, struct bpf_prog_aux, work);
2722 #ifdef CONFIG_BPF_SYSCALL
2723 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2724 #endif
2725 #ifdef CONFIG_CGROUP_BPF
2726 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2727 		bpf_cgroup_atype_put(aux->cgroup_atype);
2728 #endif
2729 	bpf_free_used_maps(aux);
2730 	bpf_free_used_btfs(aux);
2731 	if (bpf_prog_is_dev_bound(aux))
2732 		bpf_prog_dev_bound_destroy(aux->prog);
2733 #ifdef CONFIG_PERF_EVENTS
2734 	if (aux->prog->has_callchain_buf)
2735 		put_callchain_buffers();
2736 #endif
2737 	if (aux->dst_trampoline)
2738 		bpf_trampoline_put(aux->dst_trampoline);
2739 	for (i = 0; i < aux->func_cnt; i++) {
2740 		/* We can just unlink the subprog poke descriptor table as
2741 		 * it was originally linked to the main program and is also
2742 		 * released along with it.
2743 		 */
2744 		aux->func[i]->aux->poke_tab = NULL;
2745 		bpf_jit_free(aux->func[i]);
2746 	}
2747 	if (aux->func_cnt) {
2748 		kfree(aux->func);
2749 		bpf_prog_unlock_free(aux->prog);
2750 	} else {
2751 		bpf_jit_free(aux->prog);
2752 	}
2753 }
2754 
bpf_prog_free(struct bpf_prog * fp)2755 void bpf_prog_free(struct bpf_prog *fp)
2756 {
2757 	struct bpf_prog_aux *aux = fp->aux;
2758 
2759 	if (aux->dst_prog)
2760 		bpf_prog_put(aux->dst_prog);
2761 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2762 	schedule_work(&aux->work);
2763 }
2764 EXPORT_SYMBOL_GPL(bpf_prog_free);
2765 
2766 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2767 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2768 
bpf_user_rnd_init_once(void)2769 void bpf_user_rnd_init_once(void)
2770 {
2771 	prandom_init_once(&bpf_user_rnd_state);
2772 }
2773 
BPF_CALL_0(bpf_user_rnd_u32)2774 BPF_CALL_0(bpf_user_rnd_u32)
2775 {
2776 	/* Should someone ever have the rather unwise idea to use some
2777 	 * of the registers passed into this function, then note that
2778 	 * this function is called from native eBPF and classic-to-eBPF
2779 	 * transformations. Register assignments from both sides are
2780 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2781 	 */
2782 	struct rnd_state *state;
2783 	u32 res;
2784 
2785 	state = &get_cpu_var(bpf_user_rnd_state);
2786 	res = prandom_u32_state(state);
2787 	put_cpu_var(bpf_user_rnd_state);
2788 
2789 	return res;
2790 }
2791 
BPF_CALL_0(bpf_get_raw_cpu_id)2792 BPF_CALL_0(bpf_get_raw_cpu_id)
2793 {
2794 	return raw_smp_processor_id();
2795 }
2796 
2797 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2798 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2799 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2800 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2801 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2802 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2803 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2804 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2805 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2806 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2807 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2808 
2809 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2810 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2811 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2812 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2813 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2814 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2815 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2816 
2817 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2818 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2819 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2820 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2821 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2822 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2823 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2824 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2825 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2826 const struct bpf_func_proto bpf_set_retval_proto __weak;
2827 const struct bpf_func_proto bpf_get_retval_proto __weak;
2828 
bpf_get_trace_printk_proto(void)2829 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2830 {
2831 	return NULL;
2832 }
2833 
bpf_get_trace_vprintk_proto(void)2834 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2835 {
2836 	return NULL;
2837 }
2838 
2839 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2840 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2841 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2842 {
2843 	return -ENOTSUPP;
2844 }
2845 EXPORT_SYMBOL_GPL(bpf_event_output);
2846 
2847 /* Always built-in helper functions. */
2848 const struct bpf_func_proto bpf_tail_call_proto = {
2849 	.func		= NULL,
2850 	.gpl_only	= false,
2851 	.ret_type	= RET_VOID,
2852 	.arg1_type	= ARG_PTR_TO_CTX,
2853 	.arg2_type	= ARG_CONST_MAP_PTR,
2854 	.arg3_type	= ARG_ANYTHING,
2855 };
2856 
2857 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2858  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2859  * eBPF and implicitly also cBPF can get JITed!
2860  */
bpf_int_jit_compile(struct bpf_prog * prog)2861 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2862 {
2863 	return prog;
2864 }
2865 
2866 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2867  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2868  */
bpf_jit_compile(struct bpf_prog * prog)2869 void __weak bpf_jit_compile(struct bpf_prog *prog)
2870 {
2871 }
2872 
bpf_helper_changes_pkt_data(void * func)2873 bool __weak bpf_helper_changes_pkt_data(void *func)
2874 {
2875 	return false;
2876 }
2877 
2878 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2879  * analysis code and wants explicit zero extension inserted by verifier.
2880  * Otherwise, return FALSE.
2881  *
2882  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2883  * you don't override this. JITs that don't want these extra insns can detect
2884  * them using insn_is_zext.
2885  */
bpf_jit_needs_zext(void)2886 bool __weak bpf_jit_needs_zext(void)
2887 {
2888 	return false;
2889 }
2890 
2891 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)2892 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2893 {
2894 	return false;
2895 }
2896 
bpf_jit_supports_kfunc_call(void)2897 bool __weak bpf_jit_supports_kfunc_call(void)
2898 {
2899 	return false;
2900 }
2901 
bpf_jit_supports_far_kfunc_call(void)2902 bool __weak bpf_jit_supports_far_kfunc_call(void)
2903 {
2904 	return false;
2905 }
2906 
2907 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2908  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2909  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2910 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2911 			 int len)
2912 {
2913 	return -EFAULT;
2914 }
2915 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2916 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2917 			      void *addr1, void *addr2)
2918 {
2919 	return -ENOTSUPP;
2920 }
2921 
bpf_arch_text_copy(void * dst,void * src,size_t len)2922 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2923 {
2924 	return ERR_PTR(-ENOTSUPP);
2925 }
2926 
bpf_arch_text_invalidate(void * dst,size_t len)2927 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2928 {
2929 	return -ENOTSUPP;
2930 }
2931 
2932 #ifdef CONFIG_BPF_SYSCALL
bpf_global_ma_init(void)2933 static int __init bpf_global_ma_init(void)
2934 {
2935 	int ret;
2936 
2937 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2938 	bpf_global_ma_set = !ret;
2939 	return ret;
2940 }
2941 late_initcall(bpf_global_ma_init);
2942 #endif
2943 
2944 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2945 EXPORT_SYMBOL(bpf_stats_enabled_key);
2946 
2947 /* All definitions of tracepoints related to BPF. */
2948 #define CREATE_TRACE_POINTS
2949 #include <linux/bpf_trace.h>
2950 
2951 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2952 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2953