1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45
46 #undef SCRAMBLE_DELAYED_REFS
47
48
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 struct btrfs_delayed_ref_node *node, u64 parent,
51 u64 root_objectid, u64 owner_objectid,
52 u64 owner_offset, int refs_to_drop,
53 struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 struct extent_buffer *leaf,
56 struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 u64 parent, u64 root_objectid,
59 u64 flags, u64 owner, u64 offset,
60 struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 struct btrfs_delayed_ref_node *node,
63 struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 struct btrfs_key *key);
66
block_group_bits(struct btrfs_block_group * cache,u64 bits)67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 return (cache->flags & bits) == bits;
70 }
71
72 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74 {
75 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76 int ret;
77 struct btrfs_key key;
78 struct btrfs_path *path;
79
80 path = btrfs_alloc_path();
81 if (!path)
82 return -ENOMEM;
83
84 key.objectid = start;
85 key.offset = len;
86 key.type = BTRFS_EXTENT_ITEM_KEY;
87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 btrfs_free_path(path);
89 return ret;
90 }
91
92 /*
93 * helper function to lookup reference count and flags of a tree block.
94 *
95 * the head node for delayed ref is used to store the sum of all the
96 * reference count modifications queued up in the rbtree. the head
97 * node may also store the extent flags to set. This way you can check
98 * to see what the reference count and extent flags would be if all of
99 * the delayed refs are not processed.
100 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102 struct btrfs_fs_info *fs_info, u64 bytenr,
103 u64 offset, int metadata, u64 *refs, u64 *flags)
104 {
105 struct btrfs_root *extent_root;
106 struct btrfs_delayed_ref_head *head;
107 struct btrfs_delayed_ref_root *delayed_refs;
108 struct btrfs_path *path;
109 struct btrfs_extent_item *ei;
110 struct extent_buffer *leaf;
111 struct btrfs_key key;
112 u32 item_size;
113 u64 num_refs;
114 u64 extent_flags;
115 int ret;
116
117 /*
118 * If we don't have skinny metadata, don't bother doing anything
119 * different
120 */
121 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122 offset = fs_info->nodesize;
123 metadata = 0;
124 }
125
126 path = btrfs_alloc_path();
127 if (!path)
128 return -ENOMEM;
129
130 if (!trans) {
131 path->skip_locking = 1;
132 path->search_commit_root = 1;
133 }
134
135 search_again:
136 key.objectid = bytenr;
137 key.offset = offset;
138 if (metadata)
139 key.type = BTRFS_METADATA_ITEM_KEY;
140 else
141 key.type = BTRFS_EXTENT_ITEM_KEY;
142
143 extent_root = btrfs_extent_root(fs_info, bytenr);
144 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145 if (ret < 0)
146 goto out_free;
147
148 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149 if (path->slots[0]) {
150 path->slots[0]--;
151 btrfs_item_key_to_cpu(path->nodes[0], &key,
152 path->slots[0]);
153 if (key.objectid == bytenr &&
154 key.type == BTRFS_EXTENT_ITEM_KEY &&
155 key.offset == fs_info->nodesize)
156 ret = 0;
157 }
158 }
159
160 if (ret == 0) {
161 leaf = path->nodes[0];
162 item_size = btrfs_item_size(leaf, path->slots[0]);
163 if (item_size >= sizeof(*ei)) {
164 ei = btrfs_item_ptr(leaf, path->slots[0],
165 struct btrfs_extent_item);
166 num_refs = btrfs_extent_refs(leaf, ei);
167 extent_flags = btrfs_extent_flags(leaf, ei);
168 } else {
169 ret = -EUCLEAN;
170 btrfs_err(fs_info,
171 "unexpected extent item size, has %u expect >= %zu",
172 item_size, sizeof(*ei));
173 if (trans)
174 btrfs_abort_transaction(trans, ret);
175 else
176 btrfs_handle_fs_error(fs_info, ret, NULL);
177
178 goto out_free;
179 }
180
181 BUG_ON(num_refs == 0);
182 } else {
183 num_refs = 0;
184 extent_flags = 0;
185 ret = 0;
186 }
187
188 if (!trans)
189 goto out;
190
191 delayed_refs = &trans->transaction->delayed_refs;
192 spin_lock(&delayed_refs->lock);
193 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
194 if (head) {
195 if (!mutex_trylock(&head->mutex)) {
196 refcount_inc(&head->refs);
197 spin_unlock(&delayed_refs->lock);
198
199 btrfs_release_path(path);
200
201 /*
202 * Mutex was contended, block until it's released and try
203 * again
204 */
205 mutex_lock(&head->mutex);
206 mutex_unlock(&head->mutex);
207 btrfs_put_delayed_ref_head(head);
208 goto search_again;
209 }
210 spin_lock(&head->lock);
211 if (head->extent_op && head->extent_op->update_flags)
212 extent_flags |= head->extent_op->flags_to_set;
213 else
214 BUG_ON(num_refs == 0);
215
216 num_refs += head->ref_mod;
217 spin_unlock(&head->lock);
218 mutex_unlock(&head->mutex);
219 }
220 spin_unlock(&delayed_refs->lock);
221 out:
222 WARN_ON(num_refs == 0);
223 if (refs)
224 *refs = num_refs;
225 if (flags)
226 *flags = extent_flags;
227 out_free:
228 btrfs_free_path(path);
229 return ret;
230 }
231
232 /*
233 * Back reference rules. Back refs have three main goals:
234 *
235 * 1) differentiate between all holders of references to an extent so that
236 * when a reference is dropped we can make sure it was a valid reference
237 * before freeing the extent.
238 *
239 * 2) Provide enough information to quickly find the holders of an extent
240 * if we notice a given block is corrupted or bad.
241 *
242 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
243 * maintenance. This is actually the same as #2, but with a slightly
244 * different use case.
245 *
246 * There are two kinds of back refs. The implicit back refs is optimized
247 * for pointers in non-shared tree blocks. For a given pointer in a block,
248 * back refs of this kind provide information about the block's owner tree
249 * and the pointer's key. These information allow us to find the block by
250 * b-tree searching. The full back refs is for pointers in tree blocks not
251 * referenced by their owner trees. The location of tree block is recorded
252 * in the back refs. Actually the full back refs is generic, and can be
253 * used in all cases the implicit back refs is used. The major shortcoming
254 * of the full back refs is its overhead. Every time a tree block gets
255 * COWed, we have to update back refs entry for all pointers in it.
256 *
257 * For a newly allocated tree block, we use implicit back refs for
258 * pointers in it. This means most tree related operations only involve
259 * implicit back refs. For a tree block created in old transaction, the
260 * only way to drop a reference to it is COW it. So we can detect the
261 * event that tree block loses its owner tree's reference and do the
262 * back refs conversion.
263 *
264 * When a tree block is COWed through a tree, there are four cases:
265 *
266 * The reference count of the block is one and the tree is the block's
267 * owner tree. Nothing to do in this case.
268 *
269 * The reference count of the block is one and the tree is not the
270 * block's owner tree. In this case, full back refs is used for pointers
271 * in the block. Remove these full back refs, add implicit back refs for
272 * every pointers in the new block.
273 *
274 * The reference count of the block is greater than one and the tree is
275 * the block's owner tree. In this case, implicit back refs is used for
276 * pointers in the block. Add full back refs for every pointers in the
277 * block, increase lower level extents' reference counts. The original
278 * implicit back refs are entailed to the new block.
279 *
280 * The reference count of the block is greater than one and the tree is
281 * not the block's owner tree. Add implicit back refs for every pointer in
282 * the new block, increase lower level extents' reference count.
283 *
284 * Back Reference Key composing:
285 *
286 * The key objectid corresponds to the first byte in the extent,
287 * The key type is used to differentiate between types of back refs.
288 * There are different meanings of the key offset for different types
289 * of back refs.
290 *
291 * File extents can be referenced by:
292 *
293 * - multiple snapshots, subvolumes, or different generations in one subvol
294 * - different files inside a single subvolume
295 * - different offsets inside a file (bookend extents in file.c)
296 *
297 * The extent ref structure for the implicit back refs has fields for:
298 *
299 * - Objectid of the subvolume root
300 * - objectid of the file holding the reference
301 * - original offset in the file
302 * - how many bookend extents
303 *
304 * The key offset for the implicit back refs is hash of the first
305 * three fields.
306 *
307 * The extent ref structure for the full back refs has field for:
308 *
309 * - number of pointers in the tree leaf
310 *
311 * The key offset for the implicit back refs is the first byte of
312 * the tree leaf
313 *
314 * When a file extent is allocated, The implicit back refs is used.
315 * the fields are filled in:
316 *
317 * (root_key.objectid, inode objectid, offset in file, 1)
318 *
319 * When a file extent is removed file truncation, we find the
320 * corresponding implicit back refs and check the following fields:
321 *
322 * (btrfs_header_owner(leaf), inode objectid, offset in file)
323 *
324 * Btree extents can be referenced by:
325 *
326 * - Different subvolumes
327 *
328 * Both the implicit back refs and the full back refs for tree blocks
329 * only consist of key. The key offset for the implicit back refs is
330 * objectid of block's owner tree. The key offset for the full back refs
331 * is the first byte of parent block.
332 *
333 * When implicit back refs is used, information about the lowest key and
334 * level of the tree block are required. These information are stored in
335 * tree block info structure.
336 */
337
338 /*
339 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
340 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
341 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
342 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
344 struct btrfs_extent_inline_ref *iref,
345 enum btrfs_inline_ref_type is_data)
346 {
347 int type = btrfs_extent_inline_ref_type(eb, iref);
348 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
349
350 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
351 type == BTRFS_SHARED_BLOCK_REF_KEY ||
352 type == BTRFS_SHARED_DATA_REF_KEY ||
353 type == BTRFS_EXTENT_DATA_REF_KEY) {
354 if (is_data == BTRFS_REF_TYPE_BLOCK) {
355 if (type == BTRFS_TREE_BLOCK_REF_KEY)
356 return type;
357 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
358 ASSERT(eb->fs_info);
359 /*
360 * Every shared one has parent tree block,
361 * which must be aligned to sector size.
362 */
363 if (offset &&
364 IS_ALIGNED(offset, eb->fs_info->sectorsize))
365 return type;
366 }
367 } else if (is_data == BTRFS_REF_TYPE_DATA) {
368 if (type == BTRFS_EXTENT_DATA_REF_KEY)
369 return type;
370 if (type == BTRFS_SHARED_DATA_REF_KEY) {
371 ASSERT(eb->fs_info);
372 /*
373 * Every shared one has parent tree block,
374 * which must be aligned to sector size.
375 */
376 if (offset &&
377 IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 return type;
379 }
380 } else {
381 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
382 return type;
383 }
384 }
385
386 WARN_ON(1);
387 btrfs_print_leaf(eb);
388 btrfs_err(eb->fs_info,
389 "eb %llu iref 0x%lx invalid extent inline ref type %d",
390 eb->start, (unsigned long)iref, type);
391
392 return BTRFS_REF_TYPE_INVALID;
393 }
394
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
396 {
397 u32 high_crc = ~(u32)0;
398 u32 low_crc = ~(u32)0;
399 __le64 lenum;
400
401 lenum = cpu_to_le64(root_objectid);
402 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
403 lenum = cpu_to_le64(owner);
404 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
405 lenum = cpu_to_le64(offset);
406 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
407
408 return ((u64)high_crc << 31) ^ (u64)low_crc;
409 }
410
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
412 struct btrfs_extent_data_ref *ref)
413 {
414 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
415 btrfs_extent_data_ref_objectid(leaf, ref),
416 btrfs_extent_data_ref_offset(leaf, ref));
417 }
418
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)419 static int match_extent_data_ref(struct extent_buffer *leaf,
420 struct btrfs_extent_data_ref *ref,
421 u64 root_objectid, u64 owner, u64 offset)
422 {
423 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
424 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
425 btrfs_extent_data_ref_offset(leaf, ref) != offset)
426 return 0;
427 return 1;
428 }
429
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
431 struct btrfs_path *path,
432 u64 bytenr, u64 parent,
433 u64 root_objectid,
434 u64 owner, u64 offset)
435 {
436 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
437 struct btrfs_key key;
438 struct btrfs_extent_data_ref *ref;
439 struct extent_buffer *leaf;
440 u32 nritems;
441 int ret;
442 int recow;
443 int err = -ENOENT;
444
445 key.objectid = bytenr;
446 if (parent) {
447 key.type = BTRFS_SHARED_DATA_REF_KEY;
448 key.offset = parent;
449 } else {
450 key.type = BTRFS_EXTENT_DATA_REF_KEY;
451 key.offset = hash_extent_data_ref(root_objectid,
452 owner, offset);
453 }
454 again:
455 recow = 0;
456 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
457 if (ret < 0) {
458 err = ret;
459 goto fail;
460 }
461
462 if (parent) {
463 if (!ret)
464 return 0;
465 goto fail;
466 }
467
468 leaf = path->nodes[0];
469 nritems = btrfs_header_nritems(leaf);
470 while (1) {
471 if (path->slots[0] >= nritems) {
472 ret = btrfs_next_leaf(root, path);
473 if (ret < 0)
474 err = ret;
475 if (ret)
476 goto fail;
477
478 leaf = path->nodes[0];
479 nritems = btrfs_header_nritems(leaf);
480 recow = 1;
481 }
482
483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
484 if (key.objectid != bytenr ||
485 key.type != BTRFS_EXTENT_DATA_REF_KEY)
486 goto fail;
487
488 ref = btrfs_item_ptr(leaf, path->slots[0],
489 struct btrfs_extent_data_ref);
490
491 if (match_extent_data_ref(leaf, ref, root_objectid,
492 owner, offset)) {
493 if (recow) {
494 btrfs_release_path(path);
495 goto again;
496 }
497 err = 0;
498 break;
499 }
500 path->slots[0]++;
501 }
502 fail:
503 return err;
504 }
505
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
507 struct btrfs_path *path,
508 u64 bytenr, u64 parent,
509 u64 root_objectid, u64 owner,
510 u64 offset, int refs_to_add)
511 {
512 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
513 struct btrfs_key key;
514 struct extent_buffer *leaf;
515 u32 size;
516 u32 num_refs;
517 int ret;
518
519 key.objectid = bytenr;
520 if (parent) {
521 key.type = BTRFS_SHARED_DATA_REF_KEY;
522 key.offset = parent;
523 size = sizeof(struct btrfs_shared_data_ref);
524 } else {
525 key.type = BTRFS_EXTENT_DATA_REF_KEY;
526 key.offset = hash_extent_data_ref(root_objectid,
527 owner, offset);
528 size = sizeof(struct btrfs_extent_data_ref);
529 }
530
531 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
532 if (ret && ret != -EEXIST)
533 goto fail;
534
535 leaf = path->nodes[0];
536 if (parent) {
537 struct btrfs_shared_data_ref *ref;
538 ref = btrfs_item_ptr(leaf, path->slots[0],
539 struct btrfs_shared_data_ref);
540 if (ret == 0) {
541 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
542 } else {
543 num_refs = btrfs_shared_data_ref_count(leaf, ref);
544 num_refs += refs_to_add;
545 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
546 }
547 } else {
548 struct btrfs_extent_data_ref *ref;
549 while (ret == -EEXIST) {
550 ref = btrfs_item_ptr(leaf, path->slots[0],
551 struct btrfs_extent_data_ref);
552 if (match_extent_data_ref(leaf, ref, root_objectid,
553 owner, offset))
554 break;
555 btrfs_release_path(path);
556 key.offset++;
557 ret = btrfs_insert_empty_item(trans, root, path, &key,
558 size);
559 if (ret && ret != -EEXIST)
560 goto fail;
561
562 leaf = path->nodes[0];
563 }
564 ref = btrfs_item_ptr(leaf, path->slots[0],
565 struct btrfs_extent_data_ref);
566 if (ret == 0) {
567 btrfs_set_extent_data_ref_root(leaf, ref,
568 root_objectid);
569 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
570 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
571 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
572 } else {
573 num_refs = btrfs_extent_data_ref_count(leaf, ref);
574 num_refs += refs_to_add;
575 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
576 }
577 }
578 btrfs_mark_buffer_dirty(trans, leaf);
579 ret = 0;
580 fail:
581 btrfs_release_path(path);
582 return ret;
583 }
584
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
587 struct btrfs_path *path,
588 int refs_to_drop)
589 {
590 struct btrfs_key key;
591 struct btrfs_extent_data_ref *ref1 = NULL;
592 struct btrfs_shared_data_ref *ref2 = NULL;
593 struct extent_buffer *leaf;
594 u32 num_refs = 0;
595 int ret = 0;
596
597 leaf = path->nodes[0];
598 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
599
600 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
601 ref1 = btrfs_item_ptr(leaf, path->slots[0],
602 struct btrfs_extent_data_ref);
603 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
604 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
605 ref2 = btrfs_item_ptr(leaf, path->slots[0],
606 struct btrfs_shared_data_ref);
607 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
608 } else {
609 btrfs_err(trans->fs_info,
610 "unrecognized backref key (%llu %u %llu)",
611 key.objectid, key.type, key.offset);
612 btrfs_abort_transaction(trans, -EUCLEAN);
613 return -EUCLEAN;
614 }
615
616 BUG_ON(num_refs < refs_to_drop);
617 num_refs -= refs_to_drop;
618
619 if (num_refs == 0) {
620 ret = btrfs_del_item(trans, root, path);
621 } else {
622 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
623 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
624 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
625 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
626 btrfs_mark_buffer_dirty(trans, leaf);
627 }
628 return ret;
629 }
630
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)631 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
632 struct btrfs_extent_inline_ref *iref)
633 {
634 struct btrfs_key key;
635 struct extent_buffer *leaf;
636 struct btrfs_extent_data_ref *ref1;
637 struct btrfs_shared_data_ref *ref2;
638 u32 num_refs = 0;
639 int type;
640
641 leaf = path->nodes[0];
642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
643
644 if (iref) {
645 /*
646 * If type is invalid, we should have bailed out earlier than
647 * this call.
648 */
649 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
650 ASSERT(type != BTRFS_REF_TYPE_INVALID);
651 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
652 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
653 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
654 } else {
655 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
656 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
657 }
658 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
659 ref1 = btrfs_item_ptr(leaf, path->slots[0],
660 struct btrfs_extent_data_ref);
661 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
662 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
663 ref2 = btrfs_item_ptr(leaf, path->slots[0],
664 struct btrfs_shared_data_ref);
665 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 } else {
667 WARN_ON(1);
668 }
669 return num_refs;
670 }
671
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
673 struct btrfs_path *path,
674 u64 bytenr, u64 parent,
675 u64 root_objectid)
676 {
677 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
678 struct btrfs_key key;
679 int ret;
680
681 key.objectid = bytenr;
682 if (parent) {
683 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
684 key.offset = parent;
685 } else {
686 key.type = BTRFS_TREE_BLOCK_REF_KEY;
687 key.offset = root_objectid;
688 }
689
690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
691 if (ret > 0)
692 ret = -ENOENT;
693 return ret;
694 }
695
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
697 struct btrfs_path *path,
698 u64 bytenr, u64 parent,
699 u64 root_objectid)
700 {
701 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
702 struct btrfs_key key;
703 int ret;
704
705 key.objectid = bytenr;
706 if (parent) {
707 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
708 key.offset = parent;
709 } else {
710 key.type = BTRFS_TREE_BLOCK_REF_KEY;
711 key.offset = root_objectid;
712 }
713
714 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
715 btrfs_release_path(path);
716 return ret;
717 }
718
extent_ref_type(u64 parent,u64 owner)719 static inline int extent_ref_type(u64 parent, u64 owner)
720 {
721 int type;
722 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
723 if (parent > 0)
724 type = BTRFS_SHARED_BLOCK_REF_KEY;
725 else
726 type = BTRFS_TREE_BLOCK_REF_KEY;
727 } else {
728 if (parent > 0)
729 type = BTRFS_SHARED_DATA_REF_KEY;
730 else
731 type = BTRFS_EXTENT_DATA_REF_KEY;
732 }
733 return type;
734 }
735
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)736 static int find_next_key(struct btrfs_path *path, int level,
737 struct btrfs_key *key)
738
739 {
740 for (; level < BTRFS_MAX_LEVEL; level++) {
741 if (!path->nodes[level])
742 break;
743 if (path->slots[level] + 1 >=
744 btrfs_header_nritems(path->nodes[level]))
745 continue;
746 if (level == 0)
747 btrfs_item_key_to_cpu(path->nodes[level], key,
748 path->slots[level] + 1);
749 else
750 btrfs_node_key_to_cpu(path->nodes[level], key,
751 path->slots[level] + 1);
752 return 0;
753 }
754 return 1;
755 }
756
757 /*
758 * look for inline back ref. if back ref is found, *ref_ret is set
759 * to the address of inline back ref, and 0 is returned.
760 *
761 * if back ref isn't found, *ref_ret is set to the address where it
762 * should be inserted, and -ENOENT is returned.
763 *
764 * if insert is true and there are too many inline back refs, the path
765 * points to the extent item, and -EAGAIN is returned.
766 *
767 * NOTE: inline back refs are ordered in the same way that back ref
768 * items in the tree are ordered.
769 */
770 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
772 struct btrfs_path *path,
773 struct btrfs_extent_inline_ref **ref_ret,
774 u64 bytenr, u64 num_bytes,
775 u64 parent, u64 root_objectid,
776 u64 owner, u64 offset, int insert)
777 {
778 struct btrfs_fs_info *fs_info = trans->fs_info;
779 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
780 struct btrfs_key key;
781 struct extent_buffer *leaf;
782 struct btrfs_extent_item *ei;
783 struct btrfs_extent_inline_ref *iref;
784 u64 flags;
785 u64 item_size;
786 unsigned long ptr;
787 unsigned long end;
788 int extra_size;
789 int type;
790 int want;
791 int ret;
792 int err = 0;
793 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
794 int needed;
795
796 key.objectid = bytenr;
797 key.type = BTRFS_EXTENT_ITEM_KEY;
798 key.offset = num_bytes;
799
800 want = extent_ref_type(parent, owner);
801 if (insert) {
802 extra_size = btrfs_extent_inline_ref_size(want);
803 path->search_for_extension = 1;
804 path->keep_locks = 1;
805 } else
806 extra_size = -1;
807
808 /*
809 * Owner is our level, so we can just add one to get the level for the
810 * block we are interested in.
811 */
812 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
813 key.type = BTRFS_METADATA_ITEM_KEY;
814 key.offset = owner;
815 }
816
817 again:
818 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
819 if (ret < 0) {
820 err = ret;
821 goto out;
822 }
823
824 /*
825 * We may be a newly converted file system which still has the old fat
826 * extent entries for metadata, so try and see if we have one of those.
827 */
828 if (ret > 0 && skinny_metadata) {
829 skinny_metadata = false;
830 if (path->slots[0]) {
831 path->slots[0]--;
832 btrfs_item_key_to_cpu(path->nodes[0], &key,
833 path->slots[0]);
834 if (key.objectid == bytenr &&
835 key.type == BTRFS_EXTENT_ITEM_KEY &&
836 key.offset == num_bytes)
837 ret = 0;
838 }
839 if (ret) {
840 key.objectid = bytenr;
841 key.type = BTRFS_EXTENT_ITEM_KEY;
842 key.offset = num_bytes;
843 btrfs_release_path(path);
844 goto again;
845 }
846 }
847
848 if (ret && !insert) {
849 err = -ENOENT;
850 goto out;
851 } else if (WARN_ON(ret)) {
852 btrfs_print_leaf(path->nodes[0]);
853 btrfs_err(fs_info,
854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
855 bytenr, num_bytes, parent, root_objectid, owner,
856 offset);
857 err = -EIO;
858 goto out;
859 }
860
861 leaf = path->nodes[0];
862 item_size = btrfs_item_size(leaf, path->slots[0]);
863 if (unlikely(item_size < sizeof(*ei))) {
864 err = -EUCLEAN;
865 btrfs_err(fs_info,
866 "unexpected extent item size, has %llu expect >= %zu",
867 item_size, sizeof(*ei));
868 btrfs_abort_transaction(trans, err);
869 goto out;
870 }
871
872 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
873 flags = btrfs_extent_flags(leaf, ei);
874
875 ptr = (unsigned long)(ei + 1);
876 end = (unsigned long)ei + item_size;
877
878 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
879 ptr += sizeof(struct btrfs_tree_block_info);
880 BUG_ON(ptr > end);
881 }
882
883 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
884 needed = BTRFS_REF_TYPE_DATA;
885 else
886 needed = BTRFS_REF_TYPE_BLOCK;
887
888 err = -ENOENT;
889 while (1) {
890 if (ptr >= end) {
891 if (ptr > end) {
892 err = -EUCLEAN;
893 btrfs_print_leaf(path->nodes[0]);
894 btrfs_crit(fs_info,
895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
896 path->slots[0], root_objectid, owner, offset, parent);
897 }
898 break;
899 }
900 iref = (struct btrfs_extent_inline_ref *)ptr;
901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 if (type == BTRFS_REF_TYPE_INVALID) {
903 err = -EUCLEAN;
904 goto out;
905 }
906
907 if (want < type)
908 break;
909 if (want > type) {
910 ptr += btrfs_extent_inline_ref_size(type);
911 continue;
912 }
913
914 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 struct btrfs_extent_data_ref *dref;
916 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 if (match_extent_data_ref(leaf, dref, root_objectid,
918 owner, offset)) {
919 err = 0;
920 break;
921 }
922 if (hash_extent_data_ref_item(leaf, dref) <
923 hash_extent_data_ref(root_objectid, owner, offset))
924 break;
925 } else {
926 u64 ref_offset;
927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 if (parent > 0) {
929 if (parent == ref_offset) {
930 err = 0;
931 break;
932 }
933 if (ref_offset < parent)
934 break;
935 } else {
936 if (root_objectid == ref_offset) {
937 err = 0;
938 break;
939 }
940 if (ref_offset < root_objectid)
941 break;
942 }
943 }
944 ptr += btrfs_extent_inline_ref_size(type);
945 }
946 if (err == -ENOENT && insert) {
947 if (item_size + extra_size >=
948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 err = -EAGAIN;
950 goto out;
951 }
952 /*
953 * To add new inline back ref, we have to make sure
954 * there is no corresponding back ref item.
955 * For simplicity, we just do not add new inline back
956 * ref if there is any kind of item for this block
957 */
958 if (find_next_key(path, 0, &key) == 0 &&
959 key.objectid == bytenr &&
960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 err = -EAGAIN;
962 goto out;
963 }
964 }
965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 if (insert) {
968 path->keep_locks = 0;
969 path->search_for_extension = 0;
970 btrfs_unlock_up_safe(path, 1);
971 }
972 return err;
973 }
974
975 /*
976 * helper to add new inline back ref
977 */
978 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)979 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
980 struct btrfs_path *path,
981 struct btrfs_extent_inline_ref *iref,
982 u64 parent, u64 root_objectid,
983 u64 owner, u64 offset, int refs_to_add,
984 struct btrfs_delayed_extent_op *extent_op)
985 {
986 struct extent_buffer *leaf;
987 struct btrfs_extent_item *ei;
988 unsigned long ptr;
989 unsigned long end;
990 unsigned long item_offset;
991 u64 refs;
992 int size;
993 int type;
994
995 leaf = path->nodes[0];
996 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
997 item_offset = (unsigned long)iref - (unsigned long)ei;
998
999 type = extent_ref_type(parent, owner);
1000 size = btrfs_extent_inline_ref_size(type);
1001
1002 btrfs_extend_item(trans, path, size);
1003
1004 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1005 refs = btrfs_extent_refs(leaf, ei);
1006 refs += refs_to_add;
1007 btrfs_set_extent_refs(leaf, ei, refs);
1008 if (extent_op)
1009 __run_delayed_extent_op(extent_op, leaf, ei);
1010
1011 ptr = (unsigned long)ei + item_offset;
1012 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1013 if (ptr < end - size)
1014 memmove_extent_buffer(leaf, ptr + size, ptr,
1015 end - size - ptr);
1016
1017 iref = (struct btrfs_extent_inline_ref *)ptr;
1018 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1019 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1020 struct btrfs_extent_data_ref *dref;
1021 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1022 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1023 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1024 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1025 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1026 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1027 struct btrfs_shared_data_ref *sref;
1028 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1032 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1033 } else {
1034 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1035 }
1036 btrfs_mark_buffer_dirty(trans, leaf);
1037 }
1038
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1040 struct btrfs_path *path,
1041 struct btrfs_extent_inline_ref **ref_ret,
1042 u64 bytenr, u64 num_bytes, u64 parent,
1043 u64 root_objectid, u64 owner, u64 offset)
1044 {
1045 int ret;
1046
1047 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1048 num_bytes, parent, root_objectid,
1049 owner, offset, 0);
1050 if (ret != -ENOENT)
1051 return ret;
1052
1053 btrfs_release_path(path);
1054 *ref_ret = NULL;
1055
1056 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058 root_objectid);
1059 } else {
1060 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1061 root_objectid, owner, offset);
1062 }
1063 return ret;
1064 }
1065
1066 /*
1067 * helper to update/remove inline back ref
1068 */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1069 static noinline_for_stack int update_inline_extent_backref(
1070 struct btrfs_trans_handle *trans,
1071 struct btrfs_path *path,
1072 struct btrfs_extent_inline_ref *iref,
1073 int refs_to_mod,
1074 struct btrfs_delayed_extent_op *extent_op)
1075 {
1076 struct extent_buffer *leaf = path->nodes[0];
1077 struct btrfs_fs_info *fs_info = leaf->fs_info;
1078 struct btrfs_extent_item *ei;
1079 struct btrfs_extent_data_ref *dref = NULL;
1080 struct btrfs_shared_data_ref *sref = NULL;
1081 unsigned long ptr;
1082 unsigned long end;
1083 u32 item_size;
1084 int size;
1085 int type;
1086 u64 refs;
1087
1088 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1089 refs = btrfs_extent_refs(leaf, ei);
1090 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1091 struct btrfs_key key;
1092 u32 extent_size;
1093
1094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1095 if (key.type == BTRFS_METADATA_ITEM_KEY)
1096 extent_size = fs_info->nodesize;
1097 else
1098 extent_size = key.offset;
1099 btrfs_print_leaf(leaf);
1100 btrfs_err(fs_info,
1101 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1102 key.objectid, extent_size, refs_to_mod, refs);
1103 return -EUCLEAN;
1104 }
1105 refs += refs_to_mod;
1106 btrfs_set_extent_refs(leaf, ei, refs);
1107 if (extent_op)
1108 __run_delayed_extent_op(extent_op, leaf, ei);
1109
1110 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1111 /*
1112 * Function btrfs_get_extent_inline_ref_type() has already printed
1113 * error messages.
1114 */
1115 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1116 return -EUCLEAN;
1117
1118 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1119 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1120 refs = btrfs_extent_data_ref_count(leaf, dref);
1121 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1122 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1123 refs = btrfs_shared_data_ref_count(leaf, sref);
1124 } else {
1125 refs = 1;
1126 /*
1127 * For tree blocks we can only drop one ref for it, and tree
1128 * blocks should not have refs > 1.
1129 *
1130 * Furthermore if we're inserting a new inline backref, we
1131 * won't reach this path either. That would be
1132 * setup_inline_extent_backref().
1133 */
1134 if (unlikely(refs_to_mod != -1)) {
1135 struct btrfs_key key;
1136
1137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1138
1139 btrfs_print_leaf(leaf);
1140 btrfs_err(fs_info,
1141 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1142 key.objectid, refs_to_mod);
1143 return -EUCLEAN;
1144 }
1145 }
1146
1147 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1148 struct btrfs_key key;
1149 u32 extent_size;
1150
1151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1152 if (key.type == BTRFS_METADATA_ITEM_KEY)
1153 extent_size = fs_info->nodesize;
1154 else
1155 extent_size = key.offset;
1156 btrfs_print_leaf(leaf);
1157 btrfs_err(fs_info,
1158 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1159 (unsigned long)iref, key.objectid, extent_size,
1160 refs_to_mod, refs);
1161 return -EUCLEAN;
1162 }
1163 refs += refs_to_mod;
1164
1165 if (refs > 0) {
1166 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1167 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1168 else
1169 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1170 } else {
1171 size = btrfs_extent_inline_ref_size(type);
1172 item_size = btrfs_item_size(leaf, path->slots[0]);
1173 ptr = (unsigned long)iref;
1174 end = (unsigned long)ei + item_size;
1175 if (ptr + size < end)
1176 memmove_extent_buffer(leaf, ptr, ptr + size,
1177 end - ptr - size);
1178 item_size -= size;
1179 btrfs_truncate_item(trans, path, item_size, 1);
1180 }
1181 btrfs_mark_buffer_dirty(trans, leaf);
1182 return 0;
1183 }
1184
1185 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1186 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1187 struct btrfs_path *path,
1188 u64 bytenr, u64 num_bytes, u64 parent,
1189 u64 root_objectid, u64 owner,
1190 u64 offset, int refs_to_add,
1191 struct btrfs_delayed_extent_op *extent_op)
1192 {
1193 struct btrfs_extent_inline_ref *iref;
1194 int ret;
1195
1196 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1197 num_bytes, parent, root_objectid,
1198 owner, offset, 1);
1199 if (ret == 0) {
1200 /*
1201 * We're adding refs to a tree block we already own, this
1202 * should not happen at all.
1203 */
1204 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1205 btrfs_print_leaf(path->nodes[0]);
1206 btrfs_crit(trans->fs_info,
1207 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1208 bytenr, num_bytes, root_objectid, path->slots[0]);
1209 return -EUCLEAN;
1210 }
1211 ret = update_inline_extent_backref(trans, path, iref,
1212 refs_to_add, extent_op);
1213 } else if (ret == -ENOENT) {
1214 setup_inline_extent_backref(trans, path, iref, parent,
1215 root_objectid, owner, offset,
1216 refs_to_add, extent_op);
1217 ret = 0;
1218 }
1219 return ret;
1220 }
1221
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1222 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1223 struct btrfs_root *root,
1224 struct btrfs_path *path,
1225 struct btrfs_extent_inline_ref *iref,
1226 int refs_to_drop, int is_data)
1227 {
1228 int ret = 0;
1229
1230 BUG_ON(!is_data && refs_to_drop != 1);
1231 if (iref)
1232 ret = update_inline_extent_backref(trans, path, iref,
1233 -refs_to_drop, NULL);
1234 else if (is_data)
1235 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1236 else
1237 ret = btrfs_del_item(trans, root, path);
1238 return ret;
1239 }
1240
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1241 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1242 u64 *discarded_bytes)
1243 {
1244 int j, ret = 0;
1245 u64 bytes_left, end;
1246 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1247
1248 /* Adjust the range to be aligned to 512B sectors if necessary. */
1249 if (start != aligned_start) {
1250 len -= aligned_start - start;
1251 len = round_down(len, 1 << SECTOR_SHIFT);
1252 start = aligned_start;
1253 }
1254
1255 *discarded_bytes = 0;
1256
1257 if (!len)
1258 return 0;
1259
1260 end = start + len;
1261 bytes_left = len;
1262
1263 /* Skip any superblocks on this device. */
1264 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1265 u64 sb_start = btrfs_sb_offset(j);
1266 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1267 u64 size = sb_start - start;
1268
1269 if (!in_range(sb_start, start, bytes_left) &&
1270 !in_range(sb_end, start, bytes_left) &&
1271 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1272 continue;
1273
1274 /*
1275 * Superblock spans beginning of range. Adjust start and
1276 * try again.
1277 */
1278 if (sb_start <= start) {
1279 start += sb_end - start;
1280 if (start > end) {
1281 bytes_left = 0;
1282 break;
1283 }
1284 bytes_left = end - start;
1285 continue;
1286 }
1287
1288 if (size) {
1289 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1290 size >> SECTOR_SHIFT,
1291 GFP_NOFS);
1292 if (!ret)
1293 *discarded_bytes += size;
1294 else if (ret != -EOPNOTSUPP)
1295 return ret;
1296 }
1297
1298 start = sb_end;
1299 if (start > end) {
1300 bytes_left = 0;
1301 break;
1302 }
1303 bytes_left = end - start;
1304 }
1305
1306 if (bytes_left) {
1307 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1308 bytes_left >> SECTOR_SHIFT,
1309 GFP_NOFS);
1310 if (!ret)
1311 *discarded_bytes += bytes_left;
1312 }
1313 return ret;
1314 }
1315
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1316 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1317 {
1318 struct btrfs_device *dev = stripe->dev;
1319 struct btrfs_fs_info *fs_info = dev->fs_info;
1320 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1321 u64 phys = stripe->physical;
1322 u64 len = stripe->length;
1323 u64 discarded = 0;
1324 int ret = 0;
1325
1326 /* Zone reset on a zoned filesystem */
1327 if (btrfs_can_zone_reset(dev, phys, len)) {
1328 u64 src_disc;
1329
1330 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1331 if (ret)
1332 goto out;
1333
1334 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1335 dev != dev_replace->srcdev)
1336 goto out;
1337
1338 src_disc = discarded;
1339
1340 /* Send to replace target as well */
1341 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1342 &discarded);
1343 discarded += src_disc;
1344 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1345 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1346 } else {
1347 ret = 0;
1348 *bytes = 0;
1349 }
1350
1351 out:
1352 *bytes = discarded;
1353 return ret;
1354 }
1355
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1356 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1357 u64 num_bytes, u64 *actual_bytes)
1358 {
1359 int ret = 0;
1360 u64 discarded_bytes = 0;
1361 u64 end = bytenr + num_bytes;
1362 u64 cur = bytenr;
1363
1364 /*
1365 * Avoid races with device replace and make sure the devices in the
1366 * stripes don't go away while we are discarding.
1367 */
1368 btrfs_bio_counter_inc_blocked(fs_info);
1369 while (cur < end) {
1370 struct btrfs_discard_stripe *stripes;
1371 unsigned int num_stripes;
1372 int i;
1373
1374 num_bytes = end - cur;
1375 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1376 if (IS_ERR(stripes)) {
1377 ret = PTR_ERR(stripes);
1378 if (ret == -EOPNOTSUPP)
1379 ret = 0;
1380 break;
1381 }
1382
1383 for (i = 0; i < num_stripes; i++) {
1384 struct btrfs_discard_stripe *stripe = stripes + i;
1385 u64 bytes;
1386
1387 if (!stripe->dev->bdev) {
1388 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1389 continue;
1390 }
1391
1392 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1393 &stripe->dev->dev_state))
1394 continue;
1395
1396 ret = do_discard_extent(stripe, &bytes);
1397 if (ret) {
1398 /*
1399 * Keep going if discard is not supported by the
1400 * device.
1401 */
1402 if (ret != -EOPNOTSUPP)
1403 break;
1404 ret = 0;
1405 } else {
1406 discarded_bytes += bytes;
1407 }
1408 }
1409 kfree(stripes);
1410 if (ret)
1411 break;
1412 cur += num_bytes;
1413 }
1414 btrfs_bio_counter_dec(fs_info);
1415 if (actual_bytes)
1416 *actual_bytes = discarded_bytes;
1417 return ret;
1418 }
1419
1420 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1421 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1422 struct btrfs_ref *generic_ref)
1423 {
1424 struct btrfs_fs_info *fs_info = trans->fs_info;
1425 int ret;
1426
1427 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1428 generic_ref->action);
1429 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1430 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1431
1432 if (generic_ref->type == BTRFS_REF_METADATA)
1433 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1434 else
1435 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1436
1437 btrfs_ref_tree_mod(fs_info, generic_ref);
1438
1439 return ret;
1440 }
1441
1442 /*
1443 * __btrfs_inc_extent_ref - insert backreference for a given extent
1444 *
1445 * The counterpart is in __btrfs_free_extent(), with examples and more details
1446 * how it works.
1447 *
1448 * @trans: Handle of transaction
1449 *
1450 * @node: The delayed ref node used to get the bytenr/length for
1451 * extent whose references are incremented.
1452 *
1453 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1454 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1455 * bytenr of the parent block. Since new extents are always
1456 * created with indirect references, this will only be the case
1457 * when relocating a shared extent. In that case, root_objectid
1458 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1459 * be 0
1460 *
1461 * @root_objectid: The id of the root where this modification has originated,
1462 * this can be either one of the well-known metadata trees or
1463 * the subvolume id which references this extent.
1464 *
1465 * @owner: For data extents it is the inode number of the owning file.
1466 * For metadata extents this parameter holds the level in the
1467 * tree of the extent.
1468 *
1469 * @offset: For metadata extents the offset is ignored and is currently
1470 * always passed as 0. For data extents it is the fileoffset
1471 * this extent belongs to.
1472 *
1473 * @refs_to_add Number of references to add
1474 *
1475 * @extent_op Pointer to a structure, holding information necessary when
1476 * updating a tree block's flags
1477 *
1478 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1479 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1480 struct btrfs_delayed_ref_node *node,
1481 u64 parent, u64 root_objectid,
1482 u64 owner, u64 offset, int refs_to_add,
1483 struct btrfs_delayed_extent_op *extent_op)
1484 {
1485 struct btrfs_path *path;
1486 struct extent_buffer *leaf;
1487 struct btrfs_extent_item *item;
1488 struct btrfs_key key;
1489 u64 bytenr = node->bytenr;
1490 u64 num_bytes = node->num_bytes;
1491 u64 refs;
1492 int ret;
1493
1494 path = btrfs_alloc_path();
1495 if (!path)
1496 return -ENOMEM;
1497
1498 /* this will setup the path even if it fails to insert the back ref */
1499 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1500 parent, root_objectid, owner,
1501 offset, refs_to_add, extent_op);
1502 if ((ret < 0 && ret != -EAGAIN) || !ret)
1503 goto out;
1504
1505 /*
1506 * Ok we had -EAGAIN which means we didn't have space to insert and
1507 * inline extent ref, so just update the reference count and add a
1508 * normal backref.
1509 */
1510 leaf = path->nodes[0];
1511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1512 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1513 refs = btrfs_extent_refs(leaf, item);
1514 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1515 if (extent_op)
1516 __run_delayed_extent_op(extent_op, leaf, item);
1517
1518 btrfs_mark_buffer_dirty(trans, leaf);
1519 btrfs_release_path(path);
1520
1521 /* now insert the actual backref */
1522 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1523 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1524 root_objectid);
1525 else
1526 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1527 root_objectid, owner, offset,
1528 refs_to_add);
1529
1530 if (ret)
1531 btrfs_abort_transaction(trans, ret);
1532 out:
1533 btrfs_free_path(path);
1534 return ret;
1535 }
1536
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1537 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1538 struct btrfs_delayed_ref_node *node,
1539 struct btrfs_delayed_extent_op *extent_op,
1540 bool insert_reserved)
1541 {
1542 int ret = 0;
1543 struct btrfs_delayed_data_ref *ref;
1544 struct btrfs_key ins;
1545 u64 parent = 0;
1546 u64 ref_root = 0;
1547 u64 flags = 0;
1548
1549 ins.objectid = node->bytenr;
1550 ins.offset = node->num_bytes;
1551 ins.type = BTRFS_EXTENT_ITEM_KEY;
1552
1553 ref = btrfs_delayed_node_to_data_ref(node);
1554 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1555
1556 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1557 parent = ref->parent;
1558 ref_root = ref->root;
1559
1560 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1561 if (extent_op)
1562 flags |= extent_op->flags_to_set;
1563 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1564 flags, ref->objectid,
1565 ref->offset, &ins,
1566 node->ref_mod);
1567 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1568 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1569 ref->objectid, ref->offset,
1570 node->ref_mod, extent_op);
1571 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1572 ret = __btrfs_free_extent(trans, node, parent,
1573 ref_root, ref->objectid,
1574 ref->offset, node->ref_mod,
1575 extent_op);
1576 } else {
1577 BUG();
1578 }
1579 return ret;
1580 }
1581
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1582 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1583 struct extent_buffer *leaf,
1584 struct btrfs_extent_item *ei)
1585 {
1586 u64 flags = btrfs_extent_flags(leaf, ei);
1587 if (extent_op->update_flags) {
1588 flags |= extent_op->flags_to_set;
1589 btrfs_set_extent_flags(leaf, ei, flags);
1590 }
1591
1592 if (extent_op->update_key) {
1593 struct btrfs_tree_block_info *bi;
1594 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1595 bi = (struct btrfs_tree_block_info *)(ei + 1);
1596 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1597 }
1598 }
1599
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1600 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1601 struct btrfs_delayed_ref_head *head,
1602 struct btrfs_delayed_extent_op *extent_op)
1603 {
1604 struct btrfs_fs_info *fs_info = trans->fs_info;
1605 struct btrfs_root *root;
1606 struct btrfs_key key;
1607 struct btrfs_path *path;
1608 struct btrfs_extent_item *ei;
1609 struct extent_buffer *leaf;
1610 u32 item_size;
1611 int ret;
1612 int err = 0;
1613 int metadata = 1;
1614
1615 if (TRANS_ABORTED(trans))
1616 return 0;
1617
1618 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1619 metadata = 0;
1620
1621 path = btrfs_alloc_path();
1622 if (!path)
1623 return -ENOMEM;
1624
1625 key.objectid = head->bytenr;
1626
1627 if (metadata) {
1628 key.type = BTRFS_METADATA_ITEM_KEY;
1629 key.offset = extent_op->level;
1630 } else {
1631 key.type = BTRFS_EXTENT_ITEM_KEY;
1632 key.offset = head->num_bytes;
1633 }
1634
1635 root = btrfs_extent_root(fs_info, key.objectid);
1636 again:
1637 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1638 if (ret < 0) {
1639 err = ret;
1640 goto out;
1641 }
1642 if (ret > 0) {
1643 if (metadata) {
1644 if (path->slots[0] > 0) {
1645 path->slots[0]--;
1646 btrfs_item_key_to_cpu(path->nodes[0], &key,
1647 path->slots[0]);
1648 if (key.objectid == head->bytenr &&
1649 key.type == BTRFS_EXTENT_ITEM_KEY &&
1650 key.offset == head->num_bytes)
1651 ret = 0;
1652 }
1653 if (ret > 0) {
1654 btrfs_release_path(path);
1655 metadata = 0;
1656
1657 key.objectid = head->bytenr;
1658 key.offset = head->num_bytes;
1659 key.type = BTRFS_EXTENT_ITEM_KEY;
1660 goto again;
1661 }
1662 } else {
1663 err = -EUCLEAN;
1664 btrfs_err(fs_info,
1665 "missing extent item for extent %llu num_bytes %llu level %d",
1666 head->bytenr, head->num_bytes, extent_op->level);
1667 goto out;
1668 }
1669 }
1670
1671 leaf = path->nodes[0];
1672 item_size = btrfs_item_size(leaf, path->slots[0]);
1673
1674 if (unlikely(item_size < sizeof(*ei))) {
1675 err = -EUCLEAN;
1676 btrfs_err(fs_info,
1677 "unexpected extent item size, has %u expect >= %zu",
1678 item_size, sizeof(*ei));
1679 btrfs_abort_transaction(trans, err);
1680 goto out;
1681 }
1682
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 __run_delayed_extent_op(extent_op, leaf, ei);
1685
1686 btrfs_mark_buffer_dirty(trans, leaf);
1687 out:
1688 btrfs_free_path(path);
1689 return err;
1690 }
1691
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1692 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1693 struct btrfs_delayed_ref_node *node,
1694 struct btrfs_delayed_extent_op *extent_op,
1695 bool insert_reserved)
1696 {
1697 int ret = 0;
1698 struct btrfs_delayed_tree_ref *ref;
1699 u64 parent = 0;
1700 u64 ref_root = 0;
1701
1702 ref = btrfs_delayed_node_to_tree_ref(node);
1703 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1704
1705 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1706 parent = ref->parent;
1707 ref_root = ref->root;
1708
1709 if (unlikely(node->ref_mod != 1)) {
1710 btrfs_err(trans->fs_info,
1711 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1712 node->bytenr, node->ref_mod, node->action, ref_root,
1713 parent);
1714 return -EUCLEAN;
1715 }
1716 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1717 BUG_ON(!extent_op || !extent_op->update_flags);
1718 ret = alloc_reserved_tree_block(trans, node, extent_op);
1719 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1720 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1721 ref->level, 0, 1, extent_op);
1722 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1723 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1724 ref->level, 0, 1, extent_op);
1725 } else {
1726 BUG();
1727 }
1728 return ret;
1729 }
1730
1731 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1732 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1733 struct btrfs_delayed_ref_node *node,
1734 struct btrfs_delayed_extent_op *extent_op,
1735 bool insert_reserved)
1736 {
1737 int ret = 0;
1738
1739 if (TRANS_ABORTED(trans)) {
1740 if (insert_reserved)
1741 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1742 return 0;
1743 }
1744
1745 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1746 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1747 ret = run_delayed_tree_ref(trans, node, extent_op,
1748 insert_reserved);
1749 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1750 node->type == BTRFS_SHARED_DATA_REF_KEY)
1751 ret = run_delayed_data_ref(trans, node, extent_op,
1752 insert_reserved);
1753 else
1754 BUG();
1755 if (ret && insert_reserved)
1756 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1757 if (ret < 0)
1758 btrfs_err(trans->fs_info,
1759 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1760 node->bytenr, node->num_bytes, node->type,
1761 node->action, node->ref_mod, ret);
1762 return ret;
1763 }
1764
1765 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1766 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1767 {
1768 struct btrfs_delayed_ref_node *ref;
1769
1770 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1771 return NULL;
1772
1773 /*
1774 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1775 * This is to prevent a ref count from going down to zero, which deletes
1776 * the extent item from the extent tree, when there still are references
1777 * to add, which would fail because they would not find the extent item.
1778 */
1779 if (!list_empty(&head->ref_add_list))
1780 return list_first_entry(&head->ref_add_list,
1781 struct btrfs_delayed_ref_node, add_list);
1782
1783 ref = rb_entry(rb_first_cached(&head->ref_tree),
1784 struct btrfs_delayed_ref_node, ref_node);
1785 ASSERT(list_empty(&ref->add_list));
1786 return ref;
1787 }
1788
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1789 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1790 struct btrfs_delayed_ref_head *head)
1791 {
1792 spin_lock(&delayed_refs->lock);
1793 head->processing = false;
1794 delayed_refs->num_heads_ready++;
1795 spin_unlock(&delayed_refs->lock);
1796 btrfs_delayed_ref_unlock(head);
1797 }
1798
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1799 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1800 struct btrfs_delayed_ref_head *head)
1801 {
1802 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1803
1804 if (!extent_op)
1805 return NULL;
1806
1807 if (head->must_insert_reserved) {
1808 head->extent_op = NULL;
1809 btrfs_free_delayed_extent_op(extent_op);
1810 return NULL;
1811 }
1812 return extent_op;
1813 }
1814
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1815 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1816 struct btrfs_delayed_ref_head *head)
1817 {
1818 struct btrfs_delayed_extent_op *extent_op;
1819 int ret;
1820
1821 extent_op = cleanup_extent_op(head);
1822 if (!extent_op)
1823 return 0;
1824 head->extent_op = NULL;
1825 spin_unlock(&head->lock);
1826 ret = run_delayed_extent_op(trans, head, extent_op);
1827 btrfs_free_delayed_extent_op(extent_op);
1828 return ret ? ret : 1;
1829 }
1830
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1831 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1832 struct btrfs_delayed_ref_root *delayed_refs,
1833 struct btrfs_delayed_ref_head *head)
1834 {
1835 int nr_items = 1; /* Dropping this ref head update. */
1836
1837 /*
1838 * We had csum deletions accounted for in our delayed refs rsv, we need
1839 * to drop the csum leaves for this update from our delayed_refs_rsv.
1840 */
1841 if (head->total_ref_mod < 0 && head->is_data) {
1842 spin_lock(&delayed_refs->lock);
1843 delayed_refs->pending_csums -= head->num_bytes;
1844 spin_unlock(&delayed_refs->lock);
1845 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1846 }
1847
1848 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1849 }
1850
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1851 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1852 struct btrfs_delayed_ref_head *head)
1853 {
1854
1855 struct btrfs_fs_info *fs_info = trans->fs_info;
1856 struct btrfs_delayed_ref_root *delayed_refs;
1857 int ret;
1858
1859 delayed_refs = &trans->transaction->delayed_refs;
1860
1861 ret = run_and_cleanup_extent_op(trans, head);
1862 if (ret < 0) {
1863 unselect_delayed_ref_head(delayed_refs, head);
1864 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1865 return ret;
1866 } else if (ret) {
1867 return ret;
1868 }
1869
1870 /*
1871 * Need to drop our head ref lock and re-acquire the delayed ref lock
1872 * and then re-check to make sure nobody got added.
1873 */
1874 spin_unlock(&head->lock);
1875 spin_lock(&delayed_refs->lock);
1876 spin_lock(&head->lock);
1877 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1878 spin_unlock(&head->lock);
1879 spin_unlock(&delayed_refs->lock);
1880 return 1;
1881 }
1882 btrfs_delete_ref_head(delayed_refs, head);
1883 spin_unlock(&head->lock);
1884 spin_unlock(&delayed_refs->lock);
1885
1886 if (head->must_insert_reserved) {
1887 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1888 if (head->is_data) {
1889 struct btrfs_root *csum_root;
1890
1891 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1892 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1893 head->num_bytes);
1894 }
1895 }
1896
1897 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1898
1899 trace_run_delayed_ref_head(fs_info, head, 0);
1900 btrfs_delayed_ref_unlock(head);
1901 btrfs_put_delayed_ref_head(head);
1902 return ret;
1903 }
1904
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1905 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1906 struct btrfs_trans_handle *trans)
1907 {
1908 struct btrfs_delayed_ref_root *delayed_refs =
1909 &trans->transaction->delayed_refs;
1910 struct btrfs_delayed_ref_head *head = NULL;
1911 int ret;
1912
1913 spin_lock(&delayed_refs->lock);
1914 head = btrfs_select_ref_head(delayed_refs);
1915 if (!head) {
1916 spin_unlock(&delayed_refs->lock);
1917 return head;
1918 }
1919
1920 /*
1921 * Grab the lock that says we are going to process all the refs for
1922 * this head
1923 */
1924 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1925 spin_unlock(&delayed_refs->lock);
1926
1927 /*
1928 * We may have dropped the spin lock to get the head mutex lock, and
1929 * that might have given someone else time to free the head. If that's
1930 * true, it has been removed from our list and we can move on.
1931 */
1932 if (ret == -EAGAIN)
1933 head = ERR_PTR(-EAGAIN);
1934
1935 return head;
1936 }
1937
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref)1938 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1939 struct btrfs_delayed_ref_head *locked_ref)
1940 {
1941 struct btrfs_fs_info *fs_info = trans->fs_info;
1942 struct btrfs_delayed_ref_root *delayed_refs;
1943 struct btrfs_delayed_extent_op *extent_op;
1944 struct btrfs_delayed_ref_node *ref;
1945 bool must_insert_reserved;
1946 int ret;
1947
1948 delayed_refs = &trans->transaction->delayed_refs;
1949
1950 lockdep_assert_held(&locked_ref->mutex);
1951 lockdep_assert_held(&locked_ref->lock);
1952
1953 while ((ref = select_delayed_ref(locked_ref))) {
1954 if (ref->seq &&
1955 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1956 spin_unlock(&locked_ref->lock);
1957 unselect_delayed_ref_head(delayed_refs, locked_ref);
1958 return -EAGAIN;
1959 }
1960
1961 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1962 RB_CLEAR_NODE(&ref->ref_node);
1963 if (!list_empty(&ref->add_list))
1964 list_del(&ref->add_list);
1965 /*
1966 * When we play the delayed ref, also correct the ref_mod on
1967 * head
1968 */
1969 switch (ref->action) {
1970 case BTRFS_ADD_DELAYED_REF:
1971 case BTRFS_ADD_DELAYED_EXTENT:
1972 locked_ref->ref_mod -= ref->ref_mod;
1973 break;
1974 case BTRFS_DROP_DELAYED_REF:
1975 locked_ref->ref_mod += ref->ref_mod;
1976 break;
1977 default:
1978 WARN_ON(1);
1979 }
1980 atomic_dec(&delayed_refs->num_entries);
1981
1982 /*
1983 * Record the must_insert_reserved flag before we drop the
1984 * spin lock.
1985 */
1986 must_insert_reserved = locked_ref->must_insert_reserved;
1987 locked_ref->must_insert_reserved = false;
1988
1989 extent_op = locked_ref->extent_op;
1990 locked_ref->extent_op = NULL;
1991 spin_unlock(&locked_ref->lock);
1992
1993 ret = run_one_delayed_ref(trans, ref, extent_op,
1994 must_insert_reserved);
1995
1996 btrfs_free_delayed_extent_op(extent_op);
1997 if (ret) {
1998 unselect_delayed_ref_head(delayed_refs, locked_ref);
1999 btrfs_put_delayed_ref(ref);
2000 return ret;
2001 }
2002
2003 btrfs_put_delayed_ref(ref);
2004 cond_resched();
2005
2006 spin_lock(&locked_ref->lock);
2007 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2008 }
2009
2010 return 0;
2011 }
2012
2013 /*
2014 * Returns 0 on success or if called with an already aborted transaction.
2015 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2016 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)2017 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2018 unsigned long nr)
2019 {
2020 struct btrfs_fs_info *fs_info = trans->fs_info;
2021 struct btrfs_delayed_ref_root *delayed_refs;
2022 struct btrfs_delayed_ref_head *locked_ref = NULL;
2023 int ret;
2024 unsigned long count = 0;
2025
2026 delayed_refs = &trans->transaction->delayed_refs;
2027 do {
2028 if (!locked_ref) {
2029 locked_ref = btrfs_obtain_ref_head(trans);
2030 if (IS_ERR_OR_NULL(locked_ref)) {
2031 if (PTR_ERR(locked_ref) == -EAGAIN) {
2032 continue;
2033 } else {
2034 break;
2035 }
2036 }
2037 count++;
2038 }
2039 /*
2040 * We need to try and merge add/drops of the same ref since we
2041 * can run into issues with relocate dropping the implicit ref
2042 * and then it being added back again before the drop can
2043 * finish. If we merged anything we need to re-loop so we can
2044 * get a good ref.
2045 * Or we can get node references of the same type that weren't
2046 * merged when created due to bumps in the tree mod seq, and
2047 * we need to merge them to prevent adding an inline extent
2048 * backref before dropping it (triggering a BUG_ON at
2049 * insert_inline_extent_backref()).
2050 */
2051 spin_lock(&locked_ref->lock);
2052 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2053
2054 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2055 if (ret < 0 && ret != -EAGAIN) {
2056 /*
2057 * Error, btrfs_run_delayed_refs_for_head already
2058 * unlocked everything so just bail out
2059 */
2060 return ret;
2061 } else if (!ret) {
2062 /*
2063 * Success, perform the usual cleanup of a processed
2064 * head
2065 */
2066 ret = cleanup_ref_head(trans, locked_ref);
2067 if (ret > 0 ) {
2068 /* We dropped our lock, we need to loop. */
2069 ret = 0;
2070 continue;
2071 } else if (ret) {
2072 return ret;
2073 }
2074 }
2075
2076 /*
2077 * Either success case or btrfs_run_delayed_refs_for_head
2078 * returned -EAGAIN, meaning we need to select another head
2079 */
2080
2081 locked_ref = NULL;
2082 cond_resched();
2083 } while ((nr != -1 && count < nr) || locked_ref);
2084
2085 return 0;
2086 }
2087
2088 #ifdef SCRAMBLE_DELAYED_REFS
2089 /*
2090 * Normally delayed refs get processed in ascending bytenr order. This
2091 * correlates in most cases to the order added. To expose dependencies on this
2092 * order, we start to process the tree in the middle instead of the beginning
2093 */
find_middle(struct rb_root * root)2094 static u64 find_middle(struct rb_root *root)
2095 {
2096 struct rb_node *n = root->rb_node;
2097 struct btrfs_delayed_ref_node *entry;
2098 int alt = 1;
2099 u64 middle;
2100 u64 first = 0, last = 0;
2101
2102 n = rb_first(root);
2103 if (n) {
2104 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2105 first = entry->bytenr;
2106 }
2107 n = rb_last(root);
2108 if (n) {
2109 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2110 last = entry->bytenr;
2111 }
2112 n = root->rb_node;
2113
2114 while (n) {
2115 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2116 WARN_ON(!entry->in_tree);
2117
2118 middle = entry->bytenr;
2119
2120 if (alt)
2121 n = n->rb_left;
2122 else
2123 n = n->rb_right;
2124
2125 alt = 1 - alt;
2126 }
2127 return middle;
2128 }
2129 #endif
2130
2131 /*
2132 * this starts processing the delayed reference count updates and
2133 * extent insertions we have queued up so far. count can be
2134 * 0, which means to process everything in the tree at the start
2135 * of the run (but not newly added entries), or it can be some target
2136 * number you'd like to process.
2137 *
2138 * Returns 0 on success or if called with an aborted transaction
2139 * Returns <0 on error and aborts the transaction
2140 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2141 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2142 unsigned long count)
2143 {
2144 struct btrfs_fs_info *fs_info = trans->fs_info;
2145 struct rb_node *node;
2146 struct btrfs_delayed_ref_root *delayed_refs;
2147 struct btrfs_delayed_ref_head *head;
2148 int ret;
2149 int run_all = count == (unsigned long)-1;
2150
2151 /* We'll clean this up in btrfs_cleanup_transaction */
2152 if (TRANS_ABORTED(trans))
2153 return 0;
2154
2155 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2156 return 0;
2157
2158 delayed_refs = &trans->transaction->delayed_refs;
2159 if (count == 0)
2160 count = delayed_refs->num_heads_ready;
2161
2162 again:
2163 #ifdef SCRAMBLE_DELAYED_REFS
2164 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2165 #endif
2166 ret = __btrfs_run_delayed_refs(trans, count);
2167 if (ret < 0) {
2168 btrfs_abort_transaction(trans, ret);
2169 return ret;
2170 }
2171
2172 if (run_all) {
2173 btrfs_create_pending_block_groups(trans);
2174
2175 spin_lock(&delayed_refs->lock);
2176 node = rb_first_cached(&delayed_refs->href_root);
2177 if (!node) {
2178 spin_unlock(&delayed_refs->lock);
2179 goto out;
2180 }
2181 head = rb_entry(node, struct btrfs_delayed_ref_head,
2182 href_node);
2183 refcount_inc(&head->refs);
2184 spin_unlock(&delayed_refs->lock);
2185
2186 /* Mutex was contended, block until it's released and retry. */
2187 mutex_lock(&head->mutex);
2188 mutex_unlock(&head->mutex);
2189
2190 btrfs_put_delayed_ref_head(head);
2191 cond_resched();
2192 goto again;
2193 }
2194 out:
2195 return 0;
2196 }
2197
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2198 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2199 struct extent_buffer *eb, u64 flags)
2200 {
2201 struct btrfs_delayed_extent_op *extent_op;
2202 int level = btrfs_header_level(eb);
2203 int ret;
2204
2205 extent_op = btrfs_alloc_delayed_extent_op();
2206 if (!extent_op)
2207 return -ENOMEM;
2208
2209 extent_op->flags_to_set = flags;
2210 extent_op->update_flags = true;
2211 extent_op->update_key = false;
2212 extent_op->level = level;
2213
2214 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2215 if (ret)
2216 btrfs_free_delayed_extent_op(extent_op);
2217 return ret;
2218 }
2219
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2220 static noinline int check_delayed_ref(struct btrfs_root *root,
2221 struct btrfs_path *path,
2222 u64 objectid, u64 offset, u64 bytenr)
2223 {
2224 struct btrfs_delayed_ref_head *head;
2225 struct btrfs_delayed_ref_node *ref;
2226 struct btrfs_delayed_data_ref *data_ref;
2227 struct btrfs_delayed_ref_root *delayed_refs;
2228 struct btrfs_transaction *cur_trans;
2229 struct rb_node *node;
2230 int ret = 0;
2231
2232 spin_lock(&root->fs_info->trans_lock);
2233 cur_trans = root->fs_info->running_transaction;
2234 if (cur_trans)
2235 refcount_inc(&cur_trans->use_count);
2236 spin_unlock(&root->fs_info->trans_lock);
2237 if (!cur_trans)
2238 return 0;
2239
2240 delayed_refs = &cur_trans->delayed_refs;
2241 spin_lock(&delayed_refs->lock);
2242 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2243 if (!head) {
2244 spin_unlock(&delayed_refs->lock);
2245 btrfs_put_transaction(cur_trans);
2246 return 0;
2247 }
2248
2249 if (!mutex_trylock(&head->mutex)) {
2250 if (path->nowait) {
2251 spin_unlock(&delayed_refs->lock);
2252 btrfs_put_transaction(cur_trans);
2253 return -EAGAIN;
2254 }
2255
2256 refcount_inc(&head->refs);
2257 spin_unlock(&delayed_refs->lock);
2258
2259 btrfs_release_path(path);
2260
2261 /*
2262 * Mutex was contended, block until it's released and let
2263 * caller try again
2264 */
2265 mutex_lock(&head->mutex);
2266 mutex_unlock(&head->mutex);
2267 btrfs_put_delayed_ref_head(head);
2268 btrfs_put_transaction(cur_trans);
2269 return -EAGAIN;
2270 }
2271 spin_unlock(&delayed_refs->lock);
2272
2273 spin_lock(&head->lock);
2274 /*
2275 * XXX: We should replace this with a proper search function in the
2276 * future.
2277 */
2278 for (node = rb_first_cached(&head->ref_tree); node;
2279 node = rb_next(node)) {
2280 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2281 /* If it's a shared ref we know a cross reference exists */
2282 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2283 ret = 1;
2284 break;
2285 }
2286
2287 data_ref = btrfs_delayed_node_to_data_ref(ref);
2288
2289 /*
2290 * If our ref doesn't match the one we're currently looking at
2291 * then we have a cross reference.
2292 */
2293 if (data_ref->root != root->root_key.objectid ||
2294 data_ref->objectid != objectid ||
2295 data_ref->offset != offset) {
2296 ret = 1;
2297 break;
2298 }
2299 }
2300 spin_unlock(&head->lock);
2301 mutex_unlock(&head->mutex);
2302 btrfs_put_transaction(cur_trans);
2303 return ret;
2304 }
2305
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2306 static noinline int check_committed_ref(struct btrfs_root *root,
2307 struct btrfs_path *path,
2308 u64 objectid, u64 offset, u64 bytenr,
2309 bool strict)
2310 {
2311 struct btrfs_fs_info *fs_info = root->fs_info;
2312 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2313 struct extent_buffer *leaf;
2314 struct btrfs_extent_data_ref *ref;
2315 struct btrfs_extent_inline_ref *iref;
2316 struct btrfs_extent_item *ei;
2317 struct btrfs_key key;
2318 u32 item_size;
2319 int type;
2320 int ret;
2321
2322 key.objectid = bytenr;
2323 key.offset = (u64)-1;
2324 key.type = BTRFS_EXTENT_ITEM_KEY;
2325
2326 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2327 if (ret < 0)
2328 goto out;
2329 BUG_ON(ret == 0); /* Corruption */
2330
2331 ret = -ENOENT;
2332 if (path->slots[0] == 0)
2333 goto out;
2334
2335 path->slots[0]--;
2336 leaf = path->nodes[0];
2337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2338
2339 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2340 goto out;
2341
2342 ret = 1;
2343 item_size = btrfs_item_size(leaf, path->slots[0]);
2344 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2345
2346 /* If extent item has more than 1 inline ref then it's shared */
2347 if (item_size != sizeof(*ei) +
2348 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2349 goto out;
2350
2351 /*
2352 * If extent created before last snapshot => it's shared unless the
2353 * snapshot has been deleted. Use the heuristic if strict is false.
2354 */
2355 if (!strict &&
2356 (btrfs_extent_generation(leaf, ei) <=
2357 btrfs_root_last_snapshot(&root->root_item)))
2358 goto out;
2359
2360 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2361
2362 /* If this extent has SHARED_DATA_REF then it's shared */
2363 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2364 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2365 goto out;
2366
2367 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2368 if (btrfs_extent_refs(leaf, ei) !=
2369 btrfs_extent_data_ref_count(leaf, ref) ||
2370 btrfs_extent_data_ref_root(leaf, ref) !=
2371 root->root_key.objectid ||
2372 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2373 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2374 goto out;
2375
2376 ret = 0;
2377 out:
2378 return ret;
2379 }
2380
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict,struct btrfs_path * path)2381 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2382 u64 bytenr, bool strict, struct btrfs_path *path)
2383 {
2384 int ret;
2385
2386 do {
2387 ret = check_committed_ref(root, path, objectid,
2388 offset, bytenr, strict);
2389 if (ret && ret != -ENOENT)
2390 goto out;
2391
2392 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2393 } while (ret == -EAGAIN);
2394
2395 out:
2396 btrfs_release_path(path);
2397 if (btrfs_is_data_reloc_root(root))
2398 WARN_ON(ret > 0);
2399 return ret;
2400 }
2401
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2402 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2403 struct btrfs_root *root,
2404 struct extent_buffer *buf,
2405 int full_backref, int inc)
2406 {
2407 struct btrfs_fs_info *fs_info = root->fs_info;
2408 u64 bytenr;
2409 u64 num_bytes;
2410 u64 parent;
2411 u64 ref_root;
2412 u32 nritems;
2413 struct btrfs_key key;
2414 struct btrfs_file_extent_item *fi;
2415 struct btrfs_ref generic_ref = { 0 };
2416 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2417 int i;
2418 int action;
2419 int level;
2420 int ret = 0;
2421
2422 if (btrfs_is_testing(fs_info))
2423 return 0;
2424
2425 ref_root = btrfs_header_owner(buf);
2426 nritems = btrfs_header_nritems(buf);
2427 level = btrfs_header_level(buf);
2428
2429 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2430 return 0;
2431
2432 if (full_backref)
2433 parent = buf->start;
2434 else
2435 parent = 0;
2436 if (inc)
2437 action = BTRFS_ADD_DELAYED_REF;
2438 else
2439 action = BTRFS_DROP_DELAYED_REF;
2440
2441 for (i = 0; i < nritems; i++) {
2442 if (level == 0) {
2443 btrfs_item_key_to_cpu(buf, &key, i);
2444 if (key.type != BTRFS_EXTENT_DATA_KEY)
2445 continue;
2446 fi = btrfs_item_ptr(buf, i,
2447 struct btrfs_file_extent_item);
2448 if (btrfs_file_extent_type(buf, fi) ==
2449 BTRFS_FILE_EXTENT_INLINE)
2450 continue;
2451 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2452 if (bytenr == 0)
2453 continue;
2454
2455 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2456 key.offset -= btrfs_file_extent_offset(buf, fi);
2457 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2458 num_bytes, parent);
2459 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2460 key.offset, root->root_key.objectid,
2461 for_reloc);
2462 if (inc)
2463 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2464 else
2465 ret = btrfs_free_extent(trans, &generic_ref);
2466 if (ret)
2467 goto fail;
2468 } else {
2469 bytenr = btrfs_node_blockptr(buf, i);
2470 num_bytes = fs_info->nodesize;
2471 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2472 num_bytes, parent);
2473 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2474 root->root_key.objectid, for_reloc);
2475 if (inc)
2476 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2477 else
2478 ret = btrfs_free_extent(trans, &generic_ref);
2479 if (ret)
2480 goto fail;
2481 }
2482 }
2483 return 0;
2484 fail:
2485 return ret;
2486 }
2487
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2488 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2489 struct extent_buffer *buf, int full_backref)
2490 {
2491 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2492 }
2493
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2494 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2495 struct extent_buffer *buf, int full_backref)
2496 {
2497 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2498 }
2499
get_alloc_profile_by_root(struct btrfs_root * root,int data)2500 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2501 {
2502 struct btrfs_fs_info *fs_info = root->fs_info;
2503 u64 flags;
2504 u64 ret;
2505
2506 if (data)
2507 flags = BTRFS_BLOCK_GROUP_DATA;
2508 else if (root == fs_info->chunk_root)
2509 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2510 else
2511 flags = BTRFS_BLOCK_GROUP_METADATA;
2512
2513 ret = btrfs_get_alloc_profile(fs_info, flags);
2514 return ret;
2515 }
2516
first_logical_byte(struct btrfs_fs_info * fs_info)2517 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2518 {
2519 struct rb_node *leftmost;
2520 u64 bytenr = 0;
2521
2522 read_lock(&fs_info->block_group_cache_lock);
2523 /* Get the block group with the lowest logical start address. */
2524 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2525 if (leftmost) {
2526 struct btrfs_block_group *bg;
2527
2528 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2529 bytenr = bg->start;
2530 }
2531 read_unlock(&fs_info->block_group_cache_lock);
2532
2533 return bytenr;
2534 }
2535
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2536 static int pin_down_extent(struct btrfs_trans_handle *trans,
2537 struct btrfs_block_group *cache,
2538 u64 bytenr, u64 num_bytes, int reserved)
2539 {
2540 struct btrfs_fs_info *fs_info = cache->fs_info;
2541
2542 spin_lock(&cache->space_info->lock);
2543 spin_lock(&cache->lock);
2544 cache->pinned += num_bytes;
2545 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2546 num_bytes);
2547 if (reserved) {
2548 cache->reserved -= num_bytes;
2549 cache->space_info->bytes_reserved -= num_bytes;
2550 }
2551 spin_unlock(&cache->lock);
2552 spin_unlock(&cache->space_info->lock);
2553
2554 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2555 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2556 return 0;
2557 }
2558
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2559 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2560 u64 bytenr, u64 num_bytes, int reserved)
2561 {
2562 struct btrfs_block_group *cache;
2563
2564 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2565 BUG_ON(!cache); /* Logic error */
2566
2567 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2568
2569 btrfs_put_block_group(cache);
2570 return 0;
2571 }
2572
2573 /*
2574 * this function must be called within transaction
2575 */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2576 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2577 u64 bytenr, u64 num_bytes)
2578 {
2579 struct btrfs_block_group *cache;
2580 int ret;
2581
2582 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2583 if (!cache)
2584 return -EINVAL;
2585
2586 /*
2587 * Fully cache the free space first so that our pin removes the free space
2588 * from the cache.
2589 */
2590 ret = btrfs_cache_block_group(cache, true);
2591 if (ret)
2592 goto out;
2593
2594 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2595
2596 /* remove us from the free space cache (if we're there at all) */
2597 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2598 out:
2599 btrfs_put_block_group(cache);
2600 return ret;
2601 }
2602
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2603 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2604 u64 start, u64 num_bytes)
2605 {
2606 int ret;
2607 struct btrfs_block_group *block_group;
2608
2609 block_group = btrfs_lookup_block_group(fs_info, start);
2610 if (!block_group)
2611 return -EINVAL;
2612
2613 ret = btrfs_cache_block_group(block_group, true);
2614 if (ret)
2615 goto out;
2616
2617 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2618 out:
2619 btrfs_put_block_group(block_group);
2620 return ret;
2621 }
2622
btrfs_exclude_logged_extents(struct extent_buffer * eb)2623 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2624 {
2625 struct btrfs_fs_info *fs_info = eb->fs_info;
2626 struct btrfs_file_extent_item *item;
2627 struct btrfs_key key;
2628 int found_type;
2629 int i;
2630 int ret = 0;
2631
2632 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2633 return 0;
2634
2635 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2636 btrfs_item_key_to_cpu(eb, &key, i);
2637 if (key.type != BTRFS_EXTENT_DATA_KEY)
2638 continue;
2639 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2640 found_type = btrfs_file_extent_type(eb, item);
2641 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2642 continue;
2643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2644 continue;
2645 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2646 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2647 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2648 if (ret)
2649 break;
2650 }
2651
2652 return ret;
2653 }
2654
2655 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2656 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2657 {
2658 atomic_inc(&bg->reservations);
2659 }
2660
2661 /*
2662 * Returns the free cluster for the given space info and sets empty_cluster to
2663 * what it should be based on the mount options.
2664 */
2665 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2666 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2667 struct btrfs_space_info *space_info, u64 *empty_cluster)
2668 {
2669 struct btrfs_free_cluster *ret = NULL;
2670
2671 *empty_cluster = 0;
2672 if (btrfs_mixed_space_info(space_info))
2673 return ret;
2674
2675 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2676 ret = &fs_info->meta_alloc_cluster;
2677 if (btrfs_test_opt(fs_info, SSD))
2678 *empty_cluster = SZ_2M;
2679 else
2680 *empty_cluster = SZ_64K;
2681 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2682 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2683 *empty_cluster = SZ_2M;
2684 ret = &fs_info->data_alloc_cluster;
2685 }
2686
2687 return ret;
2688 }
2689
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2690 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2691 u64 start, u64 end,
2692 const bool return_free_space)
2693 {
2694 struct btrfs_block_group *cache = NULL;
2695 struct btrfs_space_info *space_info;
2696 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2697 struct btrfs_free_cluster *cluster = NULL;
2698 u64 len;
2699 u64 total_unpinned = 0;
2700 u64 empty_cluster = 0;
2701 bool readonly;
2702
2703 while (start <= end) {
2704 readonly = false;
2705 if (!cache ||
2706 start >= cache->start + cache->length) {
2707 if (cache)
2708 btrfs_put_block_group(cache);
2709 total_unpinned = 0;
2710 cache = btrfs_lookup_block_group(fs_info, start);
2711 BUG_ON(!cache); /* Logic error */
2712
2713 cluster = fetch_cluster_info(fs_info,
2714 cache->space_info,
2715 &empty_cluster);
2716 empty_cluster <<= 1;
2717 }
2718
2719 len = cache->start + cache->length - start;
2720 len = min(len, end + 1 - start);
2721
2722 if (return_free_space)
2723 btrfs_add_free_space(cache, start, len);
2724
2725 start += len;
2726 total_unpinned += len;
2727 space_info = cache->space_info;
2728
2729 /*
2730 * If this space cluster has been marked as fragmented and we've
2731 * unpinned enough in this block group to potentially allow a
2732 * cluster to be created inside of it go ahead and clear the
2733 * fragmented check.
2734 */
2735 if (cluster && cluster->fragmented &&
2736 total_unpinned > empty_cluster) {
2737 spin_lock(&cluster->lock);
2738 cluster->fragmented = 0;
2739 spin_unlock(&cluster->lock);
2740 }
2741
2742 spin_lock(&space_info->lock);
2743 spin_lock(&cache->lock);
2744 cache->pinned -= len;
2745 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2746 space_info->max_extent_size = 0;
2747 if (cache->ro) {
2748 space_info->bytes_readonly += len;
2749 readonly = true;
2750 } else if (btrfs_is_zoned(fs_info)) {
2751 /* Need reset before reusing in a zoned block group */
2752 btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info,
2753 len);
2754 readonly = true;
2755 }
2756 spin_unlock(&cache->lock);
2757 if (!readonly && return_free_space &&
2758 global_rsv->space_info == space_info) {
2759 spin_lock(&global_rsv->lock);
2760 if (!global_rsv->full) {
2761 u64 to_add = min(len, global_rsv->size -
2762 global_rsv->reserved);
2763
2764 global_rsv->reserved += to_add;
2765 btrfs_space_info_update_bytes_may_use(fs_info,
2766 space_info, to_add);
2767 if (global_rsv->reserved >= global_rsv->size)
2768 global_rsv->full = 1;
2769 len -= to_add;
2770 }
2771 spin_unlock(&global_rsv->lock);
2772 }
2773 /* Add to any tickets we may have */
2774 if (!readonly && return_free_space && len)
2775 btrfs_try_granting_tickets(fs_info, space_info);
2776 spin_unlock(&space_info->lock);
2777 }
2778
2779 if (cache)
2780 btrfs_put_block_group(cache);
2781 return 0;
2782 }
2783
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2784 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2785 {
2786 struct btrfs_fs_info *fs_info = trans->fs_info;
2787 struct btrfs_block_group *block_group, *tmp;
2788 struct list_head *deleted_bgs;
2789 struct extent_io_tree *unpin;
2790 u64 start;
2791 u64 end;
2792 int ret;
2793
2794 unpin = &trans->transaction->pinned_extents;
2795
2796 while (!TRANS_ABORTED(trans)) {
2797 struct extent_state *cached_state = NULL;
2798
2799 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2800 if (!find_first_extent_bit(unpin, 0, &start, &end,
2801 EXTENT_DIRTY, &cached_state)) {
2802 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2803 break;
2804 }
2805
2806 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2807 ret = btrfs_discard_extent(fs_info, start,
2808 end + 1 - start, NULL);
2809
2810 clear_extent_dirty(unpin, start, end, &cached_state);
2811 unpin_extent_range(fs_info, start, end, true);
2812 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2813 free_extent_state(cached_state);
2814 cond_resched();
2815 }
2816
2817 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2818 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2819 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2820 }
2821
2822 /*
2823 * Transaction is finished. We don't need the lock anymore. We
2824 * do need to clean up the block groups in case of a transaction
2825 * abort.
2826 */
2827 deleted_bgs = &trans->transaction->deleted_bgs;
2828 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2829 u64 trimmed = 0;
2830
2831 ret = -EROFS;
2832 if (!TRANS_ABORTED(trans))
2833 ret = btrfs_discard_extent(fs_info,
2834 block_group->start,
2835 block_group->length,
2836 &trimmed);
2837
2838 list_del_init(&block_group->bg_list);
2839 btrfs_unfreeze_block_group(block_group);
2840 btrfs_put_block_group(block_group);
2841
2842 if (ret) {
2843 const char *errstr = btrfs_decode_error(ret);
2844 btrfs_warn(fs_info,
2845 "discard failed while removing blockgroup: errno=%d %s",
2846 ret, errstr);
2847 }
2848 }
2849
2850 return 0;
2851 }
2852
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool is_data)2853 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2854 u64 bytenr, u64 num_bytes, bool is_data)
2855 {
2856 int ret;
2857
2858 if (is_data) {
2859 struct btrfs_root *csum_root;
2860
2861 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2862 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2863 if (ret) {
2864 btrfs_abort_transaction(trans, ret);
2865 return ret;
2866 }
2867 }
2868
2869 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2870 if (ret) {
2871 btrfs_abort_transaction(trans, ret);
2872 return ret;
2873 }
2874
2875 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2876 if (ret)
2877 btrfs_abort_transaction(trans, ret);
2878
2879 return ret;
2880 }
2881
2882 #define abort_and_dump(trans, path, fmt, args...) \
2883 ({ \
2884 btrfs_abort_transaction(trans, -EUCLEAN); \
2885 btrfs_print_leaf(path->nodes[0]); \
2886 btrfs_crit(trans->fs_info, fmt, ##args); \
2887 })
2888
2889 /*
2890 * Drop one or more refs of @node.
2891 *
2892 * 1. Locate the extent refs.
2893 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2894 * Locate it, then reduce the refs number or remove the ref line completely.
2895 *
2896 * 2. Update the refs count in EXTENT/METADATA_ITEM
2897 *
2898 * Inline backref case:
2899 *
2900 * in extent tree we have:
2901 *
2902 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2903 * refs 2 gen 6 flags DATA
2904 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2905 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2906 *
2907 * This function gets called with:
2908 *
2909 * node->bytenr = 13631488
2910 * node->num_bytes = 1048576
2911 * root_objectid = FS_TREE
2912 * owner_objectid = 257
2913 * owner_offset = 0
2914 * refs_to_drop = 1
2915 *
2916 * Then we should get some like:
2917 *
2918 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2919 * refs 1 gen 6 flags DATA
2920 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2921 *
2922 * Keyed backref case:
2923 *
2924 * in extent tree we have:
2925 *
2926 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2927 * refs 754 gen 6 flags DATA
2928 * [...]
2929 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2930 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2931 *
2932 * This function get called with:
2933 *
2934 * node->bytenr = 13631488
2935 * node->num_bytes = 1048576
2936 * root_objectid = FS_TREE
2937 * owner_objectid = 866
2938 * owner_offset = 0
2939 * refs_to_drop = 1
2940 *
2941 * Then we should get some like:
2942 *
2943 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2944 * refs 753 gen 6 flags DATA
2945 *
2946 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2947 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2948 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2949 struct btrfs_delayed_ref_node *node, u64 parent,
2950 u64 root_objectid, u64 owner_objectid,
2951 u64 owner_offset, int refs_to_drop,
2952 struct btrfs_delayed_extent_op *extent_op)
2953 {
2954 struct btrfs_fs_info *info = trans->fs_info;
2955 struct btrfs_key key;
2956 struct btrfs_path *path;
2957 struct btrfs_root *extent_root;
2958 struct extent_buffer *leaf;
2959 struct btrfs_extent_item *ei;
2960 struct btrfs_extent_inline_ref *iref;
2961 int ret;
2962 int is_data;
2963 int extent_slot = 0;
2964 int found_extent = 0;
2965 int num_to_del = 1;
2966 u32 item_size;
2967 u64 refs;
2968 u64 bytenr = node->bytenr;
2969 u64 num_bytes = node->num_bytes;
2970 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2971
2972 extent_root = btrfs_extent_root(info, bytenr);
2973 ASSERT(extent_root);
2974
2975 path = btrfs_alloc_path();
2976 if (!path)
2977 return -ENOMEM;
2978
2979 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2980
2981 if (!is_data && refs_to_drop != 1) {
2982 btrfs_crit(info,
2983 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2984 node->bytenr, refs_to_drop);
2985 ret = -EINVAL;
2986 btrfs_abort_transaction(trans, ret);
2987 goto out;
2988 }
2989
2990 if (is_data)
2991 skinny_metadata = false;
2992
2993 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2994 parent, root_objectid, owner_objectid,
2995 owner_offset);
2996 if (ret == 0) {
2997 /*
2998 * Either the inline backref or the SHARED_DATA_REF/
2999 * SHARED_BLOCK_REF is found
3000 *
3001 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3002 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3003 */
3004 extent_slot = path->slots[0];
3005 while (extent_slot >= 0) {
3006 btrfs_item_key_to_cpu(path->nodes[0], &key,
3007 extent_slot);
3008 if (key.objectid != bytenr)
3009 break;
3010 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3011 key.offset == num_bytes) {
3012 found_extent = 1;
3013 break;
3014 }
3015 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3016 key.offset == owner_objectid) {
3017 found_extent = 1;
3018 break;
3019 }
3020
3021 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3022 if (path->slots[0] - extent_slot > 5)
3023 break;
3024 extent_slot--;
3025 }
3026
3027 if (!found_extent) {
3028 if (iref) {
3029 abort_and_dump(trans, path,
3030 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3031 path->slots[0]);
3032 ret = -EUCLEAN;
3033 goto out;
3034 }
3035 /* Must be SHARED_* item, remove the backref first */
3036 ret = remove_extent_backref(trans, extent_root, path,
3037 NULL, refs_to_drop, is_data);
3038 if (ret) {
3039 btrfs_abort_transaction(trans, ret);
3040 goto out;
3041 }
3042 btrfs_release_path(path);
3043
3044 /* Slow path to locate EXTENT/METADATA_ITEM */
3045 key.objectid = bytenr;
3046 key.type = BTRFS_EXTENT_ITEM_KEY;
3047 key.offset = num_bytes;
3048
3049 if (!is_data && skinny_metadata) {
3050 key.type = BTRFS_METADATA_ITEM_KEY;
3051 key.offset = owner_objectid;
3052 }
3053
3054 ret = btrfs_search_slot(trans, extent_root,
3055 &key, path, -1, 1);
3056 if (ret > 0 && skinny_metadata && path->slots[0]) {
3057 /*
3058 * Couldn't find our skinny metadata item,
3059 * see if we have ye olde extent item.
3060 */
3061 path->slots[0]--;
3062 btrfs_item_key_to_cpu(path->nodes[0], &key,
3063 path->slots[0]);
3064 if (key.objectid == bytenr &&
3065 key.type == BTRFS_EXTENT_ITEM_KEY &&
3066 key.offset == num_bytes)
3067 ret = 0;
3068 }
3069
3070 if (ret > 0 && skinny_metadata) {
3071 skinny_metadata = false;
3072 key.objectid = bytenr;
3073 key.type = BTRFS_EXTENT_ITEM_KEY;
3074 key.offset = num_bytes;
3075 btrfs_release_path(path);
3076 ret = btrfs_search_slot(trans, extent_root,
3077 &key, path, -1, 1);
3078 }
3079
3080 if (ret) {
3081 if (ret > 0)
3082 btrfs_print_leaf(path->nodes[0]);
3083 btrfs_err(info,
3084 "umm, got %d back from search, was looking for %llu, slot %d",
3085 ret, bytenr, path->slots[0]);
3086 }
3087 if (ret < 0) {
3088 btrfs_abort_transaction(trans, ret);
3089 goto out;
3090 }
3091 extent_slot = path->slots[0];
3092 }
3093 } else if (WARN_ON(ret == -ENOENT)) {
3094 abort_and_dump(trans, path,
3095 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3096 bytenr, parent, root_objectid, owner_objectid,
3097 owner_offset, path->slots[0]);
3098 goto out;
3099 } else {
3100 btrfs_abort_transaction(trans, ret);
3101 goto out;
3102 }
3103
3104 leaf = path->nodes[0];
3105 item_size = btrfs_item_size(leaf, extent_slot);
3106 if (unlikely(item_size < sizeof(*ei))) {
3107 ret = -EUCLEAN;
3108 btrfs_err(trans->fs_info,
3109 "unexpected extent item size, has %u expect >= %zu",
3110 item_size, sizeof(*ei));
3111 btrfs_abort_transaction(trans, ret);
3112 goto out;
3113 }
3114 ei = btrfs_item_ptr(leaf, extent_slot,
3115 struct btrfs_extent_item);
3116 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3117 key.type == BTRFS_EXTENT_ITEM_KEY) {
3118 struct btrfs_tree_block_info *bi;
3119
3120 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3121 abort_and_dump(trans, path,
3122 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3123 key.objectid, key.type, key.offset,
3124 path->slots[0], owner_objectid, item_size,
3125 sizeof(*ei) + sizeof(*bi));
3126 ret = -EUCLEAN;
3127 goto out;
3128 }
3129 bi = (struct btrfs_tree_block_info *)(ei + 1);
3130 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3131 }
3132
3133 refs = btrfs_extent_refs(leaf, ei);
3134 if (refs < refs_to_drop) {
3135 abort_and_dump(trans, path,
3136 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3137 refs_to_drop, refs, bytenr, path->slots[0]);
3138 ret = -EUCLEAN;
3139 goto out;
3140 }
3141 refs -= refs_to_drop;
3142
3143 if (refs > 0) {
3144 if (extent_op)
3145 __run_delayed_extent_op(extent_op, leaf, ei);
3146 /*
3147 * In the case of inline back ref, reference count will
3148 * be updated by remove_extent_backref
3149 */
3150 if (iref) {
3151 if (!found_extent) {
3152 abort_and_dump(trans, path,
3153 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3154 path->slots[0]);
3155 ret = -EUCLEAN;
3156 goto out;
3157 }
3158 } else {
3159 btrfs_set_extent_refs(leaf, ei, refs);
3160 btrfs_mark_buffer_dirty(trans, leaf);
3161 }
3162 if (found_extent) {
3163 ret = remove_extent_backref(trans, extent_root, path,
3164 iref, refs_to_drop, is_data);
3165 if (ret) {
3166 btrfs_abort_transaction(trans, ret);
3167 goto out;
3168 }
3169 }
3170 } else {
3171 /* In this branch refs == 1 */
3172 if (found_extent) {
3173 if (is_data && refs_to_drop !=
3174 extent_data_ref_count(path, iref)) {
3175 abort_and_dump(trans, path,
3176 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3177 extent_data_ref_count(path, iref),
3178 refs_to_drop, path->slots[0]);
3179 ret = -EUCLEAN;
3180 goto out;
3181 }
3182 if (iref) {
3183 if (path->slots[0] != extent_slot) {
3184 abort_and_dump(trans, path,
3185 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3186 key.objectid, key.type,
3187 key.offset, path->slots[0]);
3188 ret = -EUCLEAN;
3189 goto out;
3190 }
3191 } else {
3192 /*
3193 * No inline ref, we must be at SHARED_* item,
3194 * And it's single ref, it must be:
3195 * | extent_slot ||extent_slot + 1|
3196 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3197 */
3198 if (path->slots[0] != extent_slot + 1) {
3199 abort_and_dump(trans, path,
3200 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3201 path->slots[0]);
3202 ret = -EUCLEAN;
3203 goto out;
3204 }
3205 path->slots[0] = extent_slot;
3206 num_to_del = 2;
3207 }
3208 }
3209
3210 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3211 num_to_del);
3212 if (ret) {
3213 btrfs_abort_transaction(trans, ret);
3214 goto out;
3215 }
3216 btrfs_release_path(path);
3217
3218 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3219 }
3220 btrfs_release_path(path);
3221
3222 out:
3223 btrfs_free_path(path);
3224 return ret;
3225 }
3226
3227 /*
3228 * when we free an block, it is possible (and likely) that we free the last
3229 * delayed ref for that extent as well. This searches the delayed ref tree for
3230 * a given extent, and if there are no other delayed refs to be processed, it
3231 * removes it from the tree.
3232 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3233 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3234 u64 bytenr)
3235 {
3236 struct btrfs_delayed_ref_head *head;
3237 struct btrfs_delayed_ref_root *delayed_refs;
3238 int ret = 0;
3239
3240 delayed_refs = &trans->transaction->delayed_refs;
3241 spin_lock(&delayed_refs->lock);
3242 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3243 if (!head)
3244 goto out_delayed_unlock;
3245
3246 spin_lock(&head->lock);
3247 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3248 goto out;
3249
3250 if (cleanup_extent_op(head) != NULL)
3251 goto out;
3252
3253 /*
3254 * waiting for the lock here would deadlock. If someone else has it
3255 * locked they are already in the process of dropping it anyway
3256 */
3257 if (!mutex_trylock(&head->mutex))
3258 goto out;
3259
3260 btrfs_delete_ref_head(delayed_refs, head);
3261 head->processing = false;
3262
3263 spin_unlock(&head->lock);
3264 spin_unlock(&delayed_refs->lock);
3265
3266 BUG_ON(head->extent_op);
3267 if (head->must_insert_reserved)
3268 ret = 1;
3269
3270 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3271 mutex_unlock(&head->mutex);
3272 btrfs_put_delayed_ref_head(head);
3273 return ret;
3274 out:
3275 spin_unlock(&head->lock);
3276
3277 out_delayed_unlock:
3278 spin_unlock(&delayed_refs->lock);
3279 return 0;
3280 }
3281
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3282 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3283 u64 root_id,
3284 struct extent_buffer *buf,
3285 u64 parent, int last_ref)
3286 {
3287 struct btrfs_fs_info *fs_info = trans->fs_info;
3288 struct btrfs_ref generic_ref = { 0 };
3289 int ret;
3290
3291 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3292 buf->start, buf->len, parent);
3293 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3294 root_id, 0, false);
3295
3296 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3297 btrfs_ref_tree_mod(fs_info, &generic_ref);
3298 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3299 BUG_ON(ret); /* -ENOMEM */
3300 }
3301
3302 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3303 struct btrfs_block_group *cache;
3304 bool must_pin = false;
3305
3306 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3307 ret = check_ref_cleanup(trans, buf->start);
3308 if (!ret) {
3309 btrfs_redirty_list_add(trans->transaction, buf);
3310 goto out;
3311 }
3312 }
3313
3314 cache = btrfs_lookup_block_group(fs_info, buf->start);
3315
3316 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3317 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3318 btrfs_put_block_group(cache);
3319 goto out;
3320 }
3321
3322 /*
3323 * If there are tree mod log users we may have recorded mod log
3324 * operations for this node. If we re-allocate this node we
3325 * could replay operations on this node that happened when it
3326 * existed in a completely different root. For example if it
3327 * was part of root A, then was reallocated to root B, and we
3328 * are doing a btrfs_old_search_slot(root b), we could replay
3329 * operations that happened when the block was part of root A,
3330 * giving us an inconsistent view of the btree.
3331 *
3332 * We are safe from races here because at this point no other
3333 * node or root points to this extent buffer, so if after this
3334 * check a new tree mod log user joins we will not have an
3335 * existing log of operations on this node that we have to
3336 * contend with.
3337 */
3338 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3339 must_pin = true;
3340
3341 if (must_pin || btrfs_is_zoned(fs_info)) {
3342 btrfs_redirty_list_add(trans->transaction, buf);
3343 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3344 btrfs_put_block_group(cache);
3345 goto out;
3346 }
3347
3348 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3349
3350 btrfs_add_free_space(cache, buf->start, buf->len);
3351 btrfs_free_reserved_bytes(cache, buf->len, 0);
3352 btrfs_put_block_group(cache);
3353 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3354 }
3355 out:
3356 if (last_ref) {
3357 /*
3358 * Deleting the buffer, clear the corrupt flag since it doesn't
3359 * matter anymore.
3360 */
3361 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3362 }
3363 }
3364
3365 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3366 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3367 {
3368 struct btrfs_fs_info *fs_info = trans->fs_info;
3369 int ret;
3370
3371 if (btrfs_is_testing(fs_info))
3372 return 0;
3373
3374 /*
3375 * tree log blocks never actually go into the extent allocation
3376 * tree, just update pinning info and exit early.
3377 */
3378 if ((ref->type == BTRFS_REF_METADATA &&
3379 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3380 (ref->type == BTRFS_REF_DATA &&
3381 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3382 /* unlocks the pinned mutex */
3383 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3384 ret = 0;
3385 } else if (ref->type == BTRFS_REF_METADATA) {
3386 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3387 } else {
3388 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3389 }
3390
3391 if (!((ref->type == BTRFS_REF_METADATA &&
3392 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3393 (ref->type == BTRFS_REF_DATA &&
3394 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3395 btrfs_ref_tree_mod(fs_info, ref);
3396
3397 return ret;
3398 }
3399
3400 enum btrfs_loop_type {
3401 /*
3402 * Start caching block groups but do not wait for progress or for them
3403 * to be done.
3404 */
3405 LOOP_CACHING_NOWAIT,
3406
3407 /*
3408 * Wait for the block group free_space >= the space we're waiting for if
3409 * the block group isn't cached.
3410 */
3411 LOOP_CACHING_WAIT,
3412
3413 /*
3414 * Allow allocations to happen from block groups that do not yet have a
3415 * size classification.
3416 */
3417 LOOP_UNSET_SIZE_CLASS,
3418
3419 /*
3420 * Allocate a chunk and then retry the allocation.
3421 */
3422 LOOP_ALLOC_CHUNK,
3423
3424 /*
3425 * Ignore the size class restrictions for this allocation.
3426 */
3427 LOOP_WRONG_SIZE_CLASS,
3428
3429 /*
3430 * Ignore the empty size, only try to allocate the number of bytes
3431 * needed for this allocation.
3432 */
3433 LOOP_NO_EMPTY_SIZE,
3434 };
3435
3436 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3437 btrfs_lock_block_group(struct btrfs_block_group *cache,
3438 int delalloc)
3439 {
3440 if (delalloc)
3441 down_read(&cache->data_rwsem);
3442 }
3443
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3444 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3445 int delalloc)
3446 {
3447 btrfs_get_block_group(cache);
3448 if (delalloc)
3449 down_read(&cache->data_rwsem);
3450 }
3451
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3452 static struct btrfs_block_group *btrfs_lock_cluster(
3453 struct btrfs_block_group *block_group,
3454 struct btrfs_free_cluster *cluster,
3455 int delalloc)
3456 __acquires(&cluster->refill_lock)
3457 {
3458 struct btrfs_block_group *used_bg = NULL;
3459
3460 spin_lock(&cluster->refill_lock);
3461 while (1) {
3462 used_bg = cluster->block_group;
3463 if (!used_bg)
3464 return NULL;
3465
3466 if (used_bg == block_group)
3467 return used_bg;
3468
3469 btrfs_get_block_group(used_bg);
3470
3471 if (!delalloc)
3472 return used_bg;
3473
3474 if (down_read_trylock(&used_bg->data_rwsem))
3475 return used_bg;
3476
3477 spin_unlock(&cluster->refill_lock);
3478
3479 /* We should only have one-level nested. */
3480 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3481
3482 spin_lock(&cluster->refill_lock);
3483 if (used_bg == cluster->block_group)
3484 return used_bg;
3485
3486 up_read(&used_bg->data_rwsem);
3487 btrfs_put_block_group(used_bg);
3488 }
3489 }
3490
3491 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3492 btrfs_release_block_group(struct btrfs_block_group *cache,
3493 int delalloc)
3494 {
3495 if (delalloc)
3496 up_read(&cache->data_rwsem);
3497 btrfs_put_block_group(cache);
3498 }
3499
3500 /*
3501 * Helper function for find_free_extent().
3502 *
3503 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3504 * Return >0 to inform caller that we find nothing
3505 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3506 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3507 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3508 struct find_free_extent_ctl *ffe_ctl,
3509 struct btrfs_block_group **cluster_bg_ret)
3510 {
3511 struct btrfs_block_group *cluster_bg;
3512 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3513 u64 aligned_cluster;
3514 u64 offset;
3515 int ret;
3516
3517 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3518 if (!cluster_bg)
3519 goto refill_cluster;
3520 if (cluster_bg != bg && (cluster_bg->ro ||
3521 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3522 goto release_cluster;
3523
3524 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3525 ffe_ctl->num_bytes, cluster_bg->start,
3526 &ffe_ctl->max_extent_size);
3527 if (offset) {
3528 /* We have a block, we're done */
3529 spin_unlock(&last_ptr->refill_lock);
3530 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3531 *cluster_bg_ret = cluster_bg;
3532 ffe_ctl->found_offset = offset;
3533 return 0;
3534 }
3535 WARN_ON(last_ptr->block_group != cluster_bg);
3536
3537 release_cluster:
3538 /*
3539 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3540 * lets just skip it and let the allocator find whatever block it can
3541 * find. If we reach this point, we will have tried the cluster
3542 * allocator plenty of times and not have found anything, so we are
3543 * likely way too fragmented for the clustering stuff to find anything.
3544 *
3545 * However, if the cluster is taken from the current block group,
3546 * release the cluster first, so that we stand a better chance of
3547 * succeeding in the unclustered allocation.
3548 */
3549 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3550 spin_unlock(&last_ptr->refill_lock);
3551 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3552 return -ENOENT;
3553 }
3554
3555 /* This cluster didn't work out, free it and start over */
3556 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3557
3558 if (cluster_bg != bg)
3559 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3560
3561 refill_cluster:
3562 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3563 spin_unlock(&last_ptr->refill_lock);
3564 return -ENOENT;
3565 }
3566
3567 aligned_cluster = max_t(u64,
3568 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3569 bg->full_stripe_len);
3570 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3571 ffe_ctl->num_bytes, aligned_cluster);
3572 if (ret == 0) {
3573 /* Now pull our allocation out of this cluster */
3574 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3575 ffe_ctl->num_bytes, ffe_ctl->search_start,
3576 &ffe_ctl->max_extent_size);
3577 if (offset) {
3578 /* We found one, proceed */
3579 spin_unlock(&last_ptr->refill_lock);
3580 ffe_ctl->found_offset = offset;
3581 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3582 return 0;
3583 }
3584 }
3585 /*
3586 * At this point we either didn't find a cluster or we weren't able to
3587 * allocate a block from our cluster. Free the cluster we've been
3588 * trying to use, and go to the next block group.
3589 */
3590 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3591 spin_unlock(&last_ptr->refill_lock);
3592 return 1;
3593 }
3594
3595 /*
3596 * Return >0 to inform caller that we find nothing
3597 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3598 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3599 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3600 struct find_free_extent_ctl *ffe_ctl)
3601 {
3602 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3603 u64 offset;
3604
3605 /*
3606 * We are doing an unclustered allocation, set the fragmented flag so
3607 * we don't bother trying to setup a cluster again until we get more
3608 * space.
3609 */
3610 if (unlikely(last_ptr)) {
3611 spin_lock(&last_ptr->lock);
3612 last_ptr->fragmented = 1;
3613 spin_unlock(&last_ptr->lock);
3614 }
3615 if (ffe_ctl->cached) {
3616 struct btrfs_free_space_ctl *free_space_ctl;
3617
3618 free_space_ctl = bg->free_space_ctl;
3619 spin_lock(&free_space_ctl->tree_lock);
3620 if (free_space_ctl->free_space <
3621 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3622 ffe_ctl->empty_size) {
3623 ffe_ctl->total_free_space = max_t(u64,
3624 ffe_ctl->total_free_space,
3625 free_space_ctl->free_space);
3626 spin_unlock(&free_space_ctl->tree_lock);
3627 return 1;
3628 }
3629 spin_unlock(&free_space_ctl->tree_lock);
3630 }
3631
3632 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3633 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3634 &ffe_ctl->max_extent_size);
3635 if (!offset)
3636 return 1;
3637 ffe_ctl->found_offset = offset;
3638 return 0;
3639 }
3640
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3641 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3642 struct find_free_extent_ctl *ffe_ctl,
3643 struct btrfs_block_group **bg_ret)
3644 {
3645 int ret;
3646
3647 /* We want to try and use the cluster allocator, so lets look there */
3648 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3649 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3650 if (ret >= 0)
3651 return ret;
3652 /* ret == -ENOENT case falls through */
3653 }
3654
3655 return find_free_extent_unclustered(block_group, ffe_ctl);
3656 }
3657
3658 /*
3659 * Tree-log block group locking
3660 * ============================
3661 *
3662 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3663 * indicates the starting address of a block group, which is reserved only
3664 * for tree-log metadata.
3665 *
3666 * Lock nesting
3667 * ============
3668 *
3669 * space_info::lock
3670 * block_group::lock
3671 * fs_info::treelog_bg_lock
3672 */
3673
3674 /*
3675 * Simple allocator for sequential-only block group. It only allows sequential
3676 * allocation. No need to play with trees. This function also reserves the
3677 * bytes as in btrfs_add_reserved_bytes.
3678 */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3679 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3680 struct find_free_extent_ctl *ffe_ctl,
3681 struct btrfs_block_group **bg_ret)
3682 {
3683 struct btrfs_fs_info *fs_info = block_group->fs_info;
3684 struct btrfs_space_info *space_info = block_group->space_info;
3685 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3686 u64 start = block_group->start;
3687 u64 num_bytes = ffe_ctl->num_bytes;
3688 u64 avail;
3689 u64 bytenr = block_group->start;
3690 u64 log_bytenr;
3691 u64 data_reloc_bytenr;
3692 int ret = 0;
3693 bool skip = false;
3694
3695 ASSERT(btrfs_is_zoned(block_group->fs_info));
3696
3697 /*
3698 * Do not allow non-tree-log blocks in the dedicated tree-log block
3699 * group, and vice versa.
3700 */
3701 spin_lock(&fs_info->treelog_bg_lock);
3702 log_bytenr = fs_info->treelog_bg;
3703 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3704 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3705 skip = true;
3706 spin_unlock(&fs_info->treelog_bg_lock);
3707 if (skip)
3708 return 1;
3709
3710 /*
3711 * Do not allow non-relocation blocks in the dedicated relocation block
3712 * group, and vice versa.
3713 */
3714 spin_lock(&fs_info->relocation_bg_lock);
3715 data_reloc_bytenr = fs_info->data_reloc_bg;
3716 if (data_reloc_bytenr &&
3717 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3718 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3719 skip = true;
3720 spin_unlock(&fs_info->relocation_bg_lock);
3721 if (skip)
3722 return 1;
3723
3724 /* Check RO and no space case before trying to activate it */
3725 spin_lock(&block_group->lock);
3726 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3727 ret = 1;
3728 /*
3729 * May need to clear fs_info->{treelog,data_reloc}_bg.
3730 * Return the error after taking the locks.
3731 */
3732 }
3733 spin_unlock(&block_group->lock);
3734
3735 /* Metadata block group is activated at write time. */
3736 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3737 !btrfs_zone_activate(block_group)) {
3738 ret = 1;
3739 /*
3740 * May need to clear fs_info->{treelog,data_reloc}_bg.
3741 * Return the error after taking the locks.
3742 */
3743 }
3744
3745 spin_lock(&space_info->lock);
3746 spin_lock(&block_group->lock);
3747 spin_lock(&fs_info->treelog_bg_lock);
3748 spin_lock(&fs_info->relocation_bg_lock);
3749
3750 if (ret)
3751 goto out;
3752
3753 ASSERT(!ffe_ctl->for_treelog ||
3754 block_group->start == fs_info->treelog_bg ||
3755 fs_info->treelog_bg == 0);
3756 ASSERT(!ffe_ctl->for_data_reloc ||
3757 block_group->start == fs_info->data_reloc_bg ||
3758 fs_info->data_reloc_bg == 0);
3759
3760 if (block_group->ro ||
3761 (!ffe_ctl->for_data_reloc &&
3762 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3763 ret = 1;
3764 goto out;
3765 }
3766
3767 /*
3768 * Do not allow currently using block group to be tree-log dedicated
3769 * block group.
3770 */
3771 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3772 (block_group->used || block_group->reserved)) {
3773 ret = 1;
3774 goto out;
3775 }
3776
3777 /*
3778 * Do not allow currently used block group to be the data relocation
3779 * dedicated block group.
3780 */
3781 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3782 (block_group->used || block_group->reserved)) {
3783 ret = 1;
3784 goto out;
3785 }
3786
3787 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3788 avail = block_group->zone_capacity - block_group->alloc_offset;
3789 if (avail < num_bytes) {
3790 if (ffe_ctl->max_extent_size < avail) {
3791 /*
3792 * With sequential allocator, free space is always
3793 * contiguous
3794 */
3795 ffe_ctl->max_extent_size = avail;
3796 ffe_ctl->total_free_space = avail;
3797 }
3798 ret = 1;
3799 goto out;
3800 }
3801
3802 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3803 fs_info->treelog_bg = block_group->start;
3804
3805 if (ffe_ctl->for_data_reloc) {
3806 if (!fs_info->data_reloc_bg)
3807 fs_info->data_reloc_bg = block_group->start;
3808 /*
3809 * Do not allow allocations from this block group, unless it is
3810 * for data relocation. Compared to increasing the ->ro, setting
3811 * the ->zoned_data_reloc_ongoing flag still allows nocow
3812 * writers to come in. See btrfs_inc_nocow_writers().
3813 *
3814 * We need to disable an allocation to avoid an allocation of
3815 * regular (non-relocation data) extent. With mix of relocation
3816 * extents and regular extents, we can dispatch WRITE commands
3817 * (for relocation extents) and ZONE APPEND commands (for
3818 * regular extents) at the same time to the same zone, which
3819 * easily break the write pointer.
3820 *
3821 * Also, this flag avoids this block group to be zone finished.
3822 */
3823 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3824 }
3825
3826 ffe_ctl->found_offset = start + block_group->alloc_offset;
3827 block_group->alloc_offset += num_bytes;
3828 spin_lock(&ctl->tree_lock);
3829 ctl->free_space -= num_bytes;
3830 spin_unlock(&ctl->tree_lock);
3831
3832 /*
3833 * We do not check if found_offset is aligned to stripesize. The
3834 * address is anyway rewritten when using zone append writing.
3835 */
3836
3837 ffe_ctl->search_start = ffe_ctl->found_offset;
3838
3839 out:
3840 if (ret && ffe_ctl->for_treelog)
3841 fs_info->treelog_bg = 0;
3842 if (ret && ffe_ctl->for_data_reloc)
3843 fs_info->data_reloc_bg = 0;
3844 spin_unlock(&fs_info->relocation_bg_lock);
3845 spin_unlock(&fs_info->treelog_bg_lock);
3846 spin_unlock(&block_group->lock);
3847 spin_unlock(&space_info->lock);
3848 return ret;
3849 }
3850
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3851 static int do_allocation(struct btrfs_block_group *block_group,
3852 struct find_free_extent_ctl *ffe_ctl,
3853 struct btrfs_block_group **bg_ret)
3854 {
3855 switch (ffe_ctl->policy) {
3856 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3857 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3858 case BTRFS_EXTENT_ALLOC_ZONED:
3859 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3860 default:
3861 BUG();
3862 }
3863 }
3864
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3865 static void release_block_group(struct btrfs_block_group *block_group,
3866 struct find_free_extent_ctl *ffe_ctl,
3867 int delalloc)
3868 {
3869 switch (ffe_ctl->policy) {
3870 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3871 ffe_ctl->retry_uncached = false;
3872 break;
3873 case BTRFS_EXTENT_ALLOC_ZONED:
3874 /* Nothing to do */
3875 break;
3876 default:
3877 BUG();
3878 }
3879
3880 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3881 ffe_ctl->index);
3882 btrfs_release_block_group(block_group, delalloc);
3883 }
3884
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3885 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3886 struct btrfs_key *ins)
3887 {
3888 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3889
3890 if (!ffe_ctl->use_cluster && last_ptr) {
3891 spin_lock(&last_ptr->lock);
3892 last_ptr->window_start = ins->objectid;
3893 spin_unlock(&last_ptr->lock);
3894 }
3895 }
3896
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3897 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3898 struct btrfs_key *ins)
3899 {
3900 switch (ffe_ctl->policy) {
3901 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3902 found_extent_clustered(ffe_ctl, ins);
3903 break;
3904 case BTRFS_EXTENT_ALLOC_ZONED:
3905 /* Nothing to do */
3906 break;
3907 default:
3908 BUG();
3909 }
3910 }
3911
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3912 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3913 struct find_free_extent_ctl *ffe_ctl)
3914 {
3915 /* Block group's activeness is not a requirement for METADATA block groups. */
3916 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3917 return 0;
3918
3919 /* If we can activate new zone, just allocate a chunk and use it */
3920 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3921 return 0;
3922
3923 /*
3924 * We already reached the max active zones. Try to finish one block
3925 * group to make a room for a new block group. This is only possible
3926 * for a data block group because btrfs_zone_finish() may need to wait
3927 * for a running transaction which can cause a deadlock for metadata
3928 * allocation.
3929 */
3930 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3931 int ret = btrfs_zone_finish_one_bg(fs_info);
3932
3933 if (ret == 1)
3934 return 0;
3935 else if (ret < 0)
3936 return ret;
3937 }
3938
3939 /*
3940 * If we have enough free space left in an already active block group
3941 * and we can't activate any other zone now, do not allow allocating a
3942 * new chunk and let find_free_extent() retry with a smaller size.
3943 */
3944 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3945 return -ENOSPC;
3946
3947 /*
3948 * Even min_alloc_size is not left in any block groups. Since we cannot
3949 * activate a new block group, allocating it may not help. Let's tell a
3950 * caller to try again and hope it progress something by writing some
3951 * parts of the region. That is only possible for data block groups,
3952 * where a part of the region can be written.
3953 */
3954 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3955 return -EAGAIN;
3956
3957 /*
3958 * We cannot activate a new block group and no enough space left in any
3959 * block groups. So, allocating a new block group may not help. But,
3960 * there is nothing to do anyway, so let's go with it.
3961 */
3962 return 0;
3963 }
3964
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3965 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3966 struct find_free_extent_ctl *ffe_ctl)
3967 {
3968 switch (ffe_ctl->policy) {
3969 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3970 return 0;
3971 case BTRFS_EXTENT_ALLOC_ZONED:
3972 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3973 default:
3974 BUG();
3975 }
3976 }
3977
3978 /*
3979 * Return >0 means caller needs to re-search for free extent
3980 * Return 0 means we have the needed free extent.
3981 * Return <0 means we failed to locate any free extent.
3982 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)3983 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3984 struct btrfs_key *ins,
3985 struct find_free_extent_ctl *ffe_ctl,
3986 bool full_search)
3987 {
3988 struct btrfs_root *root = fs_info->chunk_root;
3989 int ret;
3990
3991 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3992 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3993 ffe_ctl->orig_have_caching_bg = true;
3994
3995 if (ins->objectid) {
3996 found_extent(ffe_ctl, ins);
3997 return 0;
3998 }
3999
4000 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4001 return 1;
4002
4003 ffe_ctl->index++;
4004 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4005 return 1;
4006
4007 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4008 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4009 ffe_ctl->index = 0;
4010 /*
4011 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4012 * any uncached bgs and we've already done a full search
4013 * through.
4014 */
4015 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4016 (!ffe_ctl->orig_have_caching_bg && full_search))
4017 ffe_ctl->loop++;
4018 ffe_ctl->loop++;
4019
4020 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4021 struct btrfs_trans_handle *trans;
4022 int exist = 0;
4023
4024 /* Check if allocation policy allows to create a new chunk */
4025 ret = can_allocate_chunk(fs_info, ffe_ctl);
4026 if (ret)
4027 return ret;
4028
4029 trans = current->journal_info;
4030 if (trans)
4031 exist = 1;
4032 else
4033 trans = btrfs_join_transaction(root);
4034
4035 if (IS_ERR(trans)) {
4036 ret = PTR_ERR(trans);
4037 return ret;
4038 }
4039
4040 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4041 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4042
4043 /* Do not bail out on ENOSPC since we can do more. */
4044 if (ret == -ENOSPC) {
4045 ret = 0;
4046 ffe_ctl->loop++;
4047 }
4048 else if (ret < 0)
4049 btrfs_abort_transaction(trans, ret);
4050 else
4051 ret = 0;
4052 if (!exist)
4053 btrfs_end_transaction(trans);
4054 if (ret)
4055 return ret;
4056 }
4057
4058 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4059 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4060 return -ENOSPC;
4061
4062 /*
4063 * Don't loop again if we already have no empty_size and
4064 * no empty_cluster.
4065 */
4066 if (ffe_ctl->empty_size == 0 &&
4067 ffe_ctl->empty_cluster == 0)
4068 return -ENOSPC;
4069 ffe_ctl->empty_size = 0;
4070 ffe_ctl->empty_cluster = 0;
4071 }
4072 return 1;
4073 }
4074 return -ENOSPC;
4075 }
4076
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4077 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4078 struct btrfs_block_group *bg)
4079 {
4080 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4081 return true;
4082 if (!btrfs_block_group_should_use_size_class(bg))
4083 return true;
4084 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4085 return true;
4086 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4087 bg->size_class == BTRFS_BG_SZ_NONE)
4088 return true;
4089 return ffe_ctl->size_class == bg->size_class;
4090 }
4091
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4092 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4093 struct find_free_extent_ctl *ffe_ctl,
4094 struct btrfs_space_info *space_info,
4095 struct btrfs_key *ins)
4096 {
4097 /*
4098 * If our free space is heavily fragmented we may not be able to make
4099 * big contiguous allocations, so instead of doing the expensive search
4100 * for free space, simply return ENOSPC with our max_extent_size so we
4101 * can go ahead and search for a more manageable chunk.
4102 *
4103 * If our max_extent_size is large enough for our allocation simply
4104 * disable clustering since we will likely not be able to find enough
4105 * space to create a cluster and induce latency trying.
4106 */
4107 if (space_info->max_extent_size) {
4108 spin_lock(&space_info->lock);
4109 if (space_info->max_extent_size &&
4110 ffe_ctl->num_bytes > space_info->max_extent_size) {
4111 ins->offset = space_info->max_extent_size;
4112 spin_unlock(&space_info->lock);
4113 return -ENOSPC;
4114 } else if (space_info->max_extent_size) {
4115 ffe_ctl->use_cluster = false;
4116 }
4117 spin_unlock(&space_info->lock);
4118 }
4119
4120 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4121 &ffe_ctl->empty_cluster);
4122 if (ffe_ctl->last_ptr) {
4123 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4124
4125 spin_lock(&last_ptr->lock);
4126 if (last_ptr->block_group)
4127 ffe_ctl->hint_byte = last_ptr->window_start;
4128 if (last_ptr->fragmented) {
4129 /*
4130 * We still set window_start so we can keep track of the
4131 * last place we found an allocation to try and save
4132 * some time.
4133 */
4134 ffe_ctl->hint_byte = last_ptr->window_start;
4135 ffe_ctl->use_cluster = false;
4136 }
4137 spin_unlock(&last_ptr->lock);
4138 }
4139
4140 return 0;
4141 }
4142
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4143 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4144 struct find_free_extent_ctl *ffe_ctl)
4145 {
4146 if (ffe_ctl->for_treelog) {
4147 spin_lock(&fs_info->treelog_bg_lock);
4148 if (fs_info->treelog_bg)
4149 ffe_ctl->hint_byte = fs_info->treelog_bg;
4150 spin_unlock(&fs_info->treelog_bg_lock);
4151 } else if (ffe_ctl->for_data_reloc) {
4152 spin_lock(&fs_info->relocation_bg_lock);
4153 if (fs_info->data_reloc_bg)
4154 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4155 spin_unlock(&fs_info->relocation_bg_lock);
4156 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4157 struct btrfs_block_group *block_group;
4158
4159 spin_lock(&fs_info->zone_active_bgs_lock);
4160 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4161 /*
4162 * No lock is OK here because avail is monotinically
4163 * decreasing, and this is just a hint.
4164 */
4165 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4166
4167 if (block_group_bits(block_group, ffe_ctl->flags) &&
4168 avail >= ffe_ctl->num_bytes) {
4169 ffe_ctl->hint_byte = block_group->start;
4170 break;
4171 }
4172 }
4173 spin_unlock(&fs_info->zone_active_bgs_lock);
4174 }
4175
4176 return 0;
4177 }
4178
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4179 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4180 struct find_free_extent_ctl *ffe_ctl,
4181 struct btrfs_space_info *space_info,
4182 struct btrfs_key *ins)
4183 {
4184 switch (ffe_ctl->policy) {
4185 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4186 return prepare_allocation_clustered(fs_info, ffe_ctl,
4187 space_info, ins);
4188 case BTRFS_EXTENT_ALLOC_ZONED:
4189 return prepare_allocation_zoned(fs_info, ffe_ctl);
4190 default:
4191 BUG();
4192 }
4193 }
4194
4195 /*
4196 * walks the btree of allocated extents and find a hole of a given size.
4197 * The key ins is changed to record the hole:
4198 * ins->objectid == start position
4199 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4200 * ins->offset == the size of the hole.
4201 * Any available blocks before search_start are skipped.
4202 *
4203 * If there is no suitable free space, we will record the max size of
4204 * the free space extent currently.
4205 *
4206 * The overall logic and call chain:
4207 *
4208 * find_free_extent()
4209 * |- Iterate through all block groups
4210 * | |- Get a valid block group
4211 * | |- Try to do clustered allocation in that block group
4212 * | |- Try to do unclustered allocation in that block group
4213 * | |- Check if the result is valid
4214 * | | |- If valid, then exit
4215 * | |- Jump to next block group
4216 * |
4217 * |- Push harder to find free extents
4218 * |- If not found, re-iterate all block groups
4219 */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4220 static noinline int find_free_extent(struct btrfs_root *root,
4221 struct btrfs_key *ins,
4222 struct find_free_extent_ctl *ffe_ctl)
4223 {
4224 struct btrfs_fs_info *fs_info = root->fs_info;
4225 int ret = 0;
4226 int cache_block_group_error = 0;
4227 struct btrfs_block_group *block_group = NULL;
4228 struct btrfs_space_info *space_info;
4229 bool full_search = false;
4230
4231 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4232
4233 ffe_ctl->search_start = 0;
4234 /* For clustered allocation */
4235 ffe_ctl->empty_cluster = 0;
4236 ffe_ctl->last_ptr = NULL;
4237 ffe_ctl->use_cluster = true;
4238 ffe_ctl->have_caching_bg = false;
4239 ffe_ctl->orig_have_caching_bg = false;
4240 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4241 ffe_ctl->loop = 0;
4242 ffe_ctl->retry_uncached = false;
4243 ffe_ctl->cached = 0;
4244 ffe_ctl->max_extent_size = 0;
4245 ffe_ctl->total_free_space = 0;
4246 ffe_ctl->found_offset = 0;
4247 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4248 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4249
4250 if (btrfs_is_zoned(fs_info))
4251 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4252
4253 ins->type = BTRFS_EXTENT_ITEM_KEY;
4254 ins->objectid = 0;
4255 ins->offset = 0;
4256
4257 trace_find_free_extent(root, ffe_ctl);
4258
4259 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4260 if (!space_info) {
4261 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4262 return -ENOSPC;
4263 }
4264
4265 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4266 if (ret < 0)
4267 return ret;
4268
4269 ffe_ctl->search_start = max(ffe_ctl->search_start,
4270 first_logical_byte(fs_info));
4271 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4272 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4273 block_group = btrfs_lookup_block_group(fs_info,
4274 ffe_ctl->search_start);
4275 /*
4276 * we don't want to use the block group if it doesn't match our
4277 * allocation bits, or if its not cached.
4278 *
4279 * However if we are re-searching with an ideal block group
4280 * picked out then we don't care that the block group is cached.
4281 */
4282 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4283 block_group->cached != BTRFS_CACHE_NO) {
4284 down_read(&space_info->groups_sem);
4285 if (list_empty(&block_group->list) ||
4286 block_group->ro) {
4287 /*
4288 * someone is removing this block group,
4289 * we can't jump into the have_block_group
4290 * target because our list pointers are not
4291 * valid
4292 */
4293 btrfs_put_block_group(block_group);
4294 up_read(&space_info->groups_sem);
4295 } else {
4296 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4297 block_group->flags);
4298 btrfs_lock_block_group(block_group,
4299 ffe_ctl->delalloc);
4300 ffe_ctl->hinted = true;
4301 goto have_block_group;
4302 }
4303 } else if (block_group) {
4304 btrfs_put_block_group(block_group);
4305 }
4306 }
4307 search:
4308 trace_find_free_extent_search_loop(root, ffe_ctl);
4309 ffe_ctl->have_caching_bg = false;
4310 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4311 ffe_ctl->index == 0)
4312 full_search = true;
4313 down_read(&space_info->groups_sem);
4314 list_for_each_entry(block_group,
4315 &space_info->block_groups[ffe_ctl->index], list) {
4316 struct btrfs_block_group *bg_ret;
4317
4318 ffe_ctl->hinted = false;
4319 /* If the block group is read-only, we can skip it entirely. */
4320 if (unlikely(block_group->ro)) {
4321 if (ffe_ctl->for_treelog)
4322 btrfs_clear_treelog_bg(block_group);
4323 if (ffe_ctl->for_data_reloc)
4324 btrfs_clear_data_reloc_bg(block_group);
4325 continue;
4326 }
4327
4328 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4329 ffe_ctl->search_start = block_group->start;
4330
4331 /*
4332 * this can happen if we end up cycling through all the
4333 * raid types, but we want to make sure we only allocate
4334 * for the proper type.
4335 */
4336 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4337 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4338 BTRFS_BLOCK_GROUP_RAID1_MASK |
4339 BTRFS_BLOCK_GROUP_RAID56_MASK |
4340 BTRFS_BLOCK_GROUP_RAID10;
4341
4342 /*
4343 * if they asked for extra copies and this block group
4344 * doesn't provide them, bail. This does allow us to
4345 * fill raid0 from raid1.
4346 */
4347 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4348 goto loop;
4349
4350 /*
4351 * This block group has different flags than we want.
4352 * It's possible that we have MIXED_GROUP flag but no
4353 * block group is mixed. Just skip such block group.
4354 */
4355 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4356 continue;
4357 }
4358
4359 have_block_group:
4360 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4361 ffe_ctl->cached = btrfs_block_group_done(block_group);
4362 if (unlikely(!ffe_ctl->cached)) {
4363 ffe_ctl->have_caching_bg = true;
4364 ret = btrfs_cache_block_group(block_group, false);
4365
4366 /*
4367 * If we get ENOMEM here or something else we want to
4368 * try other block groups, because it may not be fatal.
4369 * However if we can't find anything else we need to
4370 * save our return here so that we return the actual
4371 * error that caused problems, not ENOSPC.
4372 */
4373 if (ret < 0) {
4374 if (!cache_block_group_error)
4375 cache_block_group_error = ret;
4376 ret = 0;
4377 goto loop;
4378 }
4379 ret = 0;
4380 }
4381
4382 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4383 if (!cache_block_group_error)
4384 cache_block_group_error = -EIO;
4385 goto loop;
4386 }
4387
4388 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4389 goto loop;
4390
4391 bg_ret = NULL;
4392 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4393 if (ret > 0)
4394 goto loop;
4395
4396 if (bg_ret && bg_ret != block_group) {
4397 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4398 block_group = bg_ret;
4399 }
4400
4401 /* Checks */
4402 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4403 fs_info->stripesize);
4404
4405 /* move on to the next group */
4406 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4407 block_group->start + block_group->length) {
4408 btrfs_add_free_space_unused(block_group,
4409 ffe_ctl->found_offset,
4410 ffe_ctl->num_bytes);
4411 goto loop;
4412 }
4413
4414 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4415 btrfs_add_free_space_unused(block_group,
4416 ffe_ctl->found_offset,
4417 ffe_ctl->search_start - ffe_ctl->found_offset);
4418
4419 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4420 ffe_ctl->num_bytes,
4421 ffe_ctl->delalloc,
4422 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4423 if (ret == -EAGAIN) {
4424 btrfs_add_free_space_unused(block_group,
4425 ffe_ctl->found_offset,
4426 ffe_ctl->num_bytes);
4427 goto loop;
4428 }
4429 btrfs_inc_block_group_reservations(block_group);
4430
4431 /* we are all good, lets return */
4432 ins->objectid = ffe_ctl->search_start;
4433 ins->offset = ffe_ctl->num_bytes;
4434
4435 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4436 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4437 break;
4438 loop:
4439 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4440 !ffe_ctl->retry_uncached) {
4441 ffe_ctl->retry_uncached = true;
4442 btrfs_wait_block_group_cache_progress(block_group,
4443 ffe_ctl->num_bytes +
4444 ffe_ctl->empty_cluster +
4445 ffe_ctl->empty_size);
4446 goto have_block_group;
4447 }
4448 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4449 cond_resched();
4450 }
4451 up_read(&space_info->groups_sem);
4452
4453 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4454 if (ret > 0)
4455 goto search;
4456
4457 if (ret == -ENOSPC && !cache_block_group_error) {
4458 /*
4459 * Use ffe_ctl->total_free_space as fallback if we can't find
4460 * any contiguous hole.
4461 */
4462 if (!ffe_ctl->max_extent_size)
4463 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4464 spin_lock(&space_info->lock);
4465 space_info->max_extent_size = ffe_ctl->max_extent_size;
4466 spin_unlock(&space_info->lock);
4467 ins->offset = ffe_ctl->max_extent_size;
4468 } else if (ret == -ENOSPC) {
4469 ret = cache_block_group_error;
4470 }
4471 return ret;
4472 }
4473
4474 /*
4475 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4476 * hole that is at least as big as @num_bytes.
4477 *
4478 * @root - The root that will contain this extent
4479 *
4480 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4481 * is used for accounting purposes. This value differs
4482 * from @num_bytes only in the case of compressed extents.
4483 *
4484 * @num_bytes - Number of bytes to allocate on-disk.
4485 *
4486 * @min_alloc_size - Indicates the minimum amount of space that the
4487 * allocator should try to satisfy. In some cases
4488 * @num_bytes may be larger than what is required and if
4489 * the filesystem is fragmented then allocation fails.
4490 * However, the presence of @min_alloc_size gives a
4491 * chance to try and satisfy the smaller allocation.
4492 *
4493 * @empty_size - A hint that you plan on doing more COW. This is the
4494 * size in bytes the allocator should try to find free
4495 * next to the block it returns. This is just a hint and
4496 * may be ignored by the allocator.
4497 *
4498 * @hint_byte - Hint to the allocator to start searching above the byte
4499 * address passed. It might be ignored.
4500 *
4501 * @ins - This key is modified to record the found hole. It will
4502 * have the following values:
4503 * ins->objectid == start position
4504 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4505 * ins->offset == the size of the hole.
4506 *
4507 * @is_data - Boolean flag indicating whether an extent is
4508 * allocated for data (true) or metadata (false)
4509 *
4510 * @delalloc - Boolean flag indicating whether this allocation is for
4511 * delalloc or not. If 'true' data_rwsem of block groups
4512 * is going to be acquired.
4513 *
4514 *
4515 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4516 * case -ENOSPC is returned then @ins->offset will contain the size of the
4517 * largest available hole the allocator managed to find.
4518 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4519 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4520 u64 num_bytes, u64 min_alloc_size,
4521 u64 empty_size, u64 hint_byte,
4522 struct btrfs_key *ins, int is_data, int delalloc)
4523 {
4524 struct btrfs_fs_info *fs_info = root->fs_info;
4525 struct find_free_extent_ctl ffe_ctl = {};
4526 bool final_tried = num_bytes == min_alloc_size;
4527 u64 flags;
4528 int ret;
4529 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4530 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4531
4532 flags = get_alloc_profile_by_root(root, is_data);
4533 again:
4534 WARN_ON(num_bytes < fs_info->sectorsize);
4535
4536 ffe_ctl.ram_bytes = ram_bytes;
4537 ffe_ctl.num_bytes = num_bytes;
4538 ffe_ctl.min_alloc_size = min_alloc_size;
4539 ffe_ctl.empty_size = empty_size;
4540 ffe_ctl.flags = flags;
4541 ffe_ctl.delalloc = delalloc;
4542 ffe_ctl.hint_byte = hint_byte;
4543 ffe_ctl.for_treelog = for_treelog;
4544 ffe_ctl.for_data_reloc = for_data_reloc;
4545
4546 ret = find_free_extent(root, ins, &ffe_ctl);
4547 if (!ret && !is_data) {
4548 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4549 } else if (ret == -ENOSPC) {
4550 if (!final_tried && ins->offset) {
4551 num_bytes = min(num_bytes >> 1, ins->offset);
4552 num_bytes = round_down(num_bytes,
4553 fs_info->sectorsize);
4554 num_bytes = max(num_bytes, min_alloc_size);
4555 ram_bytes = num_bytes;
4556 if (num_bytes == min_alloc_size)
4557 final_tried = true;
4558 goto again;
4559 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4560 struct btrfs_space_info *sinfo;
4561
4562 sinfo = btrfs_find_space_info(fs_info, flags);
4563 btrfs_err(fs_info,
4564 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4565 flags, num_bytes, for_treelog, for_data_reloc);
4566 if (sinfo)
4567 btrfs_dump_space_info(fs_info, sinfo,
4568 num_bytes, 1);
4569 }
4570 }
4571
4572 return ret;
4573 }
4574
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4575 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4576 u64 start, u64 len, int delalloc)
4577 {
4578 struct btrfs_block_group *cache;
4579
4580 cache = btrfs_lookup_block_group(fs_info, start);
4581 if (!cache) {
4582 btrfs_err(fs_info, "Unable to find block group for %llu",
4583 start);
4584 return -ENOSPC;
4585 }
4586
4587 btrfs_add_free_space(cache, start, len);
4588 btrfs_free_reserved_bytes(cache, len, delalloc);
4589 trace_btrfs_reserved_extent_free(fs_info, start, len);
4590
4591 btrfs_put_block_group(cache);
4592 return 0;
4593 }
4594
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4595 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4596 u64 len)
4597 {
4598 struct btrfs_block_group *cache;
4599 int ret = 0;
4600
4601 cache = btrfs_lookup_block_group(trans->fs_info, start);
4602 if (!cache) {
4603 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4604 start);
4605 return -ENOSPC;
4606 }
4607
4608 ret = pin_down_extent(trans, cache, start, len, 1);
4609 btrfs_put_block_group(cache);
4610 return ret;
4611 }
4612
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4613 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4614 u64 num_bytes)
4615 {
4616 struct btrfs_fs_info *fs_info = trans->fs_info;
4617 int ret;
4618
4619 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4620 if (ret)
4621 return ret;
4622
4623 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4624 if (ret) {
4625 ASSERT(!ret);
4626 btrfs_err(fs_info, "update block group failed for %llu %llu",
4627 bytenr, num_bytes);
4628 return ret;
4629 }
4630
4631 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4632 return 0;
4633 }
4634
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4635 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4636 u64 parent, u64 root_objectid,
4637 u64 flags, u64 owner, u64 offset,
4638 struct btrfs_key *ins, int ref_mod)
4639 {
4640 struct btrfs_fs_info *fs_info = trans->fs_info;
4641 struct btrfs_root *extent_root;
4642 int ret;
4643 struct btrfs_extent_item *extent_item;
4644 struct btrfs_extent_inline_ref *iref;
4645 struct btrfs_path *path;
4646 struct extent_buffer *leaf;
4647 int type;
4648 u32 size;
4649
4650 if (parent > 0)
4651 type = BTRFS_SHARED_DATA_REF_KEY;
4652 else
4653 type = BTRFS_EXTENT_DATA_REF_KEY;
4654
4655 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4656
4657 path = btrfs_alloc_path();
4658 if (!path)
4659 return -ENOMEM;
4660
4661 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4662 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4663 if (ret) {
4664 btrfs_free_path(path);
4665 return ret;
4666 }
4667
4668 leaf = path->nodes[0];
4669 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4670 struct btrfs_extent_item);
4671 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4672 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4673 btrfs_set_extent_flags(leaf, extent_item,
4674 flags | BTRFS_EXTENT_FLAG_DATA);
4675
4676 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4677 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4678 if (parent > 0) {
4679 struct btrfs_shared_data_ref *ref;
4680 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4681 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4682 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4683 } else {
4684 struct btrfs_extent_data_ref *ref;
4685 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4686 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4687 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4688 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4689 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4690 }
4691
4692 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4693 btrfs_free_path(path);
4694
4695 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4696 }
4697
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4698 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4699 struct btrfs_delayed_ref_node *node,
4700 struct btrfs_delayed_extent_op *extent_op)
4701 {
4702 struct btrfs_fs_info *fs_info = trans->fs_info;
4703 struct btrfs_root *extent_root;
4704 int ret;
4705 struct btrfs_extent_item *extent_item;
4706 struct btrfs_key extent_key;
4707 struct btrfs_tree_block_info *block_info;
4708 struct btrfs_extent_inline_ref *iref;
4709 struct btrfs_path *path;
4710 struct extent_buffer *leaf;
4711 struct btrfs_delayed_tree_ref *ref;
4712 u32 size = sizeof(*extent_item) + sizeof(*iref);
4713 u64 flags = extent_op->flags_to_set;
4714 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4715
4716 ref = btrfs_delayed_node_to_tree_ref(node);
4717
4718 extent_key.objectid = node->bytenr;
4719 if (skinny_metadata) {
4720 extent_key.offset = ref->level;
4721 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4722 } else {
4723 extent_key.offset = node->num_bytes;
4724 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4725 size += sizeof(*block_info);
4726 }
4727
4728 path = btrfs_alloc_path();
4729 if (!path)
4730 return -ENOMEM;
4731
4732 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4733 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4734 size);
4735 if (ret) {
4736 btrfs_free_path(path);
4737 return ret;
4738 }
4739
4740 leaf = path->nodes[0];
4741 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4742 struct btrfs_extent_item);
4743 btrfs_set_extent_refs(leaf, extent_item, 1);
4744 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4745 btrfs_set_extent_flags(leaf, extent_item,
4746 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4747
4748 if (skinny_metadata) {
4749 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4750 } else {
4751 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4752 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4753 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4754 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4755 }
4756
4757 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4758 btrfs_set_extent_inline_ref_type(leaf, iref,
4759 BTRFS_SHARED_BLOCK_REF_KEY);
4760 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4761 } else {
4762 btrfs_set_extent_inline_ref_type(leaf, iref,
4763 BTRFS_TREE_BLOCK_REF_KEY);
4764 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4765 }
4766
4767 btrfs_mark_buffer_dirty(trans, leaf);
4768 btrfs_free_path(path);
4769
4770 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4771 }
4772
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4773 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4774 struct btrfs_root *root, u64 owner,
4775 u64 offset, u64 ram_bytes,
4776 struct btrfs_key *ins)
4777 {
4778 struct btrfs_ref generic_ref = { 0 };
4779
4780 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4781
4782 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4783 ins->objectid, ins->offset, 0);
4784 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4785 offset, 0, false);
4786 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4787
4788 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4789 }
4790
4791 /*
4792 * this is used by the tree logging recovery code. It records that
4793 * an extent has been allocated and makes sure to clear the free
4794 * space cache bits as well
4795 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4796 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4797 u64 root_objectid, u64 owner, u64 offset,
4798 struct btrfs_key *ins)
4799 {
4800 struct btrfs_fs_info *fs_info = trans->fs_info;
4801 int ret;
4802 struct btrfs_block_group *block_group;
4803 struct btrfs_space_info *space_info;
4804
4805 /*
4806 * Mixed block groups will exclude before processing the log so we only
4807 * need to do the exclude dance if this fs isn't mixed.
4808 */
4809 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4810 ret = __exclude_logged_extent(fs_info, ins->objectid,
4811 ins->offset);
4812 if (ret)
4813 return ret;
4814 }
4815
4816 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4817 if (!block_group)
4818 return -EINVAL;
4819
4820 space_info = block_group->space_info;
4821 spin_lock(&space_info->lock);
4822 spin_lock(&block_group->lock);
4823 space_info->bytes_reserved += ins->offset;
4824 block_group->reserved += ins->offset;
4825 spin_unlock(&block_group->lock);
4826 spin_unlock(&space_info->lock);
4827
4828 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4829 offset, ins, 1);
4830 if (ret)
4831 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4832 btrfs_put_block_group(block_group);
4833 return ret;
4834 }
4835
4836 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4837 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4838 u64 bytenr, int level, u64 owner,
4839 enum btrfs_lock_nesting nest)
4840 {
4841 struct btrfs_fs_info *fs_info = root->fs_info;
4842 struct extent_buffer *buf;
4843 u64 lockdep_owner = owner;
4844
4845 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4846 if (IS_ERR(buf))
4847 return buf;
4848
4849 /*
4850 * Extra safety check in case the extent tree is corrupted and extent
4851 * allocator chooses to use a tree block which is already used and
4852 * locked.
4853 */
4854 if (buf->lock_owner == current->pid) {
4855 btrfs_err_rl(fs_info,
4856 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4857 buf->start, btrfs_header_owner(buf), current->pid);
4858 free_extent_buffer(buf);
4859 return ERR_PTR(-EUCLEAN);
4860 }
4861
4862 /*
4863 * The reloc trees are just snapshots, so we need them to appear to be
4864 * just like any other fs tree WRT lockdep.
4865 *
4866 * The exception however is in replace_path() in relocation, where we
4867 * hold the lock on the original fs root and then search for the reloc
4868 * root. At that point we need to make sure any reloc root buffers are
4869 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4870 * lockdep happy.
4871 */
4872 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4873 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4874 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4875
4876 /* btrfs_clear_buffer_dirty() accesses generation field. */
4877 btrfs_set_header_generation(buf, trans->transid);
4878
4879 /*
4880 * This needs to stay, because we could allocate a freed block from an
4881 * old tree into a new tree, so we need to make sure this new block is
4882 * set to the appropriate level and owner.
4883 */
4884 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4885
4886 __btrfs_tree_lock(buf, nest);
4887 btrfs_clear_buffer_dirty(trans, buf);
4888 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4889 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4890
4891 set_extent_buffer_uptodate(buf);
4892
4893 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4894 btrfs_set_header_level(buf, level);
4895 btrfs_set_header_bytenr(buf, buf->start);
4896 btrfs_set_header_generation(buf, trans->transid);
4897 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4898 btrfs_set_header_owner(buf, owner);
4899 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4900 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4901 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4902 buf->log_index = root->log_transid % 2;
4903 /*
4904 * we allow two log transactions at a time, use different
4905 * EXTENT bit to differentiate dirty pages.
4906 */
4907 if (buf->log_index == 0)
4908 set_extent_bit(&root->dirty_log_pages, buf->start,
4909 buf->start + buf->len - 1,
4910 EXTENT_DIRTY, NULL);
4911 else
4912 set_extent_bit(&root->dirty_log_pages, buf->start,
4913 buf->start + buf->len - 1,
4914 EXTENT_NEW, NULL);
4915 } else {
4916 buf->log_index = -1;
4917 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4918 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4919 }
4920 /* this returns a buffer locked for blocking */
4921 return buf;
4922 }
4923
4924 /*
4925 * finds a free extent and does all the dirty work required for allocation
4926 * returns the tree buffer or an ERR_PTR on error.
4927 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4928 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4929 struct btrfs_root *root,
4930 u64 parent, u64 root_objectid,
4931 const struct btrfs_disk_key *key,
4932 int level, u64 hint,
4933 u64 empty_size,
4934 enum btrfs_lock_nesting nest)
4935 {
4936 struct btrfs_fs_info *fs_info = root->fs_info;
4937 struct btrfs_key ins;
4938 struct btrfs_block_rsv *block_rsv;
4939 struct extent_buffer *buf;
4940 struct btrfs_delayed_extent_op *extent_op;
4941 struct btrfs_ref generic_ref = { 0 };
4942 u64 flags = 0;
4943 int ret;
4944 u32 blocksize = fs_info->nodesize;
4945 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4946
4947 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4948 if (btrfs_is_testing(fs_info)) {
4949 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4950 level, root_objectid, nest);
4951 if (!IS_ERR(buf))
4952 root->alloc_bytenr += blocksize;
4953 return buf;
4954 }
4955 #endif
4956
4957 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4958 if (IS_ERR(block_rsv))
4959 return ERR_CAST(block_rsv);
4960
4961 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4962 empty_size, hint, &ins, 0, 0);
4963 if (ret)
4964 goto out_unuse;
4965
4966 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4967 root_objectid, nest);
4968 if (IS_ERR(buf)) {
4969 ret = PTR_ERR(buf);
4970 goto out_free_reserved;
4971 }
4972
4973 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4974 if (parent == 0)
4975 parent = ins.objectid;
4976 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4977 } else
4978 BUG_ON(parent > 0);
4979
4980 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4981 extent_op = btrfs_alloc_delayed_extent_op();
4982 if (!extent_op) {
4983 ret = -ENOMEM;
4984 goto out_free_buf;
4985 }
4986 if (key)
4987 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4988 else
4989 memset(&extent_op->key, 0, sizeof(extent_op->key));
4990 extent_op->flags_to_set = flags;
4991 extent_op->update_key = skinny_metadata ? false : true;
4992 extent_op->update_flags = true;
4993 extent_op->level = level;
4994
4995 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4996 ins.objectid, ins.offset, parent);
4997 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4998 root->root_key.objectid, false);
4999 btrfs_ref_tree_mod(fs_info, &generic_ref);
5000 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5001 if (ret)
5002 goto out_free_delayed;
5003 }
5004 return buf;
5005
5006 out_free_delayed:
5007 btrfs_free_delayed_extent_op(extent_op);
5008 out_free_buf:
5009 btrfs_tree_unlock(buf);
5010 free_extent_buffer(buf);
5011 out_free_reserved:
5012 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5013 out_unuse:
5014 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5015 return ERR_PTR(ret);
5016 }
5017
5018 struct walk_control {
5019 u64 refs[BTRFS_MAX_LEVEL];
5020 u64 flags[BTRFS_MAX_LEVEL];
5021 struct btrfs_key update_progress;
5022 struct btrfs_key drop_progress;
5023 int drop_level;
5024 int stage;
5025 int level;
5026 int shared_level;
5027 int update_ref;
5028 int keep_locks;
5029 int reada_slot;
5030 int reada_count;
5031 int restarted;
5032 };
5033
5034 #define DROP_REFERENCE 1
5035 #define UPDATE_BACKREF 2
5036
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5037 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5038 struct btrfs_root *root,
5039 struct walk_control *wc,
5040 struct btrfs_path *path)
5041 {
5042 struct btrfs_fs_info *fs_info = root->fs_info;
5043 u64 bytenr;
5044 u64 generation;
5045 u64 refs;
5046 u64 flags;
5047 u32 nritems;
5048 struct btrfs_key key;
5049 struct extent_buffer *eb;
5050 int ret;
5051 int slot;
5052 int nread = 0;
5053
5054 if (path->slots[wc->level] < wc->reada_slot) {
5055 wc->reada_count = wc->reada_count * 2 / 3;
5056 wc->reada_count = max(wc->reada_count, 2);
5057 } else {
5058 wc->reada_count = wc->reada_count * 3 / 2;
5059 wc->reada_count = min_t(int, wc->reada_count,
5060 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5061 }
5062
5063 eb = path->nodes[wc->level];
5064 nritems = btrfs_header_nritems(eb);
5065
5066 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5067 if (nread >= wc->reada_count)
5068 break;
5069
5070 cond_resched();
5071 bytenr = btrfs_node_blockptr(eb, slot);
5072 generation = btrfs_node_ptr_generation(eb, slot);
5073
5074 if (slot == path->slots[wc->level])
5075 goto reada;
5076
5077 if (wc->stage == UPDATE_BACKREF &&
5078 generation <= root->root_key.offset)
5079 continue;
5080
5081 /* We don't lock the tree block, it's OK to be racy here */
5082 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5083 wc->level - 1, 1, &refs,
5084 &flags);
5085 /* We don't care about errors in readahead. */
5086 if (ret < 0)
5087 continue;
5088 BUG_ON(refs == 0);
5089
5090 if (wc->stage == DROP_REFERENCE) {
5091 if (refs == 1)
5092 goto reada;
5093
5094 if (wc->level == 1 &&
5095 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5096 continue;
5097 if (!wc->update_ref ||
5098 generation <= root->root_key.offset)
5099 continue;
5100 btrfs_node_key_to_cpu(eb, &key, slot);
5101 ret = btrfs_comp_cpu_keys(&key,
5102 &wc->update_progress);
5103 if (ret < 0)
5104 continue;
5105 } else {
5106 if (wc->level == 1 &&
5107 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5108 continue;
5109 }
5110 reada:
5111 btrfs_readahead_node_child(eb, slot);
5112 nread++;
5113 }
5114 wc->reada_slot = slot;
5115 }
5116
5117 /*
5118 * helper to process tree block while walking down the tree.
5119 *
5120 * when wc->stage == UPDATE_BACKREF, this function updates
5121 * back refs for pointers in the block.
5122 *
5123 * NOTE: return value 1 means we should stop walking down.
5124 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)5125 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5126 struct btrfs_root *root,
5127 struct btrfs_path *path,
5128 struct walk_control *wc, int lookup_info)
5129 {
5130 struct btrfs_fs_info *fs_info = root->fs_info;
5131 int level = wc->level;
5132 struct extent_buffer *eb = path->nodes[level];
5133 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5134 int ret;
5135
5136 if (wc->stage == UPDATE_BACKREF &&
5137 btrfs_header_owner(eb) != root->root_key.objectid)
5138 return 1;
5139
5140 /*
5141 * when reference count of tree block is 1, it won't increase
5142 * again. once full backref flag is set, we never clear it.
5143 */
5144 if (lookup_info &&
5145 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5146 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5147 BUG_ON(!path->locks[level]);
5148 ret = btrfs_lookup_extent_info(trans, fs_info,
5149 eb->start, level, 1,
5150 &wc->refs[level],
5151 &wc->flags[level]);
5152 BUG_ON(ret == -ENOMEM);
5153 if (ret)
5154 return ret;
5155 BUG_ON(wc->refs[level] == 0);
5156 }
5157
5158 if (wc->stage == DROP_REFERENCE) {
5159 if (wc->refs[level] > 1)
5160 return 1;
5161
5162 if (path->locks[level] && !wc->keep_locks) {
5163 btrfs_tree_unlock_rw(eb, path->locks[level]);
5164 path->locks[level] = 0;
5165 }
5166 return 0;
5167 }
5168
5169 /* wc->stage == UPDATE_BACKREF */
5170 if (!(wc->flags[level] & flag)) {
5171 BUG_ON(!path->locks[level]);
5172 ret = btrfs_inc_ref(trans, root, eb, 1);
5173 BUG_ON(ret); /* -ENOMEM */
5174 ret = btrfs_dec_ref(trans, root, eb, 0);
5175 BUG_ON(ret); /* -ENOMEM */
5176 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5177 BUG_ON(ret); /* -ENOMEM */
5178 wc->flags[level] |= flag;
5179 }
5180
5181 /*
5182 * the block is shared by multiple trees, so it's not good to
5183 * keep the tree lock
5184 */
5185 if (path->locks[level] && level > 0) {
5186 btrfs_tree_unlock_rw(eb, path->locks[level]);
5187 path->locks[level] = 0;
5188 }
5189 return 0;
5190 }
5191
5192 /*
5193 * This is used to verify a ref exists for this root to deal with a bug where we
5194 * would have a drop_progress key that hadn't been updated properly.
5195 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5196 static int check_ref_exists(struct btrfs_trans_handle *trans,
5197 struct btrfs_root *root, u64 bytenr, u64 parent,
5198 int level)
5199 {
5200 struct btrfs_path *path;
5201 struct btrfs_extent_inline_ref *iref;
5202 int ret;
5203
5204 path = btrfs_alloc_path();
5205 if (!path)
5206 return -ENOMEM;
5207
5208 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5209 root->fs_info->nodesize, parent,
5210 root->root_key.objectid, level, 0);
5211 btrfs_free_path(path);
5212 if (ret == -ENOENT)
5213 return 0;
5214 if (ret < 0)
5215 return ret;
5216 return 1;
5217 }
5218
5219 /*
5220 * helper to process tree block pointer.
5221 *
5222 * when wc->stage == DROP_REFERENCE, this function checks
5223 * reference count of the block pointed to. if the block
5224 * is shared and we need update back refs for the subtree
5225 * rooted at the block, this function changes wc->stage to
5226 * UPDATE_BACKREF. if the block is shared and there is no
5227 * need to update back, this function drops the reference
5228 * to the block.
5229 *
5230 * NOTE: return value 1 means we should stop walking down.
5231 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)5232 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5233 struct btrfs_root *root,
5234 struct btrfs_path *path,
5235 struct walk_control *wc, int *lookup_info)
5236 {
5237 struct btrfs_fs_info *fs_info = root->fs_info;
5238 u64 bytenr;
5239 u64 generation;
5240 u64 parent;
5241 struct btrfs_tree_parent_check check = { 0 };
5242 struct btrfs_key key;
5243 struct btrfs_ref ref = { 0 };
5244 struct extent_buffer *next;
5245 int level = wc->level;
5246 int reada = 0;
5247 int ret = 0;
5248 bool need_account = false;
5249
5250 generation = btrfs_node_ptr_generation(path->nodes[level],
5251 path->slots[level]);
5252 /*
5253 * if the lower level block was created before the snapshot
5254 * was created, we know there is no need to update back refs
5255 * for the subtree
5256 */
5257 if (wc->stage == UPDATE_BACKREF &&
5258 generation <= root->root_key.offset) {
5259 *lookup_info = 1;
5260 return 1;
5261 }
5262
5263 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5264
5265 check.level = level - 1;
5266 check.transid = generation;
5267 check.owner_root = root->root_key.objectid;
5268 check.has_first_key = true;
5269 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5270 path->slots[level]);
5271
5272 next = find_extent_buffer(fs_info, bytenr);
5273 if (!next) {
5274 next = btrfs_find_create_tree_block(fs_info, bytenr,
5275 root->root_key.objectid, level - 1);
5276 if (IS_ERR(next))
5277 return PTR_ERR(next);
5278 reada = 1;
5279 }
5280 btrfs_tree_lock(next);
5281
5282 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5283 &wc->refs[level - 1],
5284 &wc->flags[level - 1]);
5285 if (ret < 0)
5286 goto out_unlock;
5287
5288 if (unlikely(wc->refs[level - 1] == 0)) {
5289 btrfs_err(fs_info, "Missing references.");
5290 ret = -EIO;
5291 goto out_unlock;
5292 }
5293 *lookup_info = 0;
5294
5295 if (wc->stage == DROP_REFERENCE) {
5296 if (wc->refs[level - 1] > 1) {
5297 need_account = true;
5298 if (level == 1 &&
5299 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5300 goto skip;
5301
5302 if (!wc->update_ref ||
5303 generation <= root->root_key.offset)
5304 goto skip;
5305
5306 btrfs_node_key_to_cpu(path->nodes[level], &key,
5307 path->slots[level]);
5308 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5309 if (ret < 0)
5310 goto skip;
5311
5312 wc->stage = UPDATE_BACKREF;
5313 wc->shared_level = level - 1;
5314 }
5315 } else {
5316 if (level == 1 &&
5317 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5318 goto skip;
5319 }
5320
5321 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5322 btrfs_tree_unlock(next);
5323 free_extent_buffer(next);
5324 next = NULL;
5325 *lookup_info = 1;
5326 }
5327
5328 if (!next) {
5329 if (reada && level == 1)
5330 reada_walk_down(trans, root, wc, path);
5331 next = read_tree_block(fs_info, bytenr, &check);
5332 if (IS_ERR(next)) {
5333 return PTR_ERR(next);
5334 } else if (!extent_buffer_uptodate(next)) {
5335 free_extent_buffer(next);
5336 return -EIO;
5337 }
5338 btrfs_tree_lock(next);
5339 }
5340
5341 level--;
5342 ASSERT(level == btrfs_header_level(next));
5343 if (level != btrfs_header_level(next)) {
5344 btrfs_err(root->fs_info, "mismatched level");
5345 ret = -EIO;
5346 goto out_unlock;
5347 }
5348 path->nodes[level] = next;
5349 path->slots[level] = 0;
5350 path->locks[level] = BTRFS_WRITE_LOCK;
5351 wc->level = level;
5352 if (wc->level == 1)
5353 wc->reada_slot = 0;
5354 return 0;
5355 skip:
5356 wc->refs[level - 1] = 0;
5357 wc->flags[level - 1] = 0;
5358 if (wc->stage == DROP_REFERENCE) {
5359 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5360 parent = path->nodes[level]->start;
5361 } else {
5362 ASSERT(root->root_key.objectid ==
5363 btrfs_header_owner(path->nodes[level]));
5364 if (root->root_key.objectid !=
5365 btrfs_header_owner(path->nodes[level])) {
5366 btrfs_err(root->fs_info,
5367 "mismatched block owner");
5368 ret = -EIO;
5369 goto out_unlock;
5370 }
5371 parent = 0;
5372 }
5373
5374 /*
5375 * If we had a drop_progress we need to verify the refs are set
5376 * as expected. If we find our ref then we know that from here
5377 * on out everything should be correct, and we can clear the
5378 * ->restarted flag.
5379 */
5380 if (wc->restarted) {
5381 ret = check_ref_exists(trans, root, bytenr, parent,
5382 level - 1);
5383 if (ret < 0)
5384 goto out_unlock;
5385 if (ret == 0)
5386 goto no_delete;
5387 ret = 0;
5388 wc->restarted = 0;
5389 }
5390
5391 /*
5392 * Reloc tree doesn't contribute to qgroup numbers, and we have
5393 * already accounted them at merge time (replace_path),
5394 * thus we could skip expensive subtree trace here.
5395 */
5396 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5397 need_account) {
5398 ret = btrfs_qgroup_trace_subtree(trans, next,
5399 generation, level - 1);
5400 if (ret) {
5401 btrfs_err_rl(fs_info,
5402 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5403 ret);
5404 }
5405 }
5406
5407 /*
5408 * We need to update the next key in our walk control so we can
5409 * update the drop_progress key accordingly. We don't care if
5410 * find_next_key doesn't find a key because that means we're at
5411 * the end and are going to clean up now.
5412 */
5413 wc->drop_level = level;
5414 find_next_key(path, level, &wc->drop_progress);
5415
5416 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5417 fs_info->nodesize, parent);
5418 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5419 0, false);
5420 ret = btrfs_free_extent(trans, &ref);
5421 if (ret)
5422 goto out_unlock;
5423 }
5424 no_delete:
5425 *lookup_info = 1;
5426 ret = 1;
5427
5428 out_unlock:
5429 btrfs_tree_unlock(next);
5430 free_extent_buffer(next);
5431
5432 return ret;
5433 }
5434
5435 /*
5436 * helper to process tree block while walking up the tree.
5437 *
5438 * when wc->stage == DROP_REFERENCE, this function drops
5439 * reference count on the block.
5440 *
5441 * when wc->stage == UPDATE_BACKREF, this function changes
5442 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5443 * to UPDATE_BACKREF previously while processing the block.
5444 *
5445 * NOTE: return value 1 means we should stop walking up.
5446 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5447 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5448 struct btrfs_root *root,
5449 struct btrfs_path *path,
5450 struct walk_control *wc)
5451 {
5452 struct btrfs_fs_info *fs_info = root->fs_info;
5453 int ret;
5454 int level = wc->level;
5455 struct extent_buffer *eb = path->nodes[level];
5456 u64 parent = 0;
5457
5458 if (wc->stage == UPDATE_BACKREF) {
5459 BUG_ON(wc->shared_level < level);
5460 if (level < wc->shared_level)
5461 goto out;
5462
5463 ret = find_next_key(path, level + 1, &wc->update_progress);
5464 if (ret > 0)
5465 wc->update_ref = 0;
5466
5467 wc->stage = DROP_REFERENCE;
5468 wc->shared_level = -1;
5469 path->slots[level] = 0;
5470
5471 /*
5472 * check reference count again if the block isn't locked.
5473 * we should start walking down the tree again if reference
5474 * count is one.
5475 */
5476 if (!path->locks[level]) {
5477 BUG_ON(level == 0);
5478 btrfs_tree_lock(eb);
5479 path->locks[level] = BTRFS_WRITE_LOCK;
5480
5481 ret = btrfs_lookup_extent_info(trans, fs_info,
5482 eb->start, level, 1,
5483 &wc->refs[level],
5484 &wc->flags[level]);
5485 if (ret < 0) {
5486 btrfs_tree_unlock_rw(eb, path->locks[level]);
5487 path->locks[level] = 0;
5488 return ret;
5489 }
5490 BUG_ON(wc->refs[level] == 0);
5491 if (wc->refs[level] == 1) {
5492 btrfs_tree_unlock_rw(eb, path->locks[level]);
5493 path->locks[level] = 0;
5494 return 1;
5495 }
5496 }
5497 }
5498
5499 /* wc->stage == DROP_REFERENCE */
5500 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5501
5502 if (wc->refs[level] == 1) {
5503 if (level == 0) {
5504 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5505 ret = btrfs_dec_ref(trans, root, eb, 1);
5506 else
5507 ret = btrfs_dec_ref(trans, root, eb, 0);
5508 BUG_ON(ret); /* -ENOMEM */
5509 if (is_fstree(root->root_key.objectid)) {
5510 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5511 if (ret) {
5512 btrfs_err_rl(fs_info,
5513 "error %d accounting leaf items, quota is out of sync, rescan required",
5514 ret);
5515 }
5516 }
5517 }
5518 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5519 if (!path->locks[level]) {
5520 btrfs_tree_lock(eb);
5521 path->locks[level] = BTRFS_WRITE_LOCK;
5522 }
5523 btrfs_clear_buffer_dirty(trans, eb);
5524 }
5525
5526 if (eb == root->node) {
5527 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5528 parent = eb->start;
5529 else if (root->root_key.objectid != btrfs_header_owner(eb))
5530 goto owner_mismatch;
5531 } else {
5532 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5533 parent = path->nodes[level + 1]->start;
5534 else if (root->root_key.objectid !=
5535 btrfs_header_owner(path->nodes[level + 1]))
5536 goto owner_mismatch;
5537 }
5538
5539 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5540 wc->refs[level] == 1);
5541 out:
5542 wc->refs[level] = 0;
5543 wc->flags[level] = 0;
5544 return 0;
5545
5546 owner_mismatch:
5547 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5548 btrfs_header_owner(eb), root->root_key.objectid);
5549 return -EUCLEAN;
5550 }
5551
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5552 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5553 struct btrfs_root *root,
5554 struct btrfs_path *path,
5555 struct walk_control *wc)
5556 {
5557 int level = wc->level;
5558 int lookup_info = 1;
5559 int ret = 0;
5560
5561 while (level >= 0) {
5562 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5563 if (ret)
5564 break;
5565
5566 if (level == 0)
5567 break;
5568
5569 if (path->slots[level] >=
5570 btrfs_header_nritems(path->nodes[level]))
5571 break;
5572
5573 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5574 if (ret > 0) {
5575 path->slots[level]++;
5576 continue;
5577 } else if (ret < 0)
5578 break;
5579 level = wc->level;
5580 }
5581 return (ret == 1) ? 0 : ret;
5582 }
5583
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5584 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5585 struct btrfs_root *root,
5586 struct btrfs_path *path,
5587 struct walk_control *wc, int max_level)
5588 {
5589 int level = wc->level;
5590 int ret;
5591
5592 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5593 while (level < max_level && path->nodes[level]) {
5594 wc->level = level;
5595 if (path->slots[level] + 1 <
5596 btrfs_header_nritems(path->nodes[level])) {
5597 path->slots[level]++;
5598 return 0;
5599 } else {
5600 ret = walk_up_proc(trans, root, path, wc);
5601 if (ret > 0)
5602 return 0;
5603 if (ret < 0)
5604 return ret;
5605
5606 if (path->locks[level]) {
5607 btrfs_tree_unlock_rw(path->nodes[level],
5608 path->locks[level]);
5609 path->locks[level] = 0;
5610 }
5611 free_extent_buffer(path->nodes[level]);
5612 path->nodes[level] = NULL;
5613 level++;
5614 }
5615 }
5616 return 1;
5617 }
5618
5619 /*
5620 * drop a subvolume tree.
5621 *
5622 * this function traverses the tree freeing any blocks that only
5623 * referenced by the tree.
5624 *
5625 * when a shared tree block is found. this function decreases its
5626 * reference count by one. if update_ref is true, this function
5627 * also make sure backrefs for the shared block and all lower level
5628 * blocks are properly updated.
5629 *
5630 * If called with for_reloc == 0, may exit early with -EAGAIN
5631 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5632 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5633 {
5634 const bool is_reloc_root = (root->root_key.objectid ==
5635 BTRFS_TREE_RELOC_OBJECTID);
5636 struct btrfs_fs_info *fs_info = root->fs_info;
5637 struct btrfs_path *path;
5638 struct btrfs_trans_handle *trans;
5639 struct btrfs_root *tree_root = fs_info->tree_root;
5640 struct btrfs_root_item *root_item = &root->root_item;
5641 struct walk_control *wc;
5642 struct btrfs_key key;
5643 int err = 0;
5644 int ret;
5645 int level;
5646 bool root_dropped = false;
5647 bool unfinished_drop = false;
5648
5649 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5650
5651 path = btrfs_alloc_path();
5652 if (!path) {
5653 err = -ENOMEM;
5654 goto out;
5655 }
5656
5657 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5658 if (!wc) {
5659 btrfs_free_path(path);
5660 err = -ENOMEM;
5661 goto out;
5662 }
5663
5664 /*
5665 * Use join to avoid potential EINTR from transaction start. See
5666 * wait_reserve_ticket and the whole reservation callchain.
5667 */
5668 if (for_reloc)
5669 trans = btrfs_join_transaction(tree_root);
5670 else
5671 trans = btrfs_start_transaction(tree_root, 0);
5672 if (IS_ERR(trans)) {
5673 err = PTR_ERR(trans);
5674 goto out_free;
5675 }
5676
5677 err = btrfs_run_delayed_items(trans);
5678 if (err)
5679 goto out_end_trans;
5680
5681 /*
5682 * This will help us catch people modifying the fs tree while we're
5683 * dropping it. It is unsafe to mess with the fs tree while it's being
5684 * dropped as we unlock the root node and parent nodes as we walk down
5685 * the tree, assuming nothing will change. If something does change
5686 * then we'll have stale information and drop references to blocks we've
5687 * already dropped.
5688 */
5689 set_bit(BTRFS_ROOT_DELETING, &root->state);
5690 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5691
5692 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5693 level = btrfs_header_level(root->node);
5694 path->nodes[level] = btrfs_lock_root_node(root);
5695 path->slots[level] = 0;
5696 path->locks[level] = BTRFS_WRITE_LOCK;
5697 memset(&wc->update_progress, 0,
5698 sizeof(wc->update_progress));
5699 } else {
5700 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5701 memcpy(&wc->update_progress, &key,
5702 sizeof(wc->update_progress));
5703
5704 level = btrfs_root_drop_level(root_item);
5705 BUG_ON(level == 0);
5706 path->lowest_level = level;
5707 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5708 path->lowest_level = 0;
5709 if (ret < 0) {
5710 err = ret;
5711 goto out_end_trans;
5712 }
5713 WARN_ON(ret > 0);
5714
5715 /*
5716 * unlock our path, this is safe because only this
5717 * function is allowed to delete this snapshot
5718 */
5719 btrfs_unlock_up_safe(path, 0);
5720
5721 level = btrfs_header_level(root->node);
5722 while (1) {
5723 btrfs_tree_lock(path->nodes[level]);
5724 path->locks[level] = BTRFS_WRITE_LOCK;
5725
5726 ret = btrfs_lookup_extent_info(trans, fs_info,
5727 path->nodes[level]->start,
5728 level, 1, &wc->refs[level],
5729 &wc->flags[level]);
5730 if (ret < 0) {
5731 err = ret;
5732 goto out_end_trans;
5733 }
5734 BUG_ON(wc->refs[level] == 0);
5735
5736 if (level == btrfs_root_drop_level(root_item))
5737 break;
5738
5739 btrfs_tree_unlock(path->nodes[level]);
5740 path->locks[level] = 0;
5741 WARN_ON(wc->refs[level] != 1);
5742 level--;
5743 }
5744 }
5745
5746 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5747 wc->level = level;
5748 wc->shared_level = -1;
5749 wc->stage = DROP_REFERENCE;
5750 wc->update_ref = update_ref;
5751 wc->keep_locks = 0;
5752 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5753
5754 while (1) {
5755
5756 ret = walk_down_tree(trans, root, path, wc);
5757 if (ret < 0) {
5758 btrfs_abort_transaction(trans, ret);
5759 err = ret;
5760 break;
5761 }
5762
5763 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5764 if (ret < 0) {
5765 btrfs_abort_transaction(trans, ret);
5766 err = ret;
5767 break;
5768 }
5769
5770 if (ret > 0) {
5771 BUG_ON(wc->stage != DROP_REFERENCE);
5772 break;
5773 }
5774
5775 if (wc->stage == DROP_REFERENCE) {
5776 wc->drop_level = wc->level;
5777 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5778 &wc->drop_progress,
5779 path->slots[wc->drop_level]);
5780 }
5781 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5782 &wc->drop_progress);
5783 btrfs_set_root_drop_level(root_item, wc->drop_level);
5784
5785 BUG_ON(wc->level == 0);
5786 if (btrfs_should_end_transaction(trans) ||
5787 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5788 ret = btrfs_update_root(trans, tree_root,
5789 &root->root_key,
5790 root_item);
5791 if (ret) {
5792 btrfs_abort_transaction(trans, ret);
5793 err = ret;
5794 goto out_end_trans;
5795 }
5796
5797 if (!is_reloc_root)
5798 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5799
5800 btrfs_end_transaction_throttle(trans);
5801 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5802 btrfs_debug(fs_info,
5803 "drop snapshot early exit");
5804 err = -EAGAIN;
5805 goto out_free;
5806 }
5807
5808 /*
5809 * Use join to avoid potential EINTR from transaction
5810 * start. See wait_reserve_ticket and the whole
5811 * reservation callchain.
5812 */
5813 if (for_reloc)
5814 trans = btrfs_join_transaction(tree_root);
5815 else
5816 trans = btrfs_start_transaction(tree_root, 0);
5817 if (IS_ERR(trans)) {
5818 err = PTR_ERR(trans);
5819 goto out_free;
5820 }
5821 }
5822 }
5823 btrfs_release_path(path);
5824 if (err)
5825 goto out_end_trans;
5826
5827 ret = btrfs_del_root(trans, &root->root_key);
5828 if (ret) {
5829 btrfs_abort_transaction(trans, ret);
5830 err = ret;
5831 goto out_end_trans;
5832 }
5833
5834 if (!is_reloc_root) {
5835 ret = btrfs_find_root(tree_root, &root->root_key, path,
5836 NULL, NULL);
5837 if (ret < 0) {
5838 btrfs_abort_transaction(trans, ret);
5839 err = ret;
5840 goto out_end_trans;
5841 } else if (ret > 0) {
5842 /* if we fail to delete the orphan item this time
5843 * around, it'll get picked up the next time.
5844 *
5845 * The most common failure here is just -ENOENT.
5846 */
5847 btrfs_del_orphan_item(trans, tree_root,
5848 root->root_key.objectid);
5849 }
5850 }
5851
5852 /*
5853 * This subvolume is going to be completely dropped, and won't be
5854 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5855 * commit transaction time. So free it here manually.
5856 */
5857 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5858 btrfs_qgroup_free_meta_all_pertrans(root);
5859
5860 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5861 btrfs_add_dropped_root(trans, root);
5862 else
5863 btrfs_put_root(root);
5864 root_dropped = true;
5865 out_end_trans:
5866 if (!is_reloc_root)
5867 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5868
5869 btrfs_end_transaction_throttle(trans);
5870 out_free:
5871 kfree(wc);
5872 btrfs_free_path(path);
5873 out:
5874 /*
5875 * We were an unfinished drop root, check to see if there are any
5876 * pending, and if not clear and wake up any waiters.
5877 */
5878 if (!err && unfinished_drop)
5879 btrfs_maybe_wake_unfinished_drop(fs_info);
5880
5881 /*
5882 * So if we need to stop dropping the snapshot for whatever reason we
5883 * need to make sure to add it back to the dead root list so that we
5884 * keep trying to do the work later. This also cleans up roots if we
5885 * don't have it in the radix (like when we recover after a power fail
5886 * or unmount) so we don't leak memory.
5887 */
5888 if (!for_reloc && !root_dropped)
5889 btrfs_add_dead_root(root);
5890 return err;
5891 }
5892
5893 /*
5894 * drop subtree rooted at tree block 'node'.
5895 *
5896 * NOTE: this function will unlock and release tree block 'node'
5897 * only used by relocation code
5898 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5899 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5900 struct btrfs_root *root,
5901 struct extent_buffer *node,
5902 struct extent_buffer *parent)
5903 {
5904 struct btrfs_fs_info *fs_info = root->fs_info;
5905 struct btrfs_path *path;
5906 struct walk_control *wc;
5907 int level;
5908 int parent_level;
5909 int ret = 0;
5910 int wret;
5911
5912 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5913
5914 path = btrfs_alloc_path();
5915 if (!path)
5916 return -ENOMEM;
5917
5918 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5919 if (!wc) {
5920 btrfs_free_path(path);
5921 return -ENOMEM;
5922 }
5923
5924 btrfs_assert_tree_write_locked(parent);
5925 parent_level = btrfs_header_level(parent);
5926 atomic_inc(&parent->refs);
5927 path->nodes[parent_level] = parent;
5928 path->slots[parent_level] = btrfs_header_nritems(parent);
5929
5930 btrfs_assert_tree_write_locked(node);
5931 level = btrfs_header_level(node);
5932 path->nodes[level] = node;
5933 path->slots[level] = 0;
5934 path->locks[level] = BTRFS_WRITE_LOCK;
5935
5936 wc->refs[parent_level] = 1;
5937 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5938 wc->level = level;
5939 wc->shared_level = -1;
5940 wc->stage = DROP_REFERENCE;
5941 wc->update_ref = 0;
5942 wc->keep_locks = 1;
5943 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5944
5945 while (1) {
5946 wret = walk_down_tree(trans, root, path, wc);
5947 if (wret < 0) {
5948 ret = wret;
5949 break;
5950 }
5951
5952 wret = walk_up_tree(trans, root, path, wc, parent_level);
5953 if (wret < 0)
5954 ret = wret;
5955 if (wret != 0)
5956 break;
5957 }
5958
5959 kfree(wc);
5960 btrfs_free_path(path);
5961 return ret;
5962 }
5963
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)5964 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5965 u64 start, u64 end)
5966 {
5967 return unpin_extent_range(fs_info, start, end, false);
5968 }
5969
5970 /*
5971 * It used to be that old block groups would be left around forever.
5972 * Iterating over them would be enough to trim unused space. Since we
5973 * now automatically remove them, we also need to iterate over unallocated
5974 * space.
5975 *
5976 * We don't want a transaction for this since the discard may take a
5977 * substantial amount of time. We don't require that a transaction be
5978 * running, but we do need to take a running transaction into account
5979 * to ensure that we're not discarding chunks that were released or
5980 * allocated in the current transaction.
5981 *
5982 * Holding the chunks lock will prevent other threads from allocating
5983 * or releasing chunks, but it won't prevent a running transaction
5984 * from committing and releasing the memory that the pending chunks
5985 * list head uses. For that, we need to take a reference to the
5986 * transaction and hold the commit root sem. We only need to hold
5987 * it while performing the free space search since we have already
5988 * held back allocations.
5989 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)5990 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5991 {
5992 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5993 int ret;
5994
5995 *trimmed = 0;
5996
5997 /* Discard not supported = nothing to do. */
5998 if (!bdev_max_discard_sectors(device->bdev))
5999 return 0;
6000
6001 /* Not writable = nothing to do. */
6002 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6003 return 0;
6004
6005 /* No free space = nothing to do. */
6006 if (device->total_bytes <= device->bytes_used)
6007 return 0;
6008
6009 ret = 0;
6010
6011 while (1) {
6012 struct btrfs_fs_info *fs_info = device->fs_info;
6013 u64 bytes;
6014
6015 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6016 if (ret)
6017 break;
6018
6019 find_first_clear_extent_bit(&device->alloc_state, start,
6020 &start, &end,
6021 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6022
6023 /* Check if there are any CHUNK_* bits left */
6024 if (start > device->total_bytes) {
6025 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6026 btrfs_warn_in_rcu(fs_info,
6027 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6028 start, end - start + 1,
6029 btrfs_dev_name(device),
6030 device->total_bytes);
6031 mutex_unlock(&fs_info->chunk_mutex);
6032 ret = 0;
6033 break;
6034 }
6035
6036 /* Ensure we skip the reserved space on each device. */
6037 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6038
6039 /*
6040 * If find_first_clear_extent_bit find a range that spans the
6041 * end of the device it will set end to -1, in this case it's up
6042 * to the caller to trim the value to the size of the device.
6043 */
6044 end = min(end, device->total_bytes - 1);
6045
6046 len = end - start + 1;
6047
6048 /* We didn't find any extents */
6049 if (!len) {
6050 mutex_unlock(&fs_info->chunk_mutex);
6051 ret = 0;
6052 break;
6053 }
6054
6055 ret = btrfs_issue_discard(device->bdev, start, len,
6056 &bytes);
6057 if (!ret)
6058 set_extent_bit(&device->alloc_state, start,
6059 start + bytes - 1, CHUNK_TRIMMED, NULL);
6060 mutex_unlock(&fs_info->chunk_mutex);
6061
6062 if (ret)
6063 break;
6064
6065 start += len;
6066 *trimmed += bytes;
6067
6068 if (fatal_signal_pending(current)) {
6069 ret = -ERESTARTSYS;
6070 break;
6071 }
6072
6073 cond_resched();
6074 }
6075
6076 return ret;
6077 }
6078
6079 /*
6080 * Trim the whole filesystem by:
6081 * 1) trimming the free space in each block group
6082 * 2) trimming the unallocated space on each device
6083 *
6084 * This will also continue trimming even if a block group or device encounters
6085 * an error. The return value will be the last error, or 0 if nothing bad
6086 * happens.
6087 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6088 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6089 {
6090 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6091 struct btrfs_block_group *cache = NULL;
6092 struct btrfs_device *device;
6093 u64 group_trimmed;
6094 u64 range_end = U64_MAX;
6095 u64 start;
6096 u64 end;
6097 u64 trimmed = 0;
6098 u64 bg_failed = 0;
6099 u64 dev_failed = 0;
6100 int bg_ret = 0;
6101 int dev_ret = 0;
6102 int ret = 0;
6103
6104 if (range->start == U64_MAX)
6105 return -EINVAL;
6106
6107 /*
6108 * Check range overflow if range->len is set.
6109 * The default range->len is U64_MAX.
6110 */
6111 if (range->len != U64_MAX &&
6112 check_add_overflow(range->start, range->len, &range_end))
6113 return -EINVAL;
6114
6115 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6116 for (; cache; cache = btrfs_next_block_group(cache)) {
6117 if (cache->start >= range_end) {
6118 btrfs_put_block_group(cache);
6119 break;
6120 }
6121
6122 start = max(range->start, cache->start);
6123 end = min(range_end, cache->start + cache->length);
6124
6125 if (end - start >= range->minlen) {
6126 if (!btrfs_block_group_done(cache)) {
6127 ret = btrfs_cache_block_group(cache, true);
6128 if (ret) {
6129 bg_failed++;
6130 bg_ret = ret;
6131 continue;
6132 }
6133 }
6134 ret = btrfs_trim_block_group(cache,
6135 &group_trimmed,
6136 start,
6137 end,
6138 range->minlen);
6139
6140 trimmed += group_trimmed;
6141 if (ret) {
6142 bg_failed++;
6143 bg_ret = ret;
6144 continue;
6145 }
6146 }
6147 }
6148
6149 if (bg_failed)
6150 btrfs_warn(fs_info,
6151 "failed to trim %llu block group(s), last error %d",
6152 bg_failed, bg_ret);
6153
6154 mutex_lock(&fs_devices->device_list_mutex);
6155 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6156 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6157 continue;
6158
6159 ret = btrfs_trim_free_extents(device, &group_trimmed);
6160 if (ret) {
6161 dev_failed++;
6162 dev_ret = ret;
6163 break;
6164 }
6165
6166 trimmed += group_trimmed;
6167 }
6168 mutex_unlock(&fs_devices->device_list_mutex);
6169
6170 if (dev_failed)
6171 btrfs_warn(fs_info,
6172 "failed to trim %llu device(s), last error %d",
6173 dev_failed, dev_ret);
6174 range->len = trimmed;
6175 if (bg_ret)
6176 return bg_ret;
6177 return dev_ret;
6178 }
6179