1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 /*
41 * Transaction states and transitions
42 *
43 * No running transaction (fs tree blocks are not modified)
44 * |
45 * | To next stage:
46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47 * V
48 * Transaction N [[TRANS_STATE_RUNNING]]
49 * |
50 * | New trans handles can be attached to transaction N by calling all
51 * | start_transaction() variants.
52 * |
53 * | To next stage:
54 * | Call btrfs_commit_transaction() on any trans handle attached to
55 * | transaction N
56 * V
57 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58 * |
59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60 * | the race and the rest will wait for the winner to commit the transaction.
61 * |
62 * | The winner will wait for previous running transaction to completely finish
63 * | if there is one.
64 * |
65 * Transaction N [[TRANS_STATE_COMMIT_START]]
66 * |
67 * | Then one of the following happens:
68 * | - Wait for all other trans handle holders to release.
69 * | The btrfs_commit_transaction() caller will do the commit work.
70 * | - Wait for current transaction to be committed by others.
71 * | Other btrfs_commit_transaction() caller will do the commit work.
72 * |
73 * | At this stage, only btrfs_join_transaction*() variants can attach
74 * | to this running transaction.
75 * | All other variants will wait for current one to finish and attach to
76 * | transaction N+1.
77 * |
78 * | To next stage:
79 * | Caller is chosen to commit transaction N, and all other trans handle
80 * | haven been released.
81 * V
82 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83 * |
84 * | The heavy lifting transaction work is started.
85 * | From running delayed refs (modifying extent tree) to creating pending
86 * | snapshots, running qgroups.
87 * | In short, modify supporting trees to reflect modifications of subvolume
88 * | trees.
89 * |
90 * | At this stage, all start_transaction() calls will wait for this
91 * | transaction to finish and attach to transaction N+1.
92 * |
93 * | To next stage:
94 * | Until all supporting trees are updated.
95 * V
96 * Transaction N [[TRANS_STATE_UNBLOCKED]]
97 * | Transaction N+1
98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
99 * | need to write them back to disk and update |
100 * | super blocks. |
101 * | |
102 * | At this stage, new transaction is allowed to |
103 * | start. |
104 * | All new start_transaction() calls will be |
105 * | attached to transid N+1. |
106 * | |
107 * | To next stage: |
108 * | Until all tree blocks are super blocks are |
109 * | written to block devices |
110 * V |
111 * Transaction N [[TRANS_STATE_COMPLETED]] V
112 * All tree blocks and super blocks are written. Transaction N+1
113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
114 * data structures will be cleaned up. | Life goes on
115 */
116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
117 [TRANS_STATE_RUNNING] = 0U,
118 [TRANS_STATE_COMMIT_PREP] = 0U,
119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOSTART),
124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
125 __TRANS_ATTACH |
126 __TRANS_JOIN |
127 __TRANS_JOIN_NOLOCK |
128 __TRANS_JOIN_NOSTART),
129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
130 __TRANS_ATTACH |
131 __TRANS_JOIN |
132 __TRANS_JOIN_NOLOCK |
133 __TRANS_JOIN_NOSTART),
134 [TRANS_STATE_COMPLETED] = (__TRANS_START |
135 __TRANS_ATTACH |
136 __TRANS_JOIN |
137 __TRANS_JOIN_NOLOCK |
138 __TRANS_JOIN_NOSTART),
139 };
140
btrfs_put_transaction(struct btrfs_transaction * transaction)141 void btrfs_put_transaction(struct btrfs_transaction *transaction)
142 {
143 WARN_ON(refcount_read(&transaction->use_count) == 0);
144 if (refcount_dec_and_test(&transaction->use_count)) {
145 BUG_ON(!list_empty(&transaction->list));
146 WARN_ON(!RB_EMPTY_ROOT(
147 &transaction->delayed_refs.href_root.rb_root));
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.dirty_extent_root));
150 if (transaction->delayed_refs.pending_csums)
151 btrfs_err(transaction->fs_info,
152 "pending csums is %llu",
153 transaction->delayed_refs.pending_csums);
154 /*
155 * If any block groups are found in ->deleted_bgs then it's
156 * because the transaction was aborted and a commit did not
157 * happen (things failed before writing the new superblock
158 * and calling btrfs_finish_extent_commit()), so we can not
159 * discard the physical locations of the block groups.
160 */
161 while (!list_empty(&transaction->deleted_bgs)) {
162 struct btrfs_block_group *cache;
163
164 cache = list_first_entry(&transaction->deleted_bgs,
165 struct btrfs_block_group,
166 bg_list);
167 list_del_init(&cache->bg_list);
168 btrfs_unfreeze_block_group(cache);
169 btrfs_put_block_group(cache);
170 }
171 WARN_ON(!list_empty(&transaction->dev_update_list));
172 kfree(transaction);
173 }
174 }
175
switch_commit_roots(struct btrfs_trans_handle * trans)176 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
177 {
178 struct btrfs_transaction *cur_trans = trans->transaction;
179 struct btrfs_fs_info *fs_info = trans->fs_info;
180 struct btrfs_root *root, *tmp;
181
182 /*
183 * At this point no one can be using this transaction to modify any tree
184 * and no one can start another transaction to modify any tree either.
185 */
186 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
187
188 down_write(&fs_info->commit_root_sem);
189
190 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
191 fs_info->last_reloc_trans = trans->transid;
192
193 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
194 dirty_list) {
195 list_del_init(&root->dirty_list);
196 free_extent_buffer(root->commit_root);
197 root->commit_root = btrfs_root_node(root);
198 extent_io_tree_release(&root->dirty_log_pages);
199 btrfs_qgroup_clean_swapped_blocks(root);
200 }
201
202 /* We can free old roots now. */
203 spin_lock(&cur_trans->dropped_roots_lock);
204 while (!list_empty(&cur_trans->dropped_roots)) {
205 root = list_first_entry(&cur_trans->dropped_roots,
206 struct btrfs_root, root_list);
207 list_del_init(&root->root_list);
208 spin_unlock(&cur_trans->dropped_roots_lock);
209 btrfs_free_log(trans, root);
210 btrfs_drop_and_free_fs_root(fs_info, root);
211 spin_lock(&cur_trans->dropped_roots_lock);
212 }
213 spin_unlock(&cur_trans->dropped_roots_lock);
214
215 up_write(&fs_info->commit_root_sem);
216 }
217
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)218 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
219 unsigned int type)
220 {
221 if (type & TRANS_EXTWRITERS)
222 atomic_inc(&trans->num_extwriters);
223 }
224
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)225 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
226 unsigned int type)
227 {
228 if (type & TRANS_EXTWRITERS)
229 atomic_dec(&trans->num_extwriters);
230 }
231
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)232 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
233 unsigned int type)
234 {
235 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
236 }
237
extwriter_counter_read(struct btrfs_transaction * trans)238 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
239 {
240 return atomic_read(&trans->num_extwriters);
241 }
242
243 /*
244 * To be called after doing the chunk btree updates right after allocating a new
245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
246 * chunk after all chunk btree updates and after finishing the second phase of
247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
248 * group had its chunk item insertion delayed to the second phase.
249 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)250 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
251 {
252 struct btrfs_fs_info *fs_info = trans->fs_info;
253
254 if (!trans->chunk_bytes_reserved)
255 return;
256
257 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
258 trans->chunk_bytes_reserved, NULL);
259 trans->chunk_bytes_reserved = 0;
260 }
261
262 /*
263 * either allocate a new transaction or hop into the existing one
264 */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)265 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
266 unsigned int type)
267 {
268 struct btrfs_transaction *cur_trans;
269
270 spin_lock(&fs_info->trans_lock);
271 loop:
272 /* The file system has been taken offline. No new transactions. */
273 if (BTRFS_FS_ERROR(fs_info)) {
274 spin_unlock(&fs_info->trans_lock);
275 return -EROFS;
276 }
277
278 cur_trans = fs_info->running_transaction;
279 if (cur_trans) {
280 if (TRANS_ABORTED(cur_trans)) {
281 spin_unlock(&fs_info->trans_lock);
282 return cur_trans->aborted;
283 }
284 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
285 spin_unlock(&fs_info->trans_lock);
286 return -EBUSY;
287 }
288 refcount_inc(&cur_trans->use_count);
289 atomic_inc(&cur_trans->num_writers);
290 extwriter_counter_inc(cur_trans, type);
291 spin_unlock(&fs_info->trans_lock);
292 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
293 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
294 return 0;
295 }
296 spin_unlock(&fs_info->trans_lock);
297
298 /*
299 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
300 * current transaction, and commit it. If there is no transaction, just
301 * return ENOENT.
302 */
303 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
304 return -ENOENT;
305
306 /*
307 * JOIN_NOLOCK only happens during the transaction commit, so
308 * it is impossible that ->running_transaction is NULL
309 */
310 BUG_ON(type == TRANS_JOIN_NOLOCK);
311
312 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
313 if (!cur_trans)
314 return -ENOMEM;
315
316 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
317 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
318
319 spin_lock(&fs_info->trans_lock);
320 if (fs_info->running_transaction) {
321 /*
322 * someone started a transaction after we unlocked. Make sure
323 * to redo the checks above
324 */
325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
327 kfree(cur_trans);
328 goto loop;
329 } else if (BTRFS_FS_ERROR(fs_info)) {
330 spin_unlock(&fs_info->trans_lock);
331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333 kfree(cur_trans);
334 return -EROFS;
335 }
336
337 cur_trans->fs_info = fs_info;
338 atomic_set(&cur_trans->pending_ordered, 0);
339 init_waitqueue_head(&cur_trans->pending_wait);
340 atomic_set(&cur_trans->num_writers, 1);
341 extwriter_counter_init(cur_trans, type);
342 init_waitqueue_head(&cur_trans->writer_wait);
343 init_waitqueue_head(&cur_trans->commit_wait);
344 cur_trans->state = TRANS_STATE_RUNNING;
345 /*
346 * One for this trans handle, one so it will live on until we
347 * commit the transaction.
348 */
349 refcount_set(&cur_trans->use_count, 2);
350 cur_trans->flags = 0;
351 cur_trans->start_time = ktime_get_seconds();
352
353 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
354
355 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
356 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
357 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
358
359 /*
360 * although the tree mod log is per file system and not per transaction,
361 * the log must never go across transaction boundaries.
362 */
363 smp_mb();
364 if (!list_empty(&fs_info->tree_mod_seq_list))
365 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
366 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
367 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
368 atomic64_set(&fs_info->tree_mod_seq, 0);
369
370 spin_lock_init(&cur_trans->delayed_refs.lock);
371
372 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
373 INIT_LIST_HEAD(&cur_trans->dev_update_list);
374 INIT_LIST_HEAD(&cur_trans->switch_commits);
375 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
376 INIT_LIST_HEAD(&cur_trans->io_bgs);
377 INIT_LIST_HEAD(&cur_trans->dropped_roots);
378 mutex_init(&cur_trans->cache_write_mutex);
379 spin_lock_init(&cur_trans->dirty_bgs_lock);
380 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
381 spin_lock_init(&cur_trans->dropped_roots_lock);
382 list_add_tail(&cur_trans->list, &fs_info->trans_list);
383 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
384 IO_TREE_TRANS_DIRTY_PAGES);
385 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
386 IO_TREE_FS_PINNED_EXTENTS);
387 fs_info->generation++;
388 cur_trans->transid = fs_info->generation;
389 fs_info->running_transaction = cur_trans;
390 cur_trans->aborted = 0;
391 spin_unlock(&fs_info->trans_lock);
392
393 return 0;
394 }
395
396 /*
397 * This does all the record keeping required to make sure that a shareable root
398 * is properly recorded in a given transaction. This is required to make sure
399 * the old root from before we joined the transaction is deleted when the
400 * transaction commits.
401 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)402 static int record_root_in_trans(struct btrfs_trans_handle *trans,
403 struct btrfs_root *root,
404 int force)
405 {
406 struct btrfs_fs_info *fs_info = root->fs_info;
407 int ret = 0;
408
409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
410 root->last_trans < trans->transid) || force) {
411 WARN_ON(!force && root->commit_root != root->node);
412
413 /*
414 * see below for IN_TRANS_SETUP usage rules
415 * we have the reloc mutex held now, so there
416 * is only one writer in this function
417 */
418 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
419
420 /* make sure readers find IN_TRANS_SETUP before
421 * they find our root->last_trans update
422 */
423 smp_wmb();
424
425 spin_lock(&fs_info->fs_roots_radix_lock);
426 if (root->last_trans == trans->transid && !force) {
427 spin_unlock(&fs_info->fs_roots_radix_lock);
428 return 0;
429 }
430 radix_tree_tag_set(&fs_info->fs_roots_radix,
431 (unsigned long)root->root_key.objectid,
432 BTRFS_ROOT_TRANS_TAG);
433 spin_unlock(&fs_info->fs_roots_radix_lock);
434 root->last_trans = trans->transid;
435
436 /* this is pretty tricky. We don't want to
437 * take the relocation lock in btrfs_record_root_in_trans
438 * unless we're really doing the first setup for this root in
439 * this transaction.
440 *
441 * Normally we'd use root->last_trans as a flag to decide
442 * if we want to take the expensive mutex.
443 *
444 * But, we have to set root->last_trans before we
445 * init the relocation root, otherwise, we trip over warnings
446 * in ctree.c. The solution used here is to flag ourselves
447 * with root IN_TRANS_SETUP. When this is 1, we're still
448 * fixing up the reloc trees and everyone must wait.
449 *
450 * When this is zero, they can trust root->last_trans and fly
451 * through btrfs_record_root_in_trans without having to take the
452 * lock. smp_wmb() makes sure that all the writes above are
453 * done before we pop in the zero below
454 */
455 ret = btrfs_init_reloc_root(trans, root);
456 smp_mb__before_atomic();
457 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
458 }
459 return ret;
460 }
461
462
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)463 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
464 struct btrfs_root *root)
465 {
466 struct btrfs_fs_info *fs_info = root->fs_info;
467 struct btrfs_transaction *cur_trans = trans->transaction;
468
469 /* Add ourselves to the transaction dropped list */
470 spin_lock(&cur_trans->dropped_roots_lock);
471 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
472 spin_unlock(&cur_trans->dropped_roots_lock);
473
474 /* Make sure we don't try to update the root at commit time */
475 spin_lock(&fs_info->fs_roots_radix_lock);
476 radix_tree_tag_clear(&fs_info->fs_roots_radix,
477 (unsigned long)root->root_key.objectid,
478 BTRFS_ROOT_TRANS_TAG);
479 spin_unlock(&fs_info->fs_roots_radix_lock);
480 }
481
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)482 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
483 struct btrfs_root *root)
484 {
485 struct btrfs_fs_info *fs_info = root->fs_info;
486 int ret;
487
488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
489 return 0;
490
491 /*
492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
493 * and barriers
494 */
495 smp_rmb();
496 if (root->last_trans == trans->transid &&
497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
498 return 0;
499
500 mutex_lock(&fs_info->reloc_mutex);
501 ret = record_root_in_trans(trans, root, 0);
502 mutex_unlock(&fs_info->reloc_mutex);
503
504 return ret;
505 }
506
is_transaction_blocked(struct btrfs_transaction * trans)507 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508 {
509 return (trans->state >= TRANS_STATE_COMMIT_START &&
510 trans->state < TRANS_STATE_UNBLOCKED &&
511 !TRANS_ABORTED(trans));
512 }
513
514 /* wait for commit against the current transaction to become unblocked
515 * when this is done, it is safe to start a new transaction, but the current
516 * transaction might not be fully on disk.
517 */
wait_current_trans(struct btrfs_fs_info * fs_info)518 static void wait_current_trans(struct btrfs_fs_info *fs_info)
519 {
520 struct btrfs_transaction *cur_trans;
521
522 spin_lock(&fs_info->trans_lock);
523 cur_trans = fs_info->running_transaction;
524 if (cur_trans && is_transaction_blocked(cur_trans)) {
525 refcount_inc(&cur_trans->use_count);
526 spin_unlock(&fs_info->trans_lock);
527
528 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
529 wait_event(fs_info->transaction_wait,
530 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
531 TRANS_ABORTED(cur_trans));
532 btrfs_put_transaction(cur_trans);
533 } else {
534 spin_unlock(&fs_info->trans_lock);
535 }
536 }
537
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)538 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
539 {
540 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
541 return 0;
542
543 if (type == TRANS_START)
544 return 1;
545
546 return 0;
547 }
548
need_reserve_reloc_root(struct btrfs_root * root)549 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
550 {
551 struct btrfs_fs_info *fs_info = root->fs_info;
552
553 if (!fs_info->reloc_ctl ||
554 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
555 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556 root->reloc_root)
557 return false;
558
559 return true;
560 }
561
562 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)563 start_transaction(struct btrfs_root *root, unsigned int num_items,
564 unsigned int type, enum btrfs_reserve_flush_enum flush,
565 bool enforce_qgroups)
566 {
567 struct btrfs_fs_info *fs_info = root->fs_info;
568 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
569 struct btrfs_trans_handle *h;
570 struct btrfs_transaction *cur_trans;
571 u64 num_bytes = 0;
572 u64 qgroup_reserved = 0;
573 bool reloc_reserved = false;
574 bool do_chunk_alloc = false;
575 int ret;
576
577 if (BTRFS_FS_ERROR(fs_info))
578 return ERR_PTR(-EROFS);
579
580 if (current->journal_info) {
581 WARN_ON(type & TRANS_EXTWRITERS);
582 h = current->journal_info;
583 refcount_inc(&h->use_count);
584 WARN_ON(refcount_read(&h->use_count) > 2);
585 h->orig_rsv = h->block_rsv;
586 h->block_rsv = NULL;
587 goto got_it;
588 }
589
590 /*
591 * Do the reservation before we join the transaction so we can do all
592 * the appropriate flushing if need be.
593 */
594 if (num_items && root != fs_info->chunk_root) {
595 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
596 u64 delayed_refs_bytes = 0;
597
598 qgroup_reserved = num_items * fs_info->nodesize;
599 /*
600 * Use prealloc for now, as there might be a currently running
601 * transaction that could free this reserved space prematurely
602 * by committing.
603 */
604 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
605 enforce_qgroups, false);
606 if (ret)
607 return ERR_PTR(ret);
608
609 /*
610 * We want to reserve all the bytes we may need all at once, so
611 * we only do 1 enospc flushing cycle per transaction start. We
612 * accomplish this by simply assuming we'll do num_items worth
613 * of delayed refs updates in this trans handle, and refill that
614 * amount for whatever is missing in the reserve.
615 */
616 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
617 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
618 !btrfs_block_rsv_full(delayed_refs_rsv)) {
619 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
620 num_items);
621 num_bytes += delayed_refs_bytes;
622 }
623
624 /*
625 * Do the reservation for the relocation root creation
626 */
627 if (need_reserve_reloc_root(root)) {
628 num_bytes += fs_info->nodesize;
629 reloc_reserved = true;
630 }
631
632 ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush);
633 if (ret)
634 goto reserve_fail;
635 if (delayed_refs_bytes) {
636 btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes);
637 num_bytes -= delayed_refs_bytes;
638 }
639 btrfs_block_rsv_add_bytes(rsv, num_bytes, true);
640
641 if (rsv->space_info->force_alloc)
642 do_chunk_alloc = true;
643 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
644 !btrfs_block_rsv_full(delayed_refs_rsv)) {
645 /*
646 * Some people call with btrfs_start_transaction(root, 0)
647 * because they can be throttled, but have some other mechanism
648 * for reserving space. We still want these guys to refill the
649 * delayed block_rsv so just add 1 items worth of reservation
650 * here.
651 */
652 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
653 if (ret)
654 goto reserve_fail;
655 }
656 again:
657 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
658 if (!h) {
659 ret = -ENOMEM;
660 goto alloc_fail;
661 }
662
663 /*
664 * If we are JOIN_NOLOCK we're already committing a transaction and
665 * waiting on this guy, so we don't need to do the sb_start_intwrite
666 * because we're already holding a ref. We need this because we could
667 * have raced in and did an fsync() on a file which can kick a commit
668 * and then we deadlock with somebody doing a freeze.
669 *
670 * If we are ATTACH, it means we just want to catch the current
671 * transaction and commit it, so we needn't do sb_start_intwrite().
672 */
673 if (type & __TRANS_FREEZABLE)
674 sb_start_intwrite(fs_info->sb);
675
676 if (may_wait_transaction(fs_info, type))
677 wait_current_trans(fs_info);
678
679 do {
680 ret = join_transaction(fs_info, type);
681 if (ret == -EBUSY) {
682 wait_current_trans(fs_info);
683 if (unlikely(type == TRANS_ATTACH ||
684 type == TRANS_JOIN_NOSTART))
685 ret = -ENOENT;
686 }
687 } while (ret == -EBUSY);
688
689 if (ret < 0)
690 goto join_fail;
691
692 cur_trans = fs_info->running_transaction;
693
694 h->transid = cur_trans->transid;
695 h->transaction = cur_trans;
696 refcount_set(&h->use_count, 1);
697 h->fs_info = root->fs_info;
698
699 h->type = type;
700 INIT_LIST_HEAD(&h->new_bgs);
701
702 smp_mb();
703 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
704 may_wait_transaction(fs_info, type)) {
705 current->journal_info = h;
706 btrfs_commit_transaction(h);
707 goto again;
708 }
709
710 if (num_bytes) {
711 trace_btrfs_space_reservation(fs_info, "transaction",
712 h->transid, num_bytes, 1);
713 h->block_rsv = &fs_info->trans_block_rsv;
714 h->bytes_reserved = num_bytes;
715 h->reloc_reserved = reloc_reserved;
716 }
717
718 got_it:
719 if (!current->journal_info)
720 current->journal_info = h;
721
722 /*
723 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
724 * ALLOC_FORCE the first run through, and then we won't allocate for
725 * anybody else who races in later. We don't care about the return
726 * value here.
727 */
728 if (do_chunk_alloc && num_bytes) {
729 u64 flags = h->block_rsv->space_info->flags;
730
731 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
732 CHUNK_ALLOC_NO_FORCE);
733 }
734
735 /*
736 * btrfs_record_root_in_trans() needs to alloc new extents, and may
737 * call btrfs_join_transaction() while we're also starting a
738 * transaction.
739 *
740 * Thus it need to be called after current->journal_info initialized,
741 * or we can deadlock.
742 */
743 ret = btrfs_record_root_in_trans(h, root);
744 if (ret) {
745 /*
746 * The transaction handle is fully initialized and linked with
747 * other structures so it needs to be ended in case of errors,
748 * not just freed.
749 */
750 btrfs_end_transaction(h);
751 goto reserve_fail;
752 }
753 /*
754 * Now that we have found a transaction to be a part of, convert the
755 * qgroup reservation from prealloc to pertrans. A different transaction
756 * can't race in and free our pertrans out from under us.
757 */
758 if (qgroup_reserved)
759 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
760
761 return h;
762
763 join_fail:
764 if (type & __TRANS_FREEZABLE)
765 sb_end_intwrite(fs_info->sb);
766 kmem_cache_free(btrfs_trans_handle_cachep, h);
767 alloc_fail:
768 if (num_bytes)
769 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
770 num_bytes, NULL);
771 reserve_fail:
772 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
773 return ERR_PTR(ret);
774 }
775
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)776 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
777 unsigned int num_items)
778 {
779 return start_transaction(root, num_items, TRANS_START,
780 BTRFS_RESERVE_FLUSH_ALL, true);
781 }
782
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)783 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
784 struct btrfs_root *root,
785 unsigned int num_items)
786 {
787 return start_transaction(root, num_items, TRANS_START,
788 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
789 }
790
btrfs_join_transaction(struct btrfs_root * root)791 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
792 {
793 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
794 true);
795 }
796
btrfs_join_transaction_spacecache(struct btrfs_root * root)797 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
798 {
799 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
800 BTRFS_RESERVE_NO_FLUSH, true);
801 }
802
803 /*
804 * Similar to regular join but it never starts a transaction when none is
805 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
806 * This is similar to btrfs_attach_transaction() but it allows the join to
807 * happen if the transaction commit already started but it's not yet in the
808 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
809 */
btrfs_join_transaction_nostart(struct btrfs_root * root)810 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
811 {
812 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
813 BTRFS_RESERVE_NO_FLUSH, true);
814 }
815
816 /*
817 * btrfs_attach_transaction() - catch the running transaction
818 *
819 * It is used when we want to commit the current the transaction, but
820 * don't want to start a new one.
821 *
822 * Note: If this function return -ENOENT, it just means there is no
823 * running transaction. But it is possible that the inactive transaction
824 * is still in the memory, not fully on disk. If you hope there is no
825 * inactive transaction in the fs when -ENOENT is returned, you should
826 * invoke
827 * btrfs_attach_transaction_barrier()
828 */
btrfs_attach_transaction(struct btrfs_root * root)829 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
830 {
831 return start_transaction(root, 0, TRANS_ATTACH,
832 BTRFS_RESERVE_NO_FLUSH, true);
833 }
834
835 /*
836 * btrfs_attach_transaction_barrier() - catch the running transaction
837 *
838 * It is similar to the above function, the difference is this one
839 * will wait for all the inactive transactions until they fully
840 * complete.
841 */
842 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)843 btrfs_attach_transaction_barrier(struct btrfs_root *root)
844 {
845 struct btrfs_trans_handle *trans;
846
847 trans = start_transaction(root, 0, TRANS_ATTACH,
848 BTRFS_RESERVE_NO_FLUSH, true);
849 if (trans == ERR_PTR(-ENOENT)) {
850 int ret;
851
852 ret = btrfs_wait_for_commit(root->fs_info, 0);
853 if (ret)
854 return ERR_PTR(ret);
855 }
856
857 return trans;
858 }
859
860 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)861 static noinline void wait_for_commit(struct btrfs_transaction *commit,
862 const enum btrfs_trans_state min_state)
863 {
864 struct btrfs_fs_info *fs_info = commit->fs_info;
865 u64 transid = commit->transid;
866 bool put = false;
867
868 /*
869 * At the moment this function is called with min_state either being
870 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
871 */
872 if (min_state == TRANS_STATE_COMPLETED)
873 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
874 else
875 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
876
877 while (1) {
878 wait_event(commit->commit_wait, commit->state >= min_state);
879 if (put)
880 btrfs_put_transaction(commit);
881
882 if (min_state < TRANS_STATE_COMPLETED)
883 break;
884
885 /*
886 * A transaction isn't really completed until all of the
887 * previous transactions are completed, but with fsync we can
888 * end up with SUPER_COMMITTED transactions before a COMPLETED
889 * transaction. Wait for those.
890 */
891
892 spin_lock(&fs_info->trans_lock);
893 commit = list_first_entry_or_null(&fs_info->trans_list,
894 struct btrfs_transaction,
895 list);
896 if (!commit || commit->transid > transid) {
897 spin_unlock(&fs_info->trans_lock);
898 break;
899 }
900 refcount_inc(&commit->use_count);
901 put = true;
902 spin_unlock(&fs_info->trans_lock);
903 }
904 }
905
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)906 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
907 {
908 struct btrfs_transaction *cur_trans = NULL, *t;
909 int ret = 0;
910
911 if (transid) {
912 if (transid <= fs_info->last_trans_committed)
913 goto out;
914
915 /* find specified transaction */
916 spin_lock(&fs_info->trans_lock);
917 list_for_each_entry(t, &fs_info->trans_list, list) {
918 if (t->transid == transid) {
919 cur_trans = t;
920 refcount_inc(&cur_trans->use_count);
921 ret = 0;
922 break;
923 }
924 if (t->transid > transid) {
925 ret = 0;
926 break;
927 }
928 }
929 spin_unlock(&fs_info->trans_lock);
930
931 /*
932 * The specified transaction doesn't exist, or we
933 * raced with btrfs_commit_transaction
934 */
935 if (!cur_trans) {
936 if (transid > fs_info->last_trans_committed)
937 ret = -EINVAL;
938 goto out;
939 }
940 } else {
941 /* find newest transaction that is committing | committed */
942 spin_lock(&fs_info->trans_lock);
943 list_for_each_entry_reverse(t, &fs_info->trans_list,
944 list) {
945 if (t->state >= TRANS_STATE_COMMIT_START) {
946 if (t->state == TRANS_STATE_COMPLETED)
947 break;
948 cur_trans = t;
949 refcount_inc(&cur_trans->use_count);
950 break;
951 }
952 }
953 spin_unlock(&fs_info->trans_lock);
954 if (!cur_trans)
955 goto out; /* nothing committing|committed */
956 }
957
958 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
959 ret = cur_trans->aborted;
960 btrfs_put_transaction(cur_trans);
961 out:
962 return ret;
963 }
964
btrfs_throttle(struct btrfs_fs_info * fs_info)965 void btrfs_throttle(struct btrfs_fs_info *fs_info)
966 {
967 wait_current_trans(fs_info);
968 }
969
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)970 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
971 {
972 struct btrfs_transaction *cur_trans = trans->transaction;
973
974 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
975 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
976 return true;
977
978 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
979 return true;
980
981 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
982 }
983
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)984 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
985
986 {
987 struct btrfs_fs_info *fs_info = trans->fs_info;
988
989 if (!trans->block_rsv) {
990 ASSERT(!trans->bytes_reserved);
991 return;
992 }
993
994 if (!trans->bytes_reserved)
995 return;
996
997 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
998 trace_btrfs_space_reservation(fs_info, "transaction",
999 trans->transid, trans->bytes_reserved, 0);
1000 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1001 trans->bytes_reserved, NULL);
1002 trans->bytes_reserved = 0;
1003 }
1004
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1005 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1006 int throttle)
1007 {
1008 struct btrfs_fs_info *info = trans->fs_info;
1009 struct btrfs_transaction *cur_trans = trans->transaction;
1010 int err = 0;
1011
1012 if (refcount_read(&trans->use_count) > 1) {
1013 refcount_dec(&trans->use_count);
1014 trans->block_rsv = trans->orig_rsv;
1015 return 0;
1016 }
1017
1018 btrfs_trans_release_metadata(trans);
1019 trans->block_rsv = NULL;
1020
1021 btrfs_create_pending_block_groups(trans);
1022
1023 btrfs_trans_release_chunk_metadata(trans);
1024
1025 if (trans->type & __TRANS_FREEZABLE)
1026 sb_end_intwrite(info->sb);
1027
1028 WARN_ON(cur_trans != info->running_transaction);
1029 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1030 atomic_dec(&cur_trans->num_writers);
1031 extwriter_counter_dec(cur_trans, trans->type);
1032
1033 cond_wake_up(&cur_trans->writer_wait);
1034
1035 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1036 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1037
1038 btrfs_put_transaction(cur_trans);
1039
1040 if (current->journal_info == trans)
1041 current->journal_info = NULL;
1042
1043 if (throttle)
1044 btrfs_run_delayed_iputs(info);
1045
1046 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1047 wake_up_process(info->transaction_kthread);
1048 if (TRANS_ABORTED(trans))
1049 err = trans->aborted;
1050 else
1051 err = -EROFS;
1052 }
1053
1054 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1055 return err;
1056 }
1057
btrfs_end_transaction(struct btrfs_trans_handle * trans)1058 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1059 {
1060 return __btrfs_end_transaction(trans, 0);
1061 }
1062
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1063 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1064 {
1065 return __btrfs_end_transaction(trans, 1);
1066 }
1067
1068 /*
1069 * when btree blocks are allocated, they have some corresponding bits set for
1070 * them in one of two extent_io trees. This is used to make sure all of
1071 * those extents are sent to disk but does not wait on them
1072 */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1073 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1074 struct extent_io_tree *dirty_pages, int mark)
1075 {
1076 int err = 0;
1077 int werr = 0;
1078 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1079 struct extent_state *cached_state = NULL;
1080 u64 start = 0;
1081 u64 end;
1082
1083 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1084 mark, &cached_state)) {
1085 bool wait_writeback = false;
1086
1087 err = convert_extent_bit(dirty_pages, start, end,
1088 EXTENT_NEED_WAIT,
1089 mark, &cached_state);
1090 /*
1091 * convert_extent_bit can return -ENOMEM, which is most of the
1092 * time a temporary error. So when it happens, ignore the error
1093 * and wait for writeback of this range to finish - because we
1094 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1095 * to __btrfs_wait_marked_extents() would not know that
1096 * writeback for this range started and therefore wouldn't
1097 * wait for it to finish - we don't want to commit a
1098 * superblock that points to btree nodes/leafs for which
1099 * writeback hasn't finished yet (and without errors).
1100 * We cleanup any entries left in the io tree when committing
1101 * the transaction (through extent_io_tree_release()).
1102 */
1103 if (err == -ENOMEM) {
1104 err = 0;
1105 wait_writeback = true;
1106 }
1107 if (!err)
1108 err = filemap_fdatawrite_range(mapping, start, end);
1109 if (err)
1110 werr = err;
1111 else if (wait_writeback)
1112 werr = filemap_fdatawait_range(mapping, start, end);
1113 free_extent_state(cached_state);
1114 cached_state = NULL;
1115 cond_resched();
1116 start = end + 1;
1117 }
1118 return werr;
1119 }
1120
1121 /*
1122 * when btree blocks are allocated, they have some corresponding bits set for
1123 * them in one of two extent_io trees. This is used to make sure all of
1124 * those extents are on disk for transaction or log commit. We wait
1125 * on all the pages and clear them from the dirty pages state tree
1126 */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1127 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1128 struct extent_io_tree *dirty_pages)
1129 {
1130 int err = 0;
1131 int werr = 0;
1132 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1133 struct extent_state *cached_state = NULL;
1134 u64 start = 0;
1135 u64 end;
1136
1137 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1138 EXTENT_NEED_WAIT, &cached_state)) {
1139 /*
1140 * Ignore -ENOMEM errors returned by clear_extent_bit().
1141 * When committing the transaction, we'll remove any entries
1142 * left in the io tree. For a log commit, we don't remove them
1143 * after committing the log because the tree can be accessed
1144 * concurrently - we do it only at transaction commit time when
1145 * it's safe to do it (through extent_io_tree_release()).
1146 */
1147 err = clear_extent_bit(dirty_pages, start, end,
1148 EXTENT_NEED_WAIT, &cached_state);
1149 if (err == -ENOMEM)
1150 err = 0;
1151 if (!err)
1152 err = filemap_fdatawait_range(mapping, start, end);
1153 if (err)
1154 werr = err;
1155 free_extent_state(cached_state);
1156 cached_state = NULL;
1157 cond_resched();
1158 start = end + 1;
1159 }
1160 if (err)
1161 werr = err;
1162 return werr;
1163 }
1164
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1165 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1166 struct extent_io_tree *dirty_pages)
1167 {
1168 bool errors = false;
1169 int err;
1170
1171 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1172 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1173 errors = true;
1174
1175 if (errors && !err)
1176 err = -EIO;
1177 return err;
1178 }
1179
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1180 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1181 {
1182 struct btrfs_fs_info *fs_info = log_root->fs_info;
1183 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1184 bool errors = false;
1185 int err;
1186
1187 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1188
1189 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1190 if ((mark & EXTENT_DIRTY) &&
1191 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1192 errors = true;
1193
1194 if ((mark & EXTENT_NEW) &&
1195 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1196 errors = true;
1197
1198 if (errors && !err)
1199 err = -EIO;
1200 return err;
1201 }
1202
1203 /*
1204 * When btree blocks are allocated the corresponding extents are marked dirty.
1205 * This function ensures such extents are persisted on disk for transaction or
1206 * log commit.
1207 *
1208 * @trans: transaction whose dirty pages we'd like to write
1209 */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1210 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1211 {
1212 int ret;
1213 int ret2;
1214 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1215 struct btrfs_fs_info *fs_info = trans->fs_info;
1216 struct blk_plug plug;
1217
1218 blk_start_plug(&plug);
1219 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1220 blk_finish_plug(&plug);
1221 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1222
1223 extent_io_tree_release(&trans->transaction->dirty_pages);
1224
1225 if (ret)
1226 return ret;
1227 else if (ret2)
1228 return ret2;
1229 else
1230 return 0;
1231 }
1232
1233 /*
1234 * this is used to update the root pointer in the tree of tree roots.
1235 *
1236 * But, in the case of the extent allocation tree, updating the root
1237 * pointer may allocate blocks which may change the root of the extent
1238 * allocation tree.
1239 *
1240 * So, this loops and repeats and makes sure the cowonly root didn't
1241 * change while the root pointer was being updated in the metadata.
1242 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1243 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1244 struct btrfs_root *root)
1245 {
1246 int ret;
1247 u64 old_root_bytenr;
1248 u64 old_root_used;
1249 struct btrfs_fs_info *fs_info = root->fs_info;
1250 struct btrfs_root *tree_root = fs_info->tree_root;
1251
1252 old_root_used = btrfs_root_used(&root->root_item);
1253
1254 while (1) {
1255 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1256 if (old_root_bytenr == root->node->start &&
1257 old_root_used == btrfs_root_used(&root->root_item))
1258 break;
1259
1260 btrfs_set_root_node(&root->root_item, root->node);
1261 ret = btrfs_update_root(trans, tree_root,
1262 &root->root_key,
1263 &root->root_item);
1264 if (ret)
1265 return ret;
1266
1267 old_root_used = btrfs_root_used(&root->root_item);
1268 }
1269
1270 return 0;
1271 }
1272
1273 /*
1274 * update all the cowonly tree roots on disk
1275 *
1276 * The error handling in this function may not be obvious. Any of the
1277 * failures will cause the file system to go offline. We still need
1278 * to clean up the delayed refs.
1279 */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1280 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1281 {
1282 struct btrfs_fs_info *fs_info = trans->fs_info;
1283 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1284 struct list_head *io_bgs = &trans->transaction->io_bgs;
1285 struct list_head *next;
1286 struct extent_buffer *eb;
1287 int ret;
1288
1289 /*
1290 * At this point no one can be using this transaction to modify any tree
1291 * and no one can start another transaction to modify any tree either.
1292 */
1293 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1294
1295 eb = btrfs_lock_root_node(fs_info->tree_root);
1296 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1297 0, &eb, BTRFS_NESTING_COW);
1298 btrfs_tree_unlock(eb);
1299 free_extent_buffer(eb);
1300
1301 if (ret)
1302 return ret;
1303
1304 ret = btrfs_run_dev_stats(trans);
1305 if (ret)
1306 return ret;
1307 ret = btrfs_run_dev_replace(trans);
1308 if (ret)
1309 return ret;
1310 ret = btrfs_run_qgroups(trans);
1311 if (ret)
1312 return ret;
1313
1314 ret = btrfs_setup_space_cache(trans);
1315 if (ret)
1316 return ret;
1317
1318 again:
1319 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1320 struct btrfs_root *root;
1321 next = fs_info->dirty_cowonly_roots.next;
1322 list_del_init(next);
1323 root = list_entry(next, struct btrfs_root, dirty_list);
1324 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1325
1326 list_add_tail(&root->dirty_list,
1327 &trans->transaction->switch_commits);
1328 ret = update_cowonly_root(trans, root);
1329 if (ret)
1330 return ret;
1331 }
1332
1333 /* Now flush any delayed refs generated by updating all of the roots */
1334 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1335 if (ret)
1336 return ret;
1337
1338 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1339 ret = btrfs_write_dirty_block_groups(trans);
1340 if (ret)
1341 return ret;
1342
1343 /*
1344 * We're writing the dirty block groups, which could generate
1345 * delayed refs, which could generate more dirty block groups,
1346 * so we want to keep this flushing in this loop to make sure
1347 * everything gets run.
1348 */
1349 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1350 if (ret)
1351 return ret;
1352 }
1353
1354 if (!list_empty(&fs_info->dirty_cowonly_roots))
1355 goto again;
1356
1357 /* Update dev-replace pointer once everything is committed */
1358 fs_info->dev_replace.committed_cursor_left =
1359 fs_info->dev_replace.cursor_left_last_write_of_item;
1360
1361 return 0;
1362 }
1363
1364 /*
1365 * If we had a pending drop we need to see if there are any others left in our
1366 * dead roots list, and if not clear our bit and wake any waiters.
1367 */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1368 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1369 {
1370 /*
1371 * We put the drop in progress roots at the front of the list, so if the
1372 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1373 * up.
1374 */
1375 spin_lock(&fs_info->trans_lock);
1376 if (!list_empty(&fs_info->dead_roots)) {
1377 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1378 struct btrfs_root,
1379 root_list);
1380 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1381 spin_unlock(&fs_info->trans_lock);
1382 return;
1383 }
1384 }
1385 spin_unlock(&fs_info->trans_lock);
1386
1387 btrfs_wake_unfinished_drop(fs_info);
1388 }
1389
1390 /*
1391 * dead roots are old snapshots that need to be deleted. This allocates
1392 * a dirty root struct and adds it into the list of dead roots that need to
1393 * be deleted
1394 */
btrfs_add_dead_root(struct btrfs_root * root)1395 void btrfs_add_dead_root(struct btrfs_root *root)
1396 {
1397 struct btrfs_fs_info *fs_info = root->fs_info;
1398
1399 spin_lock(&fs_info->trans_lock);
1400 if (list_empty(&root->root_list)) {
1401 btrfs_grab_root(root);
1402
1403 /* We want to process the partially complete drops first. */
1404 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1405 list_add(&root->root_list, &fs_info->dead_roots);
1406 else
1407 list_add_tail(&root->root_list, &fs_info->dead_roots);
1408 }
1409 spin_unlock(&fs_info->trans_lock);
1410 }
1411
1412 /*
1413 * Update each subvolume root and its relocation root, if it exists, in the tree
1414 * of tree roots. Also free log roots if they exist.
1415 */
commit_fs_roots(struct btrfs_trans_handle * trans)1416 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1417 {
1418 struct btrfs_fs_info *fs_info = trans->fs_info;
1419 struct btrfs_root *gang[8];
1420 int i;
1421 int ret;
1422
1423 /*
1424 * At this point no one can be using this transaction to modify any tree
1425 * and no one can start another transaction to modify any tree either.
1426 */
1427 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1428
1429 spin_lock(&fs_info->fs_roots_radix_lock);
1430 while (1) {
1431 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1432 (void **)gang, 0,
1433 ARRAY_SIZE(gang),
1434 BTRFS_ROOT_TRANS_TAG);
1435 if (ret == 0)
1436 break;
1437 for (i = 0; i < ret; i++) {
1438 struct btrfs_root *root = gang[i];
1439 int ret2;
1440
1441 /*
1442 * At this point we can neither have tasks logging inodes
1443 * from a root nor trying to commit a log tree.
1444 */
1445 ASSERT(atomic_read(&root->log_writers) == 0);
1446 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1447 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1448
1449 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1450 (unsigned long)root->root_key.objectid,
1451 BTRFS_ROOT_TRANS_TAG);
1452 btrfs_qgroup_free_meta_all_pertrans(root);
1453 spin_unlock(&fs_info->fs_roots_radix_lock);
1454
1455 btrfs_free_log(trans, root);
1456 ret2 = btrfs_update_reloc_root(trans, root);
1457 if (ret2)
1458 return ret2;
1459
1460 /* see comments in should_cow_block() */
1461 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1462 smp_mb__after_atomic();
1463
1464 if (root->commit_root != root->node) {
1465 list_add_tail(&root->dirty_list,
1466 &trans->transaction->switch_commits);
1467 btrfs_set_root_node(&root->root_item,
1468 root->node);
1469 }
1470
1471 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1472 &root->root_key,
1473 &root->root_item);
1474 if (ret2)
1475 return ret2;
1476 spin_lock(&fs_info->fs_roots_radix_lock);
1477 }
1478 }
1479 spin_unlock(&fs_info->fs_roots_radix_lock);
1480 return 0;
1481 }
1482
1483 /*
1484 * defrag a given btree.
1485 * Every leaf in the btree is read and defragged.
1486 */
btrfs_defrag_root(struct btrfs_root * root)1487 int btrfs_defrag_root(struct btrfs_root *root)
1488 {
1489 struct btrfs_fs_info *info = root->fs_info;
1490 struct btrfs_trans_handle *trans;
1491 int ret;
1492
1493 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1494 return 0;
1495
1496 while (1) {
1497 trans = btrfs_start_transaction(root, 0);
1498 if (IS_ERR(trans)) {
1499 ret = PTR_ERR(trans);
1500 break;
1501 }
1502
1503 ret = btrfs_defrag_leaves(trans, root);
1504
1505 btrfs_end_transaction(trans);
1506 btrfs_btree_balance_dirty(info);
1507 cond_resched();
1508
1509 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1510 break;
1511
1512 if (btrfs_defrag_cancelled(info)) {
1513 btrfs_debug(info, "defrag_root cancelled");
1514 ret = -EAGAIN;
1515 break;
1516 }
1517 }
1518 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1519 return ret;
1520 }
1521
1522 /*
1523 * Do all special snapshot related qgroup dirty hack.
1524 *
1525 * Will do all needed qgroup inherit and dirty hack like switch commit
1526 * roots inside one transaction and write all btree into disk, to make
1527 * qgroup works.
1528 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1529 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *src,
1531 struct btrfs_root *parent,
1532 struct btrfs_qgroup_inherit *inherit,
1533 u64 dst_objectid)
1534 {
1535 struct btrfs_fs_info *fs_info = src->fs_info;
1536 int ret;
1537
1538 /*
1539 * Save some performance in the case that qgroups are not
1540 * enabled. If this check races with the ioctl, rescan will
1541 * kick in anyway.
1542 */
1543 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1544 return 0;
1545
1546 /*
1547 * Ensure dirty @src will be committed. Or, after coming
1548 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1549 * recorded root will never be updated again, causing an outdated root
1550 * item.
1551 */
1552 ret = record_root_in_trans(trans, src, 1);
1553 if (ret)
1554 return ret;
1555
1556 /*
1557 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1558 * src root, so we must run the delayed refs here.
1559 *
1560 * However this isn't particularly fool proof, because there's no
1561 * synchronization keeping us from changing the tree after this point
1562 * before we do the qgroup_inherit, or even from making changes while
1563 * we're doing the qgroup_inherit. But that's a problem for the future,
1564 * for now flush the delayed refs to narrow the race window where the
1565 * qgroup counters could end up wrong.
1566 */
1567 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1568 if (ret) {
1569 btrfs_abort_transaction(trans, ret);
1570 return ret;
1571 }
1572
1573 ret = commit_fs_roots(trans);
1574 if (ret)
1575 goto out;
1576 ret = btrfs_qgroup_account_extents(trans);
1577 if (ret < 0)
1578 goto out;
1579
1580 /* Now qgroup are all updated, we can inherit it to new qgroups */
1581 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1582 inherit);
1583 if (ret < 0)
1584 goto out;
1585
1586 /*
1587 * Now we do a simplified commit transaction, which will:
1588 * 1) commit all subvolume and extent tree
1589 * To ensure all subvolume and extent tree have a valid
1590 * commit_root to accounting later insert_dir_item()
1591 * 2) write all btree blocks onto disk
1592 * This is to make sure later btree modification will be cowed
1593 * Or commit_root can be populated and cause wrong qgroup numbers
1594 * In this simplified commit, we don't really care about other trees
1595 * like chunk and root tree, as they won't affect qgroup.
1596 * And we don't write super to avoid half committed status.
1597 */
1598 ret = commit_cowonly_roots(trans);
1599 if (ret)
1600 goto out;
1601 switch_commit_roots(trans);
1602 ret = btrfs_write_and_wait_transaction(trans);
1603 if (ret)
1604 btrfs_handle_fs_error(fs_info, ret,
1605 "Error while writing out transaction for qgroup");
1606
1607 out:
1608 /*
1609 * Force parent root to be updated, as we recorded it before so its
1610 * last_trans == cur_transid.
1611 * Or it won't be committed again onto disk after later
1612 * insert_dir_item()
1613 */
1614 if (!ret)
1615 ret = record_root_in_trans(trans, parent, 1);
1616 return ret;
1617 }
1618
1619 /*
1620 * new snapshots need to be created at a very specific time in the
1621 * transaction commit. This does the actual creation.
1622 *
1623 * Note:
1624 * If the error which may affect the commitment of the current transaction
1625 * happens, we should return the error number. If the error which just affect
1626 * the creation of the pending snapshots, just return 0.
1627 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1628 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1629 struct btrfs_pending_snapshot *pending)
1630 {
1631
1632 struct btrfs_fs_info *fs_info = trans->fs_info;
1633 struct btrfs_key key;
1634 struct btrfs_root_item *new_root_item;
1635 struct btrfs_root *tree_root = fs_info->tree_root;
1636 struct btrfs_root *root = pending->root;
1637 struct btrfs_root *parent_root;
1638 struct btrfs_block_rsv *rsv;
1639 struct inode *parent_inode = pending->dir;
1640 struct btrfs_path *path;
1641 struct btrfs_dir_item *dir_item;
1642 struct extent_buffer *tmp;
1643 struct extent_buffer *old;
1644 struct timespec64 cur_time;
1645 int ret = 0;
1646 u64 to_reserve = 0;
1647 u64 index = 0;
1648 u64 objectid;
1649 u64 root_flags;
1650 unsigned int nofs_flags;
1651 struct fscrypt_name fname;
1652
1653 ASSERT(pending->path);
1654 path = pending->path;
1655
1656 ASSERT(pending->root_item);
1657 new_root_item = pending->root_item;
1658
1659 /*
1660 * We're inside a transaction and must make sure that any potential
1661 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1662 * filesystem.
1663 */
1664 nofs_flags = memalloc_nofs_save();
1665 pending->error = fscrypt_setup_filename(parent_inode,
1666 &pending->dentry->d_name, 0,
1667 &fname);
1668 memalloc_nofs_restore(nofs_flags);
1669 if (pending->error)
1670 goto free_pending;
1671
1672 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1673 if (pending->error)
1674 goto free_fname;
1675
1676 /*
1677 * Make qgroup to skip current new snapshot's qgroupid, as it is
1678 * accounted by later btrfs_qgroup_inherit().
1679 */
1680 btrfs_set_skip_qgroup(trans, objectid);
1681
1682 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1683
1684 if (to_reserve > 0) {
1685 pending->error = btrfs_block_rsv_add(fs_info,
1686 &pending->block_rsv,
1687 to_reserve,
1688 BTRFS_RESERVE_NO_FLUSH);
1689 if (pending->error)
1690 goto clear_skip_qgroup;
1691 }
1692
1693 key.objectid = objectid;
1694 key.offset = (u64)-1;
1695 key.type = BTRFS_ROOT_ITEM_KEY;
1696
1697 rsv = trans->block_rsv;
1698 trans->block_rsv = &pending->block_rsv;
1699 trans->bytes_reserved = trans->block_rsv->reserved;
1700 trace_btrfs_space_reservation(fs_info, "transaction",
1701 trans->transid,
1702 trans->bytes_reserved, 1);
1703 parent_root = BTRFS_I(parent_inode)->root;
1704 ret = record_root_in_trans(trans, parent_root, 0);
1705 if (ret)
1706 goto fail;
1707 cur_time = current_time(parent_inode);
1708
1709 /*
1710 * insert the directory item
1711 */
1712 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1713 if (ret) {
1714 btrfs_abort_transaction(trans, ret);
1715 goto fail;
1716 }
1717
1718 /* check if there is a file/dir which has the same name. */
1719 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1720 btrfs_ino(BTRFS_I(parent_inode)),
1721 &fname.disk_name, 0);
1722 if (dir_item != NULL && !IS_ERR(dir_item)) {
1723 pending->error = -EEXIST;
1724 goto dir_item_existed;
1725 } else if (IS_ERR(dir_item)) {
1726 ret = PTR_ERR(dir_item);
1727 btrfs_abort_transaction(trans, ret);
1728 goto fail;
1729 }
1730 btrfs_release_path(path);
1731
1732 /*
1733 * pull in the delayed directory update
1734 * and the delayed inode item
1735 * otherwise we corrupt the FS during
1736 * snapshot
1737 */
1738 ret = btrfs_run_delayed_items(trans);
1739 if (ret) { /* Transaction aborted */
1740 btrfs_abort_transaction(trans, ret);
1741 goto fail;
1742 }
1743
1744 ret = record_root_in_trans(trans, root, 0);
1745 if (ret) {
1746 btrfs_abort_transaction(trans, ret);
1747 goto fail;
1748 }
1749 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1750 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1751 btrfs_check_and_init_root_item(new_root_item);
1752
1753 root_flags = btrfs_root_flags(new_root_item);
1754 if (pending->readonly)
1755 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1756 else
1757 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1758 btrfs_set_root_flags(new_root_item, root_flags);
1759
1760 btrfs_set_root_generation_v2(new_root_item,
1761 trans->transid);
1762 generate_random_guid(new_root_item->uuid);
1763 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1764 BTRFS_UUID_SIZE);
1765 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1766 memset(new_root_item->received_uuid, 0,
1767 sizeof(new_root_item->received_uuid));
1768 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1769 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1770 btrfs_set_root_stransid(new_root_item, 0);
1771 btrfs_set_root_rtransid(new_root_item, 0);
1772 }
1773 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1774 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1775 btrfs_set_root_otransid(new_root_item, trans->transid);
1776
1777 old = btrfs_lock_root_node(root);
1778 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1779 BTRFS_NESTING_COW);
1780 if (ret) {
1781 btrfs_tree_unlock(old);
1782 free_extent_buffer(old);
1783 btrfs_abort_transaction(trans, ret);
1784 goto fail;
1785 }
1786
1787 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1788 /* clean up in any case */
1789 btrfs_tree_unlock(old);
1790 free_extent_buffer(old);
1791 if (ret) {
1792 btrfs_abort_transaction(trans, ret);
1793 goto fail;
1794 }
1795 /* see comments in should_cow_block() */
1796 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1797 smp_wmb();
1798
1799 btrfs_set_root_node(new_root_item, tmp);
1800 /* record when the snapshot was created in key.offset */
1801 key.offset = trans->transid;
1802 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1803 btrfs_tree_unlock(tmp);
1804 free_extent_buffer(tmp);
1805 if (ret) {
1806 btrfs_abort_transaction(trans, ret);
1807 goto fail;
1808 }
1809
1810 /*
1811 * insert root back/forward references
1812 */
1813 ret = btrfs_add_root_ref(trans, objectid,
1814 parent_root->root_key.objectid,
1815 btrfs_ino(BTRFS_I(parent_inode)), index,
1816 &fname.disk_name);
1817 if (ret) {
1818 btrfs_abort_transaction(trans, ret);
1819 goto fail;
1820 }
1821
1822 key.offset = (u64)-1;
1823 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1824 if (IS_ERR(pending->snap)) {
1825 ret = PTR_ERR(pending->snap);
1826 pending->snap = NULL;
1827 btrfs_abort_transaction(trans, ret);
1828 goto fail;
1829 }
1830
1831 ret = btrfs_reloc_post_snapshot(trans, pending);
1832 if (ret) {
1833 btrfs_abort_transaction(trans, ret);
1834 goto fail;
1835 }
1836
1837 /*
1838 * Do special qgroup accounting for snapshot, as we do some qgroup
1839 * snapshot hack to do fast snapshot.
1840 * To co-operate with that hack, we do hack again.
1841 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1842 */
1843 ret = qgroup_account_snapshot(trans, root, parent_root,
1844 pending->inherit, objectid);
1845 if (ret < 0)
1846 goto fail;
1847
1848 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1849 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1850 index);
1851 /* We have check then name at the beginning, so it is impossible. */
1852 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1853 if (ret) {
1854 btrfs_abort_transaction(trans, ret);
1855 goto fail;
1856 }
1857
1858 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1859 fname.disk_name.len * 2);
1860 parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
1861 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1862 if (ret) {
1863 btrfs_abort_transaction(trans, ret);
1864 goto fail;
1865 }
1866 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1867 BTRFS_UUID_KEY_SUBVOL,
1868 objectid);
1869 if (ret) {
1870 btrfs_abort_transaction(trans, ret);
1871 goto fail;
1872 }
1873 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1874 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1875 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1876 objectid);
1877 if (ret && ret != -EEXIST) {
1878 btrfs_abort_transaction(trans, ret);
1879 goto fail;
1880 }
1881 }
1882
1883 fail:
1884 pending->error = ret;
1885 dir_item_existed:
1886 trans->block_rsv = rsv;
1887 trans->bytes_reserved = 0;
1888 clear_skip_qgroup:
1889 btrfs_clear_skip_qgroup(trans);
1890 free_fname:
1891 fscrypt_free_filename(&fname);
1892 free_pending:
1893 kfree(new_root_item);
1894 pending->root_item = NULL;
1895 btrfs_free_path(path);
1896 pending->path = NULL;
1897
1898 return ret;
1899 }
1900
1901 /*
1902 * create all the snapshots we've scheduled for creation
1903 */
create_pending_snapshots(struct btrfs_trans_handle * trans)1904 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1905 {
1906 struct btrfs_pending_snapshot *pending, *next;
1907 struct list_head *head = &trans->transaction->pending_snapshots;
1908 int ret = 0;
1909
1910 list_for_each_entry_safe(pending, next, head, list) {
1911 list_del(&pending->list);
1912 ret = create_pending_snapshot(trans, pending);
1913 if (ret)
1914 break;
1915 }
1916 return ret;
1917 }
1918
update_super_roots(struct btrfs_fs_info * fs_info)1919 static void update_super_roots(struct btrfs_fs_info *fs_info)
1920 {
1921 struct btrfs_root_item *root_item;
1922 struct btrfs_super_block *super;
1923
1924 super = fs_info->super_copy;
1925
1926 root_item = &fs_info->chunk_root->root_item;
1927 super->chunk_root = root_item->bytenr;
1928 super->chunk_root_generation = root_item->generation;
1929 super->chunk_root_level = root_item->level;
1930
1931 root_item = &fs_info->tree_root->root_item;
1932 super->root = root_item->bytenr;
1933 super->generation = root_item->generation;
1934 super->root_level = root_item->level;
1935 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1936 super->cache_generation = root_item->generation;
1937 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1938 super->cache_generation = 0;
1939 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1940 super->uuid_tree_generation = root_item->generation;
1941 }
1942
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1943 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1944 {
1945 struct btrfs_transaction *trans;
1946 int ret = 0;
1947
1948 spin_lock(&info->trans_lock);
1949 trans = info->running_transaction;
1950 if (trans)
1951 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1952 spin_unlock(&info->trans_lock);
1953 return ret;
1954 }
1955
btrfs_transaction_blocked(struct btrfs_fs_info * info)1956 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1957 {
1958 struct btrfs_transaction *trans;
1959 int ret = 0;
1960
1961 spin_lock(&info->trans_lock);
1962 trans = info->running_transaction;
1963 if (trans)
1964 ret = is_transaction_blocked(trans);
1965 spin_unlock(&info->trans_lock);
1966 return ret;
1967 }
1968
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1969 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1970 {
1971 struct btrfs_fs_info *fs_info = trans->fs_info;
1972 struct btrfs_transaction *cur_trans;
1973
1974 /* Kick the transaction kthread. */
1975 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1976 wake_up_process(fs_info->transaction_kthread);
1977
1978 /* take transaction reference */
1979 cur_trans = trans->transaction;
1980 refcount_inc(&cur_trans->use_count);
1981
1982 btrfs_end_transaction(trans);
1983
1984 /*
1985 * Wait for the current transaction commit to start and block
1986 * subsequent transaction joins
1987 */
1988 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1989 wait_event(fs_info->transaction_blocked_wait,
1990 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1991 TRANS_ABORTED(cur_trans));
1992 btrfs_put_transaction(cur_trans);
1993 }
1994
cleanup_transaction(struct btrfs_trans_handle * trans,int err)1995 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1996 {
1997 struct btrfs_fs_info *fs_info = trans->fs_info;
1998 struct btrfs_transaction *cur_trans = trans->transaction;
1999
2000 WARN_ON(refcount_read(&trans->use_count) > 1);
2001
2002 btrfs_abort_transaction(trans, err);
2003
2004 spin_lock(&fs_info->trans_lock);
2005
2006 /*
2007 * If the transaction is removed from the list, it means this
2008 * transaction has been committed successfully, so it is impossible
2009 * to call the cleanup function.
2010 */
2011 BUG_ON(list_empty(&cur_trans->list));
2012
2013 if (cur_trans == fs_info->running_transaction) {
2014 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2015 spin_unlock(&fs_info->trans_lock);
2016
2017 /*
2018 * The thread has already released the lockdep map as reader
2019 * already in btrfs_commit_transaction().
2020 */
2021 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2022 wait_event(cur_trans->writer_wait,
2023 atomic_read(&cur_trans->num_writers) == 1);
2024
2025 spin_lock(&fs_info->trans_lock);
2026 }
2027
2028 /*
2029 * Now that we know no one else is still using the transaction we can
2030 * remove the transaction from the list of transactions. This avoids
2031 * the transaction kthread from cleaning up the transaction while some
2032 * other task is still using it, which could result in a use-after-free
2033 * on things like log trees, as it forces the transaction kthread to
2034 * wait for this transaction to be cleaned up by us.
2035 */
2036 list_del_init(&cur_trans->list);
2037
2038 spin_unlock(&fs_info->trans_lock);
2039
2040 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2041
2042 spin_lock(&fs_info->trans_lock);
2043 if (cur_trans == fs_info->running_transaction)
2044 fs_info->running_transaction = NULL;
2045 spin_unlock(&fs_info->trans_lock);
2046
2047 if (trans->type & __TRANS_FREEZABLE)
2048 sb_end_intwrite(fs_info->sb);
2049 btrfs_put_transaction(cur_trans);
2050 btrfs_put_transaction(cur_trans);
2051
2052 trace_btrfs_transaction_commit(fs_info);
2053
2054 if (current->journal_info == trans)
2055 current->journal_info = NULL;
2056
2057 /*
2058 * If relocation is running, we can't cancel scrub because that will
2059 * result in a deadlock. Before relocating a block group, relocation
2060 * pauses scrub, then starts and commits a transaction before unpausing
2061 * scrub. If the transaction commit is being done by the relocation
2062 * task or triggered by another task and the relocation task is waiting
2063 * for the commit, and we end up here due to an error in the commit
2064 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2065 * asking for scrub to stop while having it asked to be paused higher
2066 * above in relocation code.
2067 */
2068 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2069 btrfs_scrub_cancel(fs_info);
2070
2071 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2072 }
2073
2074 /*
2075 * Release reserved delayed ref space of all pending block groups of the
2076 * transaction and remove them from the list
2077 */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2078 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2079 {
2080 struct btrfs_fs_info *fs_info = trans->fs_info;
2081 struct btrfs_block_group *block_group, *tmp;
2082
2083 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2084 btrfs_delayed_refs_rsv_release(fs_info, 1);
2085 list_del_init(&block_group->bg_list);
2086 }
2087 }
2088
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2089 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2090 {
2091 /*
2092 * We use try_to_writeback_inodes_sb() here because if we used
2093 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2094 * Currently are holding the fs freeze lock, if we do an async flush
2095 * we'll do btrfs_join_transaction() and deadlock because we need to
2096 * wait for the fs freeze lock. Using the direct flushing we benefit
2097 * from already being in a transaction and our join_transaction doesn't
2098 * have to re-take the fs freeze lock.
2099 *
2100 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2101 * if it can read lock sb->s_umount. It will always be able to lock it,
2102 * except when the filesystem is being unmounted or being frozen, but in
2103 * those cases sync_filesystem() is called, which results in calling
2104 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2105 * Note that we don't call writeback_inodes_sb() directly, because it
2106 * will emit a warning if sb->s_umount is not locked.
2107 */
2108 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2109 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2110 return 0;
2111 }
2112
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2113 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2114 {
2115 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2116 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2117 }
2118
2119 /*
2120 * Add a pending snapshot associated with the given transaction handle to the
2121 * respective handle. This must be called after the transaction commit started
2122 * and while holding fs_info->trans_lock.
2123 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2124 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2125 * returns an error.
2126 */
add_pending_snapshot(struct btrfs_trans_handle * trans)2127 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2128 {
2129 struct btrfs_transaction *cur_trans = trans->transaction;
2130
2131 if (!trans->pending_snapshot)
2132 return;
2133
2134 lockdep_assert_held(&trans->fs_info->trans_lock);
2135 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2136
2137 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2138 }
2139
update_commit_stats(struct btrfs_fs_info * fs_info,ktime_t interval)2140 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2141 {
2142 fs_info->commit_stats.commit_count++;
2143 fs_info->commit_stats.last_commit_dur = interval;
2144 fs_info->commit_stats.max_commit_dur =
2145 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2146 fs_info->commit_stats.total_commit_dur += interval;
2147 }
2148
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2149 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2150 {
2151 struct btrfs_fs_info *fs_info = trans->fs_info;
2152 struct btrfs_transaction *cur_trans = trans->transaction;
2153 struct btrfs_transaction *prev_trans = NULL;
2154 int ret;
2155 ktime_t start_time;
2156 ktime_t interval;
2157
2158 ASSERT(refcount_read(&trans->use_count) == 1);
2159 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2160
2161 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2162
2163 /* Stop the commit early if ->aborted is set */
2164 if (TRANS_ABORTED(cur_trans)) {
2165 ret = cur_trans->aborted;
2166 goto lockdep_trans_commit_start_release;
2167 }
2168
2169 btrfs_trans_release_metadata(trans);
2170 trans->block_rsv = NULL;
2171
2172 /*
2173 * We only want one transaction commit doing the flushing so we do not
2174 * waste a bunch of time on lock contention on the extent root node.
2175 */
2176 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2177 &cur_trans->delayed_refs.flags)) {
2178 /*
2179 * Make a pass through all the delayed refs we have so far.
2180 * Any running threads may add more while we are here.
2181 */
2182 ret = btrfs_run_delayed_refs(trans, 0);
2183 if (ret)
2184 goto lockdep_trans_commit_start_release;
2185 }
2186
2187 btrfs_create_pending_block_groups(trans);
2188
2189 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2190 int run_it = 0;
2191
2192 /* this mutex is also taken before trying to set
2193 * block groups readonly. We need to make sure
2194 * that nobody has set a block group readonly
2195 * after a extents from that block group have been
2196 * allocated for cache files. btrfs_set_block_group_ro
2197 * will wait for the transaction to commit if it
2198 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2199 *
2200 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2201 * only one process starts all the block group IO. It wouldn't
2202 * hurt to have more than one go through, but there's no
2203 * real advantage to it either.
2204 */
2205 mutex_lock(&fs_info->ro_block_group_mutex);
2206 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2207 &cur_trans->flags))
2208 run_it = 1;
2209 mutex_unlock(&fs_info->ro_block_group_mutex);
2210
2211 if (run_it) {
2212 ret = btrfs_start_dirty_block_groups(trans);
2213 if (ret)
2214 goto lockdep_trans_commit_start_release;
2215 }
2216 }
2217
2218 spin_lock(&fs_info->trans_lock);
2219 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2220 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2221
2222 add_pending_snapshot(trans);
2223
2224 spin_unlock(&fs_info->trans_lock);
2225 refcount_inc(&cur_trans->use_count);
2226
2227 if (trans->in_fsync)
2228 want_state = TRANS_STATE_SUPER_COMMITTED;
2229
2230 btrfs_trans_state_lockdep_release(fs_info,
2231 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2232 ret = btrfs_end_transaction(trans);
2233 wait_for_commit(cur_trans, want_state);
2234
2235 if (TRANS_ABORTED(cur_trans))
2236 ret = cur_trans->aborted;
2237
2238 btrfs_put_transaction(cur_trans);
2239
2240 return ret;
2241 }
2242
2243 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2244 wake_up(&fs_info->transaction_blocked_wait);
2245 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2246
2247 if (cur_trans->list.prev != &fs_info->trans_list) {
2248 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2249
2250 if (trans->in_fsync)
2251 want_state = TRANS_STATE_SUPER_COMMITTED;
2252
2253 prev_trans = list_entry(cur_trans->list.prev,
2254 struct btrfs_transaction, list);
2255 if (prev_trans->state < want_state) {
2256 refcount_inc(&prev_trans->use_count);
2257 spin_unlock(&fs_info->trans_lock);
2258
2259 wait_for_commit(prev_trans, want_state);
2260
2261 ret = READ_ONCE(prev_trans->aborted);
2262
2263 btrfs_put_transaction(prev_trans);
2264 if (ret)
2265 goto lockdep_release;
2266 spin_lock(&fs_info->trans_lock);
2267 }
2268 } else {
2269 /*
2270 * The previous transaction was aborted and was already removed
2271 * from the list of transactions at fs_info->trans_list. So we
2272 * abort to prevent writing a new superblock that reflects a
2273 * corrupt state (pointing to trees with unwritten nodes/leafs).
2274 */
2275 if (BTRFS_FS_ERROR(fs_info)) {
2276 spin_unlock(&fs_info->trans_lock);
2277 ret = -EROFS;
2278 goto lockdep_release;
2279 }
2280 }
2281
2282 cur_trans->state = TRANS_STATE_COMMIT_START;
2283 wake_up(&fs_info->transaction_blocked_wait);
2284 spin_unlock(&fs_info->trans_lock);
2285
2286 /*
2287 * Get the time spent on the work done by the commit thread and not
2288 * the time spent waiting on a previous commit
2289 */
2290 start_time = ktime_get_ns();
2291
2292 extwriter_counter_dec(cur_trans, trans->type);
2293
2294 ret = btrfs_start_delalloc_flush(fs_info);
2295 if (ret)
2296 goto lockdep_release;
2297
2298 ret = btrfs_run_delayed_items(trans);
2299 if (ret)
2300 goto lockdep_release;
2301
2302 /*
2303 * The thread has started/joined the transaction thus it holds the
2304 * lockdep map as a reader. It has to release it before acquiring the
2305 * lockdep map as a writer.
2306 */
2307 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2308 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2309 wait_event(cur_trans->writer_wait,
2310 extwriter_counter_read(cur_trans) == 0);
2311
2312 /* some pending stuffs might be added after the previous flush. */
2313 ret = btrfs_run_delayed_items(trans);
2314 if (ret) {
2315 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2316 goto cleanup_transaction;
2317 }
2318
2319 btrfs_wait_delalloc_flush(fs_info);
2320
2321 /*
2322 * Wait for all ordered extents started by a fast fsync that joined this
2323 * transaction. Otherwise if this transaction commits before the ordered
2324 * extents complete we lose logged data after a power failure.
2325 */
2326 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2327 wait_event(cur_trans->pending_wait,
2328 atomic_read(&cur_trans->pending_ordered) == 0);
2329
2330 btrfs_scrub_pause(fs_info);
2331 /*
2332 * Ok now we need to make sure to block out any other joins while we
2333 * commit the transaction. We could have started a join before setting
2334 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2335 */
2336 spin_lock(&fs_info->trans_lock);
2337 add_pending_snapshot(trans);
2338 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2339 spin_unlock(&fs_info->trans_lock);
2340
2341 /*
2342 * The thread has started/joined the transaction thus it holds the
2343 * lockdep map as a reader. It has to release it before acquiring the
2344 * lockdep map as a writer.
2345 */
2346 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2347 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2348 wait_event(cur_trans->writer_wait,
2349 atomic_read(&cur_trans->num_writers) == 1);
2350
2351 /*
2352 * Make lockdep happy by acquiring the state locks after
2353 * btrfs_trans_num_writers is released. If we acquired the state locks
2354 * before releasing the btrfs_trans_num_writers lock then lockdep would
2355 * complain because we did not follow the reverse order unlocking rule.
2356 */
2357 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2358 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2359 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2360
2361 /*
2362 * We've started the commit, clear the flag in case we were triggered to
2363 * do an async commit but somebody else started before the transaction
2364 * kthread could do the work.
2365 */
2366 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2367
2368 if (TRANS_ABORTED(cur_trans)) {
2369 ret = cur_trans->aborted;
2370 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2371 goto scrub_continue;
2372 }
2373 /*
2374 * the reloc mutex makes sure that we stop
2375 * the balancing code from coming in and moving
2376 * extents around in the middle of the commit
2377 */
2378 mutex_lock(&fs_info->reloc_mutex);
2379
2380 /*
2381 * We needn't worry about the delayed items because we will
2382 * deal with them in create_pending_snapshot(), which is the
2383 * core function of the snapshot creation.
2384 */
2385 ret = create_pending_snapshots(trans);
2386 if (ret)
2387 goto unlock_reloc;
2388
2389 /*
2390 * We insert the dir indexes of the snapshots and update the inode
2391 * of the snapshots' parents after the snapshot creation, so there
2392 * are some delayed items which are not dealt with. Now deal with
2393 * them.
2394 *
2395 * We needn't worry that this operation will corrupt the snapshots,
2396 * because all the tree which are snapshoted will be forced to COW
2397 * the nodes and leaves.
2398 */
2399 ret = btrfs_run_delayed_items(trans);
2400 if (ret)
2401 goto unlock_reloc;
2402
2403 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2404 if (ret)
2405 goto unlock_reloc;
2406
2407 /*
2408 * make sure none of the code above managed to slip in a
2409 * delayed item
2410 */
2411 btrfs_assert_delayed_root_empty(fs_info);
2412
2413 WARN_ON(cur_trans != trans->transaction);
2414
2415 ret = commit_fs_roots(trans);
2416 if (ret)
2417 goto unlock_reloc;
2418
2419 /* commit_fs_roots gets rid of all the tree log roots, it is now
2420 * safe to free the root of tree log roots
2421 */
2422 btrfs_free_log_root_tree(trans, fs_info);
2423
2424 /*
2425 * Since fs roots are all committed, we can get a quite accurate
2426 * new_roots. So let's do quota accounting.
2427 */
2428 ret = btrfs_qgroup_account_extents(trans);
2429 if (ret < 0)
2430 goto unlock_reloc;
2431
2432 ret = commit_cowonly_roots(trans);
2433 if (ret)
2434 goto unlock_reloc;
2435
2436 /*
2437 * The tasks which save the space cache and inode cache may also
2438 * update ->aborted, check it.
2439 */
2440 if (TRANS_ABORTED(cur_trans)) {
2441 ret = cur_trans->aborted;
2442 goto unlock_reloc;
2443 }
2444
2445 cur_trans = fs_info->running_transaction;
2446
2447 btrfs_set_root_node(&fs_info->tree_root->root_item,
2448 fs_info->tree_root->node);
2449 list_add_tail(&fs_info->tree_root->dirty_list,
2450 &cur_trans->switch_commits);
2451
2452 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2453 fs_info->chunk_root->node);
2454 list_add_tail(&fs_info->chunk_root->dirty_list,
2455 &cur_trans->switch_commits);
2456
2457 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2458 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2459 fs_info->block_group_root->node);
2460 list_add_tail(&fs_info->block_group_root->dirty_list,
2461 &cur_trans->switch_commits);
2462 }
2463
2464 switch_commit_roots(trans);
2465
2466 ASSERT(list_empty(&cur_trans->dirty_bgs));
2467 ASSERT(list_empty(&cur_trans->io_bgs));
2468 update_super_roots(fs_info);
2469
2470 btrfs_set_super_log_root(fs_info->super_copy, 0);
2471 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2472 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2473 sizeof(*fs_info->super_copy));
2474
2475 btrfs_commit_device_sizes(cur_trans);
2476
2477 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2478 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2479
2480 btrfs_trans_release_chunk_metadata(trans);
2481
2482 /*
2483 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2484 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2485 * make sure that before we commit our superblock, no other task can
2486 * start a new transaction and commit a log tree before we commit our
2487 * superblock. Anyone trying to commit a log tree locks this mutex before
2488 * writing its superblock.
2489 */
2490 mutex_lock(&fs_info->tree_log_mutex);
2491
2492 spin_lock(&fs_info->trans_lock);
2493 cur_trans->state = TRANS_STATE_UNBLOCKED;
2494 fs_info->running_transaction = NULL;
2495 spin_unlock(&fs_info->trans_lock);
2496 mutex_unlock(&fs_info->reloc_mutex);
2497
2498 wake_up(&fs_info->transaction_wait);
2499 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2500
2501 /* If we have features changed, wake up the cleaner to update sysfs. */
2502 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2503 fs_info->cleaner_kthread)
2504 wake_up_process(fs_info->cleaner_kthread);
2505
2506 ret = btrfs_write_and_wait_transaction(trans);
2507 if (ret) {
2508 btrfs_handle_fs_error(fs_info, ret,
2509 "Error while writing out transaction");
2510 mutex_unlock(&fs_info->tree_log_mutex);
2511 goto scrub_continue;
2512 }
2513
2514 ret = write_all_supers(fs_info, 0);
2515 /*
2516 * the super is written, we can safely allow the tree-loggers
2517 * to go about their business
2518 */
2519 mutex_unlock(&fs_info->tree_log_mutex);
2520 if (ret)
2521 goto scrub_continue;
2522
2523 /*
2524 * We needn't acquire the lock here because there is no other task
2525 * which can change it.
2526 */
2527 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2528 wake_up(&cur_trans->commit_wait);
2529 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2530
2531 btrfs_finish_extent_commit(trans);
2532
2533 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2534 btrfs_clear_space_info_full(fs_info);
2535
2536 fs_info->last_trans_committed = cur_trans->transid;
2537 /*
2538 * We needn't acquire the lock here because there is no other task
2539 * which can change it.
2540 */
2541 cur_trans->state = TRANS_STATE_COMPLETED;
2542 wake_up(&cur_trans->commit_wait);
2543 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2544
2545 spin_lock(&fs_info->trans_lock);
2546 list_del_init(&cur_trans->list);
2547 spin_unlock(&fs_info->trans_lock);
2548
2549 btrfs_put_transaction(cur_trans);
2550 btrfs_put_transaction(cur_trans);
2551
2552 if (trans->type & __TRANS_FREEZABLE)
2553 sb_end_intwrite(fs_info->sb);
2554
2555 trace_btrfs_transaction_commit(fs_info);
2556
2557 interval = ktime_get_ns() - start_time;
2558
2559 btrfs_scrub_continue(fs_info);
2560
2561 if (current->journal_info == trans)
2562 current->journal_info = NULL;
2563
2564 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2565
2566 update_commit_stats(fs_info, interval);
2567
2568 return ret;
2569
2570 unlock_reloc:
2571 mutex_unlock(&fs_info->reloc_mutex);
2572 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2573 scrub_continue:
2574 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2576 btrfs_scrub_continue(fs_info);
2577 cleanup_transaction:
2578 btrfs_trans_release_metadata(trans);
2579 btrfs_cleanup_pending_block_groups(trans);
2580 btrfs_trans_release_chunk_metadata(trans);
2581 trans->block_rsv = NULL;
2582 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2583 if (current->journal_info == trans)
2584 current->journal_info = NULL;
2585 cleanup_transaction(trans, ret);
2586
2587 return ret;
2588
2589 lockdep_release:
2590 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2591 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2592 goto cleanup_transaction;
2593
2594 lockdep_trans_commit_start_release:
2595 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2596 btrfs_end_transaction(trans);
2597 return ret;
2598 }
2599
2600 /*
2601 * return < 0 if error
2602 * 0 if there are no more dead_roots at the time of call
2603 * 1 there are more to be processed, call me again
2604 *
2605 * The return value indicates there are certainly more snapshots to delete, but
2606 * if there comes a new one during processing, it may return 0. We don't mind,
2607 * because btrfs_commit_super will poke cleaner thread and it will process it a
2608 * few seconds later.
2609 */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2610 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2611 {
2612 struct btrfs_root *root;
2613 int ret;
2614
2615 spin_lock(&fs_info->trans_lock);
2616 if (list_empty(&fs_info->dead_roots)) {
2617 spin_unlock(&fs_info->trans_lock);
2618 return 0;
2619 }
2620 root = list_first_entry(&fs_info->dead_roots,
2621 struct btrfs_root, root_list);
2622 list_del_init(&root->root_list);
2623 spin_unlock(&fs_info->trans_lock);
2624
2625 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2626
2627 btrfs_kill_all_delayed_nodes(root);
2628
2629 if (btrfs_header_backref_rev(root->node) <
2630 BTRFS_MIXED_BACKREF_REV)
2631 ret = btrfs_drop_snapshot(root, 0, 0);
2632 else
2633 ret = btrfs_drop_snapshot(root, 1, 0);
2634
2635 btrfs_put_root(root);
2636 return (ret < 0) ? 0 : 1;
2637 }
2638
2639 /*
2640 * We only mark the transaction aborted and then set the file system read-only.
2641 * This will prevent new transactions from starting or trying to join this
2642 * one.
2643 *
2644 * This means that error recovery at the call site is limited to freeing
2645 * any local memory allocations and passing the error code up without
2646 * further cleanup. The transaction should complete as it normally would
2647 * in the call path but will return -EIO.
2648 *
2649 * We'll complete the cleanup in btrfs_end_transaction and
2650 * btrfs_commit_transaction.
2651 */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int errno,bool first_hit)2652 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2653 const char *function,
2654 unsigned int line, int errno, bool first_hit)
2655 {
2656 struct btrfs_fs_info *fs_info = trans->fs_info;
2657
2658 WRITE_ONCE(trans->aborted, errno);
2659 WRITE_ONCE(trans->transaction->aborted, errno);
2660 if (first_hit && errno == -ENOSPC)
2661 btrfs_dump_space_info_for_trans_abort(fs_info);
2662 /* Wake up anybody who may be waiting on this transaction */
2663 wake_up(&fs_info->transaction_wait);
2664 wake_up(&fs_info->transaction_blocked_wait);
2665 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2666 }
2667
btrfs_transaction_init(void)2668 int __init btrfs_transaction_init(void)
2669 {
2670 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2671 sizeof(struct btrfs_trans_handle), 0,
2672 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2673 if (!btrfs_trans_handle_cachep)
2674 return -ENOMEM;
2675 return 0;
2676 }
2677
btrfs_transaction_exit(void)2678 void __cold btrfs_transaction_exit(void)
2679 {
2680 kmem_cache_destroy(btrfs_trans_handle_cachep);
2681 }
2682