• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "messages.h"
4 #include "tree-mod-log.h"
5 #include "disk-io.h"
6 #include "fs.h"
7 #include "accessors.h"
8 #include "tree-checker.h"
9 
10 struct tree_mod_root {
11 	u64 logical;
12 	u8 level;
13 };
14 
15 struct tree_mod_elem {
16 	struct rb_node node;
17 	u64 logical;
18 	u64 seq;
19 	enum btrfs_mod_log_op op;
20 
21 	/*
22 	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
23 	 * operations.
24 	 */
25 	int slot;
26 
27 	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
28 	u64 generation;
29 
30 	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
31 	struct btrfs_disk_key key;
32 	u64 blockptr;
33 
34 	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
35 	struct {
36 		int dst_slot;
37 		int nr_items;
38 	} move;
39 
40 	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
41 	struct tree_mod_root old_root;
42 };
43 
44 /*
45  * Pull a new tree mod seq number for our operation.
46  */
btrfs_inc_tree_mod_seq(struct btrfs_fs_info * fs_info)47 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
48 {
49 	return atomic64_inc_return(&fs_info->tree_mod_seq);
50 }
51 
52 /*
53  * This adds a new blocker to the tree mod log's blocker list if the @elem
54  * passed does not already have a sequence number set. So when a caller expects
55  * to record tree modifications, it should ensure to set elem->seq to zero
56  * before calling btrfs_get_tree_mod_seq.
57  * Returns a fresh, unused tree log modification sequence number, even if no new
58  * blocker was added.
59  */
btrfs_get_tree_mod_seq(struct btrfs_fs_info * fs_info,struct btrfs_seq_list * elem)60 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
61 			   struct btrfs_seq_list *elem)
62 {
63 	write_lock(&fs_info->tree_mod_log_lock);
64 	if (!elem->seq) {
65 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
66 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
67 		set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
68 	}
69 	write_unlock(&fs_info->tree_mod_log_lock);
70 
71 	return elem->seq;
72 }
73 
btrfs_put_tree_mod_seq(struct btrfs_fs_info * fs_info,struct btrfs_seq_list * elem)74 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
75 			    struct btrfs_seq_list *elem)
76 {
77 	struct rb_root *tm_root;
78 	struct rb_node *node;
79 	struct rb_node *next;
80 	struct tree_mod_elem *tm;
81 	u64 min_seq = BTRFS_SEQ_LAST;
82 	u64 seq_putting = elem->seq;
83 
84 	if (!seq_putting)
85 		return;
86 
87 	write_lock(&fs_info->tree_mod_log_lock);
88 	list_del(&elem->list);
89 	elem->seq = 0;
90 
91 	if (list_empty(&fs_info->tree_mod_seq_list)) {
92 		clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
93 	} else {
94 		struct btrfs_seq_list *first;
95 
96 		first = list_first_entry(&fs_info->tree_mod_seq_list,
97 					 struct btrfs_seq_list, list);
98 		if (seq_putting > first->seq) {
99 			/*
100 			 * Blocker with lower sequence number exists, we cannot
101 			 * remove anything from the log.
102 			 */
103 			write_unlock(&fs_info->tree_mod_log_lock);
104 			return;
105 		}
106 		min_seq = first->seq;
107 	}
108 
109 	/*
110 	 * Anything that's lower than the lowest existing (read: blocked)
111 	 * sequence number can be removed from the tree.
112 	 */
113 	tm_root = &fs_info->tree_mod_log;
114 	for (node = rb_first(tm_root); node; node = next) {
115 		next = rb_next(node);
116 		tm = rb_entry(node, struct tree_mod_elem, node);
117 		if (tm->seq >= min_seq)
118 			continue;
119 		rb_erase(node, tm_root);
120 		kfree(tm);
121 	}
122 	write_unlock(&fs_info->tree_mod_log_lock);
123 }
124 
125 /*
126  * Key order of the log:
127  *       node/leaf start address -> sequence
128  *
129  * The 'start address' is the logical address of the *new* root node for root
130  * replace operations, or the logical address of the affected block for all
131  * other operations.
132  */
tree_mod_log_insert(struct btrfs_fs_info * fs_info,struct tree_mod_elem * tm)133 static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
134 					struct tree_mod_elem *tm)
135 {
136 	struct rb_root *tm_root;
137 	struct rb_node **new;
138 	struct rb_node *parent = NULL;
139 	struct tree_mod_elem *cur;
140 
141 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
142 
143 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
144 
145 	tm_root = &fs_info->tree_mod_log;
146 	new = &tm_root->rb_node;
147 	while (*new) {
148 		cur = rb_entry(*new, struct tree_mod_elem, node);
149 		parent = *new;
150 		if (cur->logical < tm->logical)
151 			new = &((*new)->rb_left);
152 		else if (cur->logical > tm->logical)
153 			new = &((*new)->rb_right);
154 		else if (cur->seq < tm->seq)
155 			new = &((*new)->rb_left);
156 		else if (cur->seq > tm->seq)
157 			new = &((*new)->rb_right);
158 		else
159 			return -EEXIST;
160 	}
161 
162 	rb_link_node(&tm->node, parent, new);
163 	rb_insert_color(&tm->node, tm_root);
164 	return 0;
165 }
166 
167 /*
168  * Determines if logging can be omitted. Returns true if it can. Otherwise, it
169  * returns false with the tree_mod_log_lock acquired. The caller must hold
170  * this until all tree mod log insertions are recorded in the rb tree and then
171  * write unlock fs_info::tree_mod_log_lock.
172  */
tree_mod_dont_log(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)173 static inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info,
174 				    struct extent_buffer *eb)
175 {
176 	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
177 		return true;
178 	if (eb && btrfs_header_level(eb) == 0)
179 		return true;
180 
181 	write_lock(&fs_info->tree_mod_log_lock);
182 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
183 		write_unlock(&fs_info->tree_mod_log_lock);
184 		return true;
185 	}
186 
187 	return false;
188 }
189 
190 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
tree_mod_need_log(const struct btrfs_fs_info * fs_info,struct extent_buffer * eb)191 static inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
192 				    struct extent_buffer *eb)
193 {
194 	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
195 		return false;
196 	if (eb && btrfs_header_level(eb) == 0)
197 		return false;
198 
199 	return true;
200 }
201 
alloc_tree_mod_elem(struct extent_buffer * eb,int slot,enum btrfs_mod_log_op op)202 static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
203 						 int slot,
204 						 enum btrfs_mod_log_op op)
205 {
206 	struct tree_mod_elem *tm;
207 
208 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
209 	if (!tm)
210 		return NULL;
211 
212 	tm->logical = eb->start;
213 	if (op != BTRFS_MOD_LOG_KEY_ADD) {
214 		btrfs_node_key(eb, &tm->key, slot);
215 		tm->blockptr = btrfs_node_blockptr(eb, slot);
216 	}
217 	tm->op = op;
218 	tm->slot = slot;
219 	tm->generation = btrfs_node_ptr_generation(eb, slot);
220 	RB_CLEAR_NODE(&tm->node);
221 
222 	return tm;
223 }
224 
btrfs_tree_mod_log_insert_key(struct extent_buffer * eb,int slot,enum btrfs_mod_log_op op)225 int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
226 				  enum btrfs_mod_log_op op)
227 {
228 	struct tree_mod_elem *tm;
229 	int ret = 0;
230 
231 	if (!tree_mod_need_log(eb->fs_info, eb))
232 		return 0;
233 
234 	tm = alloc_tree_mod_elem(eb, slot, op);
235 	if (!tm)
236 		ret = -ENOMEM;
237 
238 	if (tree_mod_dont_log(eb->fs_info, eb)) {
239 		kfree(tm);
240 		/*
241 		 * Don't error if we failed to allocate memory because we don't
242 		 * need to log.
243 		 */
244 		return 0;
245 	} else if (ret != 0) {
246 		/*
247 		 * We previously failed to allocate memory and we need to log,
248 		 * so we have to fail.
249 		 */
250 		goto out_unlock;
251 	}
252 
253 	ret = tree_mod_log_insert(eb->fs_info, tm);
254 out_unlock:
255 	write_unlock(&eb->fs_info->tree_mod_log_lock);
256 	if (ret)
257 		kfree(tm);
258 
259 	return ret;
260 }
261 
tree_mod_log_alloc_move(struct extent_buffer * eb,int dst_slot,int src_slot,int nr_items)262 static struct tree_mod_elem *tree_mod_log_alloc_move(struct extent_buffer *eb,
263 						     int dst_slot, int src_slot,
264 						     int nr_items)
265 {
266 	struct tree_mod_elem *tm;
267 
268 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
269 	if (!tm)
270 		return ERR_PTR(-ENOMEM);
271 
272 	tm->logical = eb->start;
273 	tm->slot = src_slot;
274 	tm->move.dst_slot = dst_slot;
275 	tm->move.nr_items = nr_items;
276 	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
277 	RB_CLEAR_NODE(&tm->node);
278 
279 	return tm;
280 }
281 
btrfs_tree_mod_log_insert_move(struct extent_buffer * eb,int dst_slot,int src_slot,int nr_items)282 int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
283 				   int dst_slot, int src_slot,
284 				   int nr_items)
285 {
286 	struct tree_mod_elem *tm = NULL;
287 	struct tree_mod_elem **tm_list = NULL;
288 	int ret = 0;
289 	int i;
290 	bool locked = false;
291 
292 	if (!tree_mod_need_log(eb->fs_info, eb))
293 		return 0;
294 
295 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
296 	if (!tm_list) {
297 		ret = -ENOMEM;
298 		goto lock;
299 	}
300 
301 	tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items);
302 	if (IS_ERR(tm)) {
303 		ret = PTR_ERR(tm);
304 		tm = NULL;
305 		goto lock;
306 	}
307 
308 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
309 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
310 				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING);
311 		if (!tm_list[i]) {
312 			ret = -ENOMEM;
313 			goto lock;
314 		}
315 	}
316 
317 lock:
318 	if (tree_mod_dont_log(eb->fs_info, eb)) {
319 		/*
320 		 * Don't error if we failed to allocate memory because we don't
321 		 * need to log.
322 		 */
323 		ret = 0;
324 		goto free_tms;
325 	}
326 	locked = true;
327 
328 	/*
329 	 * We previously failed to allocate memory and we need to log, so we
330 	 * have to fail.
331 	 */
332 	if (ret != 0)
333 		goto free_tms;
334 
335 	/*
336 	 * When we override something during the move, we log these removals.
337 	 * This can only happen when we move towards the beginning of the
338 	 * buffer, i.e. dst_slot < src_slot.
339 	 */
340 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
341 		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
342 		if (ret)
343 			goto free_tms;
344 	}
345 
346 	ret = tree_mod_log_insert(eb->fs_info, tm);
347 	if (ret)
348 		goto free_tms;
349 	write_unlock(&eb->fs_info->tree_mod_log_lock);
350 	kfree(tm_list);
351 
352 	return 0;
353 
354 free_tms:
355 	if (tm_list) {
356 		for (i = 0; i < nr_items; i++) {
357 			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
358 				rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
359 			kfree(tm_list[i]);
360 		}
361 	}
362 	if (locked)
363 		write_unlock(&eb->fs_info->tree_mod_log_lock);
364 	kfree(tm_list);
365 	kfree(tm);
366 
367 	return ret;
368 }
369 
tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct tree_mod_elem ** tm_list,int nritems)370 static inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
371 				       struct tree_mod_elem **tm_list,
372 				       int nritems)
373 {
374 	int i, j;
375 	int ret;
376 
377 	for (i = nritems - 1; i >= 0; i--) {
378 		ret = tree_mod_log_insert(fs_info, tm_list[i]);
379 		if (ret) {
380 			for (j = nritems - 1; j > i; j--)
381 				rb_erase(&tm_list[j]->node,
382 					 &fs_info->tree_mod_log);
383 			return ret;
384 		}
385 	}
386 
387 	return 0;
388 }
389 
btrfs_tree_mod_log_insert_root(struct extent_buffer * old_root,struct extent_buffer * new_root,bool log_removal)390 int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
391 				   struct extent_buffer *new_root,
392 				   bool log_removal)
393 {
394 	struct btrfs_fs_info *fs_info = old_root->fs_info;
395 	struct tree_mod_elem *tm = NULL;
396 	struct tree_mod_elem **tm_list = NULL;
397 	int nritems = 0;
398 	int ret = 0;
399 	int i;
400 
401 	if (!tree_mod_need_log(fs_info, NULL))
402 		return 0;
403 
404 	if (log_removal && btrfs_header_level(old_root) > 0) {
405 		nritems = btrfs_header_nritems(old_root);
406 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
407 				  GFP_NOFS);
408 		if (!tm_list) {
409 			ret = -ENOMEM;
410 			goto lock;
411 		}
412 		for (i = 0; i < nritems; i++) {
413 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
414 			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
415 			if (!tm_list[i]) {
416 				ret = -ENOMEM;
417 				goto lock;
418 			}
419 		}
420 	}
421 
422 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
423 	if (!tm) {
424 		ret = -ENOMEM;
425 		goto lock;
426 	}
427 
428 	tm->logical = new_root->start;
429 	tm->old_root.logical = old_root->start;
430 	tm->old_root.level = btrfs_header_level(old_root);
431 	tm->generation = btrfs_header_generation(old_root);
432 	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
433 
434 lock:
435 	if (tree_mod_dont_log(fs_info, NULL)) {
436 		/*
437 		 * Don't error if we failed to allocate memory because we don't
438 		 * need to log.
439 		 */
440 		ret = 0;
441 		goto free_tms;
442 	} else if (ret != 0) {
443 		/*
444 		 * We previously failed to allocate memory and we need to log,
445 		 * so we have to fail.
446 		 */
447 		goto out_unlock;
448 	}
449 
450 	if (tm_list)
451 		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
452 	if (!ret)
453 		ret = tree_mod_log_insert(fs_info, tm);
454 
455 out_unlock:
456 	write_unlock(&fs_info->tree_mod_log_lock);
457 	if (ret)
458 		goto free_tms;
459 	kfree(tm_list);
460 
461 	return ret;
462 
463 free_tms:
464 	if (tm_list) {
465 		for (i = 0; i < nritems; i++)
466 			kfree(tm_list[i]);
467 		kfree(tm_list);
468 	}
469 	kfree(tm);
470 
471 	return ret;
472 }
473 
__tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq,bool smallest)474 static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
475 						   u64 start, u64 min_seq,
476 						   bool smallest)
477 {
478 	struct rb_root *tm_root;
479 	struct rb_node *node;
480 	struct tree_mod_elem *cur = NULL;
481 	struct tree_mod_elem *found = NULL;
482 
483 	read_lock(&fs_info->tree_mod_log_lock);
484 	tm_root = &fs_info->tree_mod_log;
485 	node = tm_root->rb_node;
486 	while (node) {
487 		cur = rb_entry(node, struct tree_mod_elem, node);
488 		if (cur->logical < start) {
489 			node = node->rb_left;
490 		} else if (cur->logical > start) {
491 			node = node->rb_right;
492 		} else if (cur->seq < min_seq) {
493 			node = node->rb_left;
494 		} else if (!smallest) {
495 			/* We want the node with the highest seq */
496 			if (found)
497 				BUG_ON(found->seq > cur->seq);
498 			found = cur;
499 			node = node->rb_left;
500 		} else if (cur->seq > min_seq) {
501 			/* We want the node with the smallest seq */
502 			if (found)
503 				BUG_ON(found->seq < cur->seq);
504 			found = cur;
505 			node = node->rb_right;
506 		} else {
507 			found = cur;
508 			break;
509 		}
510 	}
511 	read_unlock(&fs_info->tree_mod_log_lock);
512 
513 	return found;
514 }
515 
516 /*
517  * This returns the element from the log with the smallest time sequence
518  * value that's in the log (the oldest log item). Any element with a time
519  * sequence lower than min_seq will be ignored.
520  */
tree_mod_log_search_oldest(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)521 static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
522 							u64 start, u64 min_seq)
523 {
524 	return __tree_mod_log_search(fs_info, start, min_seq, true);
525 }
526 
527 /*
528  * This returns the element from the log with the largest time sequence
529  * value that's in the log (the most recent log item). Any element with
530  * a time sequence lower than min_seq will be ignored.
531  */
tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)532 static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
533 						 u64 start, u64 min_seq)
534 {
535 	return __tree_mod_log_search(fs_info, start, min_seq, false);
536 }
537 
btrfs_tree_mod_log_eb_copy(struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,int nr_items)538 int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
539 			       struct extent_buffer *src,
540 			       unsigned long dst_offset,
541 			       unsigned long src_offset,
542 			       int nr_items)
543 {
544 	struct btrfs_fs_info *fs_info = dst->fs_info;
545 	int ret = 0;
546 	struct tree_mod_elem **tm_list = NULL;
547 	struct tree_mod_elem **tm_list_add = NULL;
548 	struct tree_mod_elem **tm_list_rem = NULL;
549 	int i;
550 	bool locked = false;
551 	struct tree_mod_elem *dst_move_tm = NULL;
552 	struct tree_mod_elem *src_move_tm = NULL;
553 	u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset;
554 	u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items);
555 
556 	if (!tree_mod_need_log(fs_info, NULL))
557 		return 0;
558 
559 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
560 		return 0;
561 
562 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
563 			  GFP_NOFS);
564 	if (!tm_list) {
565 		ret = -ENOMEM;
566 		goto lock;
567 	}
568 
569 	if (dst_move_nr_items) {
570 		dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items,
571 						      dst_offset, dst_move_nr_items);
572 		if (IS_ERR(dst_move_tm)) {
573 			ret = PTR_ERR(dst_move_tm);
574 			dst_move_tm = NULL;
575 			goto lock;
576 		}
577 	}
578 	if (src_move_nr_items) {
579 		src_move_tm = tree_mod_log_alloc_move(src, src_offset,
580 						      src_offset + nr_items,
581 						      src_move_nr_items);
582 		if (IS_ERR(src_move_tm)) {
583 			ret = PTR_ERR(src_move_tm);
584 			src_move_tm = NULL;
585 			goto lock;
586 		}
587 	}
588 
589 	tm_list_add = tm_list;
590 	tm_list_rem = tm_list + nr_items;
591 	for (i = 0; i < nr_items; i++) {
592 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
593 						     BTRFS_MOD_LOG_KEY_REMOVE);
594 		if (!tm_list_rem[i]) {
595 			ret = -ENOMEM;
596 			goto lock;
597 		}
598 
599 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
600 						     BTRFS_MOD_LOG_KEY_ADD);
601 		if (!tm_list_add[i]) {
602 			ret = -ENOMEM;
603 			goto lock;
604 		}
605 	}
606 
607 lock:
608 	if (tree_mod_dont_log(fs_info, NULL)) {
609 		/*
610 		 * Don't error if we failed to allocate memory because we don't
611 		 * need to log.
612 		 */
613 		ret = 0;
614 		goto free_tms;
615 	}
616 	locked = true;
617 
618 	/*
619 	 * We previously failed to allocate memory and we need to log, so we
620 	 * have to fail.
621 	 */
622 	if (ret != 0)
623 		goto free_tms;
624 
625 	if (dst_move_tm) {
626 		ret = tree_mod_log_insert(fs_info, dst_move_tm);
627 		if (ret)
628 			goto free_tms;
629 	}
630 	for (i = 0; i < nr_items; i++) {
631 		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
632 		if (ret)
633 			goto free_tms;
634 		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
635 		if (ret)
636 			goto free_tms;
637 	}
638 	if (src_move_tm) {
639 		ret = tree_mod_log_insert(fs_info, src_move_tm);
640 		if (ret)
641 			goto free_tms;
642 	}
643 
644 	write_unlock(&fs_info->tree_mod_log_lock);
645 	kfree(tm_list);
646 
647 	return 0;
648 
649 free_tms:
650 	if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node))
651 		rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log);
652 	kfree(dst_move_tm);
653 	if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node))
654 		rb_erase(&src_move_tm->node, &fs_info->tree_mod_log);
655 	kfree(src_move_tm);
656 	if (tm_list) {
657 		for (i = 0; i < nr_items * 2; i++) {
658 			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
659 				rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
660 			kfree(tm_list[i]);
661 		}
662 	}
663 	if (locked)
664 		write_unlock(&fs_info->tree_mod_log_lock);
665 	kfree(tm_list);
666 
667 	return ret;
668 }
669 
btrfs_tree_mod_log_free_eb(struct extent_buffer * eb)670 int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
671 {
672 	struct tree_mod_elem **tm_list = NULL;
673 	int nritems = 0;
674 	int i;
675 	int ret = 0;
676 
677 	if (!tree_mod_need_log(eb->fs_info, eb))
678 		return 0;
679 
680 	nritems = btrfs_header_nritems(eb);
681 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
682 	if (!tm_list) {
683 		ret = -ENOMEM;
684 		goto lock;
685 	}
686 
687 	for (i = 0; i < nritems; i++) {
688 		tm_list[i] = alloc_tree_mod_elem(eb, i,
689 				    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
690 		if (!tm_list[i]) {
691 			ret = -ENOMEM;
692 			goto lock;
693 		}
694 	}
695 
696 lock:
697 	if (tree_mod_dont_log(eb->fs_info, eb)) {
698 		/*
699 		 * Don't error if we failed to allocate memory because we don't
700 		 * need to log.
701 		 */
702 		ret = 0;
703 		goto free_tms;
704 	} else if (ret != 0) {
705 		/*
706 		 * We previously failed to allocate memory and we need to log,
707 		 * so we have to fail.
708 		 */
709 		goto out_unlock;
710 	}
711 
712 	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
713 out_unlock:
714 	write_unlock(&eb->fs_info->tree_mod_log_lock);
715 	if (ret)
716 		goto free_tms;
717 	kfree(tm_list);
718 
719 	return 0;
720 
721 free_tms:
722 	if (tm_list) {
723 		for (i = 0; i < nritems; i++)
724 			kfree(tm_list[i]);
725 		kfree(tm_list);
726 	}
727 
728 	return ret;
729 }
730 
731 /*
732  * Returns the logical address of the oldest predecessor of the given root.
733  * Entries older than time_seq are ignored.
734  */
tree_mod_log_oldest_root(struct extent_buffer * eb_root,u64 time_seq)735 static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
736 						      u64 time_seq)
737 {
738 	struct tree_mod_elem *tm;
739 	struct tree_mod_elem *found = NULL;
740 	u64 root_logical = eb_root->start;
741 	bool looped = false;
742 
743 	if (!time_seq)
744 		return NULL;
745 
746 	/*
747 	 * The very last operation that's logged for a root is the replacement
748 	 * operation (if it is replaced at all). This has the logical address
749 	 * of the *new* root, making it the very first operation that's logged
750 	 * for this root.
751 	 */
752 	while (1) {
753 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
754 						time_seq);
755 		if (!looped && !tm)
756 			return NULL;
757 		/*
758 		 * If there are no tree operation for the oldest root, we simply
759 		 * return it. This should only happen if that (old) root is at
760 		 * level 0.
761 		 */
762 		if (!tm)
763 			break;
764 
765 		/*
766 		 * If there's an operation that's not a root replacement, we
767 		 * found the oldest version of our root. Normally, we'll find a
768 		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
769 		 */
770 		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
771 			break;
772 
773 		found = tm;
774 		root_logical = tm->old_root.logical;
775 		looped = true;
776 	}
777 
778 	/* If there's no old root to return, return what we found instead */
779 	if (!found)
780 		found = tm;
781 
782 	return found;
783 }
784 
785 
786 /*
787  * tm is a pointer to the first operation to rewind within eb. Then, all
788  * previous operations will be rewound (until we reach something older than
789  * time_seq).
790  */
tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 time_seq,struct tree_mod_elem * first_tm)791 static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
792 				struct extent_buffer *eb,
793 				u64 time_seq,
794 				struct tree_mod_elem *first_tm)
795 {
796 	u32 n;
797 	struct rb_node *next;
798 	struct tree_mod_elem *tm = first_tm;
799 	unsigned long o_dst;
800 	unsigned long o_src;
801 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
802 	/*
803 	 * max_slot tracks the maximum valid slot of the rewind eb at every
804 	 * step of the rewind. This is in contrast with 'n' which eventually
805 	 * matches the number of items, but can be wrong during moves or if
806 	 * removes overlap on already valid slots (which is probably separately
807 	 * a bug). We do this to validate the offsets of memmoves for rewinding
808 	 * moves and detect invalid memmoves.
809 	 *
810 	 * Since a rewind eb can start empty, max_slot is a signed integer with
811 	 * a special meaning for -1, which is that no slot is valid to move out
812 	 * of. Any other negative value is invalid.
813 	 */
814 	int max_slot;
815 	int move_src_end_slot;
816 	int move_dst_end_slot;
817 
818 	n = btrfs_header_nritems(eb);
819 	max_slot = n - 1;
820 	read_lock(&fs_info->tree_mod_log_lock);
821 	while (tm && tm->seq >= time_seq) {
822 		ASSERT(max_slot >= -1);
823 		/*
824 		 * All the operations are recorded with the operator used for
825 		 * the modification. As we're going backwards, we do the
826 		 * opposite of each operation here.
827 		 */
828 		switch (tm->op) {
829 		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
830 			BUG_ON(tm->slot < n);
831 			fallthrough;
832 		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
833 		case BTRFS_MOD_LOG_KEY_REMOVE:
834 			btrfs_set_node_key(eb, &tm->key, tm->slot);
835 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
836 			btrfs_set_node_ptr_generation(eb, tm->slot,
837 						      tm->generation);
838 			n++;
839 			if (tm->slot > max_slot)
840 				max_slot = tm->slot;
841 			break;
842 		case BTRFS_MOD_LOG_KEY_REPLACE:
843 			BUG_ON(tm->slot >= n);
844 			btrfs_set_node_key(eb, &tm->key, tm->slot);
845 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
846 			btrfs_set_node_ptr_generation(eb, tm->slot,
847 						      tm->generation);
848 			break;
849 		case BTRFS_MOD_LOG_KEY_ADD:
850 			/*
851 			 * It is possible we could have already removed keys
852 			 * behind the known max slot, so this will be an
853 			 * overestimate. In practice, the copy operation
854 			 * inserts them in increasing order, and overestimating
855 			 * just means we miss some warnings, so it's OK. It
856 			 * isn't worth carefully tracking the full array of
857 			 * valid slots to check against when moving.
858 			 */
859 			if (tm->slot == max_slot)
860 				max_slot--;
861 			/* if a move operation is needed it's in the log */
862 			n--;
863 			break;
864 		case BTRFS_MOD_LOG_MOVE_KEYS:
865 			ASSERT(tm->move.nr_items > 0);
866 			move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1;
867 			move_dst_end_slot = tm->slot + tm->move.nr_items - 1;
868 			o_dst = btrfs_node_key_ptr_offset(eb, tm->slot);
869 			o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot);
870 			if (WARN_ON(move_src_end_slot > max_slot ||
871 				    tm->move.nr_items <= 0)) {
872 				btrfs_warn(fs_info,
873 "move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d",
874 					   eb->start, tm->slot,
875 					   tm->move.dst_slot, tm->move.nr_items,
876 					   tm->seq, n, max_slot);
877 			}
878 			memmove_extent_buffer(eb, o_dst, o_src,
879 					      tm->move.nr_items * p_size);
880 			max_slot = move_dst_end_slot;
881 			break;
882 		case BTRFS_MOD_LOG_ROOT_REPLACE:
883 			/*
884 			 * This operation is special. For roots, this must be
885 			 * handled explicitly before rewinding.
886 			 * For non-roots, this operation may exist if the node
887 			 * was a root: root A -> child B; then A gets empty and
888 			 * B is promoted to the new root. In the mod log, we'll
889 			 * have a root-replace operation for B, a tree block
890 			 * that is no root. We simply ignore that operation.
891 			 */
892 			break;
893 		}
894 		next = rb_next(&tm->node);
895 		if (!next)
896 			break;
897 		tm = rb_entry(next, struct tree_mod_elem, node);
898 		if (tm->logical != first_tm->logical)
899 			break;
900 	}
901 	read_unlock(&fs_info->tree_mod_log_lock);
902 	btrfs_set_header_nritems(eb, n);
903 }
904 
905 /*
906  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
907  * is returned. If rewind operations happen, a fresh buffer is returned. The
908  * returned buffer is always read-locked. If the returned buffer is not the
909  * input buffer, the lock on the input buffer is released and the input buffer
910  * is freed (its refcount is decremented).
911  */
btrfs_tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct extent_buffer * eb,u64 time_seq)912 struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
913 						struct btrfs_path *path,
914 						struct extent_buffer *eb,
915 						u64 time_seq)
916 {
917 	struct extent_buffer *eb_rewin;
918 	struct tree_mod_elem *tm;
919 
920 	if (!time_seq)
921 		return eb;
922 
923 	if (btrfs_header_level(eb) == 0)
924 		return eb;
925 
926 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
927 	if (!tm)
928 		return eb;
929 
930 	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
931 		BUG_ON(tm->slot != 0);
932 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
933 		if (!eb_rewin) {
934 			btrfs_tree_read_unlock(eb);
935 			free_extent_buffer(eb);
936 			return NULL;
937 		}
938 		btrfs_set_header_bytenr(eb_rewin, eb->start);
939 		btrfs_set_header_backref_rev(eb_rewin,
940 					     btrfs_header_backref_rev(eb));
941 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
942 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
943 	} else {
944 		eb_rewin = btrfs_clone_extent_buffer(eb);
945 		if (!eb_rewin) {
946 			btrfs_tree_read_unlock(eb);
947 			free_extent_buffer(eb);
948 			return NULL;
949 		}
950 	}
951 
952 	btrfs_tree_read_unlock(eb);
953 	free_extent_buffer(eb);
954 
955 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
956 				       eb_rewin, btrfs_header_level(eb_rewin));
957 	btrfs_tree_read_lock(eb_rewin);
958 	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
959 	WARN_ON(btrfs_header_nritems(eb_rewin) >
960 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
961 
962 	return eb_rewin;
963 }
964 
965 /*
966  * Rewind the state of @root's root node to the given @time_seq value.
967  * If there are no changes, the current root->root_node is returned. If anything
968  * changed in between, there's a fresh buffer allocated on which the rewind
969  * operations are done. In any case, the returned buffer is read locked.
970  * Returns NULL on error (with no locks held).
971  */
btrfs_get_old_root(struct btrfs_root * root,u64 time_seq)972 struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
973 {
974 	struct btrfs_fs_info *fs_info = root->fs_info;
975 	struct tree_mod_elem *tm;
976 	struct extent_buffer *eb = NULL;
977 	struct extent_buffer *eb_root;
978 	u64 eb_root_owner = 0;
979 	struct extent_buffer *old;
980 	struct tree_mod_root *old_root = NULL;
981 	u64 old_generation = 0;
982 	u64 logical;
983 	int level;
984 
985 	eb_root = btrfs_read_lock_root_node(root);
986 	tm = tree_mod_log_oldest_root(eb_root, time_seq);
987 	if (!tm)
988 		return eb_root;
989 
990 	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
991 		old_root = &tm->old_root;
992 		old_generation = tm->generation;
993 		logical = old_root->logical;
994 		level = old_root->level;
995 	} else {
996 		logical = eb_root->start;
997 		level = btrfs_header_level(eb_root);
998 	}
999 
1000 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1001 	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1002 		struct btrfs_tree_parent_check check = { 0 };
1003 
1004 		btrfs_tree_read_unlock(eb_root);
1005 		free_extent_buffer(eb_root);
1006 
1007 		check.level = level;
1008 		check.owner_root = root->root_key.objectid;
1009 
1010 		old = read_tree_block(fs_info, logical, &check);
1011 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1012 			if (!IS_ERR(old))
1013 				free_extent_buffer(old);
1014 			btrfs_warn(fs_info,
1015 				   "failed to read tree block %llu from get_old_root",
1016 				   logical);
1017 		} else {
1018 			struct tree_mod_elem *tm2;
1019 
1020 			btrfs_tree_read_lock(old);
1021 			eb = btrfs_clone_extent_buffer(old);
1022 			/*
1023 			 * After the lookup for the most recent tree mod operation
1024 			 * above and before we locked and cloned the extent buffer
1025 			 * 'old', a new tree mod log operation may have been added.
1026 			 * So lookup for a more recent one to make sure the number
1027 			 * of mod log operations we replay is consistent with the
1028 			 * number of items we have in the cloned extent buffer,
1029 			 * otherwise we can hit a BUG_ON when rewinding the extent
1030 			 * buffer.
1031 			 */
1032 			tm2 = tree_mod_log_search(fs_info, logical, time_seq);
1033 			btrfs_tree_read_unlock(old);
1034 			free_extent_buffer(old);
1035 			ASSERT(tm2);
1036 			ASSERT(tm2 == tm || tm2->seq > tm->seq);
1037 			if (!tm2 || tm2->seq < tm->seq) {
1038 				free_extent_buffer(eb);
1039 				return NULL;
1040 			}
1041 			tm = tm2;
1042 		}
1043 	} else if (old_root) {
1044 		eb_root_owner = btrfs_header_owner(eb_root);
1045 		btrfs_tree_read_unlock(eb_root);
1046 		free_extent_buffer(eb_root);
1047 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1048 	} else {
1049 		eb = btrfs_clone_extent_buffer(eb_root);
1050 		btrfs_tree_read_unlock(eb_root);
1051 		free_extent_buffer(eb_root);
1052 	}
1053 
1054 	if (!eb)
1055 		return NULL;
1056 	if (old_root) {
1057 		btrfs_set_header_bytenr(eb, eb->start);
1058 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1059 		btrfs_set_header_owner(eb, eb_root_owner);
1060 		btrfs_set_header_level(eb, old_root->level);
1061 		btrfs_set_header_generation(eb, old_generation);
1062 	}
1063 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1064 				       btrfs_header_level(eb));
1065 	btrfs_tree_read_lock(eb);
1066 	if (tm)
1067 		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1068 	else
1069 		WARN_ON(btrfs_header_level(eb) != 0);
1070 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1071 
1072 	return eb;
1073 }
1074 
btrfs_old_root_level(struct btrfs_root * root,u64 time_seq)1075 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1076 {
1077 	struct tree_mod_elem *tm;
1078 	int level;
1079 	struct extent_buffer *eb_root = btrfs_root_node(root);
1080 
1081 	tm = tree_mod_log_oldest_root(eb_root, time_seq);
1082 	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
1083 		level = tm->old_root.level;
1084 	else
1085 		level = btrfs_header_level(eb_root);
1086 
1087 	free_extent_buffer(eb_root);
1088 
1089 	return level;
1090 }
1091 
1092 /*
1093  * Return the lowest sequence number in the tree modification log.
1094  *
1095  * Return the sequence number of the oldest tree modification log user, which
1096  * corresponds to the lowest sequence number of all existing users. If there are
1097  * no users it returns 0.
1098  */
btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info * fs_info)1099 u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
1100 {
1101 	u64 ret = 0;
1102 
1103 	read_lock(&fs_info->tree_mod_log_lock);
1104 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
1105 		struct btrfs_seq_list *elem;
1106 
1107 		elem = list_first_entry(&fs_info->tree_mod_seq_list,
1108 					struct btrfs_seq_list, list);
1109 		ret = elem->seq;
1110 	}
1111 	read_unlock(&fs_info->tree_mod_log_lock);
1112 
1113 	return ret;
1114 }
1115