1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45
46 #include <linux/uaccess.h>
47
48 #include <trace/events/timer.h>
49 #include <trace/hooks/syscall_check.h>
50
51 #include "tick-internal.h"
52
53 /*
54 * Masks for selecting the soft and hard context timers from
55 * cpu_base->active
56 */
57 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
58 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
59 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
60 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
61
62 /*
63 * The timer bases:
64 *
65 * There are more clockids than hrtimer bases. Thus, we index
66 * into the timer bases by the hrtimer_base_type enum. When trying
67 * to reach a base using a clockid, hrtimer_clockid_to_base()
68 * is used to convert from clockid to the proper hrtimer_base_type.
69 */
70 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71 {
72 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73 .clock_base =
74 {
75 {
76 .index = HRTIMER_BASE_MONOTONIC,
77 .clockid = CLOCK_MONOTONIC,
78 .get_time = &ktime_get,
79 },
80 {
81 .index = HRTIMER_BASE_REALTIME,
82 .clockid = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
84 },
85 {
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
88 .get_time = &ktime_get_boottime,
89 },
90 {
91 .index = HRTIMER_BASE_TAI,
92 .clockid = CLOCK_TAI,
93 .get_time = &ktime_get_clocktai,
94 },
95 {
96 .index = HRTIMER_BASE_MONOTONIC_SOFT,
97 .clockid = CLOCK_MONOTONIC,
98 .get_time = &ktime_get,
99 },
100 {
101 .index = HRTIMER_BASE_REALTIME_SOFT,
102 .clockid = CLOCK_REALTIME,
103 .get_time = &ktime_get_real,
104 },
105 {
106 .index = HRTIMER_BASE_BOOTTIME_SOFT,
107 .clockid = CLOCK_BOOTTIME,
108 .get_time = &ktime_get_boottime,
109 },
110 {
111 .index = HRTIMER_BASE_TAI_SOFT,
112 .clockid = CLOCK_TAI,
113 .get_time = &ktime_get_clocktai,
114 },
115 }
116 };
117
118 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
119 /* Make sure we catch unsupported clockids */
120 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
121
122 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
123 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
124 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
125 [CLOCK_TAI] = HRTIMER_BASE_TAI,
126 };
127
128 /*
129 * Functions and macros which are different for UP/SMP systems are kept in a
130 * single place
131 */
132 #ifdef CONFIG_SMP
133
134 /*
135 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
136 * such that hrtimer_callback_running() can unconditionally dereference
137 * timer->base->cpu_base
138 */
139 static struct hrtimer_cpu_base migration_cpu_base = {
140 .clock_base = { {
141 .cpu_base = &migration_cpu_base,
142 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
143 &migration_cpu_base.lock),
144 }, },
145 };
146
147 #define migration_base migration_cpu_base.clock_base[0]
148
is_migration_base(struct hrtimer_clock_base * base)149 static inline bool is_migration_base(struct hrtimer_clock_base *base)
150 {
151 return base == &migration_base;
152 }
153
154 /*
155 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
156 * means that all timers which are tied to this base via timer->base are
157 * locked, and the base itself is locked too.
158 *
159 * So __run_timers/migrate_timers can safely modify all timers which could
160 * be found on the lists/queues.
161 *
162 * When the timer's base is locked, and the timer removed from list, it is
163 * possible to set timer->base = &migration_base and drop the lock: the timer
164 * remains locked.
165 */
166 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)167 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
168 unsigned long *flags)
169 __acquires(&timer->base->lock)
170 {
171 struct hrtimer_clock_base *base;
172
173 for (;;) {
174 base = READ_ONCE(timer->base);
175 if (likely(base != &migration_base)) {
176 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
177 if (likely(base == timer->base))
178 return base;
179 /* The timer has migrated to another CPU: */
180 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
181 }
182 cpu_relax();
183 }
184 }
185
186 /*
187 * We do not migrate the timer when it is expiring before the next
188 * event on the target cpu. When high resolution is enabled, we cannot
189 * reprogram the target cpu hardware and we would cause it to fire
190 * late. To keep it simple, we handle the high resolution enabled and
191 * disabled case similar.
192 *
193 * Called with cpu_base->lock of target cpu held.
194 */
195 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)196 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
197 {
198 ktime_t expires;
199
200 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
201 return expires < new_base->cpu_base->expires_next;
202 }
203
204 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)205 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
206 int pinned)
207 {
208 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
209 if (static_branch_likely(&timers_migration_enabled) && !pinned)
210 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
211 #endif
212 return base;
213 }
214
215 /*
216 * We switch the timer base to a power-optimized selected CPU target,
217 * if:
218 * - NO_HZ_COMMON is enabled
219 * - timer migration is enabled
220 * - the timer callback is not running
221 * - the timer is not the first expiring timer on the new target
222 *
223 * If one of the above requirements is not fulfilled we move the timer
224 * to the current CPU or leave it on the previously assigned CPU if
225 * the timer callback is currently running.
226 */
227 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)228 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
229 int pinned)
230 {
231 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
232 struct hrtimer_clock_base *new_base;
233 int basenum = base->index;
234
235 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
236 new_cpu_base = get_target_base(this_cpu_base, pinned);
237 again:
238 new_base = &new_cpu_base->clock_base[basenum];
239
240 if (base != new_base) {
241 /*
242 * We are trying to move timer to new_base.
243 * However we can't change timer's base while it is running,
244 * so we keep it on the same CPU. No hassle vs. reprogramming
245 * the event source in the high resolution case. The softirq
246 * code will take care of this when the timer function has
247 * completed. There is no conflict as we hold the lock until
248 * the timer is enqueued.
249 */
250 if (unlikely(hrtimer_callback_running(timer)))
251 return base;
252
253 /* See the comment in lock_hrtimer_base() */
254 WRITE_ONCE(timer->base, &migration_base);
255 raw_spin_unlock(&base->cpu_base->lock);
256 raw_spin_lock(&new_base->cpu_base->lock);
257
258 if (new_cpu_base != this_cpu_base &&
259 hrtimer_check_target(timer, new_base)) {
260 raw_spin_unlock(&new_base->cpu_base->lock);
261 raw_spin_lock(&base->cpu_base->lock);
262 new_cpu_base = this_cpu_base;
263 WRITE_ONCE(timer->base, base);
264 goto again;
265 }
266 WRITE_ONCE(timer->base, new_base);
267 } else {
268 if (new_cpu_base != this_cpu_base &&
269 hrtimer_check_target(timer, new_base)) {
270 new_cpu_base = this_cpu_base;
271 goto again;
272 }
273 }
274 return new_base;
275 }
276
277 #else /* CONFIG_SMP */
278
is_migration_base(struct hrtimer_clock_base * base)279 static inline bool is_migration_base(struct hrtimer_clock_base *base)
280 {
281 return false;
282 }
283
284 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)285 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
286 __acquires(&timer->base->cpu_base->lock)
287 {
288 struct hrtimer_clock_base *base = timer->base;
289
290 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
291
292 return base;
293 }
294
295 # define switch_hrtimer_base(t, b, p) (b)
296
297 #endif /* !CONFIG_SMP */
298
299 /*
300 * Functions for the union type storage format of ktime_t which are
301 * too large for inlining:
302 */
303 #if BITS_PER_LONG < 64
304 /*
305 * Divide a ktime value by a nanosecond value
306 */
__ktime_divns(const ktime_t kt,s64 div)307 s64 __ktime_divns(const ktime_t kt, s64 div)
308 {
309 int sft = 0;
310 s64 dclc;
311 u64 tmp;
312
313 dclc = ktime_to_ns(kt);
314 tmp = dclc < 0 ? -dclc : dclc;
315
316 /* Make sure the divisor is less than 2^32: */
317 while (div >> 32) {
318 sft++;
319 div >>= 1;
320 }
321 tmp >>= sft;
322 do_div(tmp, (u32) div);
323 return dclc < 0 ? -tmp : tmp;
324 }
325 EXPORT_SYMBOL_GPL(__ktime_divns);
326 #endif /* BITS_PER_LONG >= 64 */
327
328 /*
329 * Add two ktime values and do a safety check for overflow:
330 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)331 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
332 {
333 ktime_t res = ktime_add_unsafe(lhs, rhs);
334
335 /*
336 * We use KTIME_SEC_MAX here, the maximum timeout which we can
337 * return to user space in a timespec:
338 */
339 if (res < 0 || res < lhs || res < rhs)
340 res = ktime_set(KTIME_SEC_MAX, 0);
341
342 return res;
343 }
344
345 EXPORT_SYMBOL_GPL(ktime_add_safe);
346
347 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
348
349 static const struct debug_obj_descr hrtimer_debug_descr;
350
hrtimer_debug_hint(void * addr)351 static void *hrtimer_debug_hint(void *addr)
352 {
353 return ((struct hrtimer *) addr)->function;
354 }
355
356 /*
357 * fixup_init is called when:
358 * - an active object is initialized
359 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)360 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
361 {
362 struct hrtimer *timer = addr;
363
364 switch (state) {
365 case ODEBUG_STATE_ACTIVE:
366 hrtimer_cancel(timer);
367 debug_object_init(timer, &hrtimer_debug_descr);
368 return true;
369 default:
370 return false;
371 }
372 }
373
374 /*
375 * fixup_activate is called when:
376 * - an active object is activated
377 * - an unknown non-static object is activated
378 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)379 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
380 {
381 switch (state) {
382 case ODEBUG_STATE_ACTIVE:
383 WARN_ON(1);
384 fallthrough;
385 default:
386 return false;
387 }
388 }
389
390 /*
391 * fixup_free is called when:
392 * - an active object is freed
393 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)394 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
395 {
396 struct hrtimer *timer = addr;
397
398 switch (state) {
399 case ODEBUG_STATE_ACTIVE:
400 hrtimer_cancel(timer);
401 debug_object_free(timer, &hrtimer_debug_descr);
402 return true;
403 default:
404 return false;
405 }
406 }
407
408 static const struct debug_obj_descr hrtimer_debug_descr = {
409 .name = "hrtimer",
410 .debug_hint = hrtimer_debug_hint,
411 .fixup_init = hrtimer_fixup_init,
412 .fixup_activate = hrtimer_fixup_activate,
413 .fixup_free = hrtimer_fixup_free,
414 };
415
debug_hrtimer_init(struct hrtimer * timer)416 static inline void debug_hrtimer_init(struct hrtimer *timer)
417 {
418 debug_object_init(timer, &hrtimer_debug_descr);
419 }
420
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)421 static inline void debug_hrtimer_activate(struct hrtimer *timer,
422 enum hrtimer_mode mode)
423 {
424 debug_object_activate(timer, &hrtimer_debug_descr);
425 }
426
debug_hrtimer_deactivate(struct hrtimer * timer)427 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
428 {
429 debug_object_deactivate(timer, &hrtimer_debug_descr);
430 }
431
432 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
433 enum hrtimer_mode mode);
434
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)435 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
436 enum hrtimer_mode mode)
437 {
438 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
439 __hrtimer_init(timer, clock_id, mode);
440 }
441 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
442
443 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
444 clockid_t clock_id, enum hrtimer_mode mode);
445
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)446 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
447 clockid_t clock_id, enum hrtimer_mode mode)
448 {
449 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
450 __hrtimer_init_sleeper(sl, clock_id, mode);
451 }
452 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
453
destroy_hrtimer_on_stack(struct hrtimer * timer)454 void destroy_hrtimer_on_stack(struct hrtimer *timer)
455 {
456 debug_object_free(timer, &hrtimer_debug_descr);
457 }
458 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
459
460 #else
461
debug_hrtimer_init(struct hrtimer * timer)462 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)463 static inline void debug_hrtimer_activate(struct hrtimer *timer,
464 enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)465 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
466 #endif
467
468 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)469 debug_init(struct hrtimer *timer, clockid_t clockid,
470 enum hrtimer_mode mode)
471 {
472 debug_hrtimer_init(timer);
473 trace_hrtimer_init(timer, clockid, mode);
474 }
475
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)476 static inline void debug_activate(struct hrtimer *timer,
477 enum hrtimer_mode mode)
478 {
479 debug_hrtimer_activate(timer, mode);
480 trace_hrtimer_start(timer, mode);
481 }
482
debug_deactivate(struct hrtimer * timer)483 static inline void debug_deactivate(struct hrtimer *timer)
484 {
485 debug_hrtimer_deactivate(timer);
486 trace_hrtimer_cancel(timer);
487 }
488
489 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)490 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
491 {
492 unsigned int idx;
493
494 if (!*active)
495 return NULL;
496
497 idx = __ffs(*active);
498 *active &= ~(1U << idx);
499
500 return &cpu_base->clock_base[idx];
501 }
502
503 #define for_each_active_base(base, cpu_base, active) \
504 while ((base = __next_base((cpu_base), &(active))))
505
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)506 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
507 const struct hrtimer *exclude,
508 unsigned int active,
509 ktime_t expires_next)
510 {
511 struct hrtimer_clock_base *base;
512 ktime_t expires;
513
514 for_each_active_base(base, cpu_base, active) {
515 struct timerqueue_node *next;
516 struct hrtimer *timer;
517
518 next = timerqueue_getnext(&base->active);
519 timer = container_of(next, struct hrtimer, node);
520 if (timer == exclude) {
521 /* Get to the next timer in the queue. */
522 next = timerqueue_iterate_next(next);
523 if (!next)
524 continue;
525
526 timer = container_of(next, struct hrtimer, node);
527 }
528 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
529 if (expires < expires_next) {
530 expires_next = expires;
531
532 /* Skip cpu_base update if a timer is being excluded. */
533 if (exclude)
534 continue;
535
536 if (timer->is_soft)
537 cpu_base->softirq_next_timer = timer;
538 else
539 cpu_base->next_timer = timer;
540 }
541 }
542 /*
543 * clock_was_set() might have changed base->offset of any of
544 * the clock bases so the result might be negative. Fix it up
545 * to prevent a false positive in clockevents_program_event().
546 */
547 if (expires_next < 0)
548 expires_next = 0;
549 return expires_next;
550 }
551
552 /*
553 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
554 * but does not set cpu_base::*expires_next, that is done by
555 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
556 * cpu_base::*expires_next right away, reprogramming logic would no longer
557 * work.
558 *
559 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
560 * those timers will get run whenever the softirq gets handled, at the end of
561 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
562 *
563 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
564 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
565 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
566 *
567 * @active_mask must be one of:
568 * - HRTIMER_ACTIVE_ALL,
569 * - HRTIMER_ACTIVE_SOFT, or
570 * - HRTIMER_ACTIVE_HARD.
571 */
572 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)573 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
574 {
575 unsigned int active;
576 struct hrtimer *next_timer = NULL;
577 ktime_t expires_next = KTIME_MAX;
578
579 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
580 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
581 cpu_base->softirq_next_timer = NULL;
582 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
583 active, KTIME_MAX);
584
585 next_timer = cpu_base->softirq_next_timer;
586 }
587
588 if (active_mask & HRTIMER_ACTIVE_HARD) {
589 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
590 cpu_base->next_timer = next_timer;
591 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
592 expires_next);
593 }
594
595 return expires_next;
596 }
597
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)598 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
599 {
600 ktime_t expires_next, soft = KTIME_MAX;
601
602 /*
603 * If the soft interrupt has already been activated, ignore the
604 * soft bases. They will be handled in the already raised soft
605 * interrupt.
606 */
607 if (!cpu_base->softirq_activated) {
608 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
609 /*
610 * Update the soft expiry time. clock_settime() might have
611 * affected it.
612 */
613 cpu_base->softirq_expires_next = soft;
614 }
615
616 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
617 /*
618 * If a softirq timer is expiring first, update cpu_base->next_timer
619 * and program the hardware with the soft expiry time.
620 */
621 if (expires_next > soft) {
622 cpu_base->next_timer = cpu_base->softirq_next_timer;
623 expires_next = soft;
624 }
625
626 return expires_next;
627 }
628
hrtimer_update_base(struct hrtimer_cpu_base * base)629 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
630 {
631 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
632 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
633 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
634
635 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
636 offs_real, offs_boot, offs_tai);
637
638 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
639 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
640 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
641
642 return now;
643 }
644
645 /*
646 * Is the high resolution mode active ?
647 */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)648 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
649 {
650 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
651 cpu_base->hres_active : 0;
652 }
653
hrtimer_hres_active(void)654 static inline int hrtimer_hres_active(void)
655 {
656 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
657 }
658
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)659 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
660 struct hrtimer *next_timer,
661 ktime_t expires_next)
662 {
663 cpu_base->expires_next = expires_next;
664
665 /*
666 * If hres is not active, hardware does not have to be
667 * reprogrammed yet.
668 *
669 * If a hang was detected in the last timer interrupt then we
670 * leave the hang delay active in the hardware. We want the
671 * system to make progress. That also prevents the following
672 * scenario:
673 * T1 expires 50ms from now
674 * T2 expires 5s from now
675 *
676 * T1 is removed, so this code is called and would reprogram
677 * the hardware to 5s from now. Any hrtimer_start after that
678 * will not reprogram the hardware due to hang_detected being
679 * set. So we'd effectively block all timers until the T2 event
680 * fires.
681 */
682 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
683 return;
684
685 tick_program_event(expires_next, 1);
686 }
687
688 /*
689 * Reprogram the event source with checking both queues for the
690 * next event
691 * Called with interrupts disabled and base->lock held
692 */
693 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)694 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
695 {
696 ktime_t expires_next;
697
698 expires_next = hrtimer_update_next_event(cpu_base);
699
700 if (skip_equal && expires_next == cpu_base->expires_next)
701 return;
702
703 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
704 }
705
706 /* High resolution timer related functions */
707 #ifdef CONFIG_HIGH_RES_TIMERS
708
709 /*
710 * High resolution timer enabled ?
711 */
712 static bool hrtimer_hres_enabled __read_mostly = true;
713 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
714 EXPORT_SYMBOL_GPL(hrtimer_resolution);
715
716 /*
717 * Enable / Disable high resolution mode
718 */
setup_hrtimer_hres(char * str)719 static int __init setup_hrtimer_hres(char *str)
720 {
721 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
722 }
723
724 __setup("highres=", setup_hrtimer_hres);
725
726 /*
727 * hrtimer_high_res_enabled - query, if the highres mode is enabled
728 */
hrtimer_is_hres_enabled(void)729 static inline int hrtimer_is_hres_enabled(void)
730 {
731 return hrtimer_hres_enabled;
732 }
733
734 static void retrigger_next_event(void *arg);
735
736 /*
737 * Switch to high resolution mode
738 */
hrtimer_switch_to_hres(void)739 static void hrtimer_switch_to_hres(void)
740 {
741 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
742
743 if (tick_init_highres()) {
744 pr_warn("Could not switch to high resolution mode on CPU %u\n",
745 base->cpu);
746 return;
747 }
748 base->hres_active = 1;
749 hrtimer_resolution = HIGH_RES_NSEC;
750
751 tick_setup_sched_timer();
752 /* "Retrigger" the interrupt to get things going */
753 retrigger_next_event(NULL);
754 }
755
756 #else
757
hrtimer_is_hres_enabled(void)758 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)759 static inline void hrtimer_switch_to_hres(void) { }
760
761 #endif /* CONFIG_HIGH_RES_TIMERS */
762 /*
763 * Retrigger next event is called after clock was set with interrupts
764 * disabled through an SMP function call or directly from low level
765 * resume code.
766 *
767 * This is only invoked when:
768 * - CONFIG_HIGH_RES_TIMERS is enabled.
769 * - CONFIG_NOHZ_COMMON is enabled
770 *
771 * For the other cases this function is empty and because the call sites
772 * are optimized out it vanishes as well, i.e. no need for lots of
773 * #ifdeffery.
774 */
retrigger_next_event(void * arg)775 static void retrigger_next_event(void *arg)
776 {
777 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
778
779 /*
780 * When high resolution mode or nohz is active, then the offsets of
781 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
782 * next tick will take care of that.
783 *
784 * If high resolution mode is active then the next expiring timer
785 * must be reevaluated and the clock event device reprogrammed if
786 * necessary.
787 *
788 * In the NOHZ case the update of the offset and the reevaluation
789 * of the next expiring timer is enough. The return from the SMP
790 * function call will take care of the reprogramming in case the
791 * CPU was in a NOHZ idle sleep.
792 */
793 if (!__hrtimer_hres_active(base) && !tick_nohz_active)
794 return;
795
796 raw_spin_lock(&base->lock);
797 hrtimer_update_base(base);
798 if (__hrtimer_hres_active(base))
799 hrtimer_force_reprogram(base, 0);
800 else
801 hrtimer_update_next_event(base);
802 raw_spin_unlock(&base->lock);
803 }
804
805 /*
806 * When a timer is enqueued and expires earlier than the already enqueued
807 * timers, we have to check, whether it expires earlier than the timer for
808 * which the clock event device was armed.
809 *
810 * Called with interrupts disabled and base->cpu_base.lock held
811 */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)812 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
813 {
814 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
815 struct hrtimer_clock_base *base = timer->base;
816 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
817
818 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
819
820 /*
821 * CLOCK_REALTIME timer might be requested with an absolute
822 * expiry time which is less than base->offset. Set it to 0.
823 */
824 if (expires < 0)
825 expires = 0;
826
827 if (timer->is_soft) {
828 /*
829 * soft hrtimer could be started on a remote CPU. In this
830 * case softirq_expires_next needs to be updated on the
831 * remote CPU. The soft hrtimer will not expire before the
832 * first hard hrtimer on the remote CPU -
833 * hrtimer_check_target() prevents this case.
834 */
835 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
836
837 if (timer_cpu_base->softirq_activated)
838 return;
839
840 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
841 return;
842
843 timer_cpu_base->softirq_next_timer = timer;
844 timer_cpu_base->softirq_expires_next = expires;
845
846 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
847 !reprogram)
848 return;
849 }
850
851 /*
852 * If the timer is not on the current cpu, we cannot reprogram
853 * the other cpus clock event device.
854 */
855 if (base->cpu_base != cpu_base)
856 return;
857
858 if (expires >= cpu_base->expires_next)
859 return;
860
861 /*
862 * If the hrtimer interrupt is running, then it will reevaluate the
863 * clock bases and reprogram the clock event device.
864 */
865 if (cpu_base->in_hrtirq)
866 return;
867
868 cpu_base->next_timer = timer;
869
870 __hrtimer_reprogram(cpu_base, timer, expires);
871 }
872
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)873 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
874 unsigned int active)
875 {
876 struct hrtimer_clock_base *base;
877 unsigned int seq;
878 ktime_t expires;
879
880 /*
881 * Update the base offsets unconditionally so the following
882 * checks whether the SMP function call is required works.
883 *
884 * The update is safe even when the remote CPU is in the hrtimer
885 * interrupt or the hrtimer soft interrupt and expiring affected
886 * bases. Either it will see the update before handling a base or
887 * it will see it when it finishes the processing and reevaluates
888 * the next expiring timer.
889 */
890 seq = cpu_base->clock_was_set_seq;
891 hrtimer_update_base(cpu_base);
892
893 /*
894 * If the sequence did not change over the update then the
895 * remote CPU already handled it.
896 */
897 if (seq == cpu_base->clock_was_set_seq)
898 return false;
899
900 /*
901 * If the remote CPU is currently handling an hrtimer interrupt, it
902 * will reevaluate the first expiring timer of all clock bases
903 * before reprogramming. Nothing to do here.
904 */
905 if (cpu_base->in_hrtirq)
906 return false;
907
908 /*
909 * Walk the affected clock bases and check whether the first expiring
910 * timer in a clock base is moving ahead of the first expiring timer of
911 * @cpu_base. If so, the IPI must be invoked because per CPU clock
912 * event devices cannot be remotely reprogrammed.
913 */
914 active &= cpu_base->active_bases;
915
916 for_each_active_base(base, cpu_base, active) {
917 struct timerqueue_node *next;
918
919 next = timerqueue_getnext(&base->active);
920 expires = ktime_sub(next->expires, base->offset);
921 if (expires < cpu_base->expires_next)
922 return true;
923
924 /* Extra check for softirq clock bases */
925 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
926 continue;
927 if (cpu_base->softirq_activated)
928 continue;
929 if (expires < cpu_base->softirq_expires_next)
930 return true;
931 }
932 return false;
933 }
934
935 /*
936 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
937 * CLOCK_BOOTTIME (for late sleep time injection).
938 *
939 * This requires to update the offsets for these clocks
940 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
941 * also requires to eventually reprogram the per CPU clock event devices
942 * when the change moves an affected timer ahead of the first expiring
943 * timer on that CPU. Obviously remote per CPU clock event devices cannot
944 * be reprogrammed. The other reason why an IPI has to be sent is when the
945 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
946 * in the tick, which obviously might be stopped, so this has to bring out
947 * the remote CPU which might sleep in idle to get this sorted.
948 */
clock_was_set(unsigned int bases)949 void clock_was_set(unsigned int bases)
950 {
951 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
952 cpumask_var_t mask;
953 int cpu;
954
955 if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active)
956 goto out_timerfd;
957
958 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
959 on_each_cpu(retrigger_next_event, NULL, 1);
960 goto out_timerfd;
961 }
962
963 /* Avoid interrupting CPUs if possible */
964 cpus_read_lock();
965 for_each_online_cpu(cpu) {
966 unsigned long flags;
967
968 cpu_base = &per_cpu(hrtimer_bases, cpu);
969 raw_spin_lock_irqsave(&cpu_base->lock, flags);
970
971 if (update_needs_ipi(cpu_base, bases))
972 cpumask_set_cpu(cpu, mask);
973
974 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
975 }
976
977 preempt_disable();
978 smp_call_function_many(mask, retrigger_next_event, NULL, 1);
979 preempt_enable();
980 cpus_read_unlock();
981 free_cpumask_var(mask);
982
983 out_timerfd:
984 timerfd_clock_was_set();
985 }
986
clock_was_set_work(struct work_struct * work)987 static void clock_was_set_work(struct work_struct *work)
988 {
989 clock_was_set(CLOCK_SET_WALL);
990 }
991
992 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
993
994 /*
995 * Called from timekeeping code to reprogram the hrtimer interrupt device
996 * on all cpus and to notify timerfd.
997 */
clock_was_set_delayed(void)998 void clock_was_set_delayed(void)
999 {
1000 schedule_work(&hrtimer_work);
1001 }
1002
1003 /*
1004 * Called during resume either directly from via timekeeping_resume()
1005 * or in the case of s2idle from tick_unfreeze() to ensure that the
1006 * hrtimers are up to date.
1007 */
hrtimers_resume_local(void)1008 void hrtimers_resume_local(void)
1009 {
1010 lockdep_assert_irqs_disabled();
1011 /* Retrigger on the local CPU */
1012 retrigger_next_event(NULL);
1013 }
1014
1015 /*
1016 * Counterpart to lock_hrtimer_base above:
1017 */
1018 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1019 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1020 __releases(&timer->base->cpu_base->lock)
1021 {
1022 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1023 }
1024
1025 /**
1026 * hrtimer_forward - forward the timer expiry
1027 * @timer: hrtimer to forward
1028 * @now: forward past this time
1029 * @interval: the interval to forward
1030 *
1031 * Forward the timer expiry so it will expire in the future.
1032 * Returns the number of overruns.
1033 *
1034 * Can be safely called from the callback function of @timer. If
1035 * called from other contexts @timer must neither be enqueued nor
1036 * running the callback and the caller needs to take care of
1037 * serialization.
1038 *
1039 * Note: This only updates the timer expiry value and does not requeue
1040 * the timer.
1041 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1042 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1043 {
1044 u64 orun = 1;
1045 ktime_t delta;
1046
1047 delta = ktime_sub(now, hrtimer_get_expires(timer));
1048
1049 if (delta < 0)
1050 return 0;
1051
1052 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1053 return 0;
1054
1055 if (interval < hrtimer_resolution)
1056 interval = hrtimer_resolution;
1057
1058 if (unlikely(delta >= interval)) {
1059 s64 incr = ktime_to_ns(interval);
1060
1061 orun = ktime_divns(delta, incr);
1062 hrtimer_add_expires_ns(timer, incr * orun);
1063 if (hrtimer_get_expires_tv64(timer) > now)
1064 return orun;
1065 /*
1066 * This (and the ktime_add() below) is the
1067 * correction for exact:
1068 */
1069 orun++;
1070 }
1071 hrtimer_add_expires(timer, interval);
1072
1073 return orun;
1074 }
1075 EXPORT_SYMBOL_GPL(hrtimer_forward);
1076
1077 /*
1078 * enqueue_hrtimer - internal function to (re)start a timer
1079 *
1080 * The timer is inserted in expiry order. Insertion into the
1081 * red black tree is O(log(n)). Must hold the base lock.
1082 *
1083 * Returns 1 when the new timer is the leftmost timer in the tree.
1084 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1085 static int enqueue_hrtimer(struct hrtimer *timer,
1086 struct hrtimer_clock_base *base,
1087 enum hrtimer_mode mode)
1088 {
1089 debug_activate(timer, mode);
1090 WARN_ON_ONCE(!base->cpu_base->online);
1091
1092 base->cpu_base->active_bases |= 1 << base->index;
1093
1094 /* Pairs with the lockless read in hrtimer_is_queued() */
1095 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1096
1097 return timerqueue_add(&base->active, &timer->node);
1098 }
1099
1100 /*
1101 * __remove_hrtimer - internal function to remove a timer
1102 *
1103 * Caller must hold the base lock.
1104 *
1105 * High resolution timer mode reprograms the clock event device when the
1106 * timer is the one which expires next. The caller can disable this by setting
1107 * reprogram to zero. This is useful, when the context does a reprogramming
1108 * anyway (e.g. timer interrupt)
1109 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1110 static void __remove_hrtimer(struct hrtimer *timer,
1111 struct hrtimer_clock_base *base,
1112 u8 newstate, int reprogram)
1113 {
1114 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1115 u8 state = timer->state;
1116
1117 /* Pairs with the lockless read in hrtimer_is_queued() */
1118 WRITE_ONCE(timer->state, newstate);
1119 if (!(state & HRTIMER_STATE_ENQUEUED))
1120 return;
1121
1122 if (!timerqueue_del(&base->active, &timer->node))
1123 cpu_base->active_bases &= ~(1 << base->index);
1124
1125 /*
1126 * Note: If reprogram is false we do not update
1127 * cpu_base->next_timer. This happens when we remove the first
1128 * timer on a remote cpu. No harm as we never dereference
1129 * cpu_base->next_timer. So the worst thing what can happen is
1130 * an superfluous call to hrtimer_force_reprogram() on the
1131 * remote cpu later on if the same timer gets enqueued again.
1132 */
1133 if (reprogram && timer == cpu_base->next_timer)
1134 hrtimer_force_reprogram(cpu_base, 1);
1135 }
1136
1137 /*
1138 * remove hrtimer, called with base lock held
1139 */
1140 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1141 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1142 bool restart, bool keep_local)
1143 {
1144 u8 state = timer->state;
1145
1146 if (state & HRTIMER_STATE_ENQUEUED) {
1147 bool reprogram;
1148
1149 /*
1150 * Remove the timer and force reprogramming when high
1151 * resolution mode is active and the timer is on the current
1152 * CPU. If we remove a timer on another CPU, reprogramming is
1153 * skipped. The interrupt event on this CPU is fired and
1154 * reprogramming happens in the interrupt handler. This is a
1155 * rare case and less expensive than a smp call.
1156 */
1157 debug_deactivate(timer);
1158 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1159
1160 /*
1161 * If the timer is not restarted then reprogramming is
1162 * required if the timer is local. If it is local and about
1163 * to be restarted, avoid programming it twice (on removal
1164 * and a moment later when it's requeued).
1165 */
1166 if (!restart)
1167 state = HRTIMER_STATE_INACTIVE;
1168 else
1169 reprogram &= !keep_local;
1170
1171 __remove_hrtimer(timer, base, state, reprogram);
1172 return 1;
1173 }
1174 return 0;
1175 }
1176
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1177 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1178 const enum hrtimer_mode mode)
1179 {
1180 #ifdef CONFIG_TIME_LOW_RES
1181 /*
1182 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1183 * granular time values. For relative timers we add hrtimer_resolution
1184 * (i.e. one jiffie) to prevent short timeouts.
1185 */
1186 timer->is_rel = mode & HRTIMER_MODE_REL;
1187 if (timer->is_rel)
1188 tim = ktime_add_safe(tim, hrtimer_resolution);
1189 #endif
1190 return tim;
1191 }
1192
1193 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1194 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1195 {
1196 ktime_t expires;
1197
1198 /*
1199 * Find the next SOFT expiration.
1200 */
1201 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1202
1203 /*
1204 * reprogramming needs to be triggered, even if the next soft
1205 * hrtimer expires at the same time than the next hard
1206 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1207 */
1208 if (expires == KTIME_MAX)
1209 return;
1210
1211 /*
1212 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1213 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1214 */
1215 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1216 }
1217
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1218 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1219 u64 delta_ns, const enum hrtimer_mode mode,
1220 struct hrtimer_clock_base *base)
1221 {
1222 struct hrtimer_clock_base *new_base;
1223 bool force_local, first;
1224
1225 /*
1226 * If the timer is on the local cpu base and is the first expiring
1227 * timer then this might end up reprogramming the hardware twice
1228 * (on removal and on enqueue). To avoid that by prevent the
1229 * reprogram on removal, keep the timer local to the current CPU
1230 * and enforce reprogramming after it is queued no matter whether
1231 * it is the new first expiring timer again or not.
1232 */
1233 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1234 force_local &= base->cpu_base->next_timer == timer;
1235
1236 /*
1237 * Remove an active timer from the queue. In case it is not queued
1238 * on the current CPU, make sure that remove_hrtimer() updates the
1239 * remote data correctly.
1240 *
1241 * If it's on the current CPU and the first expiring timer, then
1242 * skip reprogramming, keep the timer local and enforce
1243 * reprogramming later if it was the first expiring timer. This
1244 * avoids programming the underlying clock event twice (once at
1245 * removal and once after enqueue).
1246 */
1247 remove_hrtimer(timer, base, true, force_local);
1248
1249 if (mode & HRTIMER_MODE_REL)
1250 tim = ktime_add_safe(tim, base->get_time());
1251
1252 tim = hrtimer_update_lowres(timer, tim, mode);
1253
1254 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1255
1256 /* Switch the timer base, if necessary: */
1257 if (!force_local) {
1258 new_base = switch_hrtimer_base(timer, base,
1259 mode & HRTIMER_MODE_PINNED);
1260 } else {
1261 new_base = base;
1262 }
1263
1264 first = enqueue_hrtimer(timer, new_base, mode);
1265 if (!force_local)
1266 return first;
1267
1268 /*
1269 * Timer was forced to stay on the current CPU to avoid
1270 * reprogramming on removal and enqueue. Force reprogram the
1271 * hardware by evaluating the new first expiring timer.
1272 */
1273 hrtimer_force_reprogram(new_base->cpu_base, 1);
1274 return 0;
1275 }
1276
1277 /**
1278 * hrtimer_start_range_ns - (re)start an hrtimer
1279 * @timer: the timer to be added
1280 * @tim: expiry time
1281 * @delta_ns: "slack" range for the timer
1282 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1283 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1284 * softirq based mode is considered for debug purpose only!
1285 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1286 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1287 u64 delta_ns, const enum hrtimer_mode mode)
1288 {
1289 struct hrtimer_clock_base *base;
1290 unsigned long flags;
1291
1292 if (WARN_ON_ONCE(!timer->function))
1293 return;
1294 /*
1295 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1296 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1297 * expiry mode because unmarked timers are moved to softirq expiry.
1298 */
1299 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1300 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1301 else
1302 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1303
1304 base = lock_hrtimer_base(timer, &flags);
1305
1306 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1307 hrtimer_reprogram(timer, true);
1308
1309 unlock_hrtimer_base(timer, &flags);
1310 }
1311 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1312
1313 /**
1314 * hrtimer_try_to_cancel - try to deactivate a timer
1315 * @timer: hrtimer to stop
1316 *
1317 * Returns:
1318 *
1319 * * 0 when the timer was not active
1320 * * 1 when the timer was active
1321 * * -1 when the timer is currently executing the callback function and
1322 * cannot be stopped
1323 */
hrtimer_try_to_cancel(struct hrtimer * timer)1324 int hrtimer_try_to_cancel(struct hrtimer *timer)
1325 {
1326 struct hrtimer_clock_base *base;
1327 unsigned long flags;
1328 int ret = -1;
1329
1330 /*
1331 * Check lockless first. If the timer is not active (neither
1332 * enqueued nor running the callback, nothing to do here. The
1333 * base lock does not serialize against a concurrent enqueue,
1334 * so we can avoid taking it.
1335 */
1336 if (!hrtimer_active(timer))
1337 return 0;
1338
1339 base = lock_hrtimer_base(timer, &flags);
1340
1341 if (!hrtimer_callback_running(timer))
1342 ret = remove_hrtimer(timer, base, false, false);
1343
1344 unlock_hrtimer_base(timer, &flags);
1345
1346 return ret;
1347
1348 }
1349 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1350
1351 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1352 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1353 {
1354 spin_lock_init(&base->softirq_expiry_lock);
1355 }
1356
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1357 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1358 {
1359 spin_lock(&base->softirq_expiry_lock);
1360 }
1361
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1362 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1363 {
1364 spin_unlock(&base->softirq_expiry_lock);
1365 }
1366
1367 /*
1368 * The counterpart to hrtimer_cancel_wait_running().
1369 *
1370 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1371 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1372 * allows the waiter to acquire the lock and make progress.
1373 */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1374 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1375 unsigned long flags)
1376 {
1377 if (atomic_read(&cpu_base->timer_waiters)) {
1378 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1379 spin_unlock(&cpu_base->softirq_expiry_lock);
1380 spin_lock(&cpu_base->softirq_expiry_lock);
1381 raw_spin_lock_irq(&cpu_base->lock);
1382 }
1383 }
1384
1385 /*
1386 * This function is called on PREEMPT_RT kernels when the fast path
1387 * deletion of a timer failed because the timer callback function was
1388 * running.
1389 *
1390 * This prevents priority inversion: if the soft irq thread is preempted
1391 * in the middle of a timer callback, then calling del_timer_sync() can
1392 * lead to two issues:
1393 *
1394 * - If the caller is on a remote CPU then it has to spin wait for the timer
1395 * handler to complete. This can result in unbound priority inversion.
1396 *
1397 * - If the caller originates from the task which preempted the timer
1398 * handler on the same CPU, then spin waiting for the timer handler to
1399 * complete is never going to end.
1400 */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1401 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1402 {
1403 /* Lockless read. Prevent the compiler from reloading it below */
1404 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1405
1406 /*
1407 * Just relax if the timer expires in hard interrupt context or if
1408 * it is currently on the migration base.
1409 */
1410 if (!timer->is_soft || is_migration_base(base)) {
1411 cpu_relax();
1412 return;
1413 }
1414
1415 /*
1416 * Mark the base as contended and grab the expiry lock, which is
1417 * held by the softirq across the timer callback. Drop the lock
1418 * immediately so the softirq can expire the next timer. In theory
1419 * the timer could already be running again, but that's more than
1420 * unlikely and just causes another wait loop.
1421 */
1422 atomic_inc(&base->cpu_base->timer_waiters);
1423 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1424 atomic_dec(&base->cpu_base->timer_waiters);
1425 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1426 }
1427 #else
1428 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1429 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1430 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1431 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1432 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1433 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1434 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1435 unsigned long flags) { }
1436 #endif
1437
1438 /**
1439 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1440 * @timer: the timer to be cancelled
1441 *
1442 * Returns:
1443 * 0 when the timer was not active
1444 * 1 when the timer was active
1445 */
hrtimer_cancel(struct hrtimer * timer)1446 int hrtimer_cancel(struct hrtimer *timer)
1447 {
1448 int ret;
1449
1450 do {
1451 ret = hrtimer_try_to_cancel(timer);
1452
1453 if (ret < 0)
1454 hrtimer_cancel_wait_running(timer);
1455 } while (ret < 0);
1456 return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1459
1460 /**
1461 * __hrtimer_get_remaining - get remaining time for the timer
1462 * @timer: the timer to read
1463 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1464 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1465 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1466 {
1467 unsigned long flags;
1468 ktime_t rem;
1469
1470 lock_hrtimer_base(timer, &flags);
1471 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1472 rem = hrtimer_expires_remaining_adjusted(timer);
1473 else
1474 rem = hrtimer_expires_remaining(timer);
1475 unlock_hrtimer_base(timer, &flags);
1476
1477 return rem;
1478 }
1479 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1480
1481 #ifdef CONFIG_NO_HZ_COMMON
1482 /**
1483 * hrtimer_get_next_event - get the time until next expiry event
1484 *
1485 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1486 */
hrtimer_get_next_event(void)1487 u64 hrtimer_get_next_event(void)
1488 {
1489 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1490 u64 expires = KTIME_MAX;
1491 unsigned long flags;
1492
1493 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1494
1495 if (!__hrtimer_hres_active(cpu_base))
1496 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1497
1498 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1499
1500 return expires;
1501 }
1502
1503 /**
1504 * hrtimer_next_event_without - time until next expiry event w/o one timer
1505 * @exclude: timer to exclude
1506 *
1507 * Returns the next expiry time over all timers except for the @exclude one or
1508 * KTIME_MAX if none of them is pending.
1509 */
hrtimer_next_event_without(const struct hrtimer * exclude)1510 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1511 {
1512 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1513 u64 expires = KTIME_MAX;
1514 unsigned long flags;
1515
1516 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1517
1518 if (__hrtimer_hres_active(cpu_base)) {
1519 unsigned int active;
1520
1521 if (!cpu_base->softirq_activated) {
1522 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1523 expires = __hrtimer_next_event_base(cpu_base, exclude,
1524 active, KTIME_MAX);
1525 }
1526 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1527 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1528 expires);
1529 }
1530
1531 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1532
1533 return expires;
1534 }
1535 #endif
1536
hrtimer_clockid_to_base(clockid_t clock_id)1537 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1538 {
1539 if (likely(clock_id < MAX_CLOCKS)) {
1540 int base = hrtimer_clock_to_base_table[clock_id];
1541
1542 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1543 return base;
1544 }
1545 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1546 return HRTIMER_BASE_MONOTONIC;
1547 }
1548
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1549 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1550 enum hrtimer_mode mode)
1551 {
1552 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1553 struct hrtimer_cpu_base *cpu_base;
1554 int base;
1555
1556 /*
1557 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1558 * marked for hard interrupt expiry mode are moved into soft
1559 * interrupt context for latency reasons and because the callbacks
1560 * can invoke functions which might sleep on RT, e.g. spin_lock().
1561 */
1562 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1563 softtimer = true;
1564
1565 memset(timer, 0, sizeof(struct hrtimer));
1566
1567 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1568
1569 /*
1570 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1571 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1572 * ensure POSIX compliance.
1573 */
1574 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1575 clock_id = CLOCK_MONOTONIC;
1576
1577 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1578 base += hrtimer_clockid_to_base(clock_id);
1579 timer->is_soft = softtimer;
1580 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1581 timer->base = &cpu_base->clock_base[base];
1582 timerqueue_init(&timer->node);
1583 }
1584
1585 /**
1586 * hrtimer_init - initialize a timer to the given clock
1587 * @timer: the timer to be initialized
1588 * @clock_id: the clock to be used
1589 * @mode: The modes which are relevant for initialization:
1590 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1591 * HRTIMER_MODE_REL_SOFT
1592 *
1593 * The PINNED variants of the above can be handed in,
1594 * but the PINNED bit is ignored as pinning happens
1595 * when the hrtimer is started
1596 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1597 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1598 enum hrtimer_mode mode)
1599 {
1600 debug_init(timer, clock_id, mode);
1601 __hrtimer_init(timer, clock_id, mode);
1602 }
1603 EXPORT_SYMBOL_GPL(hrtimer_init);
1604
1605 /*
1606 * A timer is active, when it is enqueued into the rbtree or the
1607 * callback function is running or it's in the state of being migrated
1608 * to another cpu.
1609 *
1610 * It is important for this function to not return a false negative.
1611 */
hrtimer_active(const struct hrtimer * timer)1612 bool hrtimer_active(const struct hrtimer *timer)
1613 {
1614 struct hrtimer_clock_base *base;
1615 unsigned int seq;
1616
1617 do {
1618 base = READ_ONCE(timer->base);
1619 seq = raw_read_seqcount_begin(&base->seq);
1620
1621 if (timer->state != HRTIMER_STATE_INACTIVE ||
1622 base->running == timer)
1623 return true;
1624
1625 } while (read_seqcount_retry(&base->seq, seq) ||
1626 base != READ_ONCE(timer->base));
1627
1628 return false;
1629 }
1630 EXPORT_SYMBOL_GPL(hrtimer_active);
1631
1632 /*
1633 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1634 * distinct sections:
1635 *
1636 * - queued: the timer is queued
1637 * - callback: the timer is being ran
1638 * - post: the timer is inactive or (re)queued
1639 *
1640 * On the read side we ensure we observe timer->state and cpu_base->running
1641 * from the same section, if anything changed while we looked at it, we retry.
1642 * This includes timer->base changing because sequence numbers alone are
1643 * insufficient for that.
1644 *
1645 * The sequence numbers are required because otherwise we could still observe
1646 * a false negative if the read side got smeared over multiple consecutive
1647 * __run_hrtimer() invocations.
1648 */
1649
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1650 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1651 struct hrtimer_clock_base *base,
1652 struct hrtimer *timer, ktime_t *now,
1653 unsigned long flags) __must_hold(&cpu_base->lock)
1654 {
1655 enum hrtimer_restart (*fn)(struct hrtimer *);
1656 bool expires_in_hardirq;
1657 int restart;
1658
1659 lockdep_assert_held(&cpu_base->lock);
1660
1661 debug_deactivate(timer);
1662 base->running = timer;
1663
1664 /*
1665 * Separate the ->running assignment from the ->state assignment.
1666 *
1667 * As with a regular write barrier, this ensures the read side in
1668 * hrtimer_active() cannot observe base->running == NULL &&
1669 * timer->state == INACTIVE.
1670 */
1671 raw_write_seqcount_barrier(&base->seq);
1672
1673 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1674 fn = timer->function;
1675
1676 /*
1677 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1678 * timer is restarted with a period then it becomes an absolute
1679 * timer. If its not restarted it does not matter.
1680 */
1681 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1682 timer->is_rel = false;
1683
1684 /*
1685 * The timer is marked as running in the CPU base, so it is
1686 * protected against migration to a different CPU even if the lock
1687 * is dropped.
1688 */
1689 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1690 trace_hrtimer_expire_entry(timer, now);
1691 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1692
1693 restart = fn(timer);
1694
1695 lockdep_hrtimer_exit(expires_in_hardirq);
1696 trace_hrtimer_expire_exit(timer);
1697 raw_spin_lock_irq(&cpu_base->lock);
1698
1699 /*
1700 * Note: We clear the running state after enqueue_hrtimer and
1701 * we do not reprogram the event hardware. Happens either in
1702 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1703 *
1704 * Note: Because we dropped the cpu_base->lock above,
1705 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1706 * for us already.
1707 */
1708 if (restart != HRTIMER_NORESTART &&
1709 !(timer->state & HRTIMER_STATE_ENQUEUED))
1710 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1711
1712 /*
1713 * Separate the ->running assignment from the ->state assignment.
1714 *
1715 * As with a regular write barrier, this ensures the read side in
1716 * hrtimer_active() cannot observe base->running.timer == NULL &&
1717 * timer->state == INACTIVE.
1718 */
1719 raw_write_seqcount_barrier(&base->seq);
1720
1721 WARN_ON_ONCE(base->running != timer);
1722 base->running = NULL;
1723 }
1724
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1725 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1726 unsigned long flags, unsigned int active_mask)
1727 {
1728 struct hrtimer_clock_base *base;
1729 unsigned int active = cpu_base->active_bases & active_mask;
1730
1731 for_each_active_base(base, cpu_base, active) {
1732 struct timerqueue_node *node;
1733 ktime_t basenow;
1734
1735 basenow = ktime_add(now, base->offset);
1736
1737 while ((node = timerqueue_getnext(&base->active))) {
1738 struct hrtimer *timer;
1739
1740 timer = container_of(node, struct hrtimer, node);
1741
1742 /*
1743 * The immediate goal for using the softexpires is
1744 * minimizing wakeups, not running timers at the
1745 * earliest interrupt after their soft expiration.
1746 * This allows us to avoid using a Priority Search
1747 * Tree, which can answer a stabbing query for
1748 * overlapping intervals and instead use the simple
1749 * BST we already have.
1750 * We don't add extra wakeups by delaying timers that
1751 * are right-of a not yet expired timer, because that
1752 * timer will have to trigger a wakeup anyway.
1753 */
1754 if (basenow < hrtimer_get_softexpires_tv64(timer))
1755 break;
1756
1757 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1758 if (active_mask == HRTIMER_ACTIVE_SOFT)
1759 hrtimer_sync_wait_running(cpu_base, flags);
1760 }
1761 }
1762 }
1763
hrtimer_run_softirq(struct softirq_action * h)1764 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1765 {
1766 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1767 unsigned long flags;
1768 ktime_t now;
1769
1770 hrtimer_cpu_base_lock_expiry(cpu_base);
1771 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1772
1773 now = hrtimer_update_base(cpu_base);
1774 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1775
1776 cpu_base->softirq_activated = 0;
1777 hrtimer_update_softirq_timer(cpu_base, true);
1778
1779 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1780 hrtimer_cpu_base_unlock_expiry(cpu_base);
1781 }
1782
1783 #ifdef CONFIG_HIGH_RES_TIMERS
1784
1785 /*
1786 * High resolution timer interrupt
1787 * Called with interrupts disabled
1788 */
hrtimer_interrupt(struct clock_event_device * dev)1789 void hrtimer_interrupt(struct clock_event_device *dev)
1790 {
1791 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1792 ktime_t expires_next, now, entry_time, delta;
1793 unsigned long flags;
1794 int retries = 0;
1795
1796 BUG_ON(!cpu_base->hres_active);
1797 cpu_base->nr_events++;
1798 dev->next_event = KTIME_MAX;
1799
1800 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1801 entry_time = now = hrtimer_update_base(cpu_base);
1802 retry:
1803 cpu_base->in_hrtirq = 1;
1804 /*
1805 * We set expires_next to KTIME_MAX here with cpu_base->lock
1806 * held to prevent that a timer is enqueued in our queue via
1807 * the migration code. This does not affect enqueueing of
1808 * timers which run their callback and need to be requeued on
1809 * this CPU.
1810 */
1811 cpu_base->expires_next = KTIME_MAX;
1812
1813 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1814 cpu_base->softirq_expires_next = KTIME_MAX;
1815 cpu_base->softirq_activated = 1;
1816 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1817 }
1818
1819 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1820
1821 /* Reevaluate the clock bases for the [soft] next expiry */
1822 expires_next = hrtimer_update_next_event(cpu_base);
1823 /*
1824 * Store the new expiry value so the migration code can verify
1825 * against it.
1826 */
1827 cpu_base->expires_next = expires_next;
1828 cpu_base->in_hrtirq = 0;
1829 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1830
1831 /* Reprogramming necessary ? */
1832 if (!tick_program_event(expires_next, 0)) {
1833 cpu_base->hang_detected = 0;
1834 return;
1835 }
1836
1837 /*
1838 * The next timer was already expired due to:
1839 * - tracing
1840 * - long lasting callbacks
1841 * - being scheduled away when running in a VM
1842 *
1843 * We need to prevent that we loop forever in the hrtimer
1844 * interrupt routine. We give it 3 attempts to avoid
1845 * overreacting on some spurious event.
1846 *
1847 * Acquire base lock for updating the offsets and retrieving
1848 * the current time.
1849 */
1850 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1851 now = hrtimer_update_base(cpu_base);
1852 cpu_base->nr_retries++;
1853 if (++retries < 3)
1854 goto retry;
1855 /*
1856 * Give the system a chance to do something else than looping
1857 * here. We stored the entry time, so we know exactly how long
1858 * we spent here. We schedule the next event this amount of
1859 * time away.
1860 */
1861 cpu_base->nr_hangs++;
1862 cpu_base->hang_detected = 1;
1863 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1864
1865 delta = ktime_sub(now, entry_time);
1866 if ((unsigned int)delta > cpu_base->max_hang_time)
1867 cpu_base->max_hang_time = (unsigned int) delta;
1868 /*
1869 * Limit it to a sensible value as we enforce a longer
1870 * delay. Give the CPU at least 100ms to catch up.
1871 */
1872 if (delta > 100 * NSEC_PER_MSEC)
1873 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1874 else
1875 expires_next = ktime_add(now, delta);
1876 tick_program_event(expires_next, 1);
1877 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1878 }
1879
1880 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1881 static inline void __hrtimer_peek_ahead_timers(void)
1882 {
1883 struct tick_device *td;
1884
1885 if (!hrtimer_hres_active())
1886 return;
1887
1888 td = this_cpu_ptr(&tick_cpu_device);
1889 if (td && td->evtdev)
1890 hrtimer_interrupt(td->evtdev);
1891 }
1892
1893 #else /* CONFIG_HIGH_RES_TIMERS */
1894
__hrtimer_peek_ahead_timers(void)1895 static inline void __hrtimer_peek_ahead_timers(void) { }
1896
1897 #endif /* !CONFIG_HIGH_RES_TIMERS */
1898
1899 /*
1900 * Called from run_local_timers in hardirq context every jiffy
1901 */
hrtimer_run_queues(void)1902 void hrtimer_run_queues(void)
1903 {
1904 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1905 unsigned long flags;
1906 ktime_t now;
1907
1908 if (__hrtimer_hres_active(cpu_base))
1909 return;
1910
1911 /*
1912 * This _is_ ugly: We have to check periodically, whether we
1913 * can switch to highres and / or nohz mode. The clocksource
1914 * switch happens with xtime_lock held. Notification from
1915 * there only sets the check bit in the tick_oneshot code,
1916 * otherwise we might deadlock vs. xtime_lock.
1917 */
1918 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1919 hrtimer_switch_to_hres();
1920 return;
1921 }
1922
1923 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1924 now = hrtimer_update_base(cpu_base);
1925
1926 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1927 cpu_base->softirq_expires_next = KTIME_MAX;
1928 cpu_base->softirq_activated = 1;
1929 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1930 }
1931
1932 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1933 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1934 }
1935
1936 /*
1937 * Sleep related functions:
1938 */
hrtimer_wakeup(struct hrtimer * timer)1939 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1940 {
1941 struct hrtimer_sleeper *t =
1942 container_of(timer, struct hrtimer_sleeper, timer);
1943 struct task_struct *task = t->task;
1944
1945 t->task = NULL;
1946 if (task)
1947 wake_up_process(task);
1948
1949 return HRTIMER_NORESTART;
1950 }
1951
1952 /**
1953 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1954 * @sl: sleeper to be started
1955 * @mode: timer mode abs/rel
1956 *
1957 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1958 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1959 */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1960 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1961 enum hrtimer_mode mode)
1962 {
1963 /*
1964 * Make the enqueue delivery mode check work on RT. If the sleeper
1965 * was initialized for hard interrupt delivery, force the mode bit.
1966 * This is a special case for hrtimer_sleepers because
1967 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1968 * fiddling with this decision is avoided at the call sites.
1969 */
1970 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1971 mode |= HRTIMER_MODE_HARD;
1972
1973 hrtimer_start_expires(&sl->timer, mode);
1974 }
1975 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1976
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1977 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1978 clockid_t clock_id, enum hrtimer_mode mode)
1979 {
1980 /*
1981 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1982 * marked for hard interrupt expiry mode are moved into soft
1983 * interrupt context either for latency reasons or because the
1984 * hrtimer callback takes regular spinlocks or invokes other
1985 * functions which are not suitable for hard interrupt context on
1986 * PREEMPT_RT.
1987 *
1988 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1989 * context, but there is a latency concern: Untrusted userspace can
1990 * spawn many threads which arm timers for the same expiry time on
1991 * the same CPU. That causes a latency spike due to the wakeup of
1992 * a gazillion threads.
1993 *
1994 * OTOH, privileged real-time user space applications rely on the
1995 * low latency of hard interrupt wakeups. If the current task is in
1996 * a real-time scheduling class, mark the mode for hard interrupt
1997 * expiry.
1998 */
1999 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2000 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
2001 mode |= HRTIMER_MODE_HARD;
2002 }
2003
2004 __hrtimer_init(&sl->timer, clock_id, mode);
2005 sl->timer.function = hrtimer_wakeup;
2006 sl->task = current;
2007 }
2008
2009 /**
2010 * hrtimer_init_sleeper - initialize sleeper to the given clock
2011 * @sl: sleeper to be initialized
2012 * @clock_id: the clock to be used
2013 * @mode: timer mode abs/rel
2014 */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2015 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
2016 enum hrtimer_mode mode)
2017 {
2018 debug_init(&sl->timer, clock_id, mode);
2019 __hrtimer_init_sleeper(sl, clock_id, mode);
2020
2021 }
2022 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2023
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2024 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2025 {
2026 switch(restart->nanosleep.type) {
2027 #ifdef CONFIG_COMPAT_32BIT_TIME
2028 case TT_COMPAT:
2029 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2030 return -EFAULT;
2031 break;
2032 #endif
2033 case TT_NATIVE:
2034 if (put_timespec64(ts, restart->nanosleep.rmtp))
2035 return -EFAULT;
2036 break;
2037 default:
2038 BUG();
2039 }
2040 return -ERESTART_RESTARTBLOCK;
2041 }
2042
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2043 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2044 {
2045 struct restart_block *restart;
2046
2047 do {
2048 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2049 hrtimer_sleeper_start_expires(t, mode);
2050
2051 if (likely(t->task))
2052 schedule();
2053
2054 hrtimer_cancel(&t->timer);
2055 mode = HRTIMER_MODE_ABS;
2056
2057 } while (t->task && !signal_pending(current));
2058
2059 __set_current_state(TASK_RUNNING);
2060
2061 if (!t->task)
2062 return 0;
2063
2064 restart = ¤t->restart_block;
2065 if (restart->nanosleep.type != TT_NONE) {
2066 ktime_t rem = hrtimer_expires_remaining(&t->timer);
2067 struct timespec64 rmt;
2068
2069 if (rem <= 0)
2070 return 0;
2071 rmt = ktime_to_timespec64(rem);
2072
2073 return nanosleep_copyout(restart, &rmt);
2074 }
2075 return -ERESTART_RESTARTBLOCK;
2076 }
2077
hrtimer_nanosleep_restart(struct restart_block * restart)2078 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2079 {
2080 struct hrtimer_sleeper t;
2081 int ret;
2082
2083 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2084 HRTIMER_MODE_ABS);
2085 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2086 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2087 destroy_hrtimer_on_stack(&t.timer);
2088 return ret;
2089 }
2090
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2091 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2092 const clockid_t clockid)
2093 {
2094 struct restart_block *restart;
2095 struct hrtimer_sleeper t;
2096 int ret = 0;
2097 u64 slack;
2098
2099 slack = current->timer_slack_ns;
2100 if (rt_task(current))
2101 slack = 0;
2102
2103 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2104 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
2105 ret = do_nanosleep(&t, mode);
2106 if (ret != -ERESTART_RESTARTBLOCK)
2107 goto out;
2108
2109 /* Absolute timers do not update the rmtp value and restart: */
2110 if (mode == HRTIMER_MODE_ABS) {
2111 ret = -ERESTARTNOHAND;
2112 goto out;
2113 }
2114
2115 restart = ¤t->restart_block;
2116 restart->nanosleep.clockid = t.timer.base->clockid;
2117 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2118 set_restart_fn(restart, hrtimer_nanosleep_restart);
2119 out:
2120 destroy_hrtimer_on_stack(&t.timer);
2121 return ret;
2122 }
2123
2124 #ifdef CONFIG_64BIT
2125
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2126 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2127 struct __kernel_timespec __user *, rmtp)
2128 {
2129 struct timespec64 tu;
2130
2131 if (get_timespec64(&tu, rqtp))
2132 return -EFAULT;
2133
2134 if (!timespec64_valid(&tu))
2135 return -EINVAL;
2136
2137 trace_android_vh_check_nanosleep_syscall(&tu);
2138 current->restart_block.fn = do_no_restart_syscall;
2139 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2140 current->restart_block.nanosleep.rmtp = rmtp;
2141 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2142 CLOCK_MONOTONIC);
2143 }
2144
2145 #endif
2146
2147 #ifdef CONFIG_COMPAT_32BIT_TIME
2148
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2149 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2150 struct old_timespec32 __user *, rmtp)
2151 {
2152 struct timespec64 tu;
2153
2154 if (get_old_timespec32(&tu, rqtp))
2155 return -EFAULT;
2156
2157 if (!timespec64_valid(&tu))
2158 return -EINVAL;
2159
2160 trace_android_vh_check_nanosleep_syscall(&tu);
2161 current->restart_block.fn = do_no_restart_syscall;
2162 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2163 current->restart_block.nanosleep.compat_rmtp = rmtp;
2164 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2165 CLOCK_MONOTONIC);
2166 }
2167 #endif
2168
2169 /*
2170 * Functions related to boot-time initialization:
2171 */
hrtimers_prepare_cpu(unsigned int cpu)2172 int hrtimers_prepare_cpu(unsigned int cpu)
2173 {
2174 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2175 int i;
2176
2177 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2178 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2179
2180 clock_b->cpu_base = cpu_base;
2181 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2182 timerqueue_init_head(&clock_b->active);
2183 }
2184
2185 cpu_base->cpu = cpu;
2186 cpu_base->active_bases = 0;
2187 cpu_base->hres_active = 0;
2188 cpu_base->hang_detected = 0;
2189 cpu_base->next_timer = NULL;
2190 cpu_base->softirq_next_timer = NULL;
2191 cpu_base->expires_next = KTIME_MAX;
2192 cpu_base->softirq_expires_next = KTIME_MAX;
2193 cpu_base->online = 1;
2194 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2195 return 0;
2196 }
2197
2198 #ifdef CONFIG_HOTPLUG_CPU
2199
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2200 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2201 struct hrtimer_clock_base *new_base)
2202 {
2203 struct hrtimer *timer;
2204 struct timerqueue_node *node;
2205
2206 while ((node = timerqueue_getnext(&old_base->active))) {
2207 timer = container_of(node, struct hrtimer, node);
2208 BUG_ON(hrtimer_callback_running(timer));
2209 debug_deactivate(timer);
2210
2211 /*
2212 * Mark it as ENQUEUED not INACTIVE otherwise the
2213 * timer could be seen as !active and just vanish away
2214 * under us on another CPU
2215 */
2216 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2217 timer->base = new_base;
2218 /*
2219 * Enqueue the timers on the new cpu. This does not
2220 * reprogram the event device in case the timer
2221 * expires before the earliest on this CPU, but we run
2222 * hrtimer_interrupt after we migrated everything to
2223 * sort out already expired timers and reprogram the
2224 * event device.
2225 */
2226 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2227 }
2228 }
2229
hrtimers_cpu_dying(unsigned int dying_cpu)2230 int hrtimers_cpu_dying(unsigned int dying_cpu)
2231 {
2232 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2233 struct hrtimer_cpu_base *old_base, *new_base;
2234
2235 tick_cancel_sched_timer(dying_cpu);
2236
2237 old_base = this_cpu_ptr(&hrtimer_bases);
2238 new_base = &per_cpu(hrtimer_bases, ncpu);
2239
2240 /*
2241 * The caller is globally serialized and nobody else
2242 * takes two locks at once, deadlock is not possible.
2243 */
2244 raw_spin_lock(&old_base->lock);
2245 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2246
2247 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2248 migrate_hrtimer_list(&old_base->clock_base[i],
2249 &new_base->clock_base[i]);
2250 }
2251
2252 /*
2253 * The migration might have changed the first expiring softirq
2254 * timer on this CPU. Update it.
2255 */
2256 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2257 /* Tell the other CPU to retrigger the next event */
2258 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2259
2260 raw_spin_unlock(&new_base->lock);
2261 old_base->online = 0;
2262 raw_spin_unlock(&old_base->lock);
2263
2264 return 0;
2265 }
2266
2267 #endif /* CONFIG_HOTPLUG_CPU */
2268
hrtimers_init(void)2269 void __init hrtimers_init(void)
2270 {
2271 hrtimers_prepare_cpu(smp_processor_id());
2272 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2273 }
2274
2275 /**
2276 * schedule_hrtimeout_range_clock - sleep until timeout
2277 * @expires: timeout value (ktime_t)
2278 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2279 * @mode: timer mode
2280 * @clock_id: timer clock to be used
2281 */
2282 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2283 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2284 const enum hrtimer_mode mode, clockid_t clock_id)
2285 {
2286 struct hrtimer_sleeper t;
2287
2288 /*
2289 * Optimize when a zero timeout value is given. It does not
2290 * matter whether this is an absolute or a relative time.
2291 */
2292 if (expires && *expires == 0) {
2293 __set_current_state(TASK_RUNNING);
2294 return 0;
2295 }
2296
2297 /*
2298 * A NULL parameter means "infinite"
2299 */
2300 if (!expires) {
2301 schedule();
2302 return -EINTR;
2303 }
2304
2305 /*
2306 * Override any slack passed by the user if under
2307 * rt contraints.
2308 */
2309 if (rt_task(current))
2310 delta = 0;
2311
2312 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2313 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2314 hrtimer_sleeper_start_expires(&t, mode);
2315
2316 if (likely(t.task))
2317 schedule();
2318
2319 hrtimer_cancel(&t.timer);
2320 destroy_hrtimer_on_stack(&t.timer);
2321
2322 __set_current_state(TASK_RUNNING);
2323
2324 return !t.task ? 0 : -EINTR;
2325 }
2326 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2327
2328 /**
2329 * schedule_hrtimeout_range - sleep until timeout
2330 * @expires: timeout value (ktime_t)
2331 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2332 * @mode: timer mode
2333 *
2334 * Make the current task sleep until the given expiry time has
2335 * elapsed. The routine will return immediately unless
2336 * the current task state has been set (see set_current_state()).
2337 *
2338 * The @delta argument gives the kernel the freedom to schedule the
2339 * actual wakeup to a time that is both power and performance friendly
2340 * for regular (non RT/DL) tasks.
2341 * The kernel give the normal best effort behavior for "@expires+@delta",
2342 * but may decide to fire the timer earlier, but no earlier than @expires.
2343 *
2344 * You can set the task state as follows -
2345 *
2346 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2347 * pass before the routine returns unless the current task is explicitly
2348 * woken up, (e.g. by wake_up_process()).
2349 *
2350 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2351 * delivered to the current task or the current task is explicitly woken
2352 * up.
2353 *
2354 * The current task state is guaranteed to be TASK_RUNNING when this
2355 * routine returns.
2356 *
2357 * Returns 0 when the timer has expired. If the task was woken before the
2358 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2359 * by an explicit wakeup, it returns -EINTR.
2360 */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2361 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2362 const enum hrtimer_mode mode)
2363 {
2364 return schedule_hrtimeout_range_clock(expires, delta, mode,
2365 CLOCK_MONOTONIC);
2366 }
2367 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2368
2369 /**
2370 * schedule_hrtimeout - sleep until timeout
2371 * @expires: timeout value (ktime_t)
2372 * @mode: timer mode
2373 *
2374 * Make the current task sleep until the given expiry time has
2375 * elapsed. The routine will return immediately unless
2376 * the current task state has been set (see set_current_state()).
2377 *
2378 * You can set the task state as follows -
2379 *
2380 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2381 * pass before the routine returns unless the current task is explicitly
2382 * woken up, (e.g. by wake_up_process()).
2383 *
2384 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2385 * delivered to the current task or the current task is explicitly woken
2386 * up.
2387 *
2388 * The current task state is guaranteed to be TASK_RUNNING when this
2389 * routine returns.
2390 *
2391 * Returns 0 when the timer has expired. If the task was woken before the
2392 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2393 * by an explicit wakeup, it returns -EINTR.
2394 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2395 int __sched schedule_hrtimeout(ktime_t *expires,
2396 const enum hrtimer_mode mode)
2397 {
2398 return schedule_hrtimeout_range(expires, 0, mode);
2399 }
2400 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2401