• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include <trace/events/timer.h>
49 #include <trace/hooks/syscall_check.h>
50 
51 #include "tick-internal.h"
52 
53 /*
54  * Masks for selecting the soft and hard context timers from
55  * cpu_base->active
56  */
57 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
58 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
59 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
60 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
61 
62 /*
63  * The timer bases:
64  *
65  * There are more clockids than hrtimer bases. Thus, we index
66  * into the timer bases by the hrtimer_base_type enum. When trying
67  * to reach a base using a clockid, hrtimer_clockid_to_base()
68  * is used to convert from clockid to the proper hrtimer_base_type.
69  */
70 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71 {
72 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73 	.clock_base =
74 	{
75 		{
76 			.index = HRTIMER_BASE_MONOTONIC,
77 			.clockid = CLOCK_MONOTONIC,
78 			.get_time = &ktime_get,
79 		},
80 		{
81 			.index = HRTIMER_BASE_REALTIME,
82 			.clockid = CLOCK_REALTIME,
83 			.get_time = &ktime_get_real,
84 		},
85 		{
86 			.index = HRTIMER_BASE_BOOTTIME,
87 			.clockid = CLOCK_BOOTTIME,
88 			.get_time = &ktime_get_boottime,
89 		},
90 		{
91 			.index = HRTIMER_BASE_TAI,
92 			.clockid = CLOCK_TAI,
93 			.get_time = &ktime_get_clocktai,
94 		},
95 		{
96 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
97 			.clockid = CLOCK_MONOTONIC,
98 			.get_time = &ktime_get,
99 		},
100 		{
101 			.index = HRTIMER_BASE_REALTIME_SOFT,
102 			.clockid = CLOCK_REALTIME,
103 			.get_time = &ktime_get_real,
104 		},
105 		{
106 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
107 			.clockid = CLOCK_BOOTTIME,
108 			.get_time = &ktime_get_boottime,
109 		},
110 		{
111 			.index = HRTIMER_BASE_TAI_SOFT,
112 			.clockid = CLOCK_TAI,
113 			.get_time = &ktime_get_clocktai,
114 		},
115 	}
116 };
117 
118 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
119 	/* Make sure we catch unsupported clockids */
120 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
121 
122 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
123 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
124 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
125 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
126 };
127 
128 /*
129  * Functions and macros which are different for UP/SMP systems are kept in a
130  * single place
131  */
132 #ifdef CONFIG_SMP
133 
134 /*
135  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
136  * such that hrtimer_callback_running() can unconditionally dereference
137  * timer->base->cpu_base
138  */
139 static struct hrtimer_cpu_base migration_cpu_base = {
140 	.clock_base = { {
141 		.cpu_base = &migration_cpu_base,
142 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
143 						     &migration_cpu_base.lock),
144 	}, },
145 };
146 
147 #define migration_base	migration_cpu_base.clock_base[0]
148 
is_migration_base(struct hrtimer_clock_base * base)149 static inline bool is_migration_base(struct hrtimer_clock_base *base)
150 {
151 	return base == &migration_base;
152 }
153 
154 /*
155  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
156  * means that all timers which are tied to this base via timer->base are
157  * locked, and the base itself is locked too.
158  *
159  * So __run_timers/migrate_timers can safely modify all timers which could
160  * be found on the lists/queues.
161  *
162  * When the timer's base is locked, and the timer removed from list, it is
163  * possible to set timer->base = &migration_base and drop the lock: the timer
164  * remains locked.
165  */
166 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)167 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
168 					     unsigned long *flags)
169 	__acquires(&timer->base->lock)
170 {
171 	struct hrtimer_clock_base *base;
172 
173 	for (;;) {
174 		base = READ_ONCE(timer->base);
175 		if (likely(base != &migration_base)) {
176 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
177 			if (likely(base == timer->base))
178 				return base;
179 			/* The timer has migrated to another CPU: */
180 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
181 		}
182 		cpu_relax();
183 	}
184 }
185 
186 /*
187  * We do not migrate the timer when it is expiring before the next
188  * event on the target cpu. When high resolution is enabled, we cannot
189  * reprogram the target cpu hardware and we would cause it to fire
190  * late. To keep it simple, we handle the high resolution enabled and
191  * disabled case similar.
192  *
193  * Called with cpu_base->lock of target cpu held.
194  */
195 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)196 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
197 {
198 	ktime_t expires;
199 
200 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
201 	return expires < new_base->cpu_base->expires_next;
202 }
203 
204 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)205 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
206 					 int pinned)
207 {
208 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
209 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
210 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
211 #endif
212 	return base;
213 }
214 
215 /*
216  * We switch the timer base to a power-optimized selected CPU target,
217  * if:
218  *	- NO_HZ_COMMON is enabled
219  *	- timer migration is enabled
220  *	- the timer callback is not running
221  *	- the timer is not the first expiring timer on the new target
222  *
223  * If one of the above requirements is not fulfilled we move the timer
224  * to the current CPU or leave it on the previously assigned CPU if
225  * the timer callback is currently running.
226  */
227 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)228 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
229 		    int pinned)
230 {
231 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
232 	struct hrtimer_clock_base *new_base;
233 	int basenum = base->index;
234 
235 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
236 	new_cpu_base = get_target_base(this_cpu_base, pinned);
237 again:
238 	new_base = &new_cpu_base->clock_base[basenum];
239 
240 	if (base != new_base) {
241 		/*
242 		 * We are trying to move timer to new_base.
243 		 * However we can't change timer's base while it is running,
244 		 * so we keep it on the same CPU. No hassle vs. reprogramming
245 		 * the event source in the high resolution case. The softirq
246 		 * code will take care of this when the timer function has
247 		 * completed. There is no conflict as we hold the lock until
248 		 * the timer is enqueued.
249 		 */
250 		if (unlikely(hrtimer_callback_running(timer)))
251 			return base;
252 
253 		/* See the comment in lock_hrtimer_base() */
254 		WRITE_ONCE(timer->base, &migration_base);
255 		raw_spin_unlock(&base->cpu_base->lock);
256 		raw_spin_lock(&new_base->cpu_base->lock);
257 
258 		if (new_cpu_base != this_cpu_base &&
259 		    hrtimer_check_target(timer, new_base)) {
260 			raw_spin_unlock(&new_base->cpu_base->lock);
261 			raw_spin_lock(&base->cpu_base->lock);
262 			new_cpu_base = this_cpu_base;
263 			WRITE_ONCE(timer->base, base);
264 			goto again;
265 		}
266 		WRITE_ONCE(timer->base, new_base);
267 	} else {
268 		if (new_cpu_base != this_cpu_base &&
269 		    hrtimer_check_target(timer, new_base)) {
270 			new_cpu_base = this_cpu_base;
271 			goto again;
272 		}
273 	}
274 	return new_base;
275 }
276 
277 #else /* CONFIG_SMP */
278 
is_migration_base(struct hrtimer_clock_base * base)279 static inline bool is_migration_base(struct hrtimer_clock_base *base)
280 {
281 	return false;
282 }
283 
284 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)285 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
286 	__acquires(&timer->base->cpu_base->lock)
287 {
288 	struct hrtimer_clock_base *base = timer->base;
289 
290 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
291 
292 	return base;
293 }
294 
295 # define switch_hrtimer_base(t, b, p)	(b)
296 
297 #endif	/* !CONFIG_SMP */
298 
299 /*
300  * Functions for the union type storage format of ktime_t which are
301  * too large for inlining:
302  */
303 #if BITS_PER_LONG < 64
304 /*
305  * Divide a ktime value by a nanosecond value
306  */
__ktime_divns(const ktime_t kt,s64 div)307 s64 __ktime_divns(const ktime_t kt, s64 div)
308 {
309 	int sft = 0;
310 	s64 dclc;
311 	u64 tmp;
312 
313 	dclc = ktime_to_ns(kt);
314 	tmp = dclc < 0 ? -dclc : dclc;
315 
316 	/* Make sure the divisor is less than 2^32: */
317 	while (div >> 32) {
318 		sft++;
319 		div >>= 1;
320 	}
321 	tmp >>= sft;
322 	do_div(tmp, (u32) div);
323 	return dclc < 0 ? -tmp : tmp;
324 }
325 EXPORT_SYMBOL_GPL(__ktime_divns);
326 #endif /* BITS_PER_LONG >= 64 */
327 
328 /*
329  * Add two ktime values and do a safety check for overflow:
330  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)331 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
332 {
333 	ktime_t res = ktime_add_unsafe(lhs, rhs);
334 
335 	/*
336 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
337 	 * return to user space in a timespec:
338 	 */
339 	if (res < 0 || res < lhs || res < rhs)
340 		res = ktime_set(KTIME_SEC_MAX, 0);
341 
342 	return res;
343 }
344 
345 EXPORT_SYMBOL_GPL(ktime_add_safe);
346 
347 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
348 
349 static const struct debug_obj_descr hrtimer_debug_descr;
350 
hrtimer_debug_hint(void * addr)351 static void *hrtimer_debug_hint(void *addr)
352 {
353 	return ((struct hrtimer *) addr)->function;
354 }
355 
356 /*
357  * fixup_init is called when:
358  * - an active object is initialized
359  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)360 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
361 {
362 	struct hrtimer *timer = addr;
363 
364 	switch (state) {
365 	case ODEBUG_STATE_ACTIVE:
366 		hrtimer_cancel(timer);
367 		debug_object_init(timer, &hrtimer_debug_descr);
368 		return true;
369 	default:
370 		return false;
371 	}
372 }
373 
374 /*
375  * fixup_activate is called when:
376  * - an active object is activated
377  * - an unknown non-static object is activated
378  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)379 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
380 {
381 	switch (state) {
382 	case ODEBUG_STATE_ACTIVE:
383 		WARN_ON(1);
384 		fallthrough;
385 	default:
386 		return false;
387 	}
388 }
389 
390 /*
391  * fixup_free is called when:
392  * - an active object is freed
393  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)394 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
395 {
396 	struct hrtimer *timer = addr;
397 
398 	switch (state) {
399 	case ODEBUG_STATE_ACTIVE:
400 		hrtimer_cancel(timer);
401 		debug_object_free(timer, &hrtimer_debug_descr);
402 		return true;
403 	default:
404 		return false;
405 	}
406 }
407 
408 static const struct debug_obj_descr hrtimer_debug_descr = {
409 	.name		= "hrtimer",
410 	.debug_hint	= hrtimer_debug_hint,
411 	.fixup_init	= hrtimer_fixup_init,
412 	.fixup_activate	= hrtimer_fixup_activate,
413 	.fixup_free	= hrtimer_fixup_free,
414 };
415 
debug_hrtimer_init(struct hrtimer * timer)416 static inline void debug_hrtimer_init(struct hrtimer *timer)
417 {
418 	debug_object_init(timer, &hrtimer_debug_descr);
419 }
420 
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)421 static inline void debug_hrtimer_activate(struct hrtimer *timer,
422 					  enum hrtimer_mode mode)
423 {
424 	debug_object_activate(timer, &hrtimer_debug_descr);
425 }
426 
debug_hrtimer_deactivate(struct hrtimer * timer)427 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
428 {
429 	debug_object_deactivate(timer, &hrtimer_debug_descr);
430 }
431 
432 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
433 			   enum hrtimer_mode mode);
434 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)435 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
436 			   enum hrtimer_mode mode)
437 {
438 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
439 	__hrtimer_init(timer, clock_id, mode);
440 }
441 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
442 
443 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
444 				   clockid_t clock_id, enum hrtimer_mode mode);
445 
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)446 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
447 				   clockid_t clock_id, enum hrtimer_mode mode)
448 {
449 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
450 	__hrtimer_init_sleeper(sl, clock_id, mode);
451 }
452 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
453 
destroy_hrtimer_on_stack(struct hrtimer * timer)454 void destroy_hrtimer_on_stack(struct hrtimer *timer)
455 {
456 	debug_object_free(timer, &hrtimer_debug_descr);
457 }
458 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
459 
460 #else
461 
debug_hrtimer_init(struct hrtimer * timer)462 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)463 static inline void debug_hrtimer_activate(struct hrtimer *timer,
464 					  enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)465 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
466 #endif
467 
468 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)469 debug_init(struct hrtimer *timer, clockid_t clockid,
470 	   enum hrtimer_mode mode)
471 {
472 	debug_hrtimer_init(timer);
473 	trace_hrtimer_init(timer, clockid, mode);
474 }
475 
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)476 static inline void debug_activate(struct hrtimer *timer,
477 				  enum hrtimer_mode mode)
478 {
479 	debug_hrtimer_activate(timer, mode);
480 	trace_hrtimer_start(timer, mode);
481 }
482 
debug_deactivate(struct hrtimer * timer)483 static inline void debug_deactivate(struct hrtimer *timer)
484 {
485 	debug_hrtimer_deactivate(timer);
486 	trace_hrtimer_cancel(timer);
487 }
488 
489 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)490 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
491 {
492 	unsigned int idx;
493 
494 	if (!*active)
495 		return NULL;
496 
497 	idx = __ffs(*active);
498 	*active &= ~(1U << idx);
499 
500 	return &cpu_base->clock_base[idx];
501 }
502 
503 #define for_each_active_base(base, cpu_base, active)	\
504 	while ((base = __next_base((cpu_base), &(active))))
505 
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)506 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
507 					 const struct hrtimer *exclude,
508 					 unsigned int active,
509 					 ktime_t expires_next)
510 {
511 	struct hrtimer_clock_base *base;
512 	ktime_t expires;
513 
514 	for_each_active_base(base, cpu_base, active) {
515 		struct timerqueue_node *next;
516 		struct hrtimer *timer;
517 
518 		next = timerqueue_getnext(&base->active);
519 		timer = container_of(next, struct hrtimer, node);
520 		if (timer == exclude) {
521 			/* Get to the next timer in the queue. */
522 			next = timerqueue_iterate_next(next);
523 			if (!next)
524 				continue;
525 
526 			timer = container_of(next, struct hrtimer, node);
527 		}
528 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
529 		if (expires < expires_next) {
530 			expires_next = expires;
531 
532 			/* Skip cpu_base update if a timer is being excluded. */
533 			if (exclude)
534 				continue;
535 
536 			if (timer->is_soft)
537 				cpu_base->softirq_next_timer = timer;
538 			else
539 				cpu_base->next_timer = timer;
540 		}
541 	}
542 	/*
543 	 * clock_was_set() might have changed base->offset of any of
544 	 * the clock bases so the result might be negative. Fix it up
545 	 * to prevent a false positive in clockevents_program_event().
546 	 */
547 	if (expires_next < 0)
548 		expires_next = 0;
549 	return expires_next;
550 }
551 
552 /*
553  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
554  * but does not set cpu_base::*expires_next, that is done by
555  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
556  * cpu_base::*expires_next right away, reprogramming logic would no longer
557  * work.
558  *
559  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
560  * those timers will get run whenever the softirq gets handled, at the end of
561  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
562  *
563  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
564  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
565  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
566  *
567  * @active_mask must be one of:
568  *  - HRTIMER_ACTIVE_ALL,
569  *  - HRTIMER_ACTIVE_SOFT, or
570  *  - HRTIMER_ACTIVE_HARD.
571  */
572 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)573 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
574 {
575 	unsigned int active;
576 	struct hrtimer *next_timer = NULL;
577 	ktime_t expires_next = KTIME_MAX;
578 
579 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
580 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
581 		cpu_base->softirq_next_timer = NULL;
582 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
583 							 active, KTIME_MAX);
584 
585 		next_timer = cpu_base->softirq_next_timer;
586 	}
587 
588 	if (active_mask & HRTIMER_ACTIVE_HARD) {
589 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
590 		cpu_base->next_timer = next_timer;
591 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
592 							 expires_next);
593 	}
594 
595 	return expires_next;
596 }
597 
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)598 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
599 {
600 	ktime_t expires_next, soft = KTIME_MAX;
601 
602 	/*
603 	 * If the soft interrupt has already been activated, ignore the
604 	 * soft bases. They will be handled in the already raised soft
605 	 * interrupt.
606 	 */
607 	if (!cpu_base->softirq_activated) {
608 		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
609 		/*
610 		 * Update the soft expiry time. clock_settime() might have
611 		 * affected it.
612 		 */
613 		cpu_base->softirq_expires_next = soft;
614 	}
615 
616 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
617 	/*
618 	 * If a softirq timer is expiring first, update cpu_base->next_timer
619 	 * and program the hardware with the soft expiry time.
620 	 */
621 	if (expires_next > soft) {
622 		cpu_base->next_timer = cpu_base->softirq_next_timer;
623 		expires_next = soft;
624 	}
625 
626 	return expires_next;
627 }
628 
hrtimer_update_base(struct hrtimer_cpu_base * base)629 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
630 {
631 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
632 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
633 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
634 
635 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
636 					    offs_real, offs_boot, offs_tai);
637 
638 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
639 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
640 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
641 
642 	return now;
643 }
644 
645 /*
646  * Is the high resolution mode active ?
647  */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)648 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
649 {
650 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
651 		cpu_base->hres_active : 0;
652 }
653 
hrtimer_hres_active(void)654 static inline int hrtimer_hres_active(void)
655 {
656 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
657 }
658 
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)659 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
660 				struct hrtimer *next_timer,
661 				ktime_t expires_next)
662 {
663 	cpu_base->expires_next = expires_next;
664 
665 	/*
666 	 * If hres is not active, hardware does not have to be
667 	 * reprogrammed yet.
668 	 *
669 	 * If a hang was detected in the last timer interrupt then we
670 	 * leave the hang delay active in the hardware. We want the
671 	 * system to make progress. That also prevents the following
672 	 * scenario:
673 	 * T1 expires 50ms from now
674 	 * T2 expires 5s from now
675 	 *
676 	 * T1 is removed, so this code is called and would reprogram
677 	 * the hardware to 5s from now. Any hrtimer_start after that
678 	 * will not reprogram the hardware due to hang_detected being
679 	 * set. So we'd effectively block all timers until the T2 event
680 	 * fires.
681 	 */
682 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
683 		return;
684 
685 	tick_program_event(expires_next, 1);
686 }
687 
688 /*
689  * Reprogram the event source with checking both queues for the
690  * next event
691  * Called with interrupts disabled and base->lock held
692  */
693 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)694 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
695 {
696 	ktime_t expires_next;
697 
698 	expires_next = hrtimer_update_next_event(cpu_base);
699 
700 	if (skip_equal && expires_next == cpu_base->expires_next)
701 		return;
702 
703 	__hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
704 }
705 
706 /* High resolution timer related functions */
707 #ifdef CONFIG_HIGH_RES_TIMERS
708 
709 /*
710  * High resolution timer enabled ?
711  */
712 static bool hrtimer_hres_enabled __read_mostly  = true;
713 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
714 EXPORT_SYMBOL_GPL(hrtimer_resolution);
715 
716 /*
717  * Enable / Disable high resolution mode
718  */
setup_hrtimer_hres(char * str)719 static int __init setup_hrtimer_hres(char *str)
720 {
721 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
722 }
723 
724 __setup("highres=", setup_hrtimer_hres);
725 
726 /*
727  * hrtimer_high_res_enabled - query, if the highres mode is enabled
728  */
hrtimer_is_hres_enabled(void)729 static inline int hrtimer_is_hres_enabled(void)
730 {
731 	return hrtimer_hres_enabled;
732 }
733 
734 static void retrigger_next_event(void *arg);
735 
736 /*
737  * Switch to high resolution mode
738  */
hrtimer_switch_to_hres(void)739 static void hrtimer_switch_to_hres(void)
740 {
741 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
742 
743 	if (tick_init_highres()) {
744 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
745 			base->cpu);
746 		return;
747 	}
748 	base->hres_active = 1;
749 	hrtimer_resolution = HIGH_RES_NSEC;
750 
751 	tick_setup_sched_timer();
752 	/* "Retrigger" the interrupt to get things going */
753 	retrigger_next_event(NULL);
754 }
755 
756 #else
757 
hrtimer_is_hres_enabled(void)758 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)759 static inline void hrtimer_switch_to_hres(void) { }
760 
761 #endif /* CONFIG_HIGH_RES_TIMERS */
762 /*
763  * Retrigger next event is called after clock was set with interrupts
764  * disabled through an SMP function call or directly from low level
765  * resume code.
766  *
767  * This is only invoked when:
768  *	- CONFIG_HIGH_RES_TIMERS is enabled.
769  *	- CONFIG_NOHZ_COMMON is enabled
770  *
771  * For the other cases this function is empty and because the call sites
772  * are optimized out it vanishes as well, i.e. no need for lots of
773  * #ifdeffery.
774  */
retrigger_next_event(void * arg)775 static void retrigger_next_event(void *arg)
776 {
777 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
778 
779 	/*
780 	 * When high resolution mode or nohz is active, then the offsets of
781 	 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
782 	 * next tick will take care of that.
783 	 *
784 	 * If high resolution mode is active then the next expiring timer
785 	 * must be reevaluated and the clock event device reprogrammed if
786 	 * necessary.
787 	 *
788 	 * In the NOHZ case the update of the offset and the reevaluation
789 	 * of the next expiring timer is enough. The return from the SMP
790 	 * function call will take care of the reprogramming in case the
791 	 * CPU was in a NOHZ idle sleep.
792 	 */
793 	if (!__hrtimer_hres_active(base) && !tick_nohz_active)
794 		return;
795 
796 	raw_spin_lock(&base->lock);
797 	hrtimer_update_base(base);
798 	if (__hrtimer_hres_active(base))
799 		hrtimer_force_reprogram(base, 0);
800 	else
801 		hrtimer_update_next_event(base);
802 	raw_spin_unlock(&base->lock);
803 }
804 
805 /*
806  * When a timer is enqueued and expires earlier than the already enqueued
807  * timers, we have to check, whether it expires earlier than the timer for
808  * which the clock event device was armed.
809  *
810  * Called with interrupts disabled and base->cpu_base.lock held
811  */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)812 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
813 {
814 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
815 	struct hrtimer_clock_base *base = timer->base;
816 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
817 
818 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
819 
820 	/*
821 	 * CLOCK_REALTIME timer might be requested with an absolute
822 	 * expiry time which is less than base->offset. Set it to 0.
823 	 */
824 	if (expires < 0)
825 		expires = 0;
826 
827 	if (timer->is_soft) {
828 		/*
829 		 * soft hrtimer could be started on a remote CPU. In this
830 		 * case softirq_expires_next needs to be updated on the
831 		 * remote CPU. The soft hrtimer will not expire before the
832 		 * first hard hrtimer on the remote CPU -
833 		 * hrtimer_check_target() prevents this case.
834 		 */
835 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
836 
837 		if (timer_cpu_base->softirq_activated)
838 			return;
839 
840 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
841 			return;
842 
843 		timer_cpu_base->softirq_next_timer = timer;
844 		timer_cpu_base->softirq_expires_next = expires;
845 
846 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
847 		    !reprogram)
848 			return;
849 	}
850 
851 	/*
852 	 * If the timer is not on the current cpu, we cannot reprogram
853 	 * the other cpus clock event device.
854 	 */
855 	if (base->cpu_base != cpu_base)
856 		return;
857 
858 	if (expires >= cpu_base->expires_next)
859 		return;
860 
861 	/*
862 	 * If the hrtimer interrupt is running, then it will reevaluate the
863 	 * clock bases and reprogram the clock event device.
864 	 */
865 	if (cpu_base->in_hrtirq)
866 		return;
867 
868 	cpu_base->next_timer = timer;
869 
870 	__hrtimer_reprogram(cpu_base, timer, expires);
871 }
872 
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)873 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
874 			     unsigned int active)
875 {
876 	struct hrtimer_clock_base *base;
877 	unsigned int seq;
878 	ktime_t expires;
879 
880 	/*
881 	 * Update the base offsets unconditionally so the following
882 	 * checks whether the SMP function call is required works.
883 	 *
884 	 * The update is safe even when the remote CPU is in the hrtimer
885 	 * interrupt or the hrtimer soft interrupt and expiring affected
886 	 * bases. Either it will see the update before handling a base or
887 	 * it will see it when it finishes the processing and reevaluates
888 	 * the next expiring timer.
889 	 */
890 	seq = cpu_base->clock_was_set_seq;
891 	hrtimer_update_base(cpu_base);
892 
893 	/*
894 	 * If the sequence did not change over the update then the
895 	 * remote CPU already handled it.
896 	 */
897 	if (seq == cpu_base->clock_was_set_seq)
898 		return false;
899 
900 	/*
901 	 * If the remote CPU is currently handling an hrtimer interrupt, it
902 	 * will reevaluate the first expiring timer of all clock bases
903 	 * before reprogramming. Nothing to do here.
904 	 */
905 	if (cpu_base->in_hrtirq)
906 		return false;
907 
908 	/*
909 	 * Walk the affected clock bases and check whether the first expiring
910 	 * timer in a clock base is moving ahead of the first expiring timer of
911 	 * @cpu_base. If so, the IPI must be invoked because per CPU clock
912 	 * event devices cannot be remotely reprogrammed.
913 	 */
914 	active &= cpu_base->active_bases;
915 
916 	for_each_active_base(base, cpu_base, active) {
917 		struct timerqueue_node *next;
918 
919 		next = timerqueue_getnext(&base->active);
920 		expires = ktime_sub(next->expires, base->offset);
921 		if (expires < cpu_base->expires_next)
922 			return true;
923 
924 		/* Extra check for softirq clock bases */
925 		if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
926 			continue;
927 		if (cpu_base->softirq_activated)
928 			continue;
929 		if (expires < cpu_base->softirq_expires_next)
930 			return true;
931 	}
932 	return false;
933 }
934 
935 /*
936  * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
937  * CLOCK_BOOTTIME (for late sleep time injection).
938  *
939  * This requires to update the offsets for these clocks
940  * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
941  * also requires to eventually reprogram the per CPU clock event devices
942  * when the change moves an affected timer ahead of the first expiring
943  * timer on that CPU. Obviously remote per CPU clock event devices cannot
944  * be reprogrammed. The other reason why an IPI has to be sent is when the
945  * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
946  * in the tick, which obviously might be stopped, so this has to bring out
947  * the remote CPU which might sleep in idle to get this sorted.
948  */
clock_was_set(unsigned int bases)949 void clock_was_set(unsigned int bases)
950 {
951 	struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
952 	cpumask_var_t mask;
953 	int cpu;
954 
955 	if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active)
956 		goto out_timerfd;
957 
958 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
959 		on_each_cpu(retrigger_next_event, NULL, 1);
960 		goto out_timerfd;
961 	}
962 
963 	/* Avoid interrupting CPUs if possible */
964 	cpus_read_lock();
965 	for_each_online_cpu(cpu) {
966 		unsigned long flags;
967 
968 		cpu_base = &per_cpu(hrtimer_bases, cpu);
969 		raw_spin_lock_irqsave(&cpu_base->lock, flags);
970 
971 		if (update_needs_ipi(cpu_base, bases))
972 			cpumask_set_cpu(cpu, mask);
973 
974 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
975 	}
976 
977 	preempt_disable();
978 	smp_call_function_many(mask, retrigger_next_event, NULL, 1);
979 	preempt_enable();
980 	cpus_read_unlock();
981 	free_cpumask_var(mask);
982 
983 out_timerfd:
984 	timerfd_clock_was_set();
985 }
986 
clock_was_set_work(struct work_struct * work)987 static void clock_was_set_work(struct work_struct *work)
988 {
989 	clock_was_set(CLOCK_SET_WALL);
990 }
991 
992 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
993 
994 /*
995  * Called from timekeeping code to reprogram the hrtimer interrupt device
996  * on all cpus and to notify timerfd.
997  */
clock_was_set_delayed(void)998 void clock_was_set_delayed(void)
999 {
1000 	schedule_work(&hrtimer_work);
1001 }
1002 
1003 /*
1004  * Called during resume either directly from via timekeeping_resume()
1005  * or in the case of s2idle from tick_unfreeze() to ensure that the
1006  * hrtimers are up to date.
1007  */
hrtimers_resume_local(void)1008 void hrtimers_resume_local(void)
1009 {
1010 	lockdep_assert_irqs_disabled();
1011 	/* Retrigger on the local CPU */
1012 	retrigger_next_event(NULL);
1013 }
1014 
1015 /*
1016  * Counterpart to lock_hrtimer_base above:
1017  */
1018 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1019 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1020 	__releases(&timer->base->cpu_base->lock)
1021 {
1022 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1023 }
1024 
1025 /**
1026  * hrtimer_forward - forward the timer expiry
1027  * @timer:	hrtimer to forward
1028  * @now:	forward past this time
1029  * @interval:	the interval to forward
1030  *
1031  * Forward the timer expiry so it will expire in the future.
1032  * Returns the number of overruns.
1033  *
1034  * Can be safely called from the callback function of @timer. If
1035  * called from other contexts @timer must neither be enqueued nor
1036  * running the callback and the caller needs to take care of
1037  * serialization.
1038  *
1039  * Note: This only updates the timer expiry value and does not requeue
1040  * the timer.
1041  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1042 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1043 {
1044 	u64 orun = 1;
1045 	ktime_t delta;
1046 
1047 	delta = ktime_sub(now, hrtimer_get_expires(timer));
1048 
1049 	if (delta < 0)
1050 		return 0;
1051 
1052 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1053 		return 0;
1054 
1055 	if (interval < hrtimer_resolution)
1056 		interval = hrtimer_resolution;
1057 
1058 	if (unlikely(delta >= interval)) {
1059 		s64 incr = ktime_to_ns(interval);
1060 
1061 		orun = ktime_divns(delta, incr);
1062 		hrtimer_add_expires_ns(timer, incr * orun);
1063 		if (hrtimer_get_expires_tv64(timer) > now)
1064 			return orun;
1065 		/*
1066 		 * This (and the ktime_add() below) is the
1067 		 * correction for exact:
1068 		 */
1069 		orun++;
1070 	}
1071 	hrtimer_add_expires(timer, interval);
1072 
1073 	return orun;
1074 }
1075 EXPORT_SYMBOL_GPL(hrtimer_forward);
1076 
1077 /*
1078  * enqueue_hrtimer - internal function to (re)start a timer
1079  *
1080  * The timer is inserted in expiry order. Insertion into the
1081  * red black tree is O(log(n)). Must hold the base lock.
1082  *
1083  * Returns 1 when the new timer is the leftmost timer in the tree.
1084  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1085 static int enqueue_hrtimer(struct hrtimer *timer,
1086 			   struct hrtimer_clock_base *base,
1087 			   enum hrtimer_mode mode)
1088 {
1089 	debug_activate(timer, mode);
1090 	WARN_ON_ONCE(!base->cpu_base->online);
1091 
1092 	base->cpu_base->active_bases |= 1 << base->index;
1093 
1094 	/* Pairs with the lockless read in hrtimer_is_queued() */
1095 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1096 
1097 	return timerqueue_add(&base->active, &timer->node);
1098 }
1099 
1100 /*
1101  * __remove_hrtimer - internal function to remove a timer
1102  *
1103  * Caller must hold the base lock.
1104  *
1105  * High resolution timer mode reprograms the clock event device when the
1106  * timer is the one which expires next. The caller can disable this by setting
1107  * reprogram to zero. This is useful, when the context does a reprogramming
1108  * anyway (e.g. timer interrupt)
1109  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1110 static void __remove_hrtimer(struct hrtimer *timer,
1111 			     struct hrtimer_clock_base *base,
1112 			     u8 newstate, int reprogram)
1113 {
1114 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1115 	u8 state = timer->state;
1116 
1117 	/* Pairs with the lockless read in hrtimer_is_queued() */
1118 	WRITE_ONCE(timer->state, newstate);
1119 	if (!(state & HRTIMER_STATE_ENQUEUED))
1120 		return;
1121 
1122 	if (!timerqueue_del(&base->active, &timer->node))
1123 		cpu_base->active_bases &= ~(1 << base->index);
1124 
1125 	/*
1126 	 * Note: If reprogram is false we do not update
1127 	 * cpu_base->next_timer. This happens when we remove the first
1128 	 * timer on a remote cpu. No harm as we never dereference
1129 	 * cpu_base->next_timer. So the worst thing what can happen is
1130 	 * an superfluous call to hrtimer_force_reprogram() on the
1131 	 * remote cpu later on if the same timer gets enqueued again.
1132 	 */
1133 	if (reprogram && timer == cpu_base->next_timer)
1134 		hrtimer_force_reprogram(cpu_base, 1);
1135 }
1136 
1137 /*
1138  * remove hrtimer, called with base lock held
1139  */
1140 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1141 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1142 	       bool restart, bool keep_local)
1143 {
1144 	u8 state = timer->state;
1145 
1146 	if (state & HRTIMER_STATE_ENQUEUED) {
1147 		bool reprogram;
1148 
1149 		/*
1150 		 * Remove the timer and force reprogramming when high
1151 		 * resolution mode is active and the timer is on the current
1152 		 * CPU. If we remove a timer on another CPU, reprogramming is
1153 		 * skipped. The interrupt event on this CPU is fired and
1154 		 * reprogramming happens in the interrupt handler. This is a
1155 		 * rare case and less expensive than a smp call.
1156 		 */
1157 		debug_deactivate(timer);
1158 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1159 
1160 		/*
1161 		 * If the timer is not restarted then reprogramming is
1162 		 * required if the timer is local. If it is local and about
1163 		 * to be restarted, avoid programming it twice (on removal
1164 		 * and a moment later when it's requeued).
1165 		 */
1166 		if (!restart)
1167 			state = HRTIMER_STATE_INACTIVE;
1168 		else
1169 			reprogram &= !keep_local;
1170 
1171 		__remove_hrtimer(timer, base, state, reprogram);
1172 		return 1;
1173 	}
1174 	return 0;
1175 }
1176 
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1177 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1178 					    const enum hrtimer_mode mode)
1179 {
1180 #ifdef CONFIG_TIME_LOW_RES
1181 	/*
1182 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1183 	 * granular time values. For relative timers we add hrtimer_resolution
1184 	 * (i.e. one jiffie) to prevent short timeouts.
1185 	 */
1186 	timer->is_rel = mode & HRTIMER_MODE_REL;
1187 	if (timer->is_rel)
1188 		tim = ktime_add_safe(tim, hrtimer_resolution);
1189 #endif
1190 	return tim;
1191 }
1192 
1193 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1194 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1195 {
1196 	ktime_t expires;
1197 
1198 	/*
1199 	 * Find the next SOFT expiration.
1200 	 */
1201 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1202 
1203 	/*
1204 	 * reprogramming needs to be triggered, even if the next soft
1205 	 * hrtimer expires at the same time than the next hard
1206 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1207 	 */
1208 	if (expires == KTIME_MAX)
1209 		return;
1210 
1211 	/*
1212 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1213 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1214 	 */
1215 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1216 }
1217 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1218 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1219 				    u64 delta_ns, const enum hrtimer_mode mode,
1220 				    struct hrtimer_clock_base *base)
1221 {
1222 	struct hrtimer_clock_base *new_base;
1223 	bool force_local, first;
1224 
1225 	/*
1226 	 * If the timer is on the local cpu base and is the first expiring
1227 	 * timer then this might end up reprogramming the hardware twice
1228 	 * (on removal and on enqueue). To avoid that by prevent the
1229 	 * reprogram on removal, keep the timer local to the current CPU
1230 	 * and enforce reprogramming after it is queued no matter whether
1231 	 * it is the new first expiring timer again or not.
1232 	 */
1233 	force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1234 	force_local &= base->cpu_base->next_timer == timer;
1235 
1236 	/*
1237 	 * Remove an active timer from the queue. In case it is not queued
1238 	 * on the current CPU, make sure that remove_hrtimer() updates the
1239 	 * remote data correctly.
1240 	 *
1241 	 * If it's on the current CPU and the first expiring timer, then
1242 	 * skip reprogramming, keep the timer local and enforce
1243 	 * reprogramming later if it was the first expiring timer.  This
1244 	 * avoids programming the underlying clock event twice (once at
1245 	 * removal and once after enqueue).
1246 	 */
1247 	remove_hrtimer(timer, base, true, force_local);
1248 
1249 	if (mode & HRTIMER_MODE_REL)
1250 		tim = ktime_add_safe(tim, base->get_time());
1251 
1252 	tim = hrtimer_update_lowres(timer, tim, mode);
1253 
1254 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1255 
1256 	/* Switch the timer base, if necessary: */
1257 	if (!force_local) {
1258 		new_base = switch_hrtimer_base(timer, base,
1259 					       mode & HRTIMER_MODE_PINNED);
1260 	} else {
1261 		new_base = base;
1262 	}
1263 
1264 	first = enqueue_hrtimer(timer, new_base, mode);
1265 	if (!force_local)
1266 		return first;
1267 
1268 	/*
1269 	 * Timer was forced to stay on the current CPU to avoid
1270 	 * reprogramming on removal and enqueue. Force reprogram the
1271 	 * hardware by evaluating the new first expiring timer.
1272 	 */
1273 	hrtimer_force_reprogram(new_base->cpu_base, 1);
1274 	return 0;
1275 }
1276 
1277 /**
1278  * hrtimer_start_range_ns - (re)start an hrtimer
1279  * @timer:	the timer to be added
1280  * @tim:	expiry time
1281  * @delta_ns:	"slack" range for the timer
1282  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1283  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1284  *		softirq based mode is considered for debug purpose only!
1285  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1286 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1287 			    u64 delta_ns, const enum hrtimer_mode mode)
1288 {
1289 	struct hrtimer_clock_base *base;
1290 	unsigned long flags;
1291 
1292 	if (WARN_ON_ONCE(!timer->function))
1293 		return;
1294 	/*
1295 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1296 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1297 	 * expiry mode because unmarked timers are moved to softirq expiry.
1298 	 */
1299 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1300 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1301 	else
1302 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1303 
1304 	base = lock_hrtimer_base(timer, &flags);
1305 
1306 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1307 		hrtimer_reprogram(timer, true);
1308 
1309 	unlock_hrtimer_base(timer, &flags);
1310 }
1311 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1312 
1313 /**
1314  * hrtimer_try_to_cancel - try to deactivate a timer
1315  * @timer:	hrtimer to stop
1316  *
1317  * Returns:
1318  *
1319  *  *  0 when the timer was not active
1320  *  *  1 when the timer was active
1321  *  * -1 when the timer is currently executing the callback function and
1322  *    cannot be stopped
1323  */
hrtimer_try_to_cancel(struct hrtimer * timer)1324 int hrtimer_try_to_cancel(struct hrtimer *timer)
1325 {
1326 	struct hrtimer_clock_base *base;
1327 	unsigned long flags;
1328 	int ret = -1;
1329 
1330 	/*
1331 	 * Check lockless first. If the timer is not active (neither
1332 	 * enqueued nor running the callback, nothing to do here.  The
1333 	 * base lock does not serialize against a concurrent enqueue,
1334 	 * so we can avoid taking it.
1335 	 */
1336 	if (!hrtimer_active(timer))
1337 		return 0;
1338 
1339 	base = lock_hrtimer_base(timer, &flags);
1340 
1341 	if (!hrtimer_callback_running(timer))
1342 		ret = remove_hrtimer(timer, base, false, false);
1343 
1344 	unlock_hrtimer_base(timer, &flags);
1345 
1346 	return ret;
1347 
1348 }
1349 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1350 
1351 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1352 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1353 {
1354 	spin_lock_init(&base->softirq_expiry_lock);
1355 }
1356 
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1357 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1358 {
1359 	spin_lock(&base->softirq_expiry_lock);
1360 }
1361 
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1362 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1363 {
1364 	spin_unlock(&base->softirq_expiry_lock);
1365 }
1366 
1367 /*
1368  * The counterpart to hrtimer_cancel_wait_running().
1369  *
1370  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1371  * the timer callback to finish. Drop expiry_lock and reacquire it. That
1372  * allows the waiter to acquire the lock and make progress.
1373  */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1374 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1375 				      unsigned long flags)
1376 {
1377 	if (atomic_read(&cpu_base->timer_waiters)) {
1378 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1379 		spin_unlock(&cpu_base->softirq_expiry_lock);
1380 		spin_lock(&cpu_base->softirq_expiry_lock);
1381 		raw_spin_lock_irq(&cpu_base->lock);
1382 	}
1383 }
1384 
1385 /*
1386  * This function is called on PREEMPT_RT kernels when the fast path
1387  * deletion of a timer failed because the timer callback function was
1388  * running.
1389  *
1390  * This prevents priority inversion: if the soft irq thread is preempted
1391  * in the middle of a timer callback, then calling del_timer_sync() can
1392  * lead to two issues:
1393  *
1394  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1395  *    handler to complete. This can result in unbound priority inversion.
1396  *
1397  *  - If the caller originates from the task which preempted the timer
1398  *    handler on the same CPU, then spin waiting for the timer handler to
1399  *    complete is never going to end.
1400  */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1401 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1402 {
1403 	/* Lockless read. Prevent the compiler from reloading it below */
1404 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1405 
1406 	/*
1407 	 * Just relax if the timer expires in hard interrupt context or if
1408 	 * it is currently on the migration base.
1409 	 */
1410 	if (!timer->is_soft || is_migration_base(base)) {
1411 		cpu_relax();
1412 		return;
1413 	}
1414 
1415 	/*
1416 	 * Mark the base as contended and grab the expiry lock, which is
1417 	 * held by the softirq across the timer callback. Drop the lock
1418 	 * immediately so the softirq can expire the next timer. In theory
1419 	 * the timer could already be running again, but that's more than
1420 	 * unlikely and just causes another wait loop.
1421 	 */
1422 	atomic_inc(&base->cpu_base->timer_waiters);
1423 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1424 	atomic_dec(&base->cpu_base->timer_waiters);
1425 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1426 }
1427 #else
1428 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1429 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1430 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1431 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1432 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1433 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1434 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1435 					     unsigned long flags) { }
1436 #endif
1437 
1438 /**
1439  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1440  * @timer:	the timer to be cancelled
1441  *
1442  * Returns:
1443  *  0 when the timer was not active
1444  *  1 when the timer was active
1445  */
hrtimer_cancel(struct hrtimer * timer)1446 int hrtimer_cancel(struct hrtimer *timer)
1447 {
1448 	int ret;
1449 
1450 	do {
1451 		ret = hrtimer_try_to_cancel(timer);
1452 
1453 		if (ret < 0)
1454 			hrtimer_cancel_wait_running(timer);
1455 	} while (ret < 0);
1456 	return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1459 
1460 /**
1461  * __hrtimer_get_remaining - get remaining time for the timer
1462  * @timer:	the timer to read
1463  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1464  */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1465 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1466 {
1467 	unsigned long flags;
1468 	ktime_t rem;
1469 
1470 	lock_hrtimer_base(timer, &flags);
1471 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1472 		rem = hrtimer_expires_remaining_adjusted(timer);
1473 	else
1474 		rem = hrtimer_expires_remaining(timer);
1475 	unlock_hrtimer_base(timer, &flags);
1476 
1477 	return rem;
1478 }
1479 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1480 
1481 #ifdef CONFIG_NO_HZ_COMMON
1482 /**
1483  * hrtimer_get_next_event - get the time until next expiry event
1484  *
1485  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1486  */
hrtimer_get_next_event(void)1487 u64 hrtimer_get_next_event(void)
1488 {
1489 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1490 	u64 expires = KTIME_MAX;
1491 	unsigned long flags;
1492 
1493 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1494 
1495 	if (!__hrtimer_hres_active(cpu_base))
1496 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1497 
1498 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1499 
1500 	return expires;
1501 }
1502 
1503 /**
1504  * hrtimer_next_event_without - time until next expiry event w/o one timer
1505  * @exclude:	timer to exclude
1506  *
1507  * Returns the next expiry time over all timers except for the @exclude one or
1508  * KTIME_MAX if none of them is pending.
1509  */
hrtimer_next_event_without(const struct hrtimer * exclude)1510 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1511 {
1512 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1513 	u64 expires = KTIME_MAX;
1514 	unsigned long flags;
1515 
1516 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1517 
1518 	if (__hrtimer_hres_active(cpu_base)) {
1519 		unsigned int active;
1520 
1521 		if (!cpu_base->softirq_activated) {
1522 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1523 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1524 							    active, KTIME_MAX);
1525 		}
1526 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1527 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1528 						    expires);
1529 	}
1530 
1531 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1532 
1533 	return expires;
1534 }
1535 #endif
1536 
hrtimer_clockid_to_base(clockid_t clock_id)1537 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1538 {
1539 	if (likely(clock_id < MAX_CLOCKS)) {
1540 		int base = hrtimer_clock_to_base_table[clock_id];
1541 
1542 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1543 			return base;
1544 	}
1545 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1546 	return HRTIMER_BASE_MONOTONIC;
1547 }
1548 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1549 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1550 			   enum hrtimer_mode mode)
1551 {
1552 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1553 	struct hrtimer_cpu_base *cpu_base;
1554 	int base;
1555 
1556 	/*
1557 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1558 	 * marked for hard interrupt expiry mode are moved into soft
1559 	 * interrupt context for latency reasons and because the callbacks
1560 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1561 	 */
1562 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1563 		softtimer = true;
1564 
1565 	memset(timer, 0, sizeof(struct hrtimer));
1566 
1567 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1568 
1569 	/*
1570 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1571 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1572 	 * ensure POSIX compliance.
1573 	 */
1574 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1575 		clock_id = CLOCK_MONOTONIC;
1576 
1577 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1578 	base += hrtimer_clockid_to_base(clock_id);
1579 	timer->is_soft = softtimer;
1580 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1581 	timer->base = &cpu_base->clock_base[base];
1582 	timerqueue_init(&timer->node);
1583 }
1584 
1585 /**
1586  * hrtimer_init - initialize a timer to the given clock
1587  * @timer:	the timer to be initialized
1588  * @clock_id:	the clock to be used
1589  * @mode:       The modes which are relevant for initialization:
1590  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1591  *              HRTIMER_MODE_REL_SOFT
1592  *
1593  *              The PINNED variants of the above can be handed in,
1594  *              but the PINNED bit is ignored as pinning happens
1595  *              when the hrtimer is started
1596  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1597 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1598 		  enum hrtimer_mode mode)
1599 {
1600 	debug_init(timer, clock_id, mode);
1601 	__hrtimer_init(timer, clock_id, mode);
1602 }
1603 EXPORT_SYMBOL_GPL(hrtimer_init);
1604 
1605 /*
1606  * A timer is active, when it is enqueued into the rbtree or the
1607  * callback function is running or it's in the state of being migrated
1608  * to another cpu.
1609  *
1610  * It is important for this function to not return a false negative.
1611  */
hrtimer_active(const struct hrtimer * timer)1612 bool hrtimer_active(const struct hrtimer *timer)
1613 {
1614 	struct hrtimer_clock_base *base;
1615 	unsigned int seq;
1616 
1617 	do {
1618 		base = READ_ONCE(timer->base);
1619 		seq = raw_read_seqcount_begin(&base->seq);
1620 
1621 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1622 		    base->running == timer)
1623 			return true;
1624 
1625 	} while (read_seqcount_retry(&base->seq, seq) ||
1626 		 base != READ_ONCE(timer->base));
1627 
1628 	return false;
1629 }
1630 EXPORT_SYMBOL_GPL(hrtimer_active);
1631 
1632 /*
1633  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1634  * distinct sections:
1635  *
1636  *  - queued:	the timer is queued
1637  *  - callback:	the timer is being ran
1638  *  - post:	the timer is inactive or (re)queued
1639  *
1640  * On the read side we ensure we observe timer->state and cpu_base->running
1641  * from the same section, if anything changed while we looked at it, we retry.
1642  * This includes timer->base changing because sequence numbers alone are
1643  * insufficient for that.
1644  *
1645  * The sequence numbers are required because otherwise we could still observe
1646  * a false negative if the read side got smeared over multiple consecutive
1647  * __run_hrtimer() invocations.
1648  */
1649 
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1650 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1651 			  struct hrtimer_clock_base *base,
1652 			  struct hrtimer *timer, ktime_t *now,
1653 			  unsigned long flags) __must_hold(&cpu_base->lock)
1654 {
1655 	enum hrtimer_restart (*fn)(struct hrtimer *);
1656 	bool expires_in_hardirq;
1657 	int restart;
1658 
1659 	lockdep_assert_held(&cpu_base->lock);
1660 
1661 	debug_deactivate(timer);
1662 	base->running = timer;
1663 
1664 	/*
1665 	 * Separate the ->running assignment from the ->state assignment.
1666 	 *
1667 	 * As with a regular write barrier, this ensures the read side in
1668 	 * hrtimer_active() cannot observe base->running == NULL &&
1669 	 * timer->state == INACTIVE.
1670 	 */
1671 	raw_write_seqcount_barrier(&base->seq);
1672 
1673 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1674 	fn = timer->function;
1675 
1676 	/*
1677 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1678 	 * timer is restarted with a period then it becomes an absolute
1679 	 * timer. If its not restarted it does not matter.
1680 	 */
1681 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1682 		timer->is_rel = false;
1683 
1684 	/*
1685 	 * The timer is marked as running in the CPU base, so it is
1686 	 * protected against migration to a different CPU even if the lock
1687 	 * is dropped.
1688 	 */
1689 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1690 	trace_hrtimer_expire_entry(timer, now);
1691 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1692 
1693 	restart = fn(timer);
1694 
1695 	lockdep_hrtimer_exit(expires_in_hardirq);
1696 	trace_hrtimer_expire_exit(timer);
1697 	raw_spin_lock_irq(&cpu_base->lock);
1698 
1699 	/*
1700 	 * Note: We clear the running state after enqueue_hrtimer and
1701 	 * we do not reprogram the event hardware. Happens either in
1702 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1703 	 *
1704 	 * Note: Because we dropped the cpu_base->lock above,
1705 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1706 	 * for us already.
1707 	 */
1708 	if (restart != HRTIMER_NORESTART &&
1709 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1710 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1711 
1712 	/*
1713 	 * Separate the ->running assignment from the ->state assignment.
1714 	 *
1715 	 * As with a regular write barrier, this ensures the read side in
1716 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1717 	 * timer->state == INACTIVE.
1718 	 */
1719 	raw_write_seqcount_barrier(&base->seq);
1720 
1721 	WARN_ON_ONCE(base->running != timer);
1722 	base->running = NULL;
1723 }
1724 
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1725 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1726 				 unsigned long flags, unsigned int active_mask)
1727 {
1728 	struct hrtimer_clock_base *base;
1729 	unsigned int active = cpu_base->active_bases & active_mask;
1730 
1731 	for_each_active_base(base, cpu_base, active) {
1732 		struct timerqueue_node *node;
1733 		ktime_t basenow;
1734 
1735 		basenow = ktime_add(now, base->offset);
1736 
1737 		while ((node = timerqueue_getnext(&base->active))) {
1738 			struct hrtimer *timer;
1739 
1740 			timer = container_of(node, struct hrtimer, node);
1741 
1742 			/*
1743 			 * The immediate goal for using the softexpires is
1744 			 * minimizing wakeups, not running timers at the
1745 			 * earliest interrupt after their soft expiration.
1746 			 * This allows us to avoid using a Priority Search
1747 			 * Tree, which can answer a stabbing query for
1748 			 * overlapping intervals and instead use the simple
1749 			 * BST we already have.
1750 			 * We don't add extra wakeups by delaying timers that
1751 			 * are right-of a not yet expired timer, because that
1752 			 * timer will have to trigger a wakeup anyway.
1753 			 */
1754 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1755 				break;
1756 
1757 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1758 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1759 				hrtimer_sync_wait_running(cpu_base, flags);
1760 		}
1761 	}
1762 }
1763 
hrtimer_run_softirq(struct softirq_action * h)1764 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1765 {
1766 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1767 	unsigned long flags;
1768 	ktime_t now;
1769 
1770 	hrtimer_cpu_base_lock_expiry(cpu_base);
1771 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1772 
1773 	now = hrtimer_update_base(cpu_base);
1774 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1775 
1776 	cpu_base->softirq_activated = 0;
1777 	hrtimer_update_softirq_timer(cpu_base, true);
1778 
1779 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1780 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1781 }
1782 
1783 #ifdef CONFIG_HIGH_RES_TIMERS
1784 
1785 /*
1786  * High resolution timer interrupt
1787  * Called with interrupts disabled
1788  */
hrtimer_interrupt(struct clock_event_device * dev)1789 void hrtimer_interrupt(struct clock_event_device *dev)
1790 {
1791 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1792 	ktime_t expires_next, now, entry_time, delta;
1793 	unsigned long flags;
1794 	int retries = 0;
1795 
1796 	BUG_ON(!cpu_base->hres_active);
1797 	cpu_base->nr_events++;
1798 	dev->next_event = KTIME_MAX;
1799 
1800 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1801 	entry_time = now = hrtimer_update_base(cpu_base);
1802 retry:
1803 	cpu_base->in_hrtirq = 1;
1804 	/*
1805 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1806 	 * held to prevent that a timer is enqueued in our queue via
1807 	 * the migration code. This does not affect enqueueing of
1808 	 * timers which run their callback and need to be requeued on
1809 	 * this CPU.
1810 	 */
1811 	cpu_base->expires_next = KTIME_MAX;
1812 
1813 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1814 		cpu_base->softirq_expires_next = KTIME_MAX;
1815 		cpu_base->softirq_activated = 1;
1816 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1817 	}
1818 
1819 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1820 
1821 	/* Reevaluate the clock bases for the [soft] next expiry */
1822 	expires_next = hrtimer_update_next_event(cpu_base);
1823 	/*
1824 	 * Store the new expiry value so the migration code can verify
1825 	 * against it.
1826 	 */
1827 	cpu_base->expires_next = expires_next;
1828 	cpu_base->in_hrtirq = 0;
1829 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1830 
1831 	/* Reprogramming necessary ? */
1832 	if (!tick_program_event(expires_next, 0)) {
1833 		cpu_base->hang_detected = 0;
1834 		return;
1835 	}
1836 
1837 	/*
1838 	 * The next timer was already expired due to:
1839 	 * - tracing
1840 	 * - long lasting callbacks
1841 	 * - being scheduled away when running in a VM
1842 	 *
1843 	 * We need to prevent that we loop forever in the hrtimer
1844 	 * interrupt routine. We give it 3 attempts to avoid
1845 	 * overreacting on some spurious event.
1846 	 *
1847 	 * Acquire base lock for updating the offsets and retrieving
1848 	 * the current time.
1849 	 */
1850 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1851 	now = hrtimer_update_base(cpu_base);
1852 	cpu_base->nr_retries++;
1853 	if (++retries < 3)
1854 		goto retry;
1855 	/*
1856 	 * Give the system a chance to do something else than looping
1857 	 * here. We stored the entry time, so we know exactly how long
1858 	 * we spent here. We schedule the next event this amount of
1859 	 * time away.
1860 	 */
1861 	cpu_base->nr_hangs++;
1862 	cpu_base->hang_detected = 1;
1863 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1864 
1865 	delta = ktime_sub(now, entry_time);
1866 	if ((unsigned int)delta > cpu_base->max_hang_time)
1867 		cpu_base->max_hang_time = (unsigned int) delta;
1868 	/*
1869 	 * Limit it to a sensible value as we enforce a longer
1870 	 * delay. Give the CPU at least 100ms to catch up.
1871 	 */
1872 	if (delta > 100 * NSEC_PER_MSEC)
1873 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1874 	else
1875 		expires_next = ktime_add(now, delta);
1876 	tick_program_event(expires_next, 1);
1877 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1878 }
1879 
1880 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1881 static inline void __hrtimer_peek_ahead_timers(void)
1882 {
1883 	struct tick_device *td;
1884 
1885 	if (!hrtimer_hres_active())
1886 		return;
1887 
1888 	td = this_cpu_ptr(&tick_cpu_device);
1889 	if (td && td->evtdev)
1890 		hrtimer_interrupt(td->evtdev);
1891 }
1892 
1893 #else /* CONFIG_HIGH_RES_TIMERS */
1894 
__hrtimer_peek_ahead_timers(void)1895 static inline void __hrtimer_peek_ahead_timers(void) { }
1896 
1897 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1898 
1899 /*
1900  * Called from run_local_timers in hardirq context every jiffy
1901  */
hrtimer_run_queues(void)1902 void hrtimer_run_queues(void)
1903 {
1904 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1905 	unsigned long flags;
1906 	ktime_t now;
1907 
1908 	if (__hrtimer_hres_active(cpu_base))
1909 		return;
1910 
1911 	/*
1912 	 * This _is_ ugly: We have to check periodically, whether we
1913 	 * can switch to highres and / or nohz mode. The clocksource
1914 	 * switch happens with xtime_lock held. Notification from
1915 	 * there only sets the check bit in the tick_oneshot code,
1916 	 * otherwise we might deadlock vs. xtime_lock.
1917 	 */
1918 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1919 		hrtimer_switch_to_hres();
1920 		return;
1921 	}
1922 
1923 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1924 	now = hrtimer_update_base(cpu_base);
1925 
1926 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1927 		cpu_base->softirq_expires_next = KTIME_MAX;
1928 		cpu_base->softirq_activated = 1;
1929 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1930 	}
1931 
1932 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1933 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1934 }
1935 
1936 /*
1937  * Sleep related functions:
1938  */
hrtimer_wakeup(struct hrtimer * timer)1939 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1940 {
1941 	struct hrtimer_sleeper *t =
1942 		container_of(timer, struct hrtimer_sleeper, timer);
1943 	struct task_struct *task = t->task;
1944 
1945 	t->task = NULL;
1946 	if (task)
1947 		wake_up_process(task);
1948 
1949 	return HRTIMER_NORESTART;
1950 }
1951 
1952 /**
1953  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1954  * @sl:		sleeper to be started
1955  * @mode:	timer mode abs/rel
1956  *
1957  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1958  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1959  */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1960 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1961 				   enum hrtimer_mode mode)
1962 {
1963 	/*
1964 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1965 	 * was initialized for hard interrupt delivery, force the mode bit.
1966 	 * This is a special case for hrtimer_sleepers because
1967 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1968 	 * fiddling with this decision is avoided at the call sites.
1969 	 */
1970 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1971 		mode |= HRTIMER_MODE_HARD;
1972 
1973 	hrtimer_start_expires(&sl->timer, mode);
1974 }
1975 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1976 
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1977 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1978 				   clockid_t clock_id, enum hrtimer_mode mode)
1979 {
1980 	/*
1981 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1982 	 * marked for hard interrupt expiry mode are moved into soft
1983 	 * interrupt context either for latency reasons or because the
1984 	 * hrtimer callback takes regular spinlocks or invokes other
1985 	 * functions which are not suitable for hard interrupt context on
1986 	 * PREEMPT_RT.
1987 	 *
1988 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1989 	 * context, but there is a latency concern: Untrusted userspace can
1990 	 * spawn many threads which arm timers for the same expiry time on
1991 	 * the same CPU. That causes a latency spike due to the wakeup of
1992 	 * a gazillion threads.
1993 	 *
1994 	 * OTOH, privileged real-time user space applications rely on the
1995 	 * low latency of hard interrupt wakeups. If the current task is in
1996 	 * a real-time scheduling class, mark the mode for hard interrupt
1997 	 * expiry.
1998 	 */
1999 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2000 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
2001 			mode |= HRTIMER_MODE_HARD;
2002 	}
2003 
2004 	__hrtimer_init(&sl->timer, clock_id, mode);
2005 	sl->timer.function = hrtimer_wakeup;
2006 	sl->task = current;
2007 }
2008 
2009 /**
2010  * hrtimer_init_sleeper - initialize sleeper to the given clock
2011  * @sl:		sleeper to be initialized
2012  * @clock_id:	the clock to be used
2013  * @mode:	timer mode abs/rel
2014  */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2015 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
2016 			  enum hrtimer_mode mode)
2017 {
2018 	debug_init(&sl->timer, clock_id, mode);
2019 	__hrtimer_init_sleeper(sl, clock_id, mode);
2020 
2021 }
2022 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2023 
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2024 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2025 {
2026 	switch(restart->nanosleep.type) {
2027 #ifdef CONFIG_COMPAT_32BIT_TIME
2028 	case TT_COMPAT:
2029 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2030 			return -EFAULT;
2031 		break;
2032 #endif
2033 	case TT_NATIVE:
2034 		if (put_timespec64(ts, restart->nanosleep.rmtp))
2035 			return -EFAULT;
2036 		break;
2037 	default:
2038 		BUG();
2039 	}
2040 	return -ERESTART_RESTARTBLOCK;
2041 }
2042 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2043 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2044 {
2045 	struct restart_block *restart;
2046 
2047 	do {
2048 		set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2049 		hrtimer_sleeper_start_expires(t, mode);
2050 
2051 		if (likely(t->task))
2052 			schedule();
2053 
2054 		hrtimer_cancel(&t->timer);
2055 		mode = HRTIMER_MODE_ABS;
2056 
2057 	} while (t->task && !signal_pending(current));
2058 
2059 	__set_current_state(TASK_RUNNING);
2060 
2061 	if (!t->task)
2062 		return 0;
2063 
2064 	restart = &current->restart_block;
2065 	if (restart->nanosleep.type != TT_NONE) {
2066 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
2067 		struct timespec64 rmt;
2068 
2069 		if (rem <= 0)
2070 			return 0;
2071 		rmt = ktime_to_timespec64(rem);
2072 
2073 		return nanosleep_copyout(restart, &rmt);
2074 	}
2075 	return -ERESTART_RESTARTBLOCK;
2076 }
2077 
hrtimer_nanosleep_restart(struct restart_block * restart)2078 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2079 {
2080 	struct hrtimer_sleeper t;
2081 	int ret;
2082 
2083 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2084 				      HRTIMER_MODE_ABS);
2085 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2086 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2087 	destroy_hrtimer_on_stack(&t.timer);
2088 	return ret;
2089 }
2090 
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2091 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2092 		       const clockid_t clockid)
2093 {
2094 	struct restart_block *restart;
2095 	struct hrtimer_sleeper t;
2096 	int ret = 0;
2097 	u64 slack;
2098 
2099 	slack = current->timer_slack_ns;
2100 	if (rt_task(current))
2101 		slack = 0;
2102 
2103 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2104 	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
2105 	ret = do_nanosleep(&t, mode);
2106 	if (ret != -ERESTART_RESTARTBLOCK)
2107 		goto out;
2108 
2109 	/* Absolute timers do not update the rmtp value and restart: */
2110 	if (mode == HRTIMER_MODE_ABS) {
2111 		ret = -ERESTARTNOHAND;
2112 		goto out;
2113 	}
2114 
2115 	restart = &current->restart_block;
2116 	restart->nanosleep.clockid = t.timer.base->clockid;
2117 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2118 	set_restart_fn(restart, hrtimer_nanosleep_restart);
2119 out:
2120 	destroy_hrtimer_on_stack(&t.timer);
2121 	return ret;
2122 }
2123 
2124 #ifdef CONFIG_64BIT
2125 
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2126 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2127 		struct __kernel_timespec __user *, rmtp)
2128 {
2129 	struct timespec64 tu;
2130 
2131 	if (get_timespec64(&tu, rqtp))
2132 		return -EFAULT;
2133 
2134 	if (!timespec64_valid(&tu))
2135 		return -EINVAL;
2136 
2137 	trace_android_vh_check_nanosleep_syscall(&tu);
2138 	current->restart_block.fn = do_no_restart_syscall;
2139 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2140 	current->restart_block.nanosleep.rmtp = rmtp;
2141 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2142 				 CLOCK_MONOTONIC);
2143 }
2144 
2145 #endif
2146 
2147 #ifdef CONFIG_COMPAT_32BIT_TIME
2148 
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2149 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2150 		       struct old_timespec32 __user *, rmtp)
2151 {
2152 	struct timespec64 tu;
2153 
2154 	if (get_old_timespec32(&tu, rqtp))
2155 		return -EFAULT;
2156 
2157 	if (!timespec64_valid(&tu))
2158 		return -EINVAL;
2159 
2160 	trace_android_vh_check_nanosleep_syscall(&tu);
2161 	current->restart_block.fn = do_no_restart_syscall;
2162 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2163 	current->restart_block.nanosleep.compat_rmtp = rmtp;
2164 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2165 				 CLOCK_MONOTONIC);
2166 }
2167 #endif
2168 
2169 /*
2170  * Functions related to boot-time initialization:
2171  */
hrtimers_prepare_cpu(unsigned int cpu)2172 int hrtimers_prepare_cpu(unsigned int cpu)
2173 {
2174 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2175 	int i;
2176 
2177 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2178 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2179 
2180 		clock_b->cpu_base = cpu_base;
2181 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2182 		timerqueue_init_head(&clock_b->active);
2183 	}
2184 
2185 	cpu_base->cpu = cpu;
2186 	cpu_base->active_bases = 0;
2187 	cpu_base->hres_active = 0;
2188 	cpu_base->hang_detected = 0;
2189 	cpu_base->next_timer = NULL;
2190 	cpu_base->softirq_next_timer = NULL;
2191 	cpu_base->expires_next = KTIME_MAX;
2192 	cpu_base->softirq_expires_next = KTIME_MAX;
2193 	cpu_base->online = 1;
2194 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2195 	return 0;
2196 }
2197 
2198 #ifdef CONFIG_HOTPLUG_CPU
2199 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2200 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2201 				struct hrtimer_clock_base *new_base)
2202 {
2203 	struct hrtimer *timer;
2204 	struct timerqueue_node *node;
2205 
2206 	while ((node = timerqueue_getnext(&old_base->active))) {
2207 		timer = container_of(node, struct hrtimer, node);
2208 		BUG_ON(hrtimer_callback_running(timer));
2209 		debug_deactivate(timer);
2210 
2211 		/*
2212 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2213 		 * timer could be seen as !active and just vanish away
2214 		 * under us on another CPU
2215 		 */
2216 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2217 		timer->base = new_base;
2218 		/*
2219 		 * Enqueue the timers on the new cpu. This does not
2220 		 * reprogram the event device in case the timer
2221 		 * expires before the earliest on this CPU, but we run
2222 		 * hrtimer_interrupt after we migrated everything to
2223 		 * sort out already expired timers and reprogram the
2224 		 * event device.
2225 		 */
2226 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2227 	}
2228 }
2229 
hrtimers_cpu_dying(unsigned int dying_cpu)2230 int hrtimers_cpu_dying(unsigned int dying_cpu)
2231 {
2232 	int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2233 	struct hrtimer_cpu_base *old_base, *new_base;
2234 
2235 	tick_cancel_sched_timer(dying_cpu);
2236 
2237 	old_base = this_cpu_ptr(&hrtimer_bases);
2238 	new_base = &per_cpu(hrtimer_bases, ncpu);
2239 
2240 	/*
2241 	 * The caller is globally serialized and nobody else
2242 	 * takes two locks at once, deadlock is not possible.
2243 	 */
2244 	raw_spin_lock(&old_base->lock);
2245 	raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2246 
2247 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2248 		migrate_hrtimer_list(&old_base->clock_base[i],
2249 				     &new_base->clock_base[i]);
2250 	}
2251 
2252 	/*
2253 	 * The migration might have changed the first expiring softirq
2254 	 * timer on this CPU. Update it.
2255 	 */
2256 	__hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2257 	/* Tell the other CPU to retrigger the next event */
2258 	smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2259 
2260 	raw_spin_unlock(&new_base->lock);
2261 	old_base->online = 0;
2262 	raw_spin_unlock(&old_base->lock);
2263 
2264 	return 0;
2265 }
2266 
2267 #endif /* CONFIG_HOTPLUG_CPU */
2268 
hrtimers_init(void)2269 void __init hrtimers_init(void)
2270 {
2271 	hrtimers_prepare_cpu(smp_processor_id());
2272 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2273 }
2274 
2275 /**
2276  * schedule_hrtimeout_range_clock - sleep until timeout
2277  * @expires:	timeout value (ktime_t)
2278  * @delta:	slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2279  * @mode:	timer mode
2280  * @clock_id:	timer clock to be used
2281  */
2282 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2283 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2284 			       const enum hrtimer_mode mode, clockid_t clock_id)
2285 {
2286 	struct hrtimer_sleeper t;
2287 
2288 	/*
2289 	 * Optimize when a zero timeout value is given. It does not
2290 	 * matter whether this is an absolute or a relative time.
2291 	 */
2292 	if (expires && *expires == 0) {
2293 		__set_current_state(TASK_RUNNING);
2294 		return 0;
2295 	}
2296 
2297 	/*
2298 	 * A NULL parameter means "infinite"
2299 	 */
2300 	if (!expires) {
2301 		schedule();
2302 		return -EINTR;
2303 	}
2304 
2305 	/*
2306 	 * Override any slack passed by the user if under
2307 	 * rt contraints.
2308 	 */
2309 	if (rt_task(current))
2310 		delta = 0;
2311 
2312 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2313 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2314 	hrtimer_sleeper_start_expires(&t, mode);
2315 
2316 	if (likely(t.task))
2317 		schedule();
2318 
2319 	hrtimer_cancel(&t.timer);
2320 	destroy_hrtimer_on_stack(&t.timer);
2321 
2322 	__set_current_state(TASK_RUNNING);
2323 
2324 	return !t.task ? 0 : -EINTR;
2325 }
2326 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2327 
2328 /**
2329  * schedule_hrtimeout_range - sleep until timeout
2330  * @expires:	timeout value (ktime_t)
2331  * @delta:	slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2332  * @mode:	timer mode
2333  *
2334  * Make the current task sleep until the given expiry time has
2335  * elapsed. The routine will return immediately unless
2336  * the current task state has been set (see set_current_state()).
2337  *
2338  * The @delta argument gives the kernel the freedom to schedule the
2339  * actual wakeup to a time that is both power and performance friendly
2340  * for regular (non RT/DL) tasks.
2341  * The kernel give the normal best effort behavior for "@expires+@delta",
2342  * but may decide to fire the timer earlier, but no earlier than @expires.
2343  *
2344  * You can set the task state as follows -
2345  *
2346  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2347  * pass before the routine returns unless the current task is explicitly
2348  * woken up, (e.g. by wake_up_process()).
2349  *
2350  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2351  * delivered to the current task or the current task is explicitly woken
2352  * up.
2353  *
2354  * The current task state is guaranteed to be TASK_RUNNING when this
2355  * routine returns.
2356  *
2357  * Returns 0 when the timer has expired. If the task was woken before the
2358  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2359  * by an explicit wakeup, it returns -EINTR.
2360  */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2361 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2362 				     const enum hrtimer_mode mode)
2363 {
2364 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2365 					      CLOCK_MONOTONIC);
2366 }
2367 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2368 
2369 /**
2370  * schedule_hrtimeout - sleep until timeout
2371  * @expires:	timeout value (ktime_t)
2372  * @mode:	timer mode
2373  *
2374  * Make the current task sleep until the given expiry time has
2375  * elapsed. The routine will return immediately unless
2376  * the current task state has been set (see set_current_state()).
2377  *
2378  * You can set the task state as follows -
2379  *
2380  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2381  * pass before the routine returns unless the current task is explicitly
2382  * woken up, (e.g. by wake_up_process()).
2383  *
2384  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2385  * delivered to the current task or the current task is explicitly woken
2386  * up.
2387  *
2388  * The current task state is guaranteed to be TASK_RUNNING when this
2389  * routine returns.
2390  *
2391  * Returns 0 when the timer has expired. If the task was woken before the
2392  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2393  * by an explicit wakeup, it returns -EINTR.
2394  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2395 int __sched schedule_hrtimeout(ktime_t *expires,
2396 			       const enum hrtimer_mode mode)
2397 {
2398 	return schedule_hrtimeout_range(expires, 0, mode);
2399 }
2400 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2401