• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11 
12 #include <crypto/skcipher.h>
13 #include <linux/blk-crypto.h>
14 #include <linux/blk-crypto-profile.h>
15 #include <linux/blkdev.h>
16 #include <linux/crypto.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/random.h>
20 #include <linux/scatterlist.h>
21 
22 #include "blk-cgroup.h"
23 #include "blk-crypto-internal.h"
24 
25 static unsigned int num_prealloc_bounce_pg = 32;
26 module_param(num_prealloc_bounce_pg, uint, 0);
27 MODULE_PARM_DESC(num_prealloc_bounce_pg,
28 		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
29 
30 static unsigned int blk_crypto_num_keyslots = 100;
31 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
32 MODULE_PARM_DESC(num_keyslots,
33 		 "Number of keyslots for the blk-crypto crypto API fallback");
34 
35 static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
36 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
37 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
38 		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
39 
40 struct bio_fallback_crypt_ctx {
41 	struct bio_crypt_ctx crypt_ctx;
42 	/*
43 	 * Copy of the bvec_iter when this bio was submitted.
44 	 * We only want to en/decrypt the part of the bio as described by the
45 	 * bvec_iter upon submission because bio might be split before being
46 	 * resubmitted
47 	 */
48 	struct bvec_iter crypt_iter;
49 	union {
50 		struct {
51 			struct work_struct work;
52 			struct bio *bio;
53 		};
54 		struct {
55 			void *bi_private_orig;
56 			bio_end_io_t *bi_end_io_orig;
57 		};
58 	};
59 };
60 
61 static struct kmem_cache *bio_fallback_crypt_ctx_cache;
62 static mempool_t *bio_fallback_crypt_ctx_pool;
63 
64 /*
65  * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
66  * all of a mode's tfms when that mode starts being used. Since each mode may
67  * need all the keyslots at some point, each mode needs its own tfm for each
68  * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
69  * match the behavior of real inline encryption hardware (which only supports a
70  * single encryption context per keyslot), we only allow one tfm per keyslot to
71  * be used at a time - the rest of the unused tfms have their keys cleared.
72  */
73 static DEFINE_MUTEX(tfms_init_lock);
74 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
75 
76 static struct blk_crypto_fallback_keyslot {
77 	enum blk_crypto_mode_num crypto_mode;
78 	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
79 } *blk_crypto_keyslots;
80 
81 static struct blk_crypto_profile *blk_crypto_fallback_profile;
82 static struct workqueue_struct *blk_crypto_wq;
83 static mempool_t *blk_crypto_bounce_page_pool;
84 static struct bio_set crypto_bio_split;
85 
86 /*
87  * This is the key we set when evicting a keyslot. This *should* be the all 0's
88  * key, but AES-XTS rejects that key, so we use some random bytes instead.
89  */
90 static u8 blank_key[BLK_CRYPTO_MAX_STANDARD_KEY_SIZE];
91 
blk_crypto_fallback_evict_keyslot(unsigned int slot)92 static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
93 {
94 	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
95 	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
96 	int err;
97 
98 	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
99 
100 	/* Clear the key in the skcipher */
101 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102 				     blk_crypto_modes[crypto_mode].keysize);
103 	WARN_ON(err);
104 	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105 }
106 
107 static int
blk_crypto_fallback_keyslot_program(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)108 blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
109 				    const struct blk_crypto_key *key,
110 				    unsigned int slot)
111 {
112 	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
113 	const enum blk_crypto_mode_num crypto_mode =
114 						key->crypto_cfg.crypto_mode;
115 	int err;
116 
117 	if (crypto_mode != slotp->crypto_mode &&
118 	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
119 		blk_crypto_fallback_evict_keyslot(slot);
120 
121 	slotp->crypto_mode = crypto_mode;
122 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
123 				     key->size);
124 	if (err) {
125 		blk_crypto_fallback_evict_keyslot(slot);
126 		return err;
127 	}
128 	return 0;
129 }
130 
blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)131 static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
132 					     const struct blk_crypto_key *key,
133 					     unsigned int slot)
134 {
135 	blk_crypto_fallback_evict_keyslot(slot);
136 	return 0;
137 }
138 
139 static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
140 	.keyslot_program        = blk_crypto_fallback_keyslot_program,
141 	.keyslot_evict          = blk_crypto_fallback_keyslot_evict,
142 };
143 
blk_crypto_fallback_encrypt_endio(struct bio * enc_bio)144 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
145 {
146 	struct bio *src_bio = enc_bio->bi_private;
147 	int i;
148 
149 	for (i = 0; i < enc_bio->bi_vcnt; i++)
150 		mempool_free(enc_bio->bi_io_vec[i].bv_page,
151 			     blk_crypto_bounce_page_pool);
152 
153 	src_bio->bi_status = enc_bio->bi_status;
154 
155 	bio_uninit(enc_bio);
156 	kfree(enc_bio);
157 	bio_endio(src_bio);
158 }
159 
blk_crypto_fallback_clone_bio(struct bio * bio_src)160 static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
161 {
162 	unsigned int nr_segs = bio_segments(bio_src);
163 	struct bvec_iter iter;
164 	struct bio_vec bv;
165 	struct bio *bio;
166 
167 	bio = bio_kmalloc(nr_segs, GFP_NOIO);
168 	if (!bio)
169 		return NULL;
170 	bio_init(bio, bio_src->bi_bdev, bio->bi_inline_vecs, nr_segs,
171 		 bio_src->bi_opf);
172 	if (bio_flagged(bio_src, BIO_REMAPPED))
173 		bio_set_flag(bio, BIO_REMAPPED);
174 	bio->bi_ioprio		= bio_src->bi_ioprio;
175 	bio->bi_write_hint	= bio_src->bi_write_hint;
176 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
177 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
178 
179 	bio_for_each_segment(bv, bio_src, iter)
180 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
181 
182 	bio_clone_blkg_association(bio, bio_src);
183 
184 	bio_clone_skip_dm_default_key(bio, bio_src);
185 
186 	return bio;
187 }
188 
189 static bool
blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot * slot,struct skcipher_request ** ciph_req_ret,struct crypto_wait * wait)190 blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
191 				     struct skcipher_request **ciph_req_ret,
192 				     struct crypto_wait *wait)
193 {
194 	struct skcipher_request *ciph_req;
195 	const struct blk_crypto_fallback_keyslot *slotp;
196 	int keyslot_idx = blk_crypto_keyslot_index(slot);
197 
198 	slotp = &blk_crypto_keyslots[keyslot_idx];
199 	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
200 					  GFP_NOIO);
201 	if (!ciph_req)
202 		return false;
203 
204 	skcipher_request_set_callback(ciph_req,
205 				      CRYPTO_TFM_REQ_MAY_BACKLOG |
206 				      CRYPTO_TFM_REQ_MAY_SLEEP,
207 				      crypto_req_done, wait);
208 	*ciph_req_ret = ciph_req;
209 
210 	return true;
211 }
212 
blk_crypto_fallback_split_bio_if_needed(struct bio ** bio_ptr)213 static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
214 {
215 	struct bio *bio = *bio_ptr;
216 	unsigned int i = 0;
217 	unsigned int num_sectors = 0;
218 	struct bio_vec bv;
219 	struct bvec_iter iter;
220 
221 	bio_for_each_segment(bv, bio, iter) {
222 		num_sectors += bv.bv_len >> SECTOR_SHIFT;
223 		if (++i == BIO_MAX_VECS)
224 			break;
225 	}
226 	if (num_sectors < bio_sectors(bio)) {
227 		struct bio *split_bio;
228 
229 		split_bio = bio_split(bio, num_sectors, GFP_NOIO,
230 				      &crypto_bio_split);
231 		if (!split_bio) {
232 			bio->bi_status = BLK_STS_RESOURCE;
233 			return false;
234 		}
235 		bio_chain(split_bio, bio);
236 		submit_bio_noacct(bio);
237 		*bio_ptr = split_bio;
238 	}
239 
240 	return true;
241 }
242 
243 union blk_crypto_iv {
244 	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
245 	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
246 };
247 
blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],union blk_crypto_iv * iv)248 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
249 				 union blk_crypto_iv *iv)
250 {
251 	int i;
252 
253 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
254 		iv->dun[i] = cpu_to_le64(dun[i]);
255 }
256 
257 /*
258  * The crypto API fallback's encryption routine.
259  * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
260  * and replace *bio_ptr with the bounce bio. May split input bio if it's too
261  * large. Returns true on success. Returns false and sets bio->bi_status on
262  * error.
263  */
blk_crypto_fallback_encrypt_bio(struct bio ** bio_ptr)264 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
265 {
266 	struct bio *src_bio, *enc_bio;
267 	struct bio_crypt_ctx *bc;
268 	struct blk_crypto_keyslot *slot;
269 	int data_unit_size;
270 	struct skcipher_request *ciph_req = NULL;
271 	DECLARE_CRYPTO_WAIT(wait);
272 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
273 	struct scatterlist src, dst;
274 	union blk_crypto_iv iv;
275 	unsigned int i, j;
276 	bool ret = false;
277 	blk_status_t blk_st;
278 
279 	/* Split the bio if it's too big for single page bvec */
280 	if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
281 		return false;
282 
283 	src_bio = *bio_ptr;
284 	bc = src_bio->bi_crypt_context;
285 	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
286 
287 	/* Allocate bounce bio for encryption */
288 	enc_bio = blk_crypto_fallback_clone_bio(src_bio);
289 	if (!enc_bio) {
290 		src_bio->bi_status = BLK_STS_RESOURCE;
291 		return false;
292 	}
293 
294 	/*
295 	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
296 	 * this bio's algorithm and key.
297 	 */
298 	blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
299 					bc->bc_key, &slot);
300 	if (blk_st != BLK_STS_OK) {
301 		src_bio->bi_status = blk_st;
302 		goto out_put_enc_bio;
303 	}
304 
305 	/* and then allocate an skcipher_request for it */
306 	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
307 		src_bio->bi_status = BLK_STS_RESOURCE;
308 		goto out_release_keyslot;
309 	}
310 
311 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
312 	sg_init_table(&src, 1);
313 	sg_init_table(&dst, 1);
314 
315 	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
316 				   iv.bytes);
317 
318 	/* Encrypt each page in the bounce bio */
319 	for (i = 0; i < enc_bio->bi_vcnt; i++) {
320 		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
321 		struct page *plaintext_page = enc_bvec->bv_page;
322 		struct page *ciphertext_page =
323 			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
324 
325 		enc_bvec->bv_page = ciphertext_page;
326 
327 		if (!ciphertext_page) {
328 			src_bio->bi_status = BLK_STS_RESOURCE;
329 			goto out_free_bounce_pages;
330 		}
331 
332 		sg_set_page(&src, plaintext_page, data_unit_size,
333 			    enc_bvec->bv_offset);
334 		sg_set_page(&dst, ciphertext_page, data_unit_size,
335 			    enc_bvec->bv_offset);
336 
337 		/* Encrypt each data unit in this page */
338 		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
339 			blk_crypto_dun_to_iv(curr_dun, &iv);
340 			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
341 					    &wait)) {
342 				i++;
343 				src_bio->bi_status = BLK_STS_IOERR;
344 				goto out_free_bounce_pages;
345 			}
346 			bio_crypt_dun_increment(curr_dun, 1);
347 			src.offset += data_unit_size;
348 			dst.offset += data_unit_size;
349 		}
350 	}
351 
352 	enc_bio->bi_private = src_bio;
353 	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
354 	*bio_ptr = enc_bio;
355 	ret = true;
356 
357 	enc_bio = NULL;
358 	goto out_free_ciph_req;
359 
360 out_free_bounce_pages:
361 	while (i > 0)
362 		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
363 			     blk_crypto_bounce_page_pool);
364 out_free_ciph_req:
365 	skcipher_request_free(ciph_req);
366 out_release_keyslot:
367 	blk_crypto_put_keyslot(slot);
368 out_put_enc_bio:
369 	if (enc_bio)
370 		bio_uninit(enc_bio);
371 	kfree(enc_bio);
372 	return ret;
373 }
374 
375 /*
376  * The crypto API fallback's main decryption routine.
377  * Decrypts input bio in place, and calls bio_endio on the bio.
378  */
blk_crypto_fallback_decrypt_bio(struct work_struct * work)379 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
380 {
381 	struct bio_fallback_crypt_ctx *f_ctx =
382 		container_of(work, struct bio_fallback_crypt_ctx, work);
383 	struct bio *bio = f_ctx->bio;
384 	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
385 	struct blk_crypto_keyslot *slot;
386 	struct skcipher_request *ciph_req = NULL;
387 	DECLARE_CRYPTO_WAIT(wait);
388 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
389 	union blk_crypto_iv iv;
390 	struct scatterlist sg;
391 	struct bio_vec bv;
392 	struct bvec_iter iter;
393 	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
394 	unsigned int i;
395 	blk_status_t blk_st;
396 
397 	/*
398 	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
399 	 * this bio's algorithm and key.
400 	 */
401 	blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
402 					bc->bc_key, &slot);
403 	if (blk_st != BLK_STS_OK) {
404 		bio->bi_status = blk_st;
405 		goto out_no_keyslot;
406 	}
407 
408 	/* and then allocate an skcipher_request for it */
409 	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
410 		bio->bi_status = BLK_STS_RESOURCE;
411 		goto out;
412 	}
413 
414 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
415 	sg_init_table(&sg, 1);
416 	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
417 				   iv.bytes);
418 
419 	/* Decrypt each segment in the bio */
420 	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
421 		struct page *page = bv.bv_page;
422 
423 		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
424 
425 		/* Decrypt each data unit in the segment */
426 		for (i = 0; i < bv.bv_len; i += data_unit_size) {
427 			blk_crypto_dun_to_iv(curr_dun, &iv);
428 			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
429 					    &wait)) {
430 				bio->bi_status = BLK_STS_IOERR;
431 				goto out;
432 			}
433 			bio_crypt_dun_increment(curr_dun, 1);
434 			sg.offset += data_unit_size;
435 		}
436 	}
437 
438 out:
439 	skcipher_request_free(ciph_req);
440 	blk_crypto_put_keyslot(slot);
441 out_no_keyslot:
442 	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
443 	bio_endio(bio);
444 }
445 
446 /**
447  * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
448  *
449  * @bio: the bio to queue
450  *
451  * Restore bi_private and bi_end_io, and queue the bio for decryption into a
452  * workqueue, since this function will be called from an atomic context.
453  */
blk_crypto_fallback_decrypt_endio(struct bio * bio)454 static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
455 {
456 	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
457 
458 	bio->bi_private = f_ctx->bi_private_orig;
459 	bio->bi_end_io = f_ctx->bi_end_io_orig;
460 
461 	/* If there was an IO error, don't queue for decrypt. */
462 	if (bio->bi_status) {
463 		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
464 		bio_endio(bio);
465 		return;
466 	}
467 
468 	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
469 	f_ctx->bio = bio;
470 	queue_work(blk_crypto_wq, &f_ctx->work);
471 }
472 
473 /**
474  * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
475  *
476  * @bio_ptr: pointer to the bio to prepare
477  *
478  * If bio is doing a WRITE operation, this splits the bio into two parts if it's
479  * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
480  * bounce bio for the first part, encrypts it, and updates bio_ptr to point to
481  * the bounce bio.
482  *
483  * For a READ operation, we mark the bio for decryption by using bi_private and
484  * bi_end_io.
485  *
486  * In either case, this function will make the bio look like a regular bio (i.e.
487  * as if no encryption context was ever specified) for the purposes of the rest
488  * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
489  * currently supported together).
490  *
491  * Return: true on success. Sets bio->bi_status and returns false on error.
492  */
blk_crypto_fallback_bio_prep(struct bio ** bio_ptr)493 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
494 {
495 	struct bio *bio = *bio_ptr;
496 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
497 	struct bio_fallback_crypt_ctx *f_ctx;
498 
499 	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
500 		/* User didn't call blk_crypto_start_using_key() first */
501 		bio->bi_status = BLK_STS_IOERR;
502 		return false;
503 	}
504 
505 	if (!__blk_crypto_cfg_supported(blk_crypto_fallback_profile,
506 					&bc->bc_key->crypto_cfg)) {
507 		bio->bi_status = BLK_STS_NOTSUPP;
508 		return false;
509 	}
510 
511 	if (bio_data_dir(bio) == WRITE)
512 		return blk_crypto_fallback_encrypt_bio(bio_ptr);
513 
514 	/*
515 	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
516 	 * bi_end_io appropriately to trigger decryption when the bio is ended.
517 	 */
518 	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
519 	f_ctx->crypt_ctx = *bc;
520 	f_ctx->crypt_iter = bio->bi_iter;
521 	f_ctx->bi_private_orig = bio->bi_private;
522 	f_ctx->bi_end_io_orig = bio->bi_end_io;
523 	bio->bi_private = (void *)f_ctx;
524 	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
525 	bio_crypt_free_ctx(bio);
526 
527 	return true;
528 }
529 
blk_crypto_fallback_evict_key(const struct blk_crypto_key * key)530 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
531 {
532 	return __blk_crypto_evict_key(blk_crypto_fallback_profile, key);
533 }
534 
535 static bool blk_crypto_fallback_inited;
blk_crypto_fallback_init(void)536 static int blk_crypto_fallback_init(void)
537 {
538 	int i;
539 	int err;
540 
541 	if (blk_crypto_fallback_inited)
542 		return 0;
543 
544 	get_random_bytes(blank_key, sizeof(blank_key));
545 
546 	err = bioset_init(&crypto_bio_split, 64, 0, 0);
547 	if (err)
548 		goto out;
549 
550 	/* Dynamic allocation is needed because of lockdep_register_key(). */
551 	blk_crypto_fallback_profile =
552 		kzalloc(sizeof(*blk_crypto_fallback_profile), GFP_KERNEL);
553 	if (!blk_crypto_fallback_profile) {
554 		err = -ENOMEM;
555 		goto fail_free_bioset;
556 	}
557 
558 	err = blk_crypto_profile_init(blk_crypto_fallback_profile,
559 				      blk_crypto_num_keyslots);
560 	if (err)
561 		goto fail_free_profile;
562 	err = -ENOMEM;
563 
564 	blk_crypto_fallback_profile->ll_ops = blk_crypto_fallback_ll_ops;
565 	blk_crypto_fallback_profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
566 	blk_crypto_fallback_profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_STANDARD;
567 
568 	/* All blk-crypto modes have a crypto API fallback. */
569 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
570 		blk_crypto_fallback_profile->modes_supported[i] = 0xFFFFFFFF;
571 	blk_crypto_fallback_profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
572 
573 	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
574 					WQ_UNBOUND | WQ_HIGHPRI |
575 					WQ_MEM_RECLAIM, num_online_cpus());
576 	if (!blk_crypto_wq)
577 		goto fail_destroy_profile;
578 
579 	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
580 				      sizeof(blk_crypto_keyslots[0]),
581 				      GFP_KERNEL);
582 	if (!blk_crypto_keyslots)
583 		goto fail_free_wq;
584 
585 	blk_crypto_bounce_page_pool =
586 		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
587 	if (!blk_crypto_bounce_page_pool)
588 		goto fail_free_keyslots;
589 
590 	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
591 	if (!bio_fallback_crypt_ctx_cache)
592 		goto fail_free_bounce_page_pool;
593 
594 	bio_fallback_crypt_ctx_pool =
595 		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
596 					 bio_fallback_crypt_ctx_cache);
597 	if (!bio_fallback_crypt_ctx_pool)
598 		goto fail_free_crypt_ctx_cache;
599 
600 	blk_crypto_fallback_inited = true;
601 
602 	return 0;
603 fail_free_crypt_ctx_cache:
604 	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
605 fail_free_bounce_page_pool:
606 	mempool_destroy(blk_crypto_bounce_page_pool);
607 fail_free_keyslots:
608 	kfree(blk_crypto_keyslots);
609 fail_free_wq:
610 	destroy_workqueue(blk_crypto_wq);
611 fail_destroy_profile:
612 	blk_crypto_profile_destroy(blk_crypto_fallback_profile);
613 fail_free_profile:
614 	kfree(blk_crypto_fallback_profile);
615 fail_free_bioset:
616 	bioset_exit(&crypto_bio_split);
617 out:
618 	return err;
619 }
620 
621 /*
622  * Prepare blk-crypto-fallback for the specified crypto mode.
623  * Returns -ENOPKG if the needed crypto API support is missing.
624  */
blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)625 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
626 {
627 	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
628 	struct blk_crypto_fallback_keyslot *slotp;
629 	unsigned int i;
630 	int err = 0;
631 
632 	/*
633 	 * Fast path
634 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
635 	 * for each i are visible before we try to access them.
636 	 */
637 	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
638 		return 0;
639 
640 	mutex_lock(&tfms_init_lock);
641 	if (tfms_inited[mode_num])
642 		goto out;
643 
644 	err = blk_crypto_fallback_init();
645 	if (err)
646 		goto out;
647 
648 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
649 		slotp = &blk_crypto_keyslots[i];
650 		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
651 		if (IS_ERR(slotp->tfms[mode_num])) {
652 			err = PTR_ERR(slotp->tfms[mode_num]);
653 			if (err == -ENOENT) {
654 				pr_warn_once("Missing crypto API support for \"%s\"\n",
655 					     cipher_str);
656 				err = -ENOPKG;
657 			}
658 			slotp->tfms[mode_num] = NULL;
659 			goto out_free_tfms;
660 		}
661 
662 		crypto_skcipher_set_flags(slotp->tfms[mode_num],
663 					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
664 	}
665 
666 	/*
667 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
668 	 * for each i are visible before we set tfms_inited[mode_num].
669 	 */
670 	smp_store_release(&tfms_inited[mode_num], true);
671 	goto out;
672 
673 out_free_tfms:
674 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
675 		slotp = &blk_crypto_keyslots[i];
676 		crypto_free_skcipher(slotp->tfms[mode_num]);
677 		slotp->tfms[mode_num] = NULL;
678 	}
679 out:
680 	mutex_unlock(&tfms_init_lock);
681 	return err;
682 }
683