• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include "dm_services.h"
26 
27 #include "dc.h"
28 
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33 
34 #include "resource.h"
35 
36 #include "gpio_service_interface.h"
37 #include "clk_mgr.h"
38 #include "clock_source.h"
39 #include "dc_bios_types.h"
40 
41 #include "bios_parser_interface.h"
42 #include "bios/bios_parser_helper.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50 #include "hubp.h"
51 
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 #include "link_enc_cfg.h"
55 
56 #include "link.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59 
60 #include "dc_dmub_srv.h"
61 
62 #include "dsc.h"
63 
64 #include "vm_helper.h"
65 
66 #include "dce/dce_i2c.h"
67 
68 #include "dmub/dmub_srv.h"
69 
70 #include "dce/dmub_psr.h"
71 
72 #include "dce/dmub_hw_lock_mgr.h"
73 
74 #include "dc_trace.h"
75 
76 #include "hw_sequencer_private.h"
77 
78 #include "dce/dmub_outbox.h"
79 
80 #define CTX \
81 	dc->ctx
82 
83 #define DC_LOGGER \
84 	dc->ctx->logger
85 
86 static const char DC_BUILD_ID[] = "production-build";
87 
88 /**
89  * DOC: Overview
90  *
91  * DC is the OS-agnostic component of the amdgpu DC driver.
92  *
93  * DC maintains and validates a set of structs representing the state of the
94  * driver and writes that state to AMD hardware
95  *
96  * Main DC HW structs:
97  *
98  * struct dc - The central struct.  One per driver.  Created on driver load,
99  * destroyed on driver unload.
100  *
101  * struct dc_context - One per driver.
102  * Used as a backpointer by most other structs in dc.
103  *
104  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105  * plugpoints).  Created on driver load, destroyed on driver unload.
106  *
107  * struct dc_sink - One per display.  Created on boot or hotplug.
108  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
109  * (the display directly attached).  It may also have one or more remote
110  * sinks (in the Multi-Stream Transport case)
111  *
112  * struct resource_pool - One per driver.  Represents the hw blocks not in the
113  * main pipeline.  Not directly accessible by dm.
114  *
115  * Main dc state structs:
116  *
117  * These structs can be created and destroyed as needed.  There is a full set of
118  * these structs in dc->current_state representing the currently programmed state.
119  *
120  * struct dc_state - The global DC state to track global state information,
121  * such as bandwidth values.
122  *
123  * struct dc_stream_state - Represents the hw configuration for the pipeline from
124  * a framebuffer to a display.  Maps one-to-one with dc_sink.
125  *
126  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
127  * and may have more in the Multi-Plane Overlay case.
128  *
129  * struct resource_context - Represents the programmable state of everything in
130  * the resource_pool.  Not directly accessible by dm.
131  *
132  * struct pipe_ctx - A member of struct resource_context.  Represents the
133  * internal hardware pipeline components.  Each dc_plane_state has either
134  * one or two (in the pipe-split case).
135  */
136 
137 /* Private functions */
138 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)139 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
140 {
141 	if (new > *original)
142 		*original = new;
143 }
144 
destroy_links(struct dc * dc)145 static void destroy_links(struct dc *dc)
146 {
147 	uint32_t i;
148 
149 	for (i = 0; i < dc->link_count; i++) {
150 		if (NULL != dc->links[i])
151 			dc->link_srv->destroy_link(&dc->links[i]);
152 	}
153 }
154 
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)155 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
156 {
157 	int i;
158 	uint32_t count = 0;
159 
160 	for (i = 0; i < num_links; i++) {
161 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
162 				links[i]->is_internal_display)
163 			count++;
164 	}
165 
166 	return count;
167 }
168 
get_seamless_boot_stream_count(struct dc_state * ctx)169 static int get_seamless_boot_stream_count(struct dc_state *ctx)
170 {
171 	uint8_t i;
172 	uint8_t seamless_boot_stream_count = 0;
173 
174 	for (i = 0; i < ctx->stream_count; i++)
175 		if (ctx->streams[i]->apply_seamless_boot_optimization)
176 			seamless_boot_stream_count++;
177 
178 	return seamless_boot_stream_count;
179 }
180 
create_links(struct dc * dc,uint32_t num_virtual_links)181 static bool create_links(
182 		struct dc *dc,
183 		uint32_t num_virtual_links)
184 {
185 	int i;
186 	int connectors_num;
187 	struct dc_bios *bios = dc->ctx->dc_bios;
188 
189 	dc->link_count = 0;
190 
191 	connectors_num = bios->funcs->get_connectors_number(bios);
192 
193 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
194 
195 	if (connectors_num > ENUM_ID_COUNT) {
196 		dm_error(
197 			"DC: Number of connectors %d exceeds maximum of %d!\n",
198 			connectors_num,
199 			ENUM_ID_COUNT);
200 		return false;
201 	}
202 
203 	dm_output_to_console(
204 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
205 		__func__,
206 		connectors_num,
207 		num_virtual_links);
208 
209 	for (i = 0; i < connectors_num; i++) {
210 		struct link_init_data link_init_params = {0};
211 		struct dc_link *link;
212 
213 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
214 
215 		link_init_params.ctx = dc->ctx;
216 		/* next BIOS object table connector */
217 		link_init_params.connector_index = i;
218 		link_init_params.link_index = dc->link_count;
219 		link_init_params.dc = dc;
220 		link = dc->link_srv->create_link(&link_init_params);
221 
222 		if (link) {
223 			dc->links[dc->link_count] = link;
224 			link->dc = dc;
225 			++dc->link_count;
226 		}
227 	}
228 
229 	DC_LOG_DC("BIOS object table - end");
230 
231 	/* Create a link for each usb4 dpia port */
232 	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
233 		struct link_init_data link_init_params = {0};
234 		struct dc_link *link;
235 
236 		link_init_params.ctx = dc->ctx;
237 		link_init_params.connector_index = i;
238 		link_init_params.link_index = dc->link_count;
239 		link_init_params.dc = dc;
240 		link_init_params.is_dpia_link = true;
241 
242 		link = dc->link_srv->create_link(&link_init_params);
243 		if (link) {
244 			dc->links[dc->link_count] = link;
245 			link->dc = dc;
246 			++dc->link_count;
247 		}
248 	}
249 
250 	for (i = 0; i < num_virtual_links; i++) {
251 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
252 		struct encoder_init_data enc_init = {0};
253 
254 		if (link == NULL) {
255 			BREAK_TO_DEBUGGER();
256 			goto failed_alloc;
257 		}
258 
259 		link->link_index = dc->link_count;
260 		dc->links[dc->link_count] = link;
261 		dc->link_count++;
262 
263 		link->ctx = dc->ctx;
264 		link->dc = dc;
265 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
266 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
267 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
268 		link->link_id.enum_id = ENUM_ID_1;
269 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
270 
271 		if (!link->link_enc) {
272 			BREAK_TO_DEBUGGER();
273 			goto failed_alloc;
274 		}
275 
276 		link->link_status.dpcd_caps = &link->dpcd_caps;
277 
278 		enc_init.ctx = dc->ctx;
279 		enc_init.channel = CHANNEL_ID_UNKNOWN;
280 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
281 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
282 		enc_init.connector = link->link_id;
283 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
284 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
285 		enc_init.encoder.enum_id = ENUM_ID_1;
286 		virtual_link_encoder_construct(link->link_enc, &enc_init);
287 	}
288 
289 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
290 
291 	return true;
292 
293 failed_alloc:
294 	return false;
295 }
296 
297 /* Create additional DIG link encoder objects if fewer than the platform
298  * supports were created during link construction. This can happen if the
299  * number of physical connectors is less than the number of DIGs.
300  */
create_link_encoders(struct dc * dc)301 static bool create_link_encoders(struct dc *dc)
302 {
303 	bool res = true;
304 	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
305 	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
306 	int i;
307 
308 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
309 	 * link encoders and physical display endpoints and does not require
310 	 * additional link encoder objects.
311 	 */
312 	if (num_usb4_dpia == 0)
313 		return res;
314 
315 	/* Create as many link encoder objects as the platform supports. DPIA
316 	 * endpoints can be programmably mapped to any DIG.
317 	 */
318 	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
319 		for (i = 0; i < num_dig_link_enc; i++) {
320 			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
321 
322 			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
323 				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
324 						(enum engine_id)(ENGINE_ID_DIGA + i));
325 				if (link_enc) {
326 					dc->res_pool->link_encoders[i] = link_enc;
327 					dc->res_pool->dig_link_enc_count++;
328 				} else {
329 					res = false;
330 				}
331 			}
332 		}
333 	}
334 
335 	return res;
336 }
337 
338 /* Destroy any additional DIG link encoder objects created by
339  * create_link_encoders().
340  * NB: Must only be called after destroy_links().
341  */
destroy_link_encoders(struct dc * dc)342 static void destroy_link_encoders(struct dc *dc)
343 {
344 	unsigned int num_usb4_dpia;
345 	unsigned int num_dig_link_enc;
346 	int i;
347 
348 	if (!dc->res_pool)
349 		return;
350 
351 	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
352 	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
353 
354 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
355 	 * link encoders and physical display endpoints and does not require
356 	 * additional link encoder objects.
357 	 */
358 	if (num_usb4_dpia == 0)
359 		return;
360 
361 	for (i = 0; i < num_dig_link_enc; i++) {
362 		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
363 
364 		if (link_enc) {
365 			link_enc->funcs->destroy(&link_enc);
366 			dc->res_pool->link_encoders[i] = NULL;
367 			dc->res_pool->dig_link_enc_count--;
368 		}
369 	}
370 }
371 
dc_perf_trace_create(void)372 static struct dc_perf_trace *dc_perf_trace_create(void)
373 {
374 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
375 }
376 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)377 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
378 {
379 	kfree(*perf_trace);
380 	*perf_trace = NULL;
381 }
382 
383 /**
384  *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
385  *  @dc:     dc reference
386  *  @stream: Initial dc stream state
387  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
388  *
389  *  Looks up the pipe context of dc_stream_state and updates the
390  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391  *  Rate, which is a power-saving feature that targets reducing panel
392  *  refresh rate while the screen is static
393  *
394  *  Return: %true if the pipe context is found and adjusted;
395  *          %false if the pipe context is not found.
396  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)397 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
398 		struct dc_stream_state *stream,
399 		struct dc_crtc_timing_adjust *adjust)
400 {
401 	int i;
402 
403 	/*
404 	 * Don't adjust DRR while there's bandwidth optimizations pending to
405 	 * avoid conflicting with firmware updates.
406 	 */
407 	if (dc->ctx->dce_version > DCE_VERSION_MAX)
408 		if (dc->optimized_required || dc->wm_optimized_required)
409 			return false;
410 
411 	stream->adjust.v_total_max = adjust->v_total_max;
412 	stream->adjust.v_total_mid = adjust->v_total_mid;
413 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
414 	stream->adjust.v_total_min = adjust->v_total_min;
415 
416 	for (i = 0; i < MAX_PIPES; i++) {
417 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
418 
419 		if (pipe->stream == stream && pipe->stream_res.tg) {
420 			dc->hwss.set_drr(&pipe,
421 					1,
422 					*adjust);
423 
424 			return true;
425 		}
426 	}
427 	return false;
428 }
429 
430 /**
431  * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
432  * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
433  *
434  * @dc: [in] dc reference
435  * @stream: [in] Initial dc stream state
436  * @refresh_rate: [in] new refresh_rate
437  *
438  * Return: %true if the pipe context is found and there is an associated
439  *         timing_generator for the DC;
440  *         %false if the pipe context is not found or there is no
441  *         timing_generator for the DC.
442  */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)443 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
444 		struct dc_stream_state *stream,
445 		uint32_t *refresh_rate)
446 {
447 	bool status = false;
448 
449 	int i = 0;
450 
451 	for (i = 0; i < MAX_PIPES; i++) {
452 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
453 
454 		if (pipe->stream == stream && pipe->stream_res.tg) {
455 			/* Only execute if a function pointer has been defined for
456 			 * the DC version in question
457 			 */
458 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
459 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
460 
461 				status = true;
462 
463 				break;
464 			}
465 		}
466 	}
467 
468 	return status;
469 }
470 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)471 bool dc_stream_get_crtc_position(struct dc *dc,
472 		struct dc_stream_state **streams, int num_streams,
473 		unsigned int *v_pos, unsigned int *nom_v_pos)
474 {
475 	/* TODO: Support multiple streams */
476 	const struct dc_stream_state *stream = streams[0];
477 	int i;
478 	bool ret = false;
479 	struct crtc_position position;
480 
481 	for (i = 0; i < MAX_PIPES; i++) {
482 		struct pipe_ctx *pipe =
483 				&dc->current_state->res_ctx.pipe_ctx[i];
484 
485 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
486 			dc->hwss.get_position(&pipe, 1, &position);
487 
488 			*v_pos = position.vertical_count;
489 			*nom_v_pos = position.nominal_vcount;
490 			ret = true;
491 		}
492 	}
493 	return ret;
494 }
495 
496 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
497 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)498 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
499 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
500 {
501 	union dmub_rb_cmd cmd = {0};
502 
503 	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
504 	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
505 
506 	if (is_stop) {
507 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
508 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
509 	} else {
510 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
511 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
512 		cmd.secure_display.roi_info.x_start = rect->x;
513 		cmd.secure_display.roi_info.y_start = rect->y;
514 		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
515 		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
516 	}
517 
518 	dm_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
519 }
520 
521 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)522 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
523 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
524 {
525 	if (is_stop)
526 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
527 	else
528 		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
529 }
530 
531 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)532 dc_stream_forward_crc_window(struct dc_stream_state *stream,
533 		struct rect *rect, bool is_stop)
534 {
535 	struct dmcu *dmcu;
536 	struct dc_dmub_srv *dmub_srv;
537 	struct otg_phy_mux mux_mapping;
538 	struct pipe_ctx *pipe;
539 	int i;
540 	struct dc *dc = stream->ctx->dc;
541 
542 	for (i = 0; i < MAX_PIPES; i++) {
543 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
544 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
545 			break;
546 	}
547 
548 	/* Stream not found */
549 	if (i == MAX_PIPES)
550 		return false;
551 
552 	mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
553 	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
554 
555 	dmcu = dc->res_pool->dmcu;
556 	dmub_srv = dc->ctx->dmub_srv;
557 
558 	/* forward to dmub */
559 	if (dmub_srv)
560 		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
561 	/* forward to dmcu */
562 	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
563 		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
564 	else
565 		return false;
566 
567 	return true;
568 }
569 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
570 
571 /**
572  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
573  * @dc: DC Object
574  * @stream: The stream to configure CRC on.
575  * @enable: Enable CRC if true, disable otherwise.
576  * @crc_window: CRC window (x/y start/end) information
577  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
578  *              once.
579  *
580  * By default, only CRC0 is configured, and the entire frame is used to
581  * calculate the CRC.
582  *
583  * Return: %false if the stream is not found or CRC capture is not supported;
584  *         %true if the stream has been configured.
585  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)586 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
587 			     struct crc_params *crc_window, bool enable, bool continuous)
588 {
589 	struct pipe_ctx *pipe;
590 	struct crc_params param;
591 	struct timing_generator *tg;
592 
593 	pipe = resource_get_otg_master_for_stream(
594 			&dc->current_state->res_ctx, stream);
595 
596 	/* Stream not found */
597 	if (pipe == NULL)
598 		return false;
599 
600 	/* By default, capture the full frame */
601 	param.windowa_x_start = 0;
602 	param.windowa_y_start = 0;
603 	param.windowa_x_end = pipe->stream->timing.h_addressable;
604 	param.windowa_y_end = pipe->stream->timing.v_addressable;
605 	param.windowb_x_start = 0;
606 	param.windowb_y_start = 0;
607 	param.windowb_x_end = pipe->stream->timing.h_addressable;
608 	param.windowb_y_end = pipe->stream->timing.v_addressable;
609 
610 	if (crc_window) {
611 		param.windowa_x_start = crc_window->windowa_x_start;
612 		param.windowa_y_start = crc_window->windowa_y_start;
613 		param.windowa_x_end = crc_window->windowa_x_end;
614 		param.windowa_y_end = crc_window->windowa_y_end;
615 		param.windowb_x_start = crc_window->windowb_x_start;
616 		param.windowb_y_start = crc_window->windowb_y_start;
617 		param.windowb_x_end = crc_window->windowb_x_end;
618 		param.windowb_y_end = crc_window->windowb_y_end;
619 	}
620 
621 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
622 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
623 
624 	/* Default to the union of both windows */
625 	param.selection = UNION_WINDOW_A_B;
626 	param.continuous_mode = continuous;
627 	param.enable = enable;
628 
629 	tg = pipe->stream_res.tg;
630 
631 	/* Only call if supported */
632 	if (tg->funcs->configure_crc)
633 		return tg->funcs->configure_crc(tg, &param);
634 	DC_LOG_WARNING("CRC capture not supported.");
635 	return false;
636 }
637 
638 /**
639  * dc_stream_get_crc() - Get CRC values for the given stream.
640  *
641  * @dc: DC object.
642  * @stream: The DC stream state of the stream to get CRCs from.
643  * @r_cr: CRC value for the red component.
644  * @g_y:  CRC value for the green component.
645  * @b_cb: CRC value for the blue component.
646  *
647  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
648  *
649  * Return:
650  * %false if stream is not found, or if CRCs are not enabled.
651  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)652 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
653 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
654 {
655 	int i;
656 	struct pipe_ctx *pipe;
657 	struct timing_generator *tg;
658 
659 	for (i = 0; i < MAX_PIPES; i++) {
660 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
661 		if (pipe->stream == stream)
662 			break;
663 	}
664 	/* Stream not found */
665 	if (i == MAX_PIPES)
666 		return false;
667 
668 	tg = pipe->stream_res.tg;
669 
670 	if (tg->funcs->get_crc)
671 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
672 	DC_LOG_WARNING("CRC capture not supported.");
673 	return false;
674 }
675 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)676 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
677 		enum dc_dynamic_expansion option)
678 {
679 	/* OPP FMT dyn expansion updates*/
680 	int i;
681 	struct pipe_ctx *pipe_ctx;
682 
683 	for (i = 0; i < MAX_PIPES; i++) {
684 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
685 				== stream) {
686 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
687 			pipe_ctx->stream_res.opp->dyn_expansion = option;
688 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
689 					pipe_ctx->stream_res.opp,
690 					COLOR_SPACE_YCBCR601,
691 					stream->timing.display_color_depth,
692 					stream->signal);
693 		}
694 	}
695 }
696 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)697 void dc_stream_set_dither_option(struct dc_stream_state *stream,
698 		enum dc_dither_option option)
699 {
700 	struct bit_depth_reduction_params params;
701 	struct dc_link *link = stream->link;
702 	struct pipe_ctx *pipes = NULL;
703 	int i;
704 
705 	for (i = 0; i < MAX_PIPES; i++) {
706 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
707 				stream) {
708 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
709 			break;
710 		}
711 	}
712 
713 	if (!pipes)
714 		return;
715 	if (option > DITHER_OPTION_MAX)
716 		return;
717 
718 	stream->dither_option = option;
719 
720 	memset(&params, 0, sizeof(params));
721 	resource_build_bit_depth_reduction_params(stream, &params);
722 	stream->bit_depth_params = params;
723 
724 	if (pipes->plane_res.xfm &&
725 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
726 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
727 			pipes->plane_res.xfm,
728 			pipes->plane_res.scl_data.lb_params.depth,
729 			&stream->bit_depth_params);
730 	}
731 
732 	pipes->stream_res.opp->funcs->
733 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
734 }
735 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)736 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
737 {
738 	int i;
739 	bool ret = false;
740 	struct pipe_ctx *pipes;
741 
742 	for (i = 0; i < MAX_PIPES; i++) {
743 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
744 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
745 			dc->hwss.program_gamut_remap(pipes);
746 			ret = true;
747 		}
748 	}
749 
750 	return ret;
751 }
752 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)753 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
754 {
755 	int i;
756 	bool ret = false;
757 	struct pipe_ctx *pipes;
758 
759 	for (i = 0; i < MAX_PIPES; i++) {
760 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
761 				== stream) {
762 
763 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
764 			dc->hwss.program_output_csc(dc,
765 					pipes,
766 					stream->output_color_space,
767 					stream->csc_color_matrix.matrix,
768 					pipes->stream_res.opp->inst);
769 			ret = true;
770 		}
771 	}
772 
773 	return ret;
774 }
775 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)776 void dc_stream_set_static_screen_params(struct dc *dc,
777 		struct dc_stream_state **streams,
778 		int num_streams,
779 		const struct dc_static_screen_params *params)
780 {
781 	int i, j;
782 	struct pipe_ctx *pipes_affected[MAX_PIPES];
783 	int num_pipes_affected = 0;
784 
785 	for (i = 0; i < num_streams; i++) {
786 		struct dc_stream_state *stream = streams[i];
787 
788 		for (j = 0; j < MAX_PIPES; j++) {
789 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
790 					== stream) {
791 				pipes_affected[num_pipes_affected++] =
792 						&dc->current_state->res_ctx.pipe_ctx[j];
793 			}
794 		}
795 	}
796 
797 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
798 }
799 
dc_destruct(struct dc * dc)800 static void dc_destruct(struct dc *dc)
801 {
802 	// reset link encoder assignment table on destruct
803 	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
804 		link_enc_cfg_init(dc, dc->current_state);
805 
806 	if (dc->current_state) {
807 		dc_release_state(dc->current_state);
808 		dc->current_state = NULL;
809 	}
810 
811 	destroy_links(dc);
812 
813 	destroy_link_encoders(dc);
814 
815 	if (dc->clk_mgr) {
816 		dc_destroy_clk_mgr(dc->clk_mgr);
817 		dc->clk_mgr = NULL;
818 	}
819 
820 	dc_destroy_resource_pool(dc);
821 
822 	if (dc->link_srv)
823 		link_destroy_link_service(&dc->link_srv);
824 
825 	if (dc->ctx->gpio_service)
826 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
827 
828 	if (dc->ctx->created_bios)
829 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
830 
831 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
832 
833 	kfree(dc->ctx);
834 	dc->ctx = NULL;
835 
836 	kfree(dc->bw_vbios);
837 	dc->bw_vbios = NULL;
838 
839 	kfree(dc->bw_dceip);
840 	dc->bw_dceip = NULL;
841 
842 	kfree(dc->dcn_soc);
843 	dc->dcn_soc = NULL;
844 
845 	kfree(dc->dcn_ip);
846 	dc->dcn_ip = NULL;
847 
848 	kfree(dc->vm_helper);
849 	dc->vm_helper = NULL;
850 
851 }
852 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)853 static bool dc_construct_ctx(struct dc *dc,
854 		const struct dc_init_data *init_params)
855 {
856 	struct dc_context *dc_ctx;
857 
858 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
859 	if (!dc_ctx)
860 		return false;
861 
862 	dc_ctx->cgs_device = init_params->cgs_device;
863 	dc_ctx->driver_context = init_params->driver;
864 	dc_ctx->dc = dc;
865 	dc_ctx->asic_id = init_params->asic_id;
866 	dc_ctx->dc_sink_id_count = 0;
867 	dc_ctx->dc_stream_id_count = 0;
868 	dc_ctx->dce_environment = init_params->dce_environment;
869 	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
870 	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
871 
872 	/* Create logger */
873 
874 	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
875 
876 	dc_ctx->perf_trace = dc_perf_trace_create();
877 	if (!dc_ctx->perf_trace) {
878 		kfree(dc_ctx);
879 		ASSERT_CRITICAL(false);
880 		return false;
881 	}
882 
883 	dc->ctx = dc_ctx;
884 
885 	dc->link_srv = link_create_link_service();
886 	if (!dc->link_srv)
887 		return false;
888 
889 	return true;
890 }
891 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)892 static bool dc_construct(struct dc *dc,
893 		const struct dc_init_data *init_params)
894 {
895 	struct dc_context *dc_ctx;
896 	struct bw_calcs_dceip *dc_dceip;
897 	struct bw_calcs_vbios *dc_vbios;
898 	struct dcn_soc_bounding_box *dcn_soc;
899 	struct dcn_ip_params *dcn_ip;
900 
901 	dc->config = init_params->flags;
902 
903 	// Allocate memory for the vm_helper
904 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
905 	if (!dc->vm_helper) {
906 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
907 		goto fail;
908 	}
909 
910 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
911 
912 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
913 	if (!dc_dceip) {
914 		dm_error("%s: failed to create dceip\n", __func__);
915 		goto fail;
916 	}
917 
918 	dc->bw_dceip = dc_dceip;
919 
920 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
921 	if (!dc_vbios) {
922 		dm_error("%s: failed to create vbios\n", __func__);
923 		goto fail;
924 	}
925 
926 	dc->bw_vbios = dc_vbios;
927 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
928 	if (!dcn_soc) {
929 		dm_error("%s: failed to create dcn_soc\n", __func__);
930 		goto fail;
931 	}
932 
933 	dc->dcn_soc = dcn_soc;
934 
935 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
936 	if (!dcn_ip) {
937 		dm_error("%s: failed to create dcn_ip\n", __func__);
938 		goto fail;
939 	}
940 
941 	dc->dcn_ip = dcn_ip;
942 
943 	if (!dc_construct_ctx(dc, init_params)) {
944 		dm_error("%s: failed to create ctx\n", __func__);
945 		goto fail;
946 	}
947 
948         dc_ctx = dc->ctx;
949 
950 	/* Resource should construct all asic specific resources.
951 	 * This should be the only place where we need to parse the asic id
952 	 */
953 	if (init_params->vbios_override)
954 		dc_ctx->dc_bios = init_params->vbios_override;
955 	else {
956 		/* Create BIOS parser */
957 		struct bp_init_data bp_init_data;
958 
959 		bp_init_data.ctx = dc_ctx;
960 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
961 
962 		dc_ctx->dc_bios = dal_bios_parser_create(
963 				&bp_init_data, dc_ctx->dce_version);
964 
965 		if (!dc_ctx->dc_bios) {
966 			ASSERT_CRITICAL(false);
967 			goto fail;
968 		}
969 
970 		dc_ctx->created_bios = true;
971 	}
972 
973 	dc->vendor_signature = init_params->vendor_signature;
974 
975 	/* Create GPIO service */
976 	dc_ctx->gpio_service = dal_gpio_service_create(
977 			dc_ctx->dce_version,
978 			dc_ctx->dce_environment,
979 			dc_ctx);
980 
981 	if (!dc_ctx->gpio_service) {
982 		ASSERT_CRITICAL(false);
983 		goto fail;
984 	}
985 
986 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
987 	if (!dc->res_pool)
988 		goto fail;
989 
990 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
991 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
992 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
993 	if (dc->caps.max_optimizable_video_width == 0)
994 		dc->caps.max_optimizable_video_width = 5120;
995 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
996 	if (!dc->clk_mgr)
997 		goto fail;
998 #ifdef CONFIG_DRM_AMD_DC_FP
999 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1000 
1001 	if (dc->res_pool->funcs->update_bw_bounding_box) {
1002 		DC_FP_START();
1003 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1004 		DC_FP_END();
1005 	}
1006 #endif
1007 
1008 	/* Creation of current_state must occur after dc->dml
1009 	 * is initialized in dc_create_resource_pool because
1010 	 * on creation it copies the contents of dc->dml
1011 	 */
1012 
1013 	dc->current_state = dc_create_state(dc);
1014 
1015 	if (!dc->current_state) {
1016 		dm_error("%s: failed to create validate ctx\n", __func__);
1017 		goto fail;
1018 	}
1019 
1020 	if (!create_links(dc, init_params->num_virtual_links))
1021 		goto fail;
1022 
1023 	/* Create additional DIG link encoder objects if fewer than the platform
1024 	 * supports were created during link construction.
1025 	 */
1026 	if (!create_link_encoders(dc))
1027 		goto fail;
1028 
1029 	dc_resource_state_construct(dc, dc->current_state);
1030 
1031 	return true;
1032 
1033 fail:
1034 	return false;
1035 }
1036 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1037 static void disable_all_writeback_pipes_for_stream(
1038 		const struct dc *dc,
1039 		struct dc_stream_state *stream,
1040 		struct dc_state *context)
1041 {
1042 	int i;
1043 
1044 	for (i = 0; i < stream->num_wb_info; i++)
1045 		stream->writeback_info[i].wb_enabled = false;
1046 }
1047 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1048 static void apply_ctx_interdependent_lock(struct dc *dc,
1049 					  struct dc_state *context,
1050 					  struct dc_stream_state *stream,
1051 					  bool lock)
1052 {
1053 	int i;
1054 
1055 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1056 	if (dc->hwss.interdependent_update_lock)
1057 		dc->hwss.interdependent_update_lock(dc, context, lock);
1058 	else {
1059 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1060 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1061 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1062 
1063 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1064 			if (stream == pipe_ctx->stream) {
1065 				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1066 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1067 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1068 			}
1069 		}
1070 	}
1071 }
1072 
dc_update_viusal_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1073 static void dc_update_viusal_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1074 {
1075 	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1076 		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1077 
1078 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1079 			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1080 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1081 			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1082 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1083 			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1084 		else {
1085 			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1086 				color_space_to_black_color(
1087 					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1088 		}
1089 		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1090 			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1091 				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1092 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1093 				get_subvp_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1094 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1095 				get_mclk_switch_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1096 		}
1097 	}
1098 }
1099 
disable_dangling_plane(struct dc * dc,struct dc_state * context)1100 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1101 {
1102 	int i, j;
1103 	struct dc_state *dangling_context = dc_create_state(dc);
1104 	struct dc_state *current_ctx;
1105 	struct pipe_ctx *pipe;
1106 	struct timing_generator *tg;
1107 
1108 	if (dangling_context == NULL)
1109 		return;
1110 
1111 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
1112 
1113 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1114 		struct dc_stream_state *old_stream =
1115 				dc->current_state->res_ctx.pipe_ctx[i].stream;
1116 		bool should_disable = true;
1117 		bool pipe_split_change = false;
1118 
1119 		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1120 			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1121 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1122 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1123 		else
1124 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1125 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1126 
1127 		for (j = 0; j < context->stream_count; j++) {
1128 			if (old_stream == context->streams[j]) {
1129 				should_disable = false;
1130 				break;
1131 			}
1132 		}
1133 		if (!should_disable && pipe_split_change &&
1134 				dc->current_state->stream_count != context->stream_count)
1135 			should_disable = true;
1136 
1137 		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1138 				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1139 			struct pipe_ctx *old_pipe, *new_pipe;
1140 
1141 			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1142 			new_pipe = &context->res_ctx.pipe_ctx[i];
1143 
1144 			if (old_pipe->plane_state && !new_pipe->plane_state)
1145 				should_disable = true;
1146 		}
1147 
1148 		if (should_disable && old_stream) {
1149 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1150 			tg = pipe->stream_res.tg;
1151 			/* When disabling plane for a phantom pipe, we must turn on the
1152 			 * phantom OTG so the disable programming gets the double buffer
1153 			 * update. Otherwise the pipe will be left in a partially disabled
1154 			 * state that can result in underflow or hang when enabling it
1155 			 * again for different use.
1156 			 */
1157 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1158 				if (tg->funcs->enable_crtc) {
1159 					int main_pipe_width, main_pipe_height;
1160 
1161 					main_pipe_width = old_stream->mall_stream_config.paired_stream->dst.width;
1162 					main_pipe_height = old_stream->mall_stream_config.paired_stream->dst.height;
1163 					if (dc->hwss.blank_phantom)
1164 						dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1165 					tg->funcs->enable_crtc(tg);
1166 				}
1167 			}
1168 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1169 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1170 
1171 			if (pipe->stream && pipe->plane_state)
1172 				dc_update_viusal_confirm_color(dc, context, pipe);
1173 
1174 			if (dc->hwss.apply_ctx_for_surface) {
1175 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1176 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1177 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1178 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1179 			}
1180 			if (dc->hwss.program_front_end_for_ctx) {
1181 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1182 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1183 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1184 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1185 			}
1186 			/* We need to put the phantom OTG back into it's default (disabled) state or we
1187 			 * can get corruption when transition from one SubVP config to a different one.
1188 			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1189 			 * will still get it's double buffer update.
1190 			 */
1191 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1192 				if (tg->funcs->disable_phantom_crtc)
1193 					tg->funcs->disable_phantom_crtc(tg);
1194 			}
1195 		}
1196 	}
1197 
1198 	current_ctx = dc->current_state;
1199 	dc->current_state = dangling_context;
1200 	dc_release_state(current_ctx);
1201 }
1202 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1203 static void disable_vbios_mode_if_required(
1204 		struct dc *dc,
1205 		struct dc_state *context)
1206 {
1207 	unsigned int i, j;
1208 
1209 	/* check if timing_changed, disable stream*/
1210 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1211 		struct dc_stream_state *stream = NULL;
1212 		struct dc_link *link = NULL;
1213 		struct pipe_ctx *pipe = NULL;
1214 
1215 		pipe = &context->res_ctx.pipe_ctx[i];
1216 		stream = pipe->stream;
1217 		if (stream == NULL)
1218 			continue;
1219 
1220 		if (stream->apply_seamless_boot_optimization)
1221 			continue;
1222 
1223 		// only looking for first odm pipe
1224 		if (pipe->prev_odm_pipe)
1225 			continue;
1226 
1227 		if (stream->link->local_sink &&
1228 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1229 			link = stream->link;
1230 		}
1231 
1232 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1233 			unsigned int enc_inst, tg_inst = 0;
1234 			unsigned int pix_clk_100hz;
1235 
1236 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1237 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1238 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1239 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1240 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1241 							dc->res_pool->stream_enc[j]);
1242 						break;
1243 					}
1244 				}
1245 
1246 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1247 					dc->res_pool->dp_clock_source,
1248 					tg_inst, &pix_clk_100hz);
1249 
1250 				if (link->link_status.link_active) {
1251 					uint32_t requested_pix_clk_100hz =
1252 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1253 
1254 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1255 						dc->link_srv->set_dpms_off(pipe);
1256 						pipe->stream->dpms_off = false;
1257 					}
1258 				}
1259 			}
1260 		}
1261 	}
1262 }
1263 
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)1264 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1265 {
1266 	int i;
1267 	PERF_TRACE();
1268 	for (i = 0; i < MAX_PIPES; i++) {
1269 		int count = 0;
1270 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1271 
1272 		if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1273 			continue;
1274 
1275 		/* Timeout 100 ms */
1276 		while (count < 100000) {
1277 			/* Must set to false to start with, due to OR in update function */
1278 			pipe->plane_state->status.is_flip_pending = false;
1279 			dc->hwss.update_pending_status(pipe);
1280 			if (!pipe->plane_state->status.is_flip_pending)
1281 				break;
1282 			udelay(1);
1283 			count++;
1284 		}
1285 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1286 	}
1287 	PERF_TRACE();
1288 }
1289 
1290 /* Public functions */
1291 
dc_create(const struct dc_init_data * init_params)1292 struct dc *dc_create(const struct dc_init_data *init_params)
1293 {
1294 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1295 	unsigned int full_pipe_count;
1296 
1297 	if (!dc)
1298 		return NULL;
1299 
1300 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1301 		if (!dc_construct_ctx(dc, init_params))
1302 			goto destruct_dc;
1303 	} else {
1304 		if (!dc_construct(dc, init_params))
1305 			goto destruct_dc;
1306 
1307 		full_pipe_count = dc->res_pool->pipe_count;
1308 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1309 			full_pipe_count--;
1310 		dc->caps.max_streams = min(
1311 				full_pipe_count,
1312 				dc->res_pool->stream_enc_count);
1313 
1314 		dc->caps.max_links = dc->link_count;
1315 		dc->caps.max_audios = dc->res_pool->audio_count;
1316 		dc->caps.linear_pitch_alignment = 64;
1317 
1318 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1319 
1320 		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1321 
1322 		if (dc->res_pool->dmcu != NULL)
1323 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1324 	}
1325 
1326 	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1327 	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1328 
1329 	/* Populate versioning information */
1330 	dc->versions.dc_ver = DC_VER;
1331 
1332 	dc->build_id = DC_BUILD_ID;
1333 
1334 	DC_LOG_DC("Display Core initialized\n");
1335 
1336 
1337 
1338 	return dc;
1339 
1340 destruct_dc:
1341 	dc_destruct(dc);
1342 	kfree(dc);
1343 	return NULL;
1344 }
1345 
detect_edp_presence(struct dc * dc)1346 static void detect_edp_presence(struct dc *dc)
1347 {
1348 	struct dc_link *edp_links[MAX_NUM_EDP];
1349 	struct dc_link *edp_link = NULL;
1350 	enum dc_connection_type type;
1351 	int i;
1352 	int edp_num;
1353 
1354 	dc_get_edp_links(dc, edp_links, &edp_num);
1355 	if (!edp_num)
1356 		return;
1357 
1358 	for (i = 0; i < edp_num; i++) {
1359 		edp_link = edp_links[i];
1360 		if (dc->config.edp_not_connected) {
1361 			edp_link->edp_sink_present = false;
1362 		} else {
1363 			dc_link_detect_connection_type(edp_link, &type);
1364 			edp_link->edp_sink_present = (type != dc_connection_none);
1365 		}
1366 	}
1367 }
1368 
dc_hardware_init(struct dc * dc)1369 void dc_hardware_init(struct dc *dc)
1370 {
1371 
1372 	detect_edp_presence(dc);
1373 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1374 		dc->hwss.init_hw(dc);
1375 }
1376 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1377 void dc_init_callbacks(struct dc *dc,
1378 		const struct dc_callback_init *init_params)
1379 {
1380 	dc->ctx->cp_psp = init_params->cp_psp;
1381 }
1382 
dc_deinit_callbacks(struct dc * dc)1383 void dc_deinit_callbacks(struct dc *dc)
1384 {
1385 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1386 }
1387 
dc_destroy(struct dc ** dc)1388 void dc_destroy(struct dc **dc)
1389 {
1390 	dc_destruct(*dc);
1391 	kfree(*dc);
1392 	*dc = NULL;
1393 }
1394 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1395 static void enable_timing_multisync(
1396 		struct dc *dc,
1397 		struct dc_state *ctx)
1398 {
1399 	int i, multisync_count = 0;
1400 	int pipe_count = dc->res_pool->pipe_count;
1401 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1402 
1403 	for (i = 0; i < pipe_count; i++) {
1404 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1405 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1406 			continue;
1407 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1408 			continue;
1409 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1410 		multisync_count++;
1411 	}
1412 
1413 	if (multisync_count > 0) {
1414 		dc->hwss.enable_per_frame_crtc_position_reset(
1415 			dc, multisync_count, multisync_pipes);
1416 	}
1417 }
1418 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1419 static void program_timing_sync(
1420 		struct dc *dc,
1421 		struct dc_state *ctx)
1422 {
1423 	int i, j, k;
1424 	int group_index = 0;
1425 	int num_group = 0;
1426 	int pipe_count = dc->res_pool->pipe_count;
1427 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1428 
1429 	for (i = 0; i < pipe_count; i++) {
1430 		if (!ctx->res_ctx.pipe_ctx[i].stream
1431 				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1432 				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1433 			continue;
1434 
1435 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1436 	}
1437 
1438 	for (i = 0; i < pipe_count; i++) {
1439 		int group_size = 1;
1440 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1441 		struct pipe_ctx *pipe_set[MAX_PIPES];
1442 
1443 		if (!unsynced_pipes[i])
1444 			continue;
1445 
1446 		pipe_set[0] = unsynced_pipes[i];
1447 		unsynced_pipes[i] = NULL;
1448 
1449 		/* Add tg to the set, search rest of the tg's for ones with
1450 		 * same timing, add all tgs with same timing to the group
1451 		 */
1452 		for (j = i + 1; j < pipe_count; j++) {
1453 			if (!unsynced_pipes[j])
1454 				continue;
1455 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1456 				dc->hwss.enable_vblanks_synchronization &&
1457 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1458 				resource_are_vblanks_synchronizable(
1459 					unsynced_pipes[j]->stream,
1460 					pipe_set[0]->stream)) {
1461 				sync_type = VBLANK_SYNCHRONIZABLE;
1462 				pipe_set[group_size] = unsynced_pipes[j];
1463 				unsynced_pipes[j] = NULL;
1464 				group_size++;
1465 			} else
1466 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1467 				resource_are_streams_timing_synchronizable(
1468 					unsynced_pipes[j]->stream,
1469 					pipe_set[0]->stream)) {
1470 				sync_type = TIMING_SYNCHRONIZABLE;
1471 				pipe_set[group_size] = unsynced_pipes[j];
1472 				unsynced_pipes[j] = NULL;
1473 				group_size++;
1474 			}
1475 		}
1476 
1477 		/* set first unblanked pipe as master */
1478 		for (j = 0; j < group_size; j++) {
1479 			bool is_blanked;
1480 
1481 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1482 				is_blanked =
1483 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1484 			else
1485 				is_blanked =
1486 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1487 			if (!is_blanked) {
1488 				if (j == 0)
1489 					break;
1490 
1491 				swap(pipe_set[0], pipe_set[j]);
1492 				break;
1493 			}
1494 		}
1495 
1496 		for (k = 0; k < group_size; k++) {
1497 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1498 
1499 			status->timing_sync_info.group_id = num_group;
1500 			status->timing_sync_info.group_size = group_size;
1501 			if (k == 0)
1502 				status->timing_sync_info.master = true;
1503 			else
1504 				status->timing_sync_info.master = false;
1505 
1506 		}
1507 
1508 		/* remove any other pipes that are already been synced */
1509 		if (dc->config.use_pipe_ctx_sync_logic) {
1510 			/* check pipe's syncd to decide which pipe to be removed */
1511 			for (j = 1; j < group_size; j++) {
1512 				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1513 					group_size--;
1514 					pipe_set[j] = pipe_set[group_size];
1515 					j--;
1516 				} else
1517 					/* link slave pipe's syncd with master pipe */
1518 					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1519 			}
1520 		} else {
1521 			for (j = j + 1; j < group_size; j++) {
1522 				bool is_blanked;
1523 
1524 				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1525 					is_blanked =
1526 						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1527 				else
1528 					is_blanked =
1529 						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1530 				if (!is_blanked) {
1531 					group_size--;
1532 					pipe_set[j] = pipe_set[group_size];
1533 					j--;
1534 				}
1535 			}
1536 		}
1537 
1538 		if (group_size > 1) {
1539 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1540 				dc->hwss.enable_timing_synchronization(
1541 					dc, group_index, group_size, pipe_set);
1542 			} else
1543 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1544 				dc->hwss.enable_vblanks_synchronization(
1545 					dc, group_index, group_size, pipe_set);
1546 				}
1547 			group_index++;
1548 		}
1549 		num_group++;
1550 	}
1551 }
1552 
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1553 static bool streams_changed(struct dc *dc,
1554 			    struct dc_stream_state *streams[],
1555 			    uint8_t stream_count)
1556 {
1557 	uint8_t i;
1558 
1559 	if (stream_count != dc->current_state->stream_count)
1560 		return true;
1561 
1562 	for (i = 0; i < dc->current_state->stream_count; i++) {
1563 		if (dc->current_state->streams[i] != streams[i])
1564 			return true;
1565 		if (!streams[i]->link->link_state_valid)
1566 			return true;
1567 	}
1568 
1569 	return false;
1570 }
1571 
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1572 bool dc_validate_boot_timing(const struct dc *dc,
1573 				const struct dc_sink *sink,
1574 				struct dc_crtc_timing *crtc_timing)
1575 {
1576 	struct timing_generator *tg;
1577 	struct stream_encoder *se = NULL;
1578 
1579 	struct dc_crtc_timing hw_crtc_timing = {0};
1580 
1581 	struct dc_link *link = sink->link;
1582 	unsigned int i, enc_inst, tg_inst = 0;
1583 
1584 	/* Support seamless boot on EDP displays only */
1585 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1586 		return false;
1587 	}
1588 
1589 	if (dc->debug.force_odm_combine)
1590 		return false;
1591 
1592 	/* Check for enabled DIG to identify enabled display */
1593 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1594 		return false;
1595 
1596 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1597 
1598 	if (enc_inst == ENGINE_ID_UNKNOWN)
1599 		return false;
1600 
1601 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1602 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1603 
1604 			se = dc->res_pool->stream_enc[i];
1605 
1606 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1607 				dc->res_pool->stream_enc[i]);
1608 			break;
1609 		}
1610 	}
1611 
1612 	// tg_inst not found
1613 	if (i == dc->res_pool->stream_enc_count)
1614 		return false;
1615 
1616 	if (tg_inst >= dc->res_pool->timing_generator_count)
1617 		return false;
1618 
1619 	if (tg_inst != link->link_enc->preferred_engine)
1620 		return false;
1621 
1622 	tg = dc->res_pool->timing_generators[tg_inst];
1623 
1624 	if (!tg->funcs->get_hw_timing)
1625 		return false;
1626 
1627 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1628 		return false;
1629 
1630 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1631 		return false;
1632 
1633 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1634 		return false;
1635 
1636 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1637 		return false;
1638 
1639 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1640 		return false;
1641 
1642 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1643 		return false;
1644 
1645 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1646 		return false;
1647 
1648 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1649 		return false;
1650 
1651 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1652 		return false;
1653 
1654 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1655 		return false;
1656 
1657 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1658 		return false;
1659 
1660 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1661 		return false;
1662 
1663 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1664 		return false;
1665 
1666 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1667 	if (crtc_timing->flags.DSC)
1668 		return false;
1669 
1670 	if (dc_is_dp_signal(link->connector_signal)) {
1671 		unsigned int pix_clk_100hz;
1672 		uint32_t numOdmPipes = 1;
1673 		uint32_t id_src[4] = {0};
1674 
1675 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1676 			dc->res_pool->dp_clock_source,
1677 			tg_inst, &pix_clk_100hz);
1678 
1679 		if (tg->funcs->get_optc_source)
1680 			tg->funcs->get_optc_source(tg,
1681 						&numOdmPipes, &id_src[0], &id_src[1]);
1682 
1683 		if (numOdmPipes == 2)
1684 			pix_clk_100hz *= 2;
1685 		if (numOdmPipes == 4)
1686 			pix_clk_100hz *= 4;
1687 
1688 		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1689 		// slightly due to rounding issues in 10 kHz units.
1690 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1691 			return false;
1692 
1693 		if (!se->funcs->dp_get_pixel_format)
1694 			return false;
1695 
1696 		if (!se->funcs->dp_get_pixel_format(
1697 			se,
1698 			&hw_crtc_timing.pixel_encoding,
1699 			&hw_crtc_timing.display_color_depth))
1700 			return false;
1701 
1702 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1703 			return false;
1704 
1705 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1706 			return false;
1707 	}
1708 
1709 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1710 		return false;
1711 	}
1712 
1713 	if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1714 		return false;
1715 
1716 	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1717 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1718 		return false;
1719 	}
1720 
1721 	return true;
1722 }
1723 
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1724 static inline bool should_update_pipe_for_stream(
1725 		struct dc_state *context,
1726 		struct pipe_ctx *pipe_ctx,
1727 		struct dc_stream_state *stream)
1728 {
1729 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1730 }
1731 
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1732 static inline bool should_update_pipe_for_plane(
1733 		struct dc_state *context,
1734 		struct pipe_ctx *pipe_ctx,
1735 		struct dc_plane_state *plane_state)
1736 {
1737 	return (pipe_ctx->plane_state == plane_state);
1738 }
1739 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1740 void dc_enable_stereo(
1741 	struct dc *dc,
1742 	struct dc_state *context,
1743 	struct dc_stream_state *streams[],
1744 	uint8_t stream_count)
1745 {
1746 	int i, j;
1747 	struct pipe_ctx *pipe;
1748 
1749 	for (i = 0; i < MAX_PIPES; i++) {
1750 		if (context != NULL) {
1751 			pipe = &context->res_ctx.pipe_ctx[i];
1752 		} else {
1753 			context = dc->current_state;
1754 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1755 		}
1756 
1757 		for (j = 0; pipe && j < stream_count; j++)  {
1758 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1759 				dc->hwss.setup_stereo)
1760 				dc->hwss.setup_stereo(pipe, dc);
1761 		}
1762 	}
1763 }
1764 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1765 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1766 {
1767 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1768 		enable_timing_multisync(dc, context);
1769 		program_timing_sync(dc, context);
1770 	}
1771 }
1772 
get_stream_mask(struct dc * dc,struct dc_state * context)1773 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1774 {
1775 	int i;
1776 	unsigned int stream_mask = 0;
1777 
1778 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1779 		if (context->res_ctx.pipe_ctx[i].stream)
1780 			stream_mask |= 1 << i;
1781 	}
1782 
1783 	return stream_mask;
1784 }
1785 
dc_z10_restore(const struct dc * dc)1786 void dc_z10_restore(const struct dc *dc)
1787 {
1788 	if (dc->hwss.z10_restore)
1789 		dc->hwss.z10_restore(dc);
1790 }
1791 
dc_z10_save_init(struct dc * dc)1792 void dc_z10_save_init(struct dc *dc)
1793 {
1794 	if (dc->hwss.z10_save_init)
1795 		dc->hwss.z10_save_init(dc);
1796 }
1797 
1798 /**
1799  * dc_commit_state_no_check - Apply context to the hardware
1800  *
1801  * @dc: DC object with the current status to be updated
1802  * @context: New state that will become the current status at the end of this function
1803  *
1804  * Applies given context to the hardware and copy it into current context.
1805  * It's up to the user to release the src context afterwards.
1806  *
1807  * Return: an enum dc_status result code for the operation
1808  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1809 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1810 {
1811 	struct dc_bios *dcb = dc->ctx->dc_bios;
1812 	enum dc_status result = DC_ERROR_UNEXPECTED;
1813 	struct pipe_ctx *pipe;
1814 	int i, k, l;
1815 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1816 	struct dc_state *old_state;
1817 	bool subvp_prev_use = false;
1818 
1819 	dc_z10_restore(dc);
1820 	dc_allow_idle_optimizations(dc, false);
1821 
1822 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1823 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1824 
1825 		/* Check old context for SubVP */
1826 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1827 		if (subvp_prev_use)
1828 			break;
1829 	}
1830 
1831 	for (i = 0; i < context->stream_count; i++)
1832 		dc_streams[i] =  context->streams[i];
1833 
1834 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1835 		disable_vbios_mode_if_required(dc, context);
1836 		dc->hwss.enable_accelerated_mode(dc, context);
1837 	}
1838 
1839 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1840 		context->stream_count == 0)
1841 		dc->hwss.prepare_bandwidth(dc, context);
1842 
1843 	/* When SubVP is active, all HW programming must be done while
1844 	 * SubVP lock is acquired
1845 	 */
1846 	if (dc->hwss.subvp_pipe_control_lock)
1847 		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1848 
1849 	if (dc->hwss.update_dsc_pg)
1850 		dc->hwss.update_dsc_pg(dc, context, false);
1851 
1852 	disable_dangling_plane(dc, context);
1853 	/* re-program planes for existing stream, in case we need to
1854 	 * free up plane resource for later use
1855 	 */
1856 	if (dc->hwss.apply_ctx_for_surface) {
1857 		for (i = 0; i < context->stream_count; i++) {
1858 			if (context->streams[i]->mode_changed)
1859 				continue;
1860 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1861 			dc->hwss.apply_ctx_for_surface(
1862 				dc, context->streams[i],
1863 				context->stream_status[i].plane_count,
1864 				context); /* use new pipe config in new context */
1865 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1866 			dc->hwss.post_unlock_program_front_end(dc, context);
1867 		}
1868 	}
1869 
1870 	/* Program hardware */
1871 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1872 		pipe = &context->res_ctx.pipe_ctx[i];
1873 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1874 	}
1875 
1876 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1877 
1878 	if (result != DC_OK) {
1879 		/* Application of dc_state to hardware stopped. */
1880 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1881 		return result;
1882 	}
1883 
1884 	dc_trigger_sync(dc, context);
1885 
1886 	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1887 	for (i = 0; i < context->stream_count; i++) {
1888 		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1889 
1890 		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1891 		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1892 	}
1893 
1894 	/* Program all planes within new context*/
1895 	if (dc->hwss.program_front_end_for_ctx) {
1896 		dc->hwss.interdependent_update_lock(dc, context, true);
1897 		dc->hwss.program_front_end_for_ctx(dc, context);
1898 		dc->hwss.interdependent_update_lock(dc, context, false);
1899 		dc->hwss.post_unlock_program_front_end(dc, context);
1900 	}
1901 
1902 	if (dc->hwss.commit_subvp_config)
1903 		dc->hwss.commit_subvp_config(dc, context);
1904 	if (dc->hwss.subvp_pipe_control_lock)
1905 		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1906 
1907 	for (i = 0; i < context->stream_count; i++) {
1908 		const struct dc_link *link = context->streams[i]->link;
1909 
1910 		if (!context->streams[i]->mode_changed)
1911 			continue;
1912 
1913 		if (dc->hwss.apply_ctx_for_surface) {
1914 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1915 			dc->hwss.apply_ctx_for_surface(
1916 					dc, context->streams[i],
1917 					context->stream_status[i].plane_count,
1918 					context);
1919 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1920 			dc->hwss.post_unlock_program_front_end(dc, context);
1921 		}
1922 
1923 		/*
1924 		 * enable stereo
1925 		 * TODO rework dc_enable_stereo call to work with validation sets?
1926 		 */
1927 		for (k = 0; k < MAX_PIPES; k++) {
1928 			pipe = &context->res_ctx.pipe_ctx[k];
1929 
1930 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1931 				if (context->streams[l] &&
1932 					context->streams[l] == pipe->stream &&
1933 					dc->hwss.setup_stereo)
1934 					dc->hwss.setup_stereo(pipe, dc);
1935 			}
1936 		}
1937 
1938 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1939 				context->streams[i]->timing.h_addressable,
1940 				context->streams[i]->timing.v_addressable,
1941 				context->streams[i]->timing.h_total,
1942 				context->streams[i]->timing.v_total,
1943 				context->streams[i]->timing.pix_clk_100hz / 10);
1944 	}
1945 
1946 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1947 
1948 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1949 		context->stream_count == 0) {
1950 		/* Must wait for no flips to be pending before doing optimize bw */
1951 		wait_for_no_pipes_pending(dc, context);
1952 		/* pplib is notified if disp_num changed */
1953 		dc->hwss.optimize_bandwidth(dc, context);
1954 		/* Need to do otg sync again as otg could be out of sync due to otg
1955 		 * workaround applied during clock update
1956 		 */
1957 		dc_trigger_sync(dc, context);
1958 	}
1959 
1960 	if (dc->hwss.update_dsc_pg)
1961 		dc->hwss.update_dsc_pg(dc, context, true);
1962 
1963 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1964 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1965 	else
1966 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1967 
1968 	context->stream_mask = get_stream_mask(dc, context);
1969 
1970 	if (context->stream_mask != dc->current_state->stream_mask)
1971 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1972 
1973 	for (i = 0; i < context->stream_count; i++)
1974 		context->streams[i]->mode_changed = false;
1975 
1976 	/* Clear update flags that were set earlier to avoid redundant programming */
1977 	for (i = 0; i < context->stream_count; i++) {
1978 		context->streams[i]->update_flags.raw = 0x0;
1979 	}
1980 
1981 	old_state = dc->current_state;
1982 	dc->current_state = context;
1983 
1984 	dc_release_state(old_state);
1985 
1986 	dc_retain_state(dc->current_state);
1987 
1988 	return result;
1989 }
1990 
1991 static bool commit_minimal_transition_state(struct dc *dc,
1992 		struct dc_state *transition_base_context);
1993 
1994 /**
1995  * dc_commit_streams - Commit current stream state
1996  *
1997  * @dc: DC object with the commit state to be configured in the hardware
1998  * @streams: Array with a list of stream state
1999  * @stream_count: Total of streams
2000  *
2001  * Function responsible for commit streams change to the hardware.
2002  *
2003  * Return:
2004  * Return DC_OK if everything work as expected, otherwise, return a dc_status
2005  * code.
2006  */
dc_commit_streams(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)2007 enum dc_status dc_commit_streams(struct dc *dc,
2008 				 struct dc_stream_state *streams[],
2009 				 uint8_t stream_count)
2010 {
2011 	int i, j;
2012 	struct dc_state *context;
2013 	enum dc_status res = DC_OK;
2014 	struct dc_validation_set set[MAX_STREAMS] = {0};
2015 	struct pipe_ctx *pipe;
2016 	bool handle_exit_odm2to1 = false;
2017 
2018 	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2019 		return res;
2020 
2021 	if (!streams_changed(dc, streams, stream_count))
2022 		return res;
2023 
2024 	DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2025 
2026 	for (i = 0; i < stream_count; i++) {
2027 		struct dc_stream_state *stream = streams[i];
2028 		struct dc_stream_status *status = dc_stream_get_status(stream);
2029 
2030 		dc_stream_log(dc, stream);
2031 
2032 		set[i].stream = stream;
2033 
2034 		if (status) {
2035 			set[i].plane_count = status->plane_count;
2036 			for (j = 0; j < status->plane_count; j++)
2037 				set[i].plane_states[j] = status->plane_states[j];
2038 		}
2039 	}
2040 
2041 	/* ODM Combine 2:1 power optimization is only applied for single stream
2042 	 * scenario, it uses extra pipes than needed to reduce power consumption
2043 	 * We need to switch off this feature to make room for new streams.
2044 	 */
2045 	if (stream_count > dc->current_state->stream_count &&
2046 			dc->current_state->stream_count == 1) {
2047 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2048 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2049 			if (pipe->next_odm_pipe)
2050 				handle_exit_odm2to1 = true;
2051 		}
2052 	}
2053 
2054 	if (handle_exit_odm2to1)
2055 		res = commit_minimal_transition_state(dc, dc->current_state);
2056 
2057 	context = dc_create_state(dc);
2058 	if (!context)
2059 		goto context_alloc_fail;
2060 
2061 	dc_resource_state_copy_construct_current(dc, context);
2062 
2063 	res = dc_validate_with_context(dc, set, stream_count, context, false);
2064 	if (res != DC_OK) {
2065 		BREAK_TO_DEBUGGER();
2066 		goto fail;
2067 	}
2068 
2069 	res = dc_commit_state_no_check(dc, context);
2070 
2071 	for (i = 0; i < stream_count; i++) {
2072 		for (j = 0; j < context->stream_count; j++) {
2073 			if (streams[i]->stream_id == context->streams[j]->stream_id)
2074 				streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2075 
2076 			if (dc_is_embedded_signal(streams[i]->signal)) {
2077 				struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2078 
2079 				if (dc->hwss.is_abm_supported)
2080 					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2081 				else
2082 					status->is_abm_supported = true;
2083 			}
2084 		}
2085 	}
2086 
2087 fail:
2088 	dc_release_state(context);
2089 
2090 context_alloc_fail:
2091 
2092 	DC_LOG_DC("%s Finished.\n", __func__);
2093 
2094 	return res;
2095 }
2096 
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2097 bool dc_acquire_release_mpc_3dlut(
2098 		struct dc *dc, bool acquire,
2099 		struct dc_stream_state *stream,
2100 		struct dc_3dlut **lut,
2101 		struct dc_transfer_func **shaper)
2102 {
2103 	int pipe_idx;
2104 	bool ret = false;
2105 	bool found_pipe_idx = false;
2106 	const struct resource_pool *pool = dc->res_pool;
2107 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2108 	int mpcc_id = 0;
2109 
2110 	if (pool && res_ctx) {
2111 		if (acquire) {
2112 			/*find pipe idx for the given stream*/
2113 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2114 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2115 					found_pipe_idx = true;
2116 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2117 					break;
2118 				}
2119 			}
2120 		} else
2121 			found_pipe_idx = true;/*for release pipe_idx is not required*/
2122 
2123 		if (found_pipe_idx) {
2124 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2125 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2126 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2127 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2128 		}
2129 	}
2130 	return ret;
2131 }
2132 
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2133 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2134 {
2135 	int i;
2136 	struct pipe_ctx *pipe;
2137 
2138 	for (i = 0; i < MAX_PIPES; i++) {
2139 		pipe = &context->res_ctx.pipe_ctx[i];
2140 
2141 		// Don't check flip pending on phantom pipes
2142 		if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2143 			continue;
2144 
2145 		/* Must set to false to start with, due to OR in update function */
2146 		pipe->plane_state->status.is_flip_pending = false;
2147 		dc->hwss.update_pending_status(pipe);
2148 		if (pipe->plane_state->status.is_flip_pending)
2149 			return true;
2150 	}
2151 	return false;
2152 }
2153 
2154 /* Perform updates here which need to be deferred until next vupdate
2155  *
2156  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2157  * but forcing lut memory to shutdown state is immediate. This causes
2158  * single frame corruption as lut gets disabled mid-frame unless shutdown
2159  * is deferred until after entering bypass.
2160  */
process_deferred_updates(struct dc * dc)2161 static void process_deferred_updates(struct dc *dc)
2162 {
2163 	int i = 0;
2164 
2165 	if (dc->debug.enable_mem_low_power.bits.cm) {
2166 		ASSERT(dc->dcn_ip->max_num_dpp);
2167 		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2168 			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2169 				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2170 	}
2171 }
2172 
dc_post_update_surfaces_to_stream(struct dc * dc)2173 void dc_post_update_surfaces_to_stream(struct dc *dc)
2174 {
2175 	int i;
2176 	struct dc_state *context = dc->current_state;
2177 
2178 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2179 		return;
2180 
2181 	post_surface_trace(dc);
2182 
2183 	/*
2184 	 * Only relevant for DCN behavior where we can guarantee the optimization
2185 	 * is safe to apply - retain the legacy behavior for DCE.
2186 	 */
2187 
2188 	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2189 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2190 	else {
2191 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2192 
2193 		if (is_flip_pending_in_pipes(dc, context))
2194 			return;
2195 
2196 		for (i = 0; i < dc->res_pool->pipe_count; i++)
2197 			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2198 					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2199 				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2200 				dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2201 			}
2202 
2203 		process_deferred_updates(dc);
2204 
2205 		dc->hwss.optimize_bandwidth(dc, context);
2206 
2207 		if (dc->hwss.update_dsc_pg)
2208 			dc->hwss.update_dsc_pg(dc, context, true);
2209 	}
2210 
2211 	dc->optimized_required = false;
2212 	dc->wm_optimized_required = false;
2213 }
2214 
init_state(struct dc * dc,struct dc_state * context)2215 static void init_state(struct dc *dc, struct dc_state *context)
2216 {
2217 	/* Each context must have their own instance of VBA and in order to
2218 	 * initialize and obtain IP and SOC the base DML instance from DC is
2219 	 * initially copied into every context
2220 	 */
2221 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2222 }
2223 
dc_create_state(struct dc * dc)2224 struct dc_state *dc_create_state(struct dc *dc)
2225 {
2226 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2227 					    GFP_KERNEL);
2228 
2229 	if (!context)
2230 		return NULL;
2231 
2232 	init_state(dc, context);
2233 
2234 	kref_init(&context->refcount);
2235 
2236 	return context;
2237 }
2238 
dc_copy_state(struct dc_state * src_ctx)2239 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2240 {
2241 	int i, j;
2242 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2243 
2244 	if (!new_ctx)
2245 		return NULL;
2246 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2247 
2248 	for (i = 0; i < MAX_PIPES; i++) {
2249 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2250 
2251 			if (cur_pipe->top_pipe)
2252 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2253 
2254 			if (cur_pipe->bottom_pipe)
2255 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2256 
2257 			if (cur_pipe->prev_odm_pipe)
2258 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2259 
2260 			if (cur_pipe->next_odm_pipe)
2261 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2262 
2263 	}
2264 
2265 	for (i = 0; i < new_ctx->stream_count; i++) {
2266 			dc_stream_retain(new_ctx->streams[i]);
2267 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2268 				dc_plane_state_retain(
2269 					new_ctx->stream_status[i].plane_states[j]);
2270 	}
2271 
2272 	kref_init(&new_ctx->refcount);
2273 
2274 	return new_ctx;
2275 }
2276 
dc_retain_state(struct dc_state * context)2277 void dc_retain_state(struct dc_state *context)
2278 {
2279 	kref_get(&context->refcount);
2280 }
2281 
dc_state_free(struct kref * kref)2282 static void dc_state_free(struct kref *kref)
2283 {
2284 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
2285 	dc_resource_state_destruct(context);
2286 	kvfree(context);
2287 }
2288 
dc_release_state(struct dc_state * context)2289 void dc_release_state(struct dc_state *context)
2290 {
2291 	kref_put(&context->refcount, dc_state_free);
2292 }
2293 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2294 bool dc_set_generic_gpio_for_stereo(bool enable,
2295 		struct gpio_service *gpio_service)
2296 {
2297 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2298 	struct gpio_pin_info pin_info;
2299 	struct gpio *generic;
2300 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2301 			   GFP_KERNEL);
2302 
2303 	if (!config)
2304 		return false;
2305 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2306 
2307 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2308 		kfree(config);
2309 		return false;
2310 	} else {
2311 		generic = dal_gpio_service_create_generic_mux(
2312 			gpio_service,
2313 			pin_info.offset,
2314 			pin_info.mask);
2315 	}
2316 
2317 	if (!generic) {
2318 		kfree(config);
2319 		return false;
2320 	}
2321 
2322 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2323 
2324 	config->enable_output_from_mux = enable;
2325 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2326 
2327 	if (gpio_result == GPIO_RESULT_OK)
2328 		gpio_result = dal_mux_setup_config(generic, config);
2329 
2330 	if (gpio_result == GPIO_RESULT_OK) {
2331 		dal_gpio_close(generic);
2332 		dal_gpio_destroy_generic_mux(&generic);
2333 		kfree(config);
2334 		return true;
2335 	} else {
2336 		dal_gpio_close(generic);
2337 		dal_gpio_destroy_generic_mux(&generic);
2338 		kfree(config);
2339 		return false;
2340 	}
2341 }
2342 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2343 static bool is_surface_in_context(
2344 		const struct dc_state *context,
2345 		const struct dc_plane_state *plane_state)
2346 {
2347 	int j;
2348 
2349 	for (j = 0; j < MAX_PIPES; j++) {
2350 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2351 
2352 		if (plane_state == pipe_ctx->plane_state) {
2353 			return true;
2354 		}
2355 	}
2356 
2357 	return false;
2358 }
2359 
get_plane_info_update_type(const struct dc_surface_update * u)2360 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2361 {
2362 	union surface_update_flags *update_flags = &u->surface->update_flags;
2363 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2364 
2365 	if (!u->plane_info)
2366 		return UPDATE_TYPE_FAST;
2367 
2368 	if (u->plane_info->color_space != u->surface->color_space) {
2369 		update_flags->bits.color_space_change = 1;
2370 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2371 	}
2372 
2373 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2374 		update_flags->bits.horizontal_mirror_change = 1;
2375 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2376 	}
2377 
2378 	if (u->plane_info->rotation != u->surface->rotation) {
2379 		update_flags->bits.rotation_change = 1;
2380 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2381 	}
2382 
2383 	if (u->plane_info->format != u->surface->format) {
2384 		update_flags->bits.pixel_format_change = 1;
2385 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2386 	}
2387 
2388 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2389 		update_flags->bits.stereo_format_change = 1;
2390 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2391 	}
2392 
2393 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2394 		update_flags->bits.per_pixel_alpha_change = 1;
2395 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2396 	}
2397 
2398 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2399 		update_flags->bits.global_alpha_change = 1;
2400 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2401 	}
2402 
2403 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2404 			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2405 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2406 		/* During DCC on/off, stutter period is calculated before
2407 		 * DCC has fully transitioned. This results in incorrect
2408 		 * stutter period calculation. Triggering a full update will
2409 		 * recalculate stutter period.
2410 		 */
2411 		update_flags->bits.dcc_change = 1;
2412 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2413 	}
2414 
2415 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2416 			resource_pixel_format_to_bpp(u->surface->format)) {
2417 		/* different bytes per element will require full bandwidth
2418 		 * and DML calculation
2419 		 */
2420 		update_flags->bits.bpp_change = 1;
2421 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2422 	}
2423 
2424 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2425 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2426 		update_flags->bits.plane_size_change = 1;
2427 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2428 	}
2429 
2430 
2431 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2432 			sizeof(union dc_tiling_info)) != 0) {
2433 		update_flags->bits.swizzle_change = 1;
2434 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2435 
2436 		/* todo: below are HW dependent, we should add a hook to
2437 		 * DCE/N resource and validated there.
2438 		 */
2439 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2440 			/* swizzled mode requires RQ to be setup properly,
2441 			 * thus need to run DML to calculate RQ settings
2442 			 */
2443 			update_flags->bits.bandwidth_change = 1;
2444 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2445 		}
2446 	}
2447 
2448 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2449 	return update_type;
2450 }
2451 
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2452 static enum surface_update_type get_scaling_info_update_type(
2453 		const struct dc *dc,
2454 		const struct dc_surface_update *u)
2455 {
2456 	union surface_update_flags *update_flags = &u->surface->update_flags;
2457 
2458 	if (!u->scaling_info)
2459 		return UPDATE_TYPE_FAST;
2460 
2461 	if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2462 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2463 			|| u->scaling_info->scaling_quality.integer_scaling !=
2464 				u->surface->scaling_quality.integer_scaling
2465 			) {
2466 		update_flags->bits.scaling_change = 1;
2467 
2468 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2469 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2470 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2471 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2472 			/* Making dst rect smaller requires a bandwidth change */
2473 			update_flags->bits.bandwidth_change = 1;
2474 	}
2475 
2476 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2477 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2478 
2479 		update_flags->bits.scaling_change = 1;
2480 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2481 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2482 			/* Making src rect bigger requires a bandwidth change */
2483 			update_flags->bits.clock_change = 1;
2484 	}
2485 
2486 	if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2487 		(u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2488 		 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2489 		 /* Changing clip size of a large surface may result in MPC slice count change */
2490 		update_flags->bits.bandwidth_change = 1;
2491 
2492 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2493 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2494 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2495 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2496 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2497 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2498 		update_flags->bits.position_change = 1;
2499 
2500 	if (update_flags->bits.clock_change
2501 			|| update_flags->bits.bandwidth_change
2502 			|| update_flags->bits.scaling_change)
2503 		return UPDATE_TYPE_FULL;
2504 
2505 	if (update_flags->bits.position_change)
2506 		return UPDATE_TYPE_MED;
2507 
2508 	return UPDATE_TYPE_FAST;
2509 }
2510 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2511 static enum surface_update_type det_surface_update(const struct dc *dc,
2512 		const struct dc_surface_update *u)
2513 {
2514 	const struct dc_state *context = dc->current_state;
2515 	enum surface_update_type type;
2516 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2517 	union surface_update_flags *update_flags = &u->surface->update_flags;
2518 
2519 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2520 		update_flags->raw = 0xFFFFFFFF;
2521 		return UPDATE_TYPE_FULL;
2522 	}
2523 
2524 	update_flags->raw = 0; // Reset all flags
2525 
2526 	type = get_plane_info_update_type(u);
2527 	elevate_update_type(&overall_type, type);
2528 
2529 	type = get_scaling_info_update_type(dc, u);
2530 	elevate_update_type(&overall_type, type);
2531 
2532 	if (u->flip_addr) {
2533 		update_flags->bits.addr_update = 1;
2534 		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2535 			update_flags->bits.tmz_changed = 1;
2536 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2537 		}
2538 	}
2539 	if (u->in_transfer_func)
2540 		update_flags->bits.in_transfer_func_change = 1;
2541 
2542 	if (u->input_csc_color_matrix)
2543 		update_flags->bits.input_csc_change = 1;
2544 
2545 	if (u->coeff_reduction_factor)
2546 		update_flags->bits.coeff_reduction_change = 1;
2547 
2548 	if (u->gamut_remap_matrix)
2549 		update_flags->bits.gamut_remap_change = 1;
2550 
2551 	if (u->gamma) {
2552 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2553 
2554 		if (u->plane_info)
2555 			format = u->plane_info->format;
2556 		else if (u->surface)
2557 			format = u->surface->format;
2558 
2559 		if (dce_use_lut(format))
2560 			update_flags->bits.gamma_change = 1;
2561 	}
2562 
2563 	if (u->lut3d_func || u->func_shaper)
2564 		update_flags->bits.lut_3d = 1;
2565 
2566 	if (u->hdr_mult.value)
2567 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2568 			update_flags->bits.hdr_mult = 1;
2569 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2570 		}
2571 
2572 	if (update_flags->bits.in_transfer_func_change) {
2573 		type = UPDATE_TYPE_MED;
2574 		elevate_update_type(&overall_type, type);
2575 	}
2576 
2577 	if (update_flags->bits.lut_3d) {
2578 		type = UPDATE_TYPE_FULL;
2579 		elevate_update_type(&overall_type, type);
2580 	}
2581 
2582 	if (dc->debug.enable_legacy_fast_update &&
2583 			(update_flags->bits.gamma_change ||
2584 			update_flags->bits.gamut_remap_change ||
2585 			update_flags->bits.input_csc_change ||
2586 			update_flags->bits.coeff_reduction_change)) {
2587 		type = UPDATE_TYPE_FULL;
2588 		elevate_update_type(&overall_type, type);
2589 	}
2590 	return overall_type;
2591 }
2592 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2593 static enum surface_update_type check_update_surfaces_for_stream(
2594 		struct dc *dc,
2595 		struct dc_surface_update *updates,
2596 		int surface_count,
2597 		struct dc_stream_update *stream_update,
2598 		const struct dc_stream_status *stream_status)
2599 {
2600 	int i;
2601 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2602 
2603 	if (dc->idle_optimizations_allowed)
2604 		overall_type = UPDATE_TYPE_FULL;
2605 
2606 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2607 		overall_type = UPDATE_TYPE_FULL;
2608 
2609 	if (stream_update && stream_update->pending_test_pattern) {
2610 		overall_type = UPDATE_TYPE_FULL;
2611 	}
2612 
2613 	/* some stream updates require passive update */
2614 	if (stream_update) {
2615 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2616 
2617 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2618 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2619 			stream_update->integer_scaling_update)
2620 			su_flags->bits.scaling = 1;
2621 
2622 		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2623 			su_flags->bits.out_tf = 1;
2624 
2625 		if (stream_update->abm_level)
2626 			su_flags->bits.abm_level = 1;
2627 
2628 		if (stream_update->dpms_off)
2629 			su_flags->bits.dpms_off = 1;
2630 
2631 		if (stream_update->gamut_remap)
2632 			su_flags->bits.gamut_remap = 1;
2633 
2634 		if (stream_update->wb_update)
2635 			su_flags->bits.wb_update = 1;
2636 
2637 		if (stream_update->dsc_config)
2638 			su_flags->bits.dsc_changed = 1;
2639 
2640 		if (stream_update->mst_bw_update)
2641 			su_flags->bits.mst_bw = 1;
2642 
2643 		if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2644 			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2645 				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2646 			su_flags->bits.fams_changed = 1;
2647 
2648 		if (su_flags->raw != 0)
2649 			overall_type = UPDATE_TYPE_FULL;
2650 
2651 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2652 			su_flags->bits.out_csc = 1;
2653 
2654 		/* Output transfer function changes do not require bandwidth recalculation,
2655 		 * so don't trigger a full update
2656 		 */
2657 		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2658 			su_flags->bits.out_tf = 1;
2659 	}
2660 
2661 	for (i = 0 ; i < surface_count; i++) {
2662 		enum surface_update_type type =
2663 				det_surface_update(dc, &updates[i]);
2664 
2665 		elevate_update_type(&overall_type, type);
2666 	}
2667 
2668 	return overall_type;
2669 }
2670 
2671 /*
2672  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2673  *
2674  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2675  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2676 enum surface_update_type dc_check_update_surfaces_for_stream(
2677 		struct dc *dc,
2678 		struct dc_surface_update *updates,
2679 		int surface_count,
2680 		struct dc_stream_update *stream_update,
2681 		const struct dc_stream_status *stream_status)
2682 {
2683 	int i;
2684 	enum surface_update_type type;
2685 
2686 	if (stream_update)
2687 		stream_update->stream->update_flags.raw = 0;
2688 	for (i = 0; i < surface_count; i++)
2689 		updates[i].surface->update_flags.raw = 0;
2690 
2691 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2692 	if (type == UPDATE_TYPE_FULL) {
2693 		if (stream_update) {
2694 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2695 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2696 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2697 		}
2698 		for (i = 0; i < surface_count; i++)
2699 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2700 	}
2701 
2702 	if (type == UPDATE_TYPE_FAST) {
2703 		// If there's an available clock comparator, we use that.
2704 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2705 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2706 				dc->optimized_required = true;
2707 		// Else we fallback to mem compare.
2708 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2709 			dc->optimized_required = true;
2710 		}
2711 
2712 		dc->optimized_required |= dc->wm_optimized_required;
2713 	}
2714 
2715 	return type;
2716 }
2717 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2718 static struct dc_stream_status *stream_get_status(
2719 	struct dc_state *ctx,
2720 	struct dc_stream_state *stream)
2721 {
2722 	uint8_t i;
2723 
2724 	for (i = 0; i < ctx->stream_count; i++) {
2725 		if (stream == ctx->streams[i]) {
2726 			return &ctx->stream_status[i];
2727 		}
2728 	}
2729 
2730 	return NULL;
2731 }
2732 
2733 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2734 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2735 static void copy_surface_update_to_plane(
2736 		struct dc_plane_state *surface,
2737 		struct dc_surface_update *srf_update)
2738 {
2739 	if (srf_update->flip_addr) {
2740 		surface->address = srf_update->flip_addr->address;
2741 		surface->flip_immediate =
2742 			srf_update->flip_addr->flip_immediate;
2743 		surface->time.time_elapsed_in_us[surface->time.index] =
2744 			srf_update->flip_addr->flip_timestamp_in_us -
2745 				surface->time.prev_update_time_in_us;
2746 		surface->time.prev_update_time_in_us =
2747 			srf_update->flip_addr->flip_timestamp_in_us;
2748 		surface->time.index++;
2749 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2750 			surface->time.index = 0;
2751 
2752 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2753 	}
2754 
2755 	if (srf_update->scaling_info) {
2756 		surface->scaling_quality =
2757 				srf_update->scaling_info->scaling_quality;
2758 		surface->dst_rect =
2759 				srf_update->scaling_info->dst_rect;
2760 		surface->src_rect =
2761 				srf_update->scaling_info->src_rect;
2762 		surface->clip_rect =
2763 				srf_update->scaling_info->clip_rect;
2764 	}
2765 
2766 	if (srf_update->plane_info) {
2767 		surface->color_space =
2768 				srf_update->plane_info->color_space;
2769 		surface->format =
2770 				srf_update->plane_info->format;
2771 		surface->plane_size =
2772 				srf_update->plane_info->plane_size;
2773 		surface->rotation =
2774 				srf_update->plane_info->rotation;
2775 		surface->horizontal_mirror =
2776 				srf_update->plane_info->horizontal_mirror;
2777 		surface->stereo_format =
2778 				srf_update->plane_info->stereo_format;
2779 		surface->tiling_info =
2780 				srf_update->plane_info->tiling_info;
2781 		surface->visible =
2782 				srf_update->plane_info->visible;
2783 		surface->per_pixel_alpha =
2784 				srf_update->plane_info->per_pixel_alpha;
2785 		surface->global_alpha =
2786 				srf_update->plane_info->global_alpha;
2787 		surface->global_alpha_value =
2788 				srf_update->plane_info->global_alpha_value;
2789 		surface->dcc =
2790 				srf_update->plane_info->dcc;
2791 		surface->layer_index =
2792 				srf_update->plane_info->layer_index;
2793 	}
2794 
2795 	if (srf_update->gamma &&
2796 			(surface->gamma_correction !=
2797 					srf_update->gamma)) {
2798 		memcpy(&surface->gamma_correction->entries,
2799 			&srf_update->gamma->entries,
2800 			sizeof(struct dc_gamma_entries));
2801 		surface->gamma_correction->is_identity =
2802 			srf_update->gamma->is_identity;
2803 		surface->gamma_correction->num_entries =
2804 			srf_update->gamma->num_entries;
2805 		surface->gamma_correction->type =
2806 			srf_update->gamma->type;
2807 	}
2808 
2809 	if (srf_update->in_transfer_func &&
2810 			(surface->in_transfer_func !=
2811 				srf_update->in_transfer_func)) {
2812 		surface->in_transfer_func->sdr_ref_white_level =
2813 			srf_update->in_transfer_func->sdr_ref_white_level;
2814 		surface->in_transfer_func->tf =
2815 			srf_update->in_transfer_func->tf;
2816 		surface->in_transfer_func->type =
2817 			srf_update->in_transfer_func->type;
2818 		memcpy(&surface->in_transfer_func->tf_pts,
2819 			&srf_update->in_transfer_func->tf_pts,
2820 			sizeof(struct dc_transfer_func_distributed_points));
2821 	}
2822 
2823 	if (srf_update->func_shaper &&
2824 			(surface->in_shaper_func !=
2825 			srf_update->func_shaper))
2826 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2827 		sizeof(*surface->in_shaper_func));
2828 
2829 	if (srf_update->lut3d_func &&
2830 			(surface->lut3d_func !=
2831 			srf_update->lut3d_func))
2832 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2833 		sizeof(*surface->lut3d_func));
2834 
2835 	if (srf_update->hdr_mult.value)
2836 		surface->hdr_mult =
2837 				srf_update->hdr_mult;
2838 
2839 	if (srf_update->blend_tf &&
2840 			(surface->blend_tf !=
2841 			srf_update->blend_tf))
2842 		memcpy(surface->blend_tf, srf_update->blend_tf,
2843 		sizeof(*surface->blend_tf));
2844 
2845 	if (srf_update->input_csc_color_matrix)
2846 		surface->input_csc_color_matrix =
2847 			*srf_update->input_csc_color_matrix;
2848 
2849 	if (srf_update->coeff_reduction_factor)
2850 		surface->coeff_reduction_factor =
2851 			*srf_update->coeff_reduction_factor;
2852 
2853 	if (srf_update->gamut_remap_matrix)
2854 		surface->gamut_remap_matrix =
2855 			*srf_update->gamut_remap_matrix;
2856 }
2857 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2858 static void copy_stream_update_to_stream(struct dc *dc,
2859 					 struct dc_state *context,
2860 					 struct dc_stream_state *stream,
2861 					 struct dc_stream_update *update)
2862 {
2863 	struct dc_context *dc_ctx = dc->ctx;
2864 
2865 	if (update == NULL || stream == NULL)
2866 		return;
2867 
2868 	if (update->src.height && update->src.width)
2869 		stream->src = update->src;
2870 
2871 	if (update->dst.height && update->dst.width)
2872 		stream->dst = update->dst;
2873 
2874 	if (update->out_transfer_func &&
2875 	    stream->out_transfer_func != update->out_transfer_func) {
2876 		stream->out_transfer_func->sdr_ref_white_level =
2877 			update->out_transfer_func->sdr_ref_white_level;
2878 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2879 		stream->out_transfer_func->type =
2880 			update->out_transfer_func->type;
2881 		memcpy(&stream->out_transfer_func->tf_pts,
2882 		       &update->out_transfer_func->tf_pts,
2883 		       sizeof(struct dc_transfer_func_distributed_points));
2884 	}
2885 
2886 	if (update->hdr_static_metadata)
2887 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2888 
2889 	if (update->abm_level)
2890 		stream->abm_level = *update->abm_level;
2891 
2892 	if (update->periodic_interrupt)
2893 		stream->periodic_interrupt = *update->periodic_interrupt;
2894 
2895 	if (update->gamut_remap)
2896 		stream->gamut_remap_matrix = *update->gamut_remap;
2897 
2898 	/* Note: this being updated after mode set is currently not a use case
2899 	 * however if it arises OCSC would need to be reprogrammed at the
2900 	 * minimum
2901 	 */
2902 	if (update->output_color_space)
2903 		stream->output_color_space = *update->output_color_space;
2904 
2905 	if (update->output_csc_transform)
2906 		stream->csc_color_matrix = *update->output_csc_transform;
2907 
2908 	if (update->vrr_infopacket)
2909 		stream->vrr_infopacket = *update->vrr_infopacket;
2910 
2911 	if (update->allow_freesync)
2912 		stream->allow_freesync = *update->allow_freesync;
2913 
2914 	if (update->vrr_active_variable)
2915 		stream->vrr_active_variable = *update->vrr_active_variable;
2916 
2917 	if (update->vrr_active_fixed)
2918 		stream->vrr_active_fixed = *update->vrr_active_fixed;
2919 
2920 	if (update->crtc_timing_adjust)
2921 		stream->adjust = *update->crtc_timing_adjust;
2922 
2923 	if (update->dpms_off)
2924 		stream->dpms_off = *update->dpms_off;
2925 
2926 	if (update->hfvsif_infopacket)
2927 		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2928 
2929 	if (update->vtem_infopacket)
2930 		stream->vtem_infopacket = *update->vtem_infopacket;
2931 
2932 	if (update->vsc_infopacket)
2933 		stream->vsc_infopacket = *update->vsc_infopacket;
2934 
2935 	if (update->vsp_infopacket)
2936 		stream->vsp_infopacket = *update->vsp_infopacket;
2937 
2938 	if (update->adaptive_sync_infopacket)
2939 		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2940 
2941 	if (update->dither_option)
2942 		stream->dither_option = *update->dither_option;
2943 
2944 	if (update->pending_test_pattern)
2945 		stream->test_pattern = *update->pending_test_pattern;
2946 	/* update current stream with writeback info */
2947 	if (update->wb_update) {
2948 		int i;
2949 
2950 		stream->num_wb_info = update->wb_update->num_wb_info;
2951 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2952 		for (i = 0; i < stream->num_wb_info; i++)
2953 			stream->writeback_info[i] =
2954 				update->wb_update->writeback_info[i];
2955 	}
2956 	if (update->dsc_config) {
2957 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2958 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2959 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2960 				       update->dsc_config->num_slices_v != 0);
2961 
2962 		/* Use temporarry context for validating new DSC config */
2963 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2964 
2965 		if (dsc_validate_context) {
2966 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2967 
2968 			stream->timing.dsc_cfg = *update->dsc_config;
2969 			stream->timing.flags.DSC = enable_dsc;
2970 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2971 				stream->timing.dsc_cfg = old_dsc_cfg;
2972 				stream->timing.flags.DSC = old_dsc_enabled;
2973 				update->dsc_config = NULL;
2974 			}
2975 
2976 			dc_release_state(dsc_validate_context);
2977 		} else {
2978 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2979 			update->dsc_config = NULL;
2980 		}
2981 	}
2982 }
2983 
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)2984 static bool update_planes_and_stream_state(struct dc *dc,
2985 		struct dc_surface_update *srf_updates, int surface_count,
2986 		struct dc_stream_state *stream,
2987 		struct dc_stream_update *stream_update,
2988 		enum surface_update_type *new_update_type,
2989 		struct dc_state **new_context)
2990 {
2991 	struct dc_state *context;
2992 	int i, j;
2993 	enum surface_update_type update_type;
2994 	const struct dc_stream_status *stream_status;
2995 	struct dc_context *dc_ctx = dc->ctx;
2996 
2997 	stream_status = dc_stream_get_status(stream);
2998 
2999 	if (!stream_status) {
3000 		if (surface_count) /* Only an error condition if surf_count non-zero*/
3001 			ASSERT(false);
3002 
3003 		return false; /* Cannot commit surface to stream that is not committed */
3004 	}
3005 
3006 	context = dc->current_state;
3007 
3008 	update_type = dc_check_update_surfaces_for_stream(
3009 			dc, srf_updates, surface_count, stream_update, stream_status);
3010 
3011 	/* update current stream with the new updates */
3012 	copy_stream_update_to_stream(dc, context, stream, stream_update);
3013 
3014 	/* do not perform surface update if surface has invalid dimensions
3015 	 * (all zero) and no scaling_info is provided
3016 	 */
3017 	if (surface_count > 0) {
3018 		for (i = 0; i < surface_count; i++) {
3019 			if ((srf_updates[i].surface->src_rect.width == 0 ||
3020 				 srf_updates[i].surface->src_rect.height == 0 ||
3021 				 srf_updates[i].surface->dst_rect.width == 0 ||
3022 				 srf_updates[i].surface->dst_rect.height == 0) &&
3023 				(!srf_updates[i].scaling_info ||
3024 				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3025 				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3026 				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3027 				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3028 				DC_ERROR("Invalid src/dst rects in surface update!\n");
3029 				return false;
3030 			}
3031 		}
3032 	}
3033 
3034 	if (update_type >= update_surface_trace_level)
3035 		update_surface_trace(dc, srf_updates, surface_count);
3036 
3037 	if (update_type >= UPDATE_TYPE_FULL) {
3038 		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3039 
3040 		for (i = 0; i < surface_count; i++)
3041 			new_planes[i] = srf_updates[i].surface;
3042 
3043 		/* initialize scratch memory for building context */
3044 		context = dc_create_state(dc);
3045 		if (context == NULL) {
3046 			DC_ERROR("Failed to allocate new validate context!\n");
3047 			return false;
3048 		}
3049 
3050 		dc_resource_state_copy_construct(
3051 				dc->current_state, context);
3052 
3053 		/* For each full update, remove all existing phantom pipes first.
3054 		 * Ensures that we have enough pipes for newly added MPO planes
3055 		 */
3056 		if (dc->res_pool->funcs->remove_phantom_pipes)
3057 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
3058 
3059 		/*remove old surfaces from context */
3060 		if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3061 
3062 			BREAK_TO_DEBUGGER();
3063 			goto fail;
3064 		}
3065 
3066 		/* add surface to context */
3067 		if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3068 
3069 			BREAK_TO_DEBUGGER();
3070 			goto fail;
3071 		}
3072 	}
3073 
3074 	/* save update parameters into surface */
3075 	for (i = 0; i < surface_count; i++) {
3076 		struct dc_plane_state *surface = srf_updates[i].surface;
3077 
3078 		copy_surface_update_to_plane(surface, &srf_updates[i]);
3079 
3080 		if (update_type >= UPDATE_TYPE_MED) {
3081 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3082 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3083 
3084 				if (pipe_ctx->plane_state != surface)
3085 					continue;
3086 
3087 				resource_build_scaling_params(pipe_ctx);
3088 			}
3089 		}
3090 	}
3091 
3092 	if (update_type == UPDATE_TYPE_FULL) {
3093 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3094 			/* For phantom pipes we remove and create a new set of phantom pipes
3095 			 * for each full update (because we don't know if we'll need phantom
3096 			 * pipes until after the first round of validation). However, if validation
3097 			 * fails we need to keep the existing phantom pipes (because we don't update
3098 			 * the dc->current_state).
3099 			 *
3100 			 * The phantom stream/plane refcount is decremented for validation because
3101 			 * we assume it'll be removed (the free comes when the dc_state is freed),
3102 			 * but if validation fails we have to increment back the refcount so it's
3103 			 * consistent.
3104 			 */
3105 			if (dc->res_pool->funcs->retain_phantom_pipes)
3106 				dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3107 			BREAK_TO_DEBUGGER();
3108 			goto fail;
3109 		}
3110 	}
3111 
3112 	*new_context = context;
3113 	*new_update_type = update_type;
3114 
3115 	return true;
3116 
3117 fail:
3118 	dc_release_state(context);
3119 
3120 	return false;
3121 
3122 }
3123 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3124 static void commit_planes_do_stream_update(struct dc *dc,
3125 		struct dc_stream_state *stream,
3126 		struct dc_stream_update *stream_update,
3127 		enum surface_update_type update_type,
3128 		struct dc_state *context)
3129 {
3130 	int j;
3131 
3132 	// Stream updates
3133 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3134 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3135 
3136 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3137 
3138 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3139 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3140 
3141 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3142 					stream_update->vrr_infopacket ||
3143 					stream_update->vsc_infopacket ||
3144 					stream_update->vsp_infopacket ||
3145 					stream_update->hfvsif_infopacket ||
3146 					stream_update->adaptive_sync_infopacket ||
3147 					stream_update->vtem_infopacket) {
3148 				resource_build_info_frame(pipe_ctx);
3149 				dc->hwss.update_info_frame(pipe_ctx);
3150 
3151 				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3152 					dc->link_srv->dp_trace_source_sequence(
3153 							pipe_ctx->stream->link,
3154 							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3155 			}
3156 
3157 			if (stream_update->hdr_static_metadata &&
3158 					stream->use_dynamic_meta &&
3159 					dc->hwss.set_dmdata_attributes &&
3160 					pipe_ctx->stream->dmdata_address.quad_part != 0)
3161 				dc->hwss.set_dmdata_attributes(pipe_ctx);
3162 
3163 			if (stream_update->gamut_remap)
3164 				dc_stream_set_gamut_remap(dc, stream);
3165 
3166 			if (stream_update->output_csc_transform)
3167 				dc_stream_program_csc_matrix(dc, stream);
3168 
3169 			if (stream_update->dither_option) {
3170 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3171 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3172 									&pipe_ctx->stream->bit_depth_params);
3173 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3174 						&stream->bit_depth_params,
3175 						&stream->clamping);
3176 				while (odm_pipe) {
3177 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3178 							&stream->bit_depth_params,
3179 							&stream->clamping);
3180 					odm_pipe = odm_pipe->next_odm_pipe;
3181 				}
3182 			}
3183 
3184 
3185 			/* Full fe update*/
3186 			if (update_type == UPDATE_TYPE_FAST)
3187 				continue;
3188 
3189 			if (stream_update->dsc_config)
3190 				dc->link_srv->update_dsc_config(pipe_ctx);
3191 
3192 			if (stream_update->mst_bw_update) {
3193 				if (stream_update->mst_bw_update->is_increase)
3194 					dc->link_srv->increase_mst_payload(pipe_ctx,
3195 							stream_update->mst_bw_update->mst_stream_bw);
3196  				else
3197 					dc->link_srv->reduce_mst_payload(pipe_ctx,
3198 							stream_update->mst_bw_update->mst_stream_bw);
3199  			}
3200 
3201 			if (stream_update->pending_test_pattern) {
3202 				dc_link_dp_set_test_pattern(stream->link,
3203 					stream->test_pattern.type,
3204 					stream->test_pattern.color_space,
3205 					stream->test_pattern.p_link_settings,
3206 					stream->test_pattern.p_custom_pattern,
3207 					stream->test_pattern.cust_pattern_size);
3208 			}
3209 
3210 			if (stream_update->dpms_off) {
3211 				if (*stream_update->dpms_off) {
3212 					dc->link_srv->set_dpms_off(pipe_ctx);
3213 					/* for dpms, keep acquired resources*/
3214 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3215 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3216 
3217 					dc->optimized_required = true;
3218 
3219 				} else {
3220 					if (get_seamless_boot_stream_count(context) == 0)
3221 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3222 					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3223 				}
3224 			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3225 					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3226 				/*
3227 				 * Workaround for firmware issue in some receivers where they don't pick up
3228 				 * correct output color space unless DP link is disabled/re-enabled
3229 				 */
3230 				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3231 			}
3232 
3233 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3234 				bool should_program_abm = true;
3235 
3236 				// if otg funcs defined check if blanked before programming
3237 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3238 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3239 						should_program_abm = false;
3240 
3241 				if (should_program_abm) {
3242 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3243 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3244 					} else {
3245 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3246 							pipe_ctx->stream_res.abm, stream->abm_level);
3247 					}
3248 				}
3249 			}
3250 		}
3251 	}
3252 }
3253 
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3254 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3255 {
3256 	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3257 			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3258 			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3259 		return true;
3260 
3261 	if (stream->link->replay_settings.config.replay_supported)
3262 		return true;
3263 
3264 	return false;
3265 }
3266 
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3267 void dc_dmub_update_dirty_rect(struct dc *dc,
3268 			       int surface_count,
3269 			       struct dc_stream_state *stream,
3270 			       struct dc_surface_update *srf_updates,
3271 			       struct dc_state *context)
3272 {
3273 	union dmub_rb_cmd cmd;
3274 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3275 	unsigned int i, j;
3276 	unsigned int panel_inst = 0;
3277 
3278 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3279 		return;
3280 
3281 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3282 		return;
3283 
3284 	memset(&cmd, 0x0, sizeof(cmd));
3285 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3286 	cmd.update_dirty_rect.header.sub_type = 0;
3287 	cmd.update_dirty_rect.header.payload_bytes =
3288 		sizeof(cmd.update_dirty_rect) -
3289 		sizeof(cmd.update_dirty_rect.header);
3290 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3291 	for (i = 0; i < surface_count; i++) {
3292 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3293 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3294 
3295 		if (!srf_updates[i].surface || !flip_addr)
3296 			continue;
3297 		/* Do not send in immediate flip mode */
3298 		if (srf_updates[i].surface->flip_immediate)
3299 			continue;
3300 
3301 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3302 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3303 				sizeof(flip_addr->dirty_rects));
3304 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3305 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3306 
3307 			if (pipe_ctx->stream != stream)
3308 				continue;
3309 			if (pipe_ctx->plane_state != plane_state)
3310 				continue;
3311 
3312 			update_dirty_rect->panel_inst = panel_inst;
3313 			update_dirty_rect->pipe_idx = j;
3314 			dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3315 		}
3316 	}
3317 }
3318 
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3319 static void build_dmub_update_dirty_rect(
3320 		struct dc *dc,
3321 		int surface_count,
3322 		struct dc_stream_state *stream,
3323 		struct dc_surface_update *srf_updates,
3324 		struct dc_state *context,
3325 		struct dc_dmub_cmd dc_dmub_cmd[],
3326 		unsigned int *dmub_cmd_count)
3327 {
3328 	union dmub_rb_cmd cmd;
3329 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3330 	unsigned int i, j;
3331 	unsigned int panel_inst = 0;
3332 
3333 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3334 		return;
3335 
3336 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3337 		return;
3338 
3339 	memset(&cmd, 0x0, sizeof(cmd));
3340 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3341 	cmd.update_dirty_rect.header.sub_type = 0;
3342 	cmd.update_dirty_rect.header.payload_bytes =
3343 		sizeof(cmd.update_dirty_rect) -
3344 		sizeof(cmd.update_dirty_rect.header);
3345 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3346 	for (i = 0; i < surface_count; i++) {
3347 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3348 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3349 
3350 		if (!srf_updates[i].surface || !flip_addr)
3351 			continue;
3352 		/* Do not send in immediate flip mode */
3353 		if (srf_updates[i].surface->flip_immediate)
3354 			continue;
3355 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3356 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3357 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3358 				sizeof(flip_addr->dirty_rects));
3359 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3360 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3361 
3362 			if (pipe_ctx->stream != stream)
3363 				continue;
3364 			if (pipe_ctx->plane_state != plane_state)
3365 				continue;
3366 			update_dirty_rect->panel_inst = panel_inst;
3367 			update_dirty_rect->pipe_idx = j;
3368 			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3369 			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3370 			(*dmub_cmd_count)++;
3371 		}
3372 	}
3373 }
3374 
3375 
3376 /**
3377  * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3378  *
3379  * @dc: Current DC state
3380  * @srf_updates: Array of surface updates
3381  * @surface_count: Number of surfaces that have an updated
3382  * @stream: Corresponding stream to be updated in the current flip
3383  * @context: New DC state to be programmed
3384  *
3385  * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3386  * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3387  *
3388  * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3389  * to build an array of commands and have them sent while the OTG lock is acquired.
3390  *
3391  * Return: void
3392  */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3393 static void build_dmub_cmd_list(struct dc *dc,
3394 		struct dc_surface_update *srf_updates,
3395 		int surface_count,
3396 		struct dc_stream_state *stream,
3397 		struct dc_state *context,
3398 		struct dc_dmub_cmd dc_dmub_cmd[],
3399 		unsigned int *dmub_cmd_count)
3400 {
3401 	// Initialize cmd count to 0
3402 	*dmub_cmd_count = 0;
3403 	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3404 }
3405 
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3406 static void commit_planes_for_stream_fast(struct dc *dc,
3407 		struct dc_surface_update *srf_updates,
3408 		int surface_count,
3409 		struct dc_stream_state *stream,
3410 		struct dc_stream_update *stream_update,
3411 		enum surface_update_type update_type,
3412 		struct dc_state *context)
3413 {
3414 	int i, j;
3415 	struct pipe_ctx *top_pipe_to_program = NULL;
3416 	dc_z10_restore(dc);
3417 
3418 	top_pipe_to_program = resource_get_otg_master_for_stream(
3419 			&context->res_ctx,
3420 			stream);
3421 
3422 	if (dc->debug.visual_confirm) {
3423 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3424 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3425 
3426 			if (pipe->stream && pipe->plane_state)
3427 				dc_update_viusal_confirm_color(dc, context, pipe);
3428 		}
3429 	}
3430 
3431 	for (i = 0; i < surface_count; i++) {
3432 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3433 		/*set logical flag for lock/unlock use*/
3434 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3435 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3436 
3437 			if (!pipe_ctx->plane_state)
3438 				continue;
3439 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3440 				continue;
3441 			pipe_ctx->plane_state->triplebuffer_flips = false;
3442 			if (update_type == UPDATE_TYPE_FAST &&
3443 			    dc->hwss.program_triplebuffer &&
3444 			    !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3445 				/*triple buffer for VUpdate  only*/
3446 				pipe_ctx->plane_state->triplebuffer_flips = true;
3447 			}
3448 		}
3449 	}
3450 
3451 	build_dmub_cmd_list(dc,
3452 			srf_updates,
3453 			surface_count,
3454 			stream,
3455 			context,
3456 			context->dc_dmub_cmd,
3457 			&(context->dmub_cmd_count));
3458 	hwss_build_fast_sequence(dc,
3459 			context->dc_dmub_cmd,
3460 			context->dmub_cmd_count,
3461 			context->block_sequence,
3462 			&(context->block_sequence_steps),
3463 			top_pipe_to_program);
3464 	hwss_execute_sequence(dc,
3465 			context->block_sequence,
3466 			context->block_sequence_steps);
3467 	/* Clear update flags so next flip doesn't have redundant programming
3468 	 * (if there's no stream update, the update flags are not cleared).
3469 	 * Surface updates are cleared unconditionally at the beginning of each flip,
3470 	 * so no need to clear here.
3471 	 */
3472 	if (top_pipe_to_program->stream)
3473 		top_pipe_to_program->stream->update_flags.raw = 0;
3474 }
3475 
wait_for_outstanding_hw_updates(struct dc * dc,const struct dc_state * dc_context)3476 static void wait_for_outstanding_hw_updates(struct dc *dc, const struct dc_state *dc_context)
3477 {
3478 /*
3479  * This function calls HWSS to wait for any potentially double buffered
3480  * operations to complete. It should be invoked as a pre-amble prior
3481  * to full update programming before asserting any HW locks.
3482  */
3483 	int pipe_idx;
3484 	int opp_inst;
3485 	int opp_count = dc->res_pool->pipe_count;
3486 	struct hubp *hubp;
3487 	int mpcc_inst;
3488 	const struct pipe_ctx *pipe_ctx;
3489 
3490 	for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3491 		pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3492 
3493 		if (!pipe_ctx->stream)
3494 			continue;
3495 
3496 		if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3497 			pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3498 
3499 		hubp = pipe_ctx->plane_res.hubp;
3500 		if (!hubp)
3501 			continue;
3502 
3503 		mpcc_inst = hubp->inst;
3504 		// MPCC inst is equal to pipe index in practice
3505 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3506 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
3507 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3508 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3509 				break;
3510 			}
3511 		}
3512 	}
3513 }
3514 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3515 static void commit_planes_for_stream(struct dc *dc,
3516 		struct dc_surface_update *srf_updates,
3517 		int surface_count,
3518 		struct dc_stream_state *stream,
3519 		struct dc_stream_update *stream_update,
3520 		enum surface_update_type update_type,
3521 		struct dc_state *context)
3522 {
3523 	int i, j;
3524 	struct pipe_ctx *top_pipe_to_program = NULL;
3525 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3526 	bool subvp_prev_use = false;
3527 	bool subvp_curr_use = false;
3528 
3529 	// Once we apply the new subvp context to hardware it won't be in the
3530 	// dc->current_state anymore, so we have to cache it before we apply
3531 	// the new SubVP context
3532 	subvp_prev_use = false;
3533 	dc_z10_restore(dc);
3534 	if (update_type == UPDATE_TYPE_FULL)
3535 		wait_for_outstanding_hw_updates(dc, context);
3536 
3537 	if (update_type == UPDATE_TYPE_FULL) {
3538 		dc_allow_idle_optimizations(dc, false);
3539 
3540 		if (get_seamless_boot_stream_count(context) == 0)
3541 			dc->hwss.prepare_bandwidth(dc, context);
3542 
3543 		if (dc->hwss.update_dsc_pg)
3544 			dc->hwss.update_dsc_pg(dc, context, false);
3545 
3546 		context_clock_trace(dc, context);
3547 	}
3548 
3549 	top_pipe_to_program = resource_get_otg_master_for_stream(
3550 				&context->res_ctx,
3551 				stream);
3552 
3553 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3554 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3555 
3556 		// Check old context for SubVP
3557 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3558 		if (subvp_prev_use)
3559 			break;
3560 	}
3561 
3562 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3563 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3564 
3565 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3566 			subvp_curr_use = true;
3567 			break;
3568 		}
3569 	}
3570 
3571 	if (dc->debug.visual_confirm)
3572 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3573 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3574 
3575 			if (pipe->stream && pipe->plane_state)
3576 				dc_update_viusal_confirm_color(dc, context, pipe);
3577 		}
3578 
3579 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3580 		struct pipe_ctx *mpcc_pipe;
3581 		struct pipe_ctx *odm_pipe;
3582 
3583 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3584 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3585 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3586 	}
3587 
3588 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3589 		if (top_pipe_to_program &&
3590 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3591 			if (should_use_dmub_lock(stream->link)) {
3592 				union dmub_hw_lock_flags hw_locks = { 0 };
3593 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3594 
3595 				hw_locks.bits.lock_dig = 1;
3596 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3597 
3598 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3599 							true,
3600 							&hw_locks,
3601 							&inst_flags);
3602 			} else
3603 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3604 						top_pipe_to_program->stream_res.tg);
3605 		}
3606 
3607 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3608 		if (dc->hwss.subvp_pipe_control_lock)
3609 				dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3610 		dc->hwss.interdependent_update_lock(dc, context, true);
3611 
3612 	} else {
3613 		if (dc->hwss.subvp_pipe_control_lock)
3614 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3615 		/* Lock the top pipe while updating plane addrs, since freesync requires
3616 		 *  plane addr update event triggers to be synchronized.
3617 		 *  top_pipe_to_program is expected to never be NULL
3618 		 */
3619 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3620 	}
3621 
3622 	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3623 
3624 	// Stream updates
3625 	if (stream_update)
3626 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3627 
3628 	if (surface_count == 0) {
3629 		/*
3630 		 * In case of turning off screen, no need to program front end a second time.
3631 		 * just return after program blank.
3632 		 */
3633 		if (dc->hwss.apply_ctx_for_surface)
3634 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3635 		if (dc->hwss.program_front_end_for_ctx)
3636 			dc->hwss.program_front_end_for_ctx(dc, context);
3637 
3638 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3639 			dc->hwss.interdependent_update_lock(dc, context, false);
3640 		} else {
3641 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3642 		}
3643 		dc->hwss.post_unlock_program_front_end(dc, context);
3644 
3645 		if (update_type != UPDATE_TYPE_FAST)
3646 			if (dc->hwss.commit_subvp_config)
3647 				dc->hwss.commit_subvp_config(dc, context);
3648 
3649 		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3650 		 * move the SubVP lock to after the phantom pipes have been setup
3651 		 */
3652 		if (dc->hwss.subvp_pipe_control_lock)
3653 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3654 							 NULL, subvp_prev_use);
3655 		return;
3656 	}
3657 
3658 	if (update_type != UPDATE_TYPE_FAST) {
3659 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3660 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3661 
3662 			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3663 				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3664 				pipe_ctx->stream && pipe_ctx->plane_state) {
3665 				/* Only update visual confirm for SUBVP and Mclk switching here.
3666 				 * The bar appears on all pipes, so we need to update the bar on all displays,
3667 				 * so the information doesn't get stale.
3668 				 */
3669 				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3670 						pipe_ctx->plane_res.hubp->inst);
3671 			}
3672 		}
3673 	}
3674 
3675 	for (i = 0; i < surface_count; i++) {
3676 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3677 		/*set logical flag for lock/unlock use*/
3678 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3679 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3680 			if (!pipe_ctx->plane_state)
3681 				continue;
3682 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3683 				continue;
3684 			pipe_ctx->plane_state->triplebuffer_flips = false;
3685 			if (update_type == UPDATE_TYPE_FAST &&
3686 				dc->hwss.program_triplebuffer != NULL &&
3687 				!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3688 					/*triple buffer for VUpdate  only*/
3689 					pipe_ctx->plane_state->triplebuffer_flips = true;
3690 			}
3691 		}
3692 		if (update_type == UPDATE_TYPE_FULL) {
3693 			/* force vsync flip when reconfiguring pipes to prevent underflow */
3694 			plane_state->flip_immediate = false;
3695 		}
3696 	}
3697 
3698 	// Update Type FULL, Surface updates
3699 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3700 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3701 
3702 		if (!pipe_ctx->top_pipe &&
3703 			!pipe_ctx->prev_odm_pipe &&
3704 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3705 			struct dc_stream_status *stream_status = NULL;
3706 
3707 			if (!pipe_ctx->plane_state)
3708 				continue;
3709 
3710 			/* Full fe update*/
3711 			if (update_type == UPDATE_TYPE_FAST)
3712 				continue;
3713 
3714 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3715 
3716 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3717 				/*turn off triple buffer for full update*/
3718 				dc->hwss.program_triplebuffer(
3719 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3720 			}
3721 			stream_status =
3722 				stream_get_status(context, pipe_ctx->stream);
3723 
3724 			if (dc->hwss.apply_ctx_for_surface)
3725 				dc->hwss.apply_ctx_for_surface(
3726 					dc, pipe_ctx->stream, stream_status->plane_count, context);
3727 		}
3728 	}
3729 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3730 		dc->hwss.program_front_end_for_ctx(dc, context);
3731 		if (dc->debug.validate_dml_output) {
3732 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3733 				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3734 				if (cur_pipe->stream == NULL)
3735 					continue;
3736 
3737 				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3738 						cur_pipe->plane_res.hubp, dc->ctx,
3739 						&context->res_ctx.pipe_ctx[i].rq_regs,
3740 						&context->res_ctx.pipe_ctx[i].dlg_regs,
3741 						&context->res_ctx.pipe_ctx[i].ttu_regs);
3742 			}
3743 		}
3744 	}
3745 
3746 	// Update Type FAST, Surface updates
3747 	if (update_type == UPDATE_TYPE_FAST) {
3748 		if (dc->hwss.set_flip_control_gsl)
3749 			for (i = 0; i < surface_count; i++) {
3750 				struct dc_plane_state *plane_state = srf_updates[i].surface;
3751 
3752 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3753 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3754 
3755 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3756 						continue;
3757 
3758 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3759 						continue;
3760 
3761 					// GSL has to be used for flip immediate
3762 					dc->hwss.set_flip_control_gsl(pipe_ctx,
3763 							pipe_ctx->plane_state->flip_immediate);
3764 				}
3765 			}
3766 
3767 		/* Perform requested Updates */
3768 		for (i = 0; i < surface_count; i++) {
3769 			struct dc_plane_state *plane_state = srf_updates[i].surface;
3770 
3771 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3772 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3773 
3774 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3775 					continue;
3776 
3777 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3778 					continue;
3779 
3780 				/*program triple buffer after lock based on flip type*/
3781 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3782 					/*only enable triplebuffer for  fast_update*/
3783 					dc->hwss.program_triplebuffer(
3784 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3785 				}
3786 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3787 					dc->hwss.update_plane_addr(dc, pipe_ctx);
3788 			}
3789 		}
3790 	}
3791 
3792 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3793 		dc->hwss.interdependent_update_lock(dc, context, false);
3794 	} else {
3795 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3796 	}
3797 
3798 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3799 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3800 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3801 				top_pipe_to_program->stream_res.tg,
3802 				CRTC_STATE_VACTIVE);
3803 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3804 				top_pipe_to_program->stream_res.tg,
3805 				CRTC_STATE_VBLANK);
3806 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3807 				top_pipe_to_program->stream_res.tg,
3808 				CRTC_STATE_VACTIVE);
3809 
3810 			if (should_use_dmub_lock(stream->link)) {
3811 				union dmub_hw_lock_flags hw_locks = { 0 };
3812 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3813 
3814 				hw_locks.bits.lock_dig = 1;
3815 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3816 
3817 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3818 							false,
3819 							&hw_locks,
3820 							&inst_flags);
3821 			} else
3822 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3823 					top_pipe_to_program->stream_res.tg);
3824 		}
3825 
3826 	if (subvp_curr_use) {
3827 		/* If enabling subvp or transitioning from subvp->subvp, enable the
3828 		 * phantom streams before we program front end for the phantom pipes.
3829 		 */
3830 		if (update_type != UPDATE_TYPE_FAST) {
3831 			if (dc->hwss.enable_phantom_streams)
3832 				dc->hwss.enable_phantom_streams(dc, context);
3833 		}
3834 	}
3835 
3836 	if (update_type != UPDATE_TYPE_FAST)
3837 		dc->hwss.post_unlock_program_front_end(dc, context);
3838 
3839 	if (subvp_prev_use && !subvp_curr_use) {
3840 		/* If disabling subvp, disable phantom streams after front end
3841 		 * programming has completed (we turn on phantom OTG in order
3842 		 * to complete the plane disable for phantom pipes).
3843 		 */
3844 		dc->hwss.apply_ctx_to_hw(dc, context);
3845 	}
3846 
3847 	if (update_type != UPDATE_TYPE_FAST)
3848 		if (dc->hwss.commit_subvp_config)
3849 			dc->hwss.commit_subvp_config(dc, context);
3850 	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3851 	 * move the SubVP lock to after the phantom pipes have been setup
3852 	 */
3853 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3854 		if (dc->hwss.subvp_pipe_control_lock)
3855 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3856 	} else {
3857 		if (dc->hwss.subvp_pipe_control_lock)
3858 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3859 	}
3860 
3861 	// Fire manual trigger only when bottom plane is flipped
3862 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3863 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3864 
3865 		if (!pipe_ctx->plane_state)
3866 			continue;
3867 
3868 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3869 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3870 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
3871 				pipe_ctx->plane_state->skip_manual_trigger)
3872 			continue;
3873 
3874 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3875 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3876 	}
3877 }
3878 
3879 /**
3880  * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3881  *
3882  * @dc: Used to get the current state status
3883  * @stream: Target stream, which we want to remove the attached planes
3884  * @surface_count: Number of surface update
3885  * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3886  *
3887  * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3888  * the MPO if used simultaneously in some specific configurations (e.g.,
3889  * 4k@144). This function checks if the incoming context requires applying a
3890  * transition state with unnecessary pipe splitting and ODM disabled to
3891  * circumvent our hardware limitations to prevent this edge case. If the OPP
3892  * associated with an MPCC might change due to plane additions, this function
3893  * returns true.
3894  *
3895  * Return:
3896  * Return true if OPP and MPCC might change, otherwise, return false.
3897  */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,int surface_count,bool * is_plane_addition)3898 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3899 		struct dc_stream_state *stream,
3900 		int surface_count,
3901 		bool *is_plane_addition)
3902 {
3903 
3904 	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3905 	bool force_minimal_pipe_splitting = false;
3906 	bool subvp_active = false;
3907 	uint32_t i;
3908 
3909 	*is_plane_addition = false;
3910 
3911 	if (cur_stream_status &&
3912 			dc->current_state->stream_count > 0 &&
3913 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3914 		/* determine if minimal transition is required due to MPC*/
3915 		if (surface_count > 0) {
3916 			if (cur_stream_status->plane_count > surface_count) {
3917 				force_minimal_pipe_splitting = true;
3918 			} else if (cur_stream_status->plane_count < surface_count) {
3919 				force_minimal_pipe_splitting = true;
3920 				*is_plane_addition = true;
3921 			}
3922 		}
3923 	}
3924 
3925 	if (cur_stream_status &&
3926 			dc->current_state->stream_count == 1 &&
3927 			dc->debug.enable_single_display_2to1_odm_policy) {
3928 		/* determine if minimal transition is required due to dynamic ODM*/
3929 		if (surface_count > 0) {
3930 			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3931 				force_minimal_pipe_splitting = true;
3932 			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3933 				force_minimal_pipe_splitting = true;
3934 				*is_plane_addition = true;
3935 			}
3936 		}
3937 	}
3938 
3939 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3940 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3941 
3942 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
3943 			subvp_active = true;
3944 			break;
3945 		}
3946 	}
3947 
3948 	/* For SubVP when adding or removing planes we need to add a minimal transition
3949 	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
3950 	 * must use the minimal transition path to disable the pipe correctly.
3951 	 *
3952 	 * We want to use the minimal transition whenever subvp is active, not only if
3953 	 * a plane is being added / removed from a subvp stream (MPO plane can be added
3954 	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
3955 	 * a min transition to disable subvp.
3956 	 */
3957 	if (cur_stream_status && subvp_active) {
3958 		/* determine if minimal transition is required due to SubVP*/
3959 		if (cur_stream_status->plane_count > surface_count) {
3960 			force_minimal_pipe_splitting = true;
3961 		} else if (cur_stream_status->plane_count < surface_count) {
3962 			force_minimal_pipe_splitting = true;
3963 			*is_plane_addition = true;
3964 		}
3965 	}
3966 
3967 	return force_minimal_pipe_splitting;
3968 }
3969 
3970 /**
3971  * commit_minimal_transition_state - Create a transition pipe split state
3972  *
3973  * @dc: Used to get the current state status
3974  * @transition_base_context: New transition state
3975  *
3976  * In some specific configurations, such as pipe split on multi-display with
3977  * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
3978  * programming when moving to new planes. To mitigate those types of problems,
3979  * this function adds a transition state that minimizes pipe usage before
3980  * programming the new configuration. When adding a new plane, the current
3981  * state requires the least pipes, so it is applied without splitting. When
3982  * removing a plane, the new state requires the least pipes, so it is applied
3983  * without splitting.
3984  *
3985  * Return:
3986  * Return false if something is wrong in the transition state.
3987  */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)3988 static bool commit_minimal_transition_state(struct dc *dc,
3989 		struct dc_state *transition_base_context)
3990 {
3991 	struct dc_state *transition_context = dc_create_state(dc);
3992 	enum pipe_split_policy tmp_mpc_policy = 0;
3993 	bool temp_dynamic_odm_policy = 0;
3994 	bool temp_subvp_policy = 0;
3995 	enum dc_status ret = DC_ERROR_UNEXPECTED;
3996 	unsigned int i, j;
3997 	unsigned int pipe_in_use = 0;
3998 	bool subvp_in_use = false;
3999 	bool odm_in_use = false;
4000 
4001 	if (!transition_context)
4002 		return false;
4003 	/* Setup:
4004 	 * Store the current ODM and MPC config in some temp variables to be
4005 	 * restored after we commit the transition state.
4006 	 */
4007 
4008 	/* check current pipes in use*/
4009 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4010 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4011 
4012 		if (pipe->plane_state)
4013 			pipe_in_use++;
4014 	}
4015 
4016 	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4017 	 * pipe, we must use the minimal transition.
4018 	 */
4019 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4020 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4021 
4022 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
4023 			subvp_in_use = true;
4024 			break;
4025 		}
4026 	}
4027 
4028 	/* If ODM is enabled and we are adding or removing planes from any ODM
4029 	 * pipe, we must use the minimal transition.
4030 	 */
4031 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4032 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4033 
4034 		if (pipe->stream && pipe->next_odm_pipe) {
4035 			odm_in_use = true;
4036 			break;
4037 		}
4038 	}
4039 
4040 	/* When the OS add a new surface if we have been used all of pipes with odm combine
4041 	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4042 	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4043 	 * call it again. Otherwise return true to skip.
4044 	 *
4045 	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4046 	 * enter/exit MPO when DCN still have enough resources.
4047 	 */
4048 	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) {
4049 		dc_release_state(transition_context);
4050 		return true;
4051 	}
4052 
4053 	if (!dc->config.is_vmin_only_asic) {
4054 		tmp_mpc_policy = dc->debug.pipe_split_policy;
4055 		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4056 	}
4057 
4058 	temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4059 	dc->debug.enable_single_display_2to1_odm_policy = false;
4060 
4061 	temp_subvp_policy = dc->debug.force_disable_subvp;
4062 	dc->debug.force_disable_subvp = true;
4063 
4064 	dc_resource_state_copy_construct(transition_base_context, transition_context);
4065 
4066 	/* commit minimal state */
4067 	if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
4068 		for (i = 0; i < transition_context->stream_count; i++) {
4069 			struct dc_stream_status *stream_status = &transition_context->stream_status[i];
4070 
4071 			for (j = 0; j < stream_status->plane_count; j++) {
4072 				struct dc_plane_state *plane_state = stream_status->plane_states[j];
4073 
4074 				/* force vsync flip when reconfiguring pipes to prevent underflow
4075 				 * and corruption
4076 				 */
4077 				plane_state->flip_immediate = false;
4078 			}
4079 		}
4080 
4081 		ret = dc_commit_state_no_check(dc, transition_context);
4082 	}
4083 
4084 	/* always release as dc_commit_state_no_check retains in good case */
4085 	dc_release_state(transition_context);
4086 
4087 	/* TearDown:
4088 	 * Restore original configuration for ODM and MPO.
4089 	 */
4090 	if (!dc->config.is_vmin_only_asic)
4091 		dc->debug.pipe_split_policy = tmp_mpc_policy;
4092 
4093 	dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
4094 	dc->debug.force_disable_subvp = temp_subvp_policy;
4095 
4096 	if (ret != DC_OK) {
4097 		/* this should never happen */
4098 		BREAK_TO_DEBUGGER();
4099 		return false;
4100 	}
4101 
4102 	/* force full surface update */
4103 	for (i = 0; i < dc->current_state->stream_count; i++) {
4104 		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4105 			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4106 		}
4107 	}
4108 
4109 	return true;
4110 }
4111 
4112 /**
4113  * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4114  *
4115  * @dc: Current DC state
4116  * @context: New DC state to be programmed
4117  * @surface_count: Number of surfaces that have an updated
4118  * @stream: Corresponding stream to be updated in the current flip
4119  *
4120  * Updating seamless boot flags do not need to be part of the commit sequence. This
4121  * helper function will update the seamless boot flags on each flip (if required)
4122  * outside of the HW commit sequence (fast or slow).
4123  *
4124  * Return: void
4125  */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)4126 static void update_seamless_boot_flags(struct dc *dc,
4127 		struct dc_state *context,
4128 		int surface_count,
4129 		struct dc_stream_state *stream)
4130 {
4131 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
4132 		/* Optimize seamless boot flag keeps clocks and watermarks high until
4133 		 * first flip. After first flip, optimization is required to lower
4134 		 * bandwidth. Important to note that it is expected UEFI will
4135 		 * only light up a single display on POST, therefore we only expect
4136 		 * one stream with seamless boot flag set.
4137 		 */
4138 		if (stream->apply_seamless_boot_optimization) {
4139 			stream->apply_seamless_boot_optimization = false;
4140 
4141 			if (get_seamless_boot_stream_count(context) == 0)
4142 				dc->optimized_required = true;
4143 		}
4144 	}
4145 }
4146 
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4147 static void populate_fast_updates(struct dc_fast_update *fast_update,
4148 		struct dc_surface_update *srf_updates,
4149 		int surface_count,
4150 		struct dc_stream_update *stream_update)
4151 {
4152 	int i = 0;
4153 
4154 	if (stream_update) {
4155 		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4156 		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4157 	}
4158 
4159 	for (i = 0; i < surface_count; i++) {
4160 		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4161 		fast_update[i].gamma = srf_updates[i].gamma;
4162 		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4163 		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4164 		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4165 	}
4166 }
4167 
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4168 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4169 {
4170 	int i;
4171 
4172 	if (fast_update[0].out_transfer_func ||
4173 		fast_update[0].output_csc_transform)
4174 		return true;
4175 
4176 	for (i = 0; i < surface_count; i++) {
4177 		if (fast_update[i].flip_addr ||
4178 				fast_update[i].gamma ||
4179 				fast_update[i].gamut_remap_matrix ||
4180 				fast_update[i].input_csc_color_matrix ||
4181 				fast_update[i].coeff_reduction_factor)
4182 			return true;
4183 	}
4184 
4185 	return false;
4186 }
4187 
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4188 static bool full_update_required(struct dc *dc,
4189 		struct dc_surface_update *srf_updates,
4190 		int surface_count,
4191 		struct dc_stream_update *stream_update,
4192 		struct dc_stream_state *stream)
4193 {
4194 
4195 	int i;
4196 	struct dc_stream_status *stream_status;
4197 	const struct dc_state *context = dc->current_state;
4198 
4199 	for (i = 0; i < surface_count; i++) {
4200 		if (srf_updates &&
4201 				(srf_updates[i].plane_info ||
4202 				srf_updates[i].scaling_info ||
4203 				(srf_updates[i].hdr_mult.value &&
4204 				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4205 				srf_updates[i].in_transfer_func ||
4206 				srf_updates[i].func_shaper ||
4207 				srf_updates[i].lut3d_func ||
4208 				srf_updates[i].blend_tf ||
4209 				srf_updates[i].surface->force_full_update ||
4210 				(srf_updates[i].flip_addr &&
4211 				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4212 				!is_surface_in_context(context, srf_updates[i].surface)))
4213 			return true;
4214 	}
4215 
4216 	if (stream_update &&
4217 			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4218 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4219 			stream_update->integer_scaling_update) ||
4220 			stream_update->hdr_static_metadata ||
4221 			stream_update->abm_level ||
4222 			stream_update->periodic_interrupt ||
4223 			stream_update->vrr_infopacket ||
4224 			stream_update->vsc_infopacket ||
4225 			stream_update->vsp_infopacket ||
4226 			stream_update->hfvsif_infopacket ||
4227 			stream_update->vtem_infopacket ||
4228 			stream_update->adaptive_sync_infopacket ||
4229 			stream_update->dpms_off ||
4230 			stream_update->allow_freesync ||
4231 			stream_update->vrr_active_variable ||
4232 			stream_update->vrr_active_fixed ||
4233 			stream_update->gamut_remap ||
4234 			stream_update->output_color_space ||
4235 			stream_update->dither_option ||
4236 			stream_update->wb_update ||
4237 			stream_update->dsc_config ||
4238 			stream_update->mst_bw_update ||
4239 			stream_update->func_shaper ||
4240 			stream_update->lut3d_func ||
4241 			stream_update->pending_test_pattern ||
4242 			stream_update->crtc_timing_adjust))
4243 		return true;
4244 
4245 	if (stream) {
4246 		stream_status = dc_stream_get_status(stream);
4247 		if (stream_status == NULL || stream_status->plane_count != surface_count)
4248 			return true;
4249 	}
4250 	if (dc->idle_optimizations_allowed)
4251 		return true;
4252 
4253 	return false;
4254 }
4255 
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4256 static bool fast_update_only(struct dc *dc,
4257 		struct dc_fast_update *fast_update,
4258 		struct dc_surface_update *srf_updates,
4259 		int surface_count,
4260 		struct dc_stream_update *stream_update,
4261 		struct dc_stream_state *stream)
4262 {
4263 	return fast_updates_exist(fast_update, surface_count)
4264 			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4265 }
4266 
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4267 bool dc_update_planes_and_stream(struct dc *dc,
4268 		struct dc_surface_update *srf_updates, int surface_count,
4269 		struct dc_stream_state *stream,
4270 		struct dc_stream_update *stream_update)
4271 {
4272 	struct dc_state *context;
4273 	enum surface_update_type update_type;
4274 	int i;
4275 	struct mall_temp_config mall_temp_config;
4276 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4277 
4278 	/* In cases where MPO and split or ODM are used transitions can
4279 	 * cause underflow. Apply stream configuration with minimal pipe
4280 	 * split first to avoid unsupported transitions for active pipes.
4281 	 */
4282 	bool force_minimal_pipe_splitting = 0;
4283 	bool is_plane_addition = 0;
4284 
4285 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4286 	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4287 			dc,
4288 			stream,
4289 			surface_count,
4290 			&is_plane_addition);
4291 
4292 	/* on plane addition, minimal state is the current one */
4293 	if (force_minimal_pipe_splitting && is_plane_addition &&
4294 		!commit_minimal_transition_state(dc, dc->current_state))
4295 				return false;
4296 
4297 	if (!update_planes_and_stream_state(
4298 			dc,
4299 			srf_updates,
4300 			surface_count,
4301 			stream,
4302 			stream_update,
4303 			&update_type,
4304 			&context))
4305 		return false;
4306 
4307 	/* on plane removal, minimal state is the new one */
4308 	if (force_minimal_pipe_splitting && !is_plane_addition) {
4309 		/* Since all phantom pipes are removed in full validation,
4310 		 * we have to save and restore the subvp/mall config when
4311 		 * we do a minimal transition since the flags marking the
4312 		 * pipe as subvp/phantom will be cleared (dc copy constructor
4313 		 * creates a shallow copy).
4314 		 */
4315 		if (dc->res_pool->funcs->save_mall_state)
4316 			dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
4317 		if (!commit_minimal_transition_state(dc, context)) {
4318 			dc_release_state(context);
4319 			return false;
4320 		}
4321 		if (dc->res_pool->funcs->restore_mall_state)
4322 			dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
4323 
4324 		/* If we do a minimal transition with plane removal and the context
4325 		 * has subvp we also have to retain back the phantom stream / planes
4326 		 * since the refcount is decremented as part of the min transition
4327 		 * (we commit a state with no subvp, so the phantom streams / planes
4328 		 * had to be removed).
4329 		 */
4330 		if (dc->res_pool->funcs->retain_phantom_pipes)
4331 			dc->res_pool->funcs->retain_phantom_pipes(dc, context);
4332 		update_type = UPDATE_TYPE_FULL;
4333 	}
4334 
4335 	update_seamless_boot_flags(dc, context, surface_count, stream);
4336 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4337 			!dc->debug.enable_legacy_fast_update) {
4338 		commit_planes_for_stream_fast(dc,
4339 				srf_updates,
4340 				surface_count,
4341 				stream,
4342 				stream_update,
4343 				update_type,
4344 				context);
4345 	} else {
4346 		if (!stream_update &&
4347 				dc->hwss.is_pipe_topology_transition_seamless &&
4348 				!dc->hwss.is_pipe_topology_transition_seamless(
4349 						dc, dc->current_state, context)) {
4350 
4351 			DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4352 			BREAK_TO_DEBUGGER();
4353 		}
4354 		commit_planes_for_stream(
4355 				dc,
4356 				srf_updates,
4357 				surface_count,
4358 				stream,
4359 				stream_update,
4360 				update_type,
4361 				context);
4362 	}
4363 
4364 	if (dc->current_state != context) {
4365 
4366 		/* Since memory free requires elevated IRQL, an interrupt
4367 		 * request is generated by mem free. If this happens
4368 		 * between freeing and reassigning the context, our vsync
4369 		 * interrupt will call into dc and cause a memory
4370 		 * corruption BSOD. Hence, we first reassign the context,
4371 		 * then free the old context.
4372 		 */
4373 
4374 		struct dc_state *old = dc->current_state;
4375 
4376 		dc->current_state = context;
4377 		dc_release_state(old);
4378 
4379 		// clear any forced full updates
4380 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4381 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4382 
4383 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4384 				pipe_ctx->plane_state->force_full_update = false;
4385 		}
4386 	}
4387 	return true;
4388 }
4389 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4390 void dc_commit_updates_for_stream(struct dc *dc,
4391 		struct dc_surface_update *srf_updates,
4392 		int surface_count,
4393 		struct dc_stream_state *stream,
4394 		struct dc_stream_update *stream_update,
4395 		struct dc_state *state)
4396 {
4397 	const struct dc_stream_status *stream_status;
4398 	enum surface_update_type update_type;
4399 	struct dc_state *context;
4400 	struct dc_context *dc_ctx = dc->ctx;
4401 	int i, j;
4402 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4403 
4404 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4405 	stream_status = dc_stream_get_status(stream);
4406 	context = dc->current_state;
4407 
4408 	update_type = dc_check_update_surfaces_for_stream(
4409 				dc, srf_updates, surface_count, stream_update, stream_status);
4410 
4411 	/* TODO: Since change commit sequence can have a huge impact,
4412 	 * we decided to only enable it for DCN3x. However, as soon as
4413 	 * we get more confident about this change we'll need to enable
4414 	 * the new sequence for all ASICs.
4415 	 */
4416 	if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4417 		/*
4418 		 * Previous frame finished and HW is ready for optimization.
4419 		 */
4420 		if (update_type == UPDATE_TYPE_FAST)
4421 			dc_post_update_surfaces_to_stream(dc);
4422 
4423 		dc_update_planes_and_stream(dc, srf_updates,
4424 					    surface_count, stream,
4425 					    stream_update);
4426 		return;
4427 	}
4428 
4429 	if (update_type >= update_surface_trace_level)
4430 		update_surface_trace(dc, srf_updates, surface_count);
4431 
4432 
4433 	if (update_type >= UPDATE_TYPE_FULL) {
4434 
4435 		/* initialize scratch memory for building context */
4436 		context = dc_create_state(dc);
4437 		if (context == NULL) {
4438 			DC_ERROR("Failed to allocate new validate context!\n");
4439 			return;
4440 		}
4441 
4442 		dc_resource_state_copy_construct(state, context);
4443 
4444 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4445 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4446 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4447 
4448 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4449 				new_pipe->plane_state->force_full_update = true;
4450 		}
4451 	} else if (update_type == UPDATE_TYPE_FAST) {
4452 		/*
4453 		 * Previous frame finished and HW is ready for optimization.
4454 		 */
4455 		dc_post_update_surfaces_to_stream(dc);
4456 	}
4457 
4458 
4459 	for (i = 0; i < surface_count; i++) {
4460 		struct dc_plane_state *surface = srf_updates[i].surface;
4461 
4462 		copy_surface_update_to_plane(surface, &srf_updates[i]);
4463 
4464 		if (update_type >= UPDATE_TYPE_MED) {
4465 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4466 				struct pipe_ctx *pipe_ctx =
4467 					&context->res_ctx.pipe_ctx[j];
4468 
4469 				if (pipe_ctx->plane_state != surface)
4470 					continue;
4471 
4472 				resource_build_scaling_params(pipe_ctx);
4473 			}
4474 		}
4475 	}
4476 
4477 	copy_stream_update_to_stream(dc, context, stream, stream_update);
4478 
4479 	if (update_type >= UPDATE_TYPE_FULL) {
4480 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4481 			DC_ERROR("Mode validation failed for stream update!\n");
4482 			dc_release_state(context);
4483 			return;
4484 		}
4485 	}
4486 
4487 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4488 
4489 	update_seamless_boot_flags(dc, context, surface_count, stream);
4490 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4491 			!dc->debug.enable_legacy_fast_update) {
4492 		commit_planes_for_stream_fast(dc,
4493 				srf_updates,
4494 				surface_count,
4495 				stream,
4496 				stream_update,
4497 				update_type,
4498 				context);
4499 	} else {
4500 		commit_planes_for_stream(
4501 				dc,
4502 				srf_updates,
4503 				surface_count,
4504 				stream,
4505 				stream_update,
4506 				update_type,
4507 				context);
4508 	}
4509 	/*update current_State*/
4510 	if (dc->current_state != context) {
4511 
4512 		struct dc_state *old = dc->current_state;
4513 
4514 		dc->current_state = context;
4515 		dc_release_state(old);
4516 
4517 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4518 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4519 
4520 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4521 				pipe_ctx->plane_state->force_full_update = false;
4522 		}
4523 	}
4524 
4525 	/* Legacy optimization path for DCE. */
4526 	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4527 		dc_post_update_surfaces_to_stream(dc);
4528 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4529 	}
4530 
4531 	return;
4532 
4533 }
4534 
dc_get_current_stream_count(struct dc * dc)4535 uint8_t dc_get_current_stream_count(struct dc *dc)
4536 {
4537 	return dc->current_state->stream_count;
4538 }
4539 
dc_get_stream_at_index(struct dc * dc,uint8_t i)4540 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4541 {
4542 	if (i < dc->current_state->stream_count)
4543 		return dc->current_state->streams[i];
4544 	return NULL;
4545 }
4546 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)4547 enum dc_irq_source dc_interrupt_to_irq_source(
4548 		struct dc *dc,
4549 		uint32_t src_id,
4550 		uint32_t ext_id)
4551 {
4552 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4553 }
4554 
4555 /*
4556  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4557  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)4558 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4559 {
4560 
4561 	if (dc == NULL)
4562 		return false;
4563 
4564 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4565 }
4566 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)4567 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4568 {
4569 	dal_irq_service_ack(dc->res_pool->irqs, src);
4570 }
4571 
dc_power_down_on_boot(struct dc * dc)4572 void dc_power_down_on_boot(struct dc *dc)
4573 {
4574 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4575 			dc->hwss.power_down_on_boot)
4576 		dc->hwss.power_down_on_boot(dc);
4577 }
4578 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)4579 void dc_set_power_state(
4580 	struct dc *dc,
4581 	enum dc_acpi_cm_power_state power_state)
4582 {
4583 	struct kref refcount;
4584 	struct display_mode_lib *dml;
4585 
4586 	if (!dc->current_state)
4587 		return;
4588 
4589 	switch (power_state) {
4590 	case DC_ACPI_CM_POWER_STATE_D0:
4591 		dc_resource_state_construct(dc, dc->current_state);
4592 
4593 		dc_z10_restore(dc);
4594 
4595 		dc->hwss.init_hw(dc);
4596 
4597 		if (dc->hwss.init_sys_ctx != NULL &&
4598 			dc->vm_pa_config.valid) {
4599 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4600 		}
4601 
4602 		break;
4603 	default:
4604 		ASSERT(dc->current_state->stream_count == 0);
4605 		/* Zero out the current context so that on resume we start with
4606 		 * clean state, and dc hw programming optimizations will not
4607 		 * cause any trouble.
4608 		 */
4609 		dml = kzalloc(sizeof(struct display_mode_lib),
4610 				GFP_KERNEL);
4611 
4612 		ASSERT(dml);
4613 		if (!dml)
4614 			return;
4615 
4616 		/* Preserve refcount */
4617 		refcount = dc->current_state->refcount;
4618 		/* Preserve display mode lib */
4619 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4620 
4621 		dc_resource_state_destruct(dc->current_state);
4622 		memset(dc->current_state, 0,
4623 				sizeof(*dc->current_state));
4624 
4625 		dc->current_state->refcount = refcount;
4626 		dc->current_state->bw_ctx.dml = *dml;
4627 
4628 		kfree(dml);
4629 
4630 		break;
4631 	}
4632 }
4633 
dc_resume(struct dc * dc)4634 void dc_resume(struct dc *dc)
4635 {
4636 	uint32_t i;
4637 
4638 	for (i = 0; i < dc->link_count; i++)
4639 		dc->link_srv->resume(dc->links[i]);
4640 }
4641 
dc_is_dmcu_initialized(struct dc * dc)4642 bool dc_is_dmcu_initialized(struct dc *dc)
4643 {
4644 	struct dmcu *dmcu = dc->res_pool->dmcu;
4645 
4646 	if (dmcu)
4647 		return dmcu->funcs->is_dmcu_initialized(dmcu);
4648 	return false;
4649 }
4650 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)4651 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4652 {
4653 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4654 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4655 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4656 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4657 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4658 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4659 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4660 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4661 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4662 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)4663 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4664 {
4665 	if (dc->hwss.set_clock)
4666 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4667 	return DC_ERROR_UNEXPECTED;
4668 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)4669 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4670 {
4671 	if (dc->hwss.get_clock)
4672 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
4673 }
4674 
4675 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)4676 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4677 {
4678 	int i;
4679 	bool allow_active;
4680 
4681 	for (i = 0; i < dc->current_state->stream_count ; i++) {
4682 		struct dc_link *link;
4683 		struct dc_stream_state *stream = dc->current_state->streams[i];
4684 
4685 		link = stream->link;
4686 		if (!link)
4687 			continue;
4688 
4689 		if (link->psr_settings.psr_feature_enabled) {
4690 			if (enable && !link->psr_settings.psr_allow_active) {
4691 				allow_active = true;
4692 				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4693 					return false;
4694 			} else if (!enable && link->psr_settings.psr_allow_active) {
4695 				allow_active = false;
4696 				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4697 					return false;
4698 			}
4699 		}
4700 	}
4701 
4702 	return true;
4703 }
4704 
dc_allow_idle_optimizations(struct dc * dc,bool allow)4705 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4706 {
4707 	if (dc->debug.disable_idle_power_optimizations)
4708 		return;
4709 
4710 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4711 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4712 			return;
4713 
4714 	if (allow == dc->idle_optimizations_allowed)
4715 		return;
4716 
4717 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4718 		dc->idle_optimizations_allowed = allow;
4719 }
4720 
4721 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)4722 void dc_unlock_memory_clock_frequency(struct dc *dc)
4723 {
4724 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4725 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4726 
4727 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4728 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4729 }
4730 
4731 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)4732 void dc_lock_memory_clock_frequency(struct dc *dc)
4733 {
4734 	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4735 		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4736 
4737 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4738 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4739 
4740 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4741 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4742 }
4743 
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)4744 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4745 {
4746 	struct dc_state *context = dc->current_state;
4747 	struct hubp *hubp;
4748 	struct pipe_ctx *pipe;
4749 	int i;
4750 
4751 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4752 		pipe = &context->res_ctx.pipe_ctx[i];
4753 
4754 		if (pipe->stream != NULL) {
4755 			dc->hwss.disable_pixel_data(dc, pipe, true);
4756 
4757 			// wait for double buffer
4758 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4759 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4760 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4761 
4762 			hubp = pipe->plane_res.hubp;
4763 			hubp->funcs->set_blank_regs(hubp, true);
4764 		}
4765 	}
4766 
4767 	dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4768 	dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4769 
4770 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4771 		pipe = &context->res_ctx.pipe_ctx[i];
4772 
4773 		if (pipe->stream != NULL) {
4774 			dc->hwss.disable_pixel_data(dc, pipe, false);
4775 
4776 			hubp = pipe->plane_res.hubp;
4777 			hubp->funcs->set_blank_regs(hubp, false);
4778 		}
4779 	}
4780 }
4781 
4782 
4783 /**
4784  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4785  * @dc: pointer to dc of the dm calling this
4786  * @enable: True = transition to DC mode, false = transition back to AC mode
4787  *
4788  * Some SoCs define additional clock limits when in DC mode, DM should
4789  * invoke this function when the platform undergoes a power source transition
4790  * so DC can apply/unapply the limit. This interface may be disruptive to
4791  * the onscreen content.
4792  *
4793  * Context: Triggered by OS through DM interface, or manually by escape calls.
4794  * Need to hold a dclock when doing so.
4795  *
4796  * Return: none (void function)
4797  *
4798  */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)4799 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4800 {
4801 	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4802 	bool p_state_change_support;
4803 
4804 	if (!dc->config.dc_mode_clk_limit_support)
4805 		return;
4806 
4807 	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4808 	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
4809 		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
4810 			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
4811 	}
4812 	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4813 	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4814 
4815 	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4816 		if (p_state_change_support) {
4817 			if (funcMin <= softMax)
4818 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4819 			// else: No-Op
4820 		} else {
4821 			if (funcMin <= softMax)
4822 				blank_and_force_memclk(dc, true, softMax);
4823 			// else: No-Op
4824 		}
4825 	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4826 		if (p_state_change_support) {
4827 			if (funcMin <= softMax)
4828 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4829 			// else: No-Op
4830 		} else {
4831 			if (funcMin <= softMax)
4832 				blank_and_force_memclk(dc, true, maxDPM);
4833 			// else: No-Op
4834 		}
4835 	}
4836 	dc->clk_mgr->dc_mode_softmax_enabled = enable;
4837 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,struct dc_plane_state * plane,struct dc_cursor_attributes * cursor_attr)4838 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4839 		struct dc_cursor_attributes *cursor_attr)
4840 {
4841 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4842 		return true;
4843 	return false;
4844 }
4845 
4846 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)4847 void dc_hardware_release(struct dc *dc)
4848 {
4849 	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4850 
4851 	if (dc->hwss.hardware_release)
4852 		dc->hwss.hardware_release(dc);
4853 }
4854 
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)4855 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4856 {
4857 	if (dc->current_state)
4858 		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4859 }
4860 
4861 /**
4862  * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4863  *
4864  * @dc: [in] dc structure
4865  *
4866  * Checks whether DMUB FW supports outbox notifications, if supported DM
4867  * should register outbox interrupt prior to actually enabling interrupts
4868  * via dc_enable_dmub_outbox
4869  *
4870  * Return:
4871  * True if DMUB FW supports outbox notifications, False otherwise
4872  */
dc_is_dmub_outbox_supported(struct dc * dc)4873 bool dc_is_dmub_outbox_supported(struct dc *dc)
4874 {
4875 	switch (dc->ctx->asic_id.chip_family) {
4876 
4877 	case FAMILY_YELLOW_CARP:
4878 		/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4879 		if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4880 		    !dc->debug.dpia_debug.bits.disable_dpia)
4881 			return true;
4882 	break;
4883 
4884 	case AMDGPU_FAMILY_GC_11_0_1:
4885 	case AMDGPU_FAMILY_GC_11_5_0:
4886 		if (!dc->debug.dpia_debug.bits.disable_dpia)
4887 			return true;
4888 	break;
4889 
4890 	default:
4891 		break;
4892 	}
4893 
4894 	/* dmub aux needs dmub notifications to be enabled */
4895 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
4896 
4897 }
4898 
4899 /**
4900  * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4901  *
4902  * @dc: [in] dc structure
4903  *
4904  * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4905  * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
4906  * API shall be removed after switching.
4907  *
4908  * Return:
4909  * True if DMUB FW supports outbox notifications, False otherwise
4910  */
dc_enable_dmub_notifications(struct dc * dc)4911 bool dc_enable_dmub_notifications(struct dc *dc)
4912 {
4913 	return dc_is_dmub_outbox_supported(dc);
4914 }
4915 
4916 /**
4917  * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4918  *
4919  * @dc: [in] dc structure
4920  *
4921  * Enables DMUB unsolicited notifications to x86 via outbox.
4922  */
dc_enable_dmub_outbox(struct dc * dc)4923 void dc_enable_dmub_outbox(struct dc *dc)
4924 {
4925 	struct dc_context *dc_ctx = dc->ctx;
4926 
4927 	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4928 	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4929 }
4930 
4931 /**
4932  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4933  *                                      Sets port index appropriately for legacy DDC
4934  * @dc: dc structure
4935  * @link_index: link index
4936  * @payload: aux payload
4937  *
4938  * Returns: True if successful, False if failure
4939  */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)4940 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4941 				uint32_t link_index,
4942 				struct aux_payload *payload)
4943 {
4944 	uint8_t action;
4945 	union dmub_rb_cmd cmd = {0};
4946 
4947 	ASSERT(payload->length <= 16);
4948 
4949 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4950 	cmd.dp_aux_access.header.payload_bytes = 0;
4951 	/* For dpia, ddc_pin is set to NULL */
4952 	if (!dc->links[link_index]->ddc->ddc_pin)
4953 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4954 	else
4955 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4956 
4957 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4958 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4959 	cmd.dp_aux_access.aux_control.timeout = 0;
4960 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4961 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4962 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4963 
4964 	/* set aux action */
4965 	if (payload->i2c_over_aux) {
4966 		if (payload->write) {
4967 			if (payload->mot)
4968 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4969 			else
4970 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
4971 		} else {
4972 			if (payload->mot)
4973 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4974 			else
4975 				action = DP_AUX_REQ_ACTION_I2C_READ;
4976 			}
4977 	} else {
4978 		if (payload->write)
4979 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4980 		else
4981 			action = DP_AUX_REQ_ACTION_DPCD_READ;
4982 	}
4983 
4984 	cmd.dp_aux_access.aux_control.dpaux.action = action;
4985 
4986 	if (payload->length && payload->write) {
4987 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4988 			payload->data,
4989 			payload->length
4990 			);
4991 	}
4992 
4993 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
4994 
4995 	return true;
4996 }
4997 
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)4998 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
4999 					    uint8_t dpia_port_index)
5000 {
5001 	uint8_t index, link_index = 0xFF;
5002 
5003 	for (index = 0; index < dc->link_count; index++) {
5004 		/* ddc_hw_inst has dpia port index for dpia links
5005 		 * and ddc instance for legacy links
5006 		 */
5007 		if (!dc->links[index]->ddc->ddc_pin) {
5008 			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5009 				link_index = index;
5010 				break;
5011 			}
5012 		}
5013 	}
5014 	ASSERT(link_index != 0xFF);
5015 	return link_index;
5016 }
5017 
5018 /**
5019  * dc_process_dmub_set_config_async - Submits set_config command
5020  *
5021  * @dc: [in] dc structure
5022  * @link_index: [in] link_index: link index
5023  * @payload: [in] aux payload
5024  * @notify: [out] set_config immediate reply
5025  *
5026  * Submits set_config command to dmub via inbox message.
5027  *
5028  * Return:
5029  * True if successful, False if failure
5030  */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5031 bool dc_process_dmub_set_config_async(struct dc *dc,
5032 				uint32_t link_index,
5033 				struct set_config_cmd_payload *payload,
5034 				struct dmub_notification *notify)
5035 {
5036 	union dmub_rb_cmd cmd = {0};
5037 	bool is_cmd_complete = true;
5038 
5039 	/* prepare SET_CONFIG command */
5040 	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5041 	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5042 
5043 	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5044 	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5045 	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5046 
5047 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5048 		/* command is not processed by dmub */
5049 		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5050 		return is_cmd_complete;
5051 	}
5052 
5053 	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5054 	if (cmd.set_config_access.header.ret_status == 1)
5055 		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5056 	else
5057 		/* cmd pending, will receive notification via outbox */
5058 		is_cmd_complete = false;
5059 
5060 	return is_cmd_complete;
5061 }
5062 
5063 /**
5064  * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5065  *
5066  * @dc: [in] dc structure
5067  * @link_index: [in] link index
5068  * @mst_alloc_slots: [in] mst slots to be allotted
5069  * @mst_slots_in_use: [out] mst slots in use returned in failure case
5070  *
5071  * Submits mst slot allocation command to dmub via inbox message
5072  *
5073  * Return:
5074  * DC_OK if successful, DC_ERROR if failure
5075  */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5076 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5077 				uint32_t link_index,
5078 				uint8_t mst_alloc_slots,
5079 				uint8_t *mst_slots_in_use)
5080 {
5081 	union dmub_rb_cmd cmd = {0};
5082 
5083 	/* prepare MST_ALLOC_SLOTS command */
5084 	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5085 	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5086 
5087 	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5088 	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5089 
5090 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5091 		/* command is not processed by dmub */
5092 		return DC_ERROR_UNEXPECTED;
5093 
5094 	/* command processed by dmub, if ret_status is 1 */
5095 	if (cmd.set_config_access.header.ret_status != 1)
5096 		/* command processing error */
5097 		return DC_ERROR_UNEXPECTED;
5098 
5099 	/* command processed and we have a status of 2, mst not enabled in dpia */
5100 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5101 		return DC_FAIL_UNSUPPORTED_1;
5102 
5103 	/* previously configured mst alloc and used slots did not match */
5104 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5105 		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5106 		return DC_NOT_SUPPORTED;
5107 	}
5108 
5109 	return DC_OK;
5110 }
5111 
5112 /**
5113  * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5114  *
5115  * @dc: [in] dc structure
5116  * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5117  *
5118  * Submits dpia hpd int enable command to dmub via inbox message
5119  */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5120 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5121 				uint32_t hpd_int_enable)
5122 {
5123 	union dmub_rb_cmd cmd = {0};
5124 
5125 	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5126 	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5127 
5128 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5129 
5130 	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5131 }
5132 
5133 /**
5134  * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5135  *
5136  * @dc: [in] dc structure
5137  *
5138  *
5139  */
dc_print_dmub_diagnostic_data(const struct dc * dc)5140 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5141 {
5142 	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5143 }
5144 
5145 /**
5146  * dc_disable_accelerated_mode - disable accelerated mode
5147  * @dc: dc structure
5148  */
dc_disable_accelerated_mode(struct dc * dc)5149 void dc_disable_accelerated_mode(struct dc *dc)
5150 {
5151 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5152 }
5153 
5154 
5155 /**
5156  *  dc_notify_vsync_int_state - notifies vsync enable/disable state
5157  *  @dc: dc structure
5158  *  @stream: stream where vsync int state changed
5159  *  @enable: whether vsync is enabled or disabled
5160  *
5161  *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5162  *  interrupts after steady state is reached.
5163  */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5164 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5165 {
5166 	int i;
5167 	int edp_num;
5168 	struct pipe_ctx *pipe = NULL;
5169 	struct dc_link *link = stream->sink->link;
5170 	struct dc_link *edp_links[MAX_NUM_EDP];
5171 
5172 
5173 	if (link->psr_settings.psr_feature_enabled)
5174 		return;
5175 
5176 	if (link->replay_settings.replay_feature_enabled)
5177 		return;
5178 
5179 	/*find primary pipe associated with stream*/
5180 	for (i = 0; i < MAX_PIPES; i++) {
5181 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5182 
5183 		if (pipe->stream == stream && pipe->stream_res.tg)
5184 			break;
5185 	}
5186 
5187 	if (i == MAX_PIPES) {
5188 		ASSERT(0);
5189 		return;
5190 	}
5191 
5192 	dc_get_edp_links(dc, edp_links, &edp_num);
5193 
5194 	/* Determine panel inst */
5195 	for (i = 0; i < edp_num; i++) {
5196 		if (edp_links[i] == link)
5197 			break;
5198 	}
5199 
5200 	if (i == edp_num) {
5201 		return;
5202 	}
5203 
5204 	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5205 		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5206 }
5207 
5208 /*****************************************************************************
5209  *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5210  *                          ABM
5211  *  @dc: dc structure
5212  *	@stream: stream where vsync int state changed
5213  *  @pData: abm hw states
5214  *
5215  ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5216 bool dc_abm_save_restore(
5217 		struct dc *dc,
5218 		struct dc_stream_state *stream,
5219 		struct abm_save_restore *pData)
5220 {
5221 	int i;
5222 	int edp_num;
5223 	struct pipe_ctx *pipe = NULL;
5224 	struct dc_link *link = stream->sink->link;
5225 	struct dc_link *edp_links[MAX_NUM_EDP];
5226 
5227 
5228 	/*find primary pipe associated with stream*/
5229 	for (i = 0; i < MAX_PIPES; i++) {
5230 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5231 
5232 		if (pipe->stream == stream && pipe->stream_res.tg)
5233 			break;
5234 	}
5235 
5236 	if (i == MAX_PIPES) {
5237 		ASSERT(0);
5238 		return false;
5239 	}
5240 
5241 	dc_get_edp_links(dc, edp_links, &edp_num);
5242 
5243 	/* Determine panel inst */
5244 	for (i = 0; i < edp_num; i++)
5245 		if (edp_links[i] == link)
5246 			break;
5247 
5248 	if (i == edp_num)
5249 		return false;
5250 
5251 	if (pipe->stream_res.abm &&
5252 		pipe->stream_res.abm->funcs->save_restore)
5253 		return pipe->stream_res.abm->funcs->save_restore(
5254 				pipe->stream_res.abm,
5255 				i,
5256 				pData);
5257 	return false;
5258 }
5259 
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5260 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5261 {
5262 	unsigned int i;
5263 	bool subvp_in_use = false;
5264 
5265 	for (i = 0; i < dc->current_state->stream_count; i++) {
5266 		if (dc->current_state->streams[i]->mall_stream_config.type != SUBVP_NONE) {
5267 			subvp_in_use = true;
5268 			break;
5269 		}
5270 	}
5271 	properties->cursor_size_limit = subvp_in_use ? 64 : dc->caps.max_cursor_size;
5272 }
5273 
5274 /**
5275  *****************************************************************************
5276  * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5277  *
5278  * Called when DM wants to power on/off eDP.
5279  *     Only work on links with flag skip_implict_edp_power_control is set.
5280  *
5281  *****************************************************************************
5282  */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)5283 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5284 				 bool powerOn)
5285 {
5286 	if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5287 		return;
5288 
5289 	if (edp_link->skip_implict_edp_power_control == false)
5290 		return;
5291 
5292 	edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5293 }
5294 
5295