1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22
23 #include "opp.h"
24
25 /*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30 LIST_HEAD(opp_tables);
31
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54 }
55
_find_opp_table_unlocked(struct device * dev)56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68 }
69
70 /**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
_find_opp_table(struct device * dev)81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95 }
96
97 /*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
assert_single_clk(struct opp_table * opp_table)104 static bool assert_single_clk(struct opp_table *opp_table)
105 {
106 return !WARN_ON(opp_table->clk_count > 1);
107 }
108
109 /**
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp: opp for which voltage has to be returned for
112 *
113 * Return: voltage in micro volt corresponding to the opp, else
114 * return 0
115 *
116 * This is useful only for devices with single power supply.
117 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119 {
120 if (IS_ERR_OR_NULL(opp)) {
121 pr_err("%s: Invalid parameters\n", __func__);
122 return 0;
123 }
124
125 return opp->supplies[0].u_volt;
126 }
127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128
129 /**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp: opp for which voltage has to be returned for
132 * @supplies: Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
dev_pm_opp_get_supplies(struct dev_pm_opp * opp,struct dev_pm_opp_supply * supplies)140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 struct dev_pm_opp_supply *supplies)
142 {
143 if (IS_ERR_OR_NULL(opp) || !supplies) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return -EINVAL;
146 }
147
148 memcpy(supplies, opp->supplies,
149 sizeof(*supplies) * opp->opp_table->regulator_count);
150 return 0;
151 }
152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
154 /**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp: opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
dev_pm_opp_get_power(struct dev_pm_opp * opp)163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164 {
165 unsigned long opp_power = 0;
166 int i;
167
168 if (IS_ERR_OR_NULL(opp)) {
169 pr_err("%s: Invalid parameters\n", __func__);
170 return 0;
171 }
172 for (i = 0; i < opp->opp_table->regulator_count; i++)
173 opp_power += opp->supplies[i].u_watt;
174
175 return opp_power;
176 }
177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
179 /**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 * available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
dev_pm_opp_get_freq_indexed(struct dev_pm_opp * opp,u32 index)188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189 {
190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return 0;
193 }
194
195 return opp->rates[index];
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
199 /**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp: opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return 0.
205 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207 {
208 if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 pr_err("%s: Invalid parameters\n", __func__);
210 return 0;
211 }
212
213 return opp->level;
214 }
215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
217 /**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 * corresponding to an available opp
220 * @opp: opp for which performance state has to be returned for
221 * @index: index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return 0.
225 */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 unsigned int index)
228 {
229 if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 index >= opp->opp_table->required_opp_count) {
231 pr_err("%s: Invalid parameters\n", __func__);
232 return 0;
233 }
234
235 /* required-opps not fully initialized yet */
236 if (lazy_linking_pending(opp->opp_table))
237 return 0;
238
239 /* The required OPP table must belong to a genpd */
240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 return 0;
243 }
244
245 return opp->required_opps[index]->level;
246 }
247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
249 /**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
258 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260 {
261 if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 pr_err("%s: Invalid parameters\n", __func__);
263 return false;
264 }
265
266 return opp->turbo;
267 }
268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
270 /**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev: device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
275 */
dev_pm_opp_get_max_clock_latency(struct device * dev)276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277 {
278 struct opp_table *opp_table;
279 unsigned long clock_latency_ns;
280
281 opp_table = _find_opp_table(dev);
282 if (IS_ERR(opp_table))
283 return 0;
284
285 clock_latency_ns = opp_table->clock_latency_ns_max;
286
287 dev_pm_opp_put_opp_table(opp_table);
288
289 return clock_latency_ns;
290 }
291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
293 /**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
298 */
dev_pm_opp_get_max_volt_latency(struct device * dev)299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300 {
301 struct opp_table *opp_table;
302 struct dev_pm_opp *opp;
303 struct regulator *reg;
304 unsigned long latency_ns = 0;
305 int ret, i, count;
306 struct {
307 unsigned long min;
308 unsigned long max;
309 } *uV;
310
311 opp_table = _find_opp_table(dev);
312 if (IS_ERR(opp_table))
313 return 0;
314
315 /* Regulator may not be required for the device */
316 if (!opp_table->regulators)
317 goto put_opp_table;
318
319 count = opp_table->regulator_count;
320
321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 if (!uV)
323 goto put_opp_table;
324
325 mutex_lock(&opp_table->lock);
326
327 for (i = 0; i < count; i++) {
328 uV[i].min = ~0;
329 uV[i].max = 0;
330
331 list_for_each_entry(opp, &opp_table->opp_list, node) {
332 if (!opp->available)
333 continue;
334
335 if (opp->supplies[i].u_volt_min < uV[i].min)
336 uV[i].min = opp->supplies[i].u_volt_min;
337 if (opp->supplies[i].u_volt_max > uV[i].max)
338 uV[i].max = opp->supplies[i].u_volt_max;
339 }
340 }
341
342 mutex_unlock(&opp_table->lock);
343
344 /*
345 * The caller needs to ensure that opp_table (and hence the regulator)
346 * isn't freed, while we are executing this routine.
347 */
348 for (i = 0; i < count; i++) {
349 reg = opp_table->regulators[i];
350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 if (ret > 0)
352 latency_ns += ret * 1000;
353 }
354
355 kfree(uV);
356 put_opp_table:
357 dev_pm_opp_put_opp_table(opp_table);
358
359 return latency_ns;
360 }
361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
363 /**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 * nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
370 */
dev_pm_opp_get_max_transition_latency(struct device * dev)371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372 {
373 return dev_pm_opp_get_max_volt_latency(dev) +
374 dev_pm_opp_get_max_clock_latency(dev);
375 }
376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
378 /**
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev: device for which we do this operation
381 *
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
384 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386 {
387 struct opp_table *opp_table;
388 unsigned long freq = 0;
389
390 opp_table = _find_opp_table(dev);
391 if (IS_ERR(opp_table))
392 return 0;
393
394 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396
397 dev_pm_opp_put_opp_table(opp_table);
398
399 return freq;
400 }
401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402
_get_opp_count(struct opp_table * opp_table)403 int _get_opp_count(struct opp_table *opp_table)
404 {
405 struct dev_pm_opp *opp;
406 int count = 0;
407
408 mutex_lock(&opp_table->lock);
409
410 list_for_each_entry(opp, &opp_table->opp_list, node) {
411 if (opp->available)
412 count++;
413 }
414
415 mutex_unlock(&opp_table->lock);
416
417 return count;
418 }
419
420 /**
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev: device for which we do this operation
423 *
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
426 */
dev_pm_opp_get_opp_count(struct device * dev)427 int dev_pm_opp_get_opp_count(struct device *dev)
428 {
429 struct opp_table *opp_table;
430 int count;
431
432 opp_table = _find_opp_table(dev);
433 if (IS_ERR(opp_table)) {
434 count = PTR_ERR(opp_table);
435 dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 __func__, count);
437 return count;
438 }
439
440 count = _get_opp_count(opp_table);
441 dev_pm_opp_put_opp_table(opp_table);
442
443 return count;
444 }
445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446
447 /* Helpers to read keys */
_read_freq(struct dev_pm_opp * opp,int index)448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449 {
450 return opp->rates[index];
451 }
452
_read_level(struct dev_pm_opp * opp,int index)453 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454 {
455 return opp->level;
456 }
457
_read_bw(struct dev_pm_opp * opp,int index)458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459 {
460 return opp->bandwidth[index].peak;
461 }
462
463 /* Generic comparison helpers */
_compare_exact(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 unsigned long opp_key, unsigned long key)
466 {
467 if (opp_key == key) {
468 *opp = temp_opp;
469 return true;
470 }
471
472 return false;
473 }
474
_compare_ceil(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 unsigned long opp_key, unsigned long key)
477 {
478 if (opp_key >= key) {
479 *opp = temp_opp;
480 return true;
481 }
482
483 return false;
484 }
485
_compare_floor(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 unsigned long opp_key, unsigned long key)
488 {
489 if (opp_key > key)
490 return true;
491
492 *opp = temp_opp;
493 return false;
494 }
495
496 /* Generic key finding helpers */
_opp_table_find_key(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table))497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 unsigned long *key, int index, bool available,
499 unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 unsigned long opp_key, unsigned long key),
502 bool (*assert)(struct opp_table *opp_table))
503 {
504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505
506 /* Assert that the requirement is met */
507 if (assert && !assert(opp_table))
508 return ERR_PTR(-EINVAL);
509
510 mutex_lock(&opp_table->lock);
511
512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 if (temp_opp->available == available) {
514 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 break;
516 }
517 }
518
519 /* Increment the reference count of OPP */
520 if (!IS_ERR(opp)) {
521 *key = read(opp, index);
522 dev_pm_opp_get(opp);
523 }
524
525 mutex_unlock(&opp_table->lock);
526
527 return opp;
528 }
529
530 static struct dev_pm_opp *
_find_key(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table))531 _find_key(struct device *dev, unsigned long *key, int index, bool available,
532 unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 unsigned long opp_key, unsigned long key),
535 bool (*assert)(struct opp_table *opp_table))
536 {
537 struct opp_table *opp_table;
538 struct dev_pm_opp *opp;
539
540 opp_table = _find_opp_table(dev);
541 if (IS_ERR(opp_table)) {
542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 PTR_ERR(opp_table));
544 return ERR_CAST(opp_table);
545 }
546
547 opp = _opp_table_find_key(opp_table, key, index, available, read,
548 compare, assert);
549
550 dev_pm_opp_put_opp_table(opp_table);
551
552 return opp;
553 }
554
_find_key_exact(struct device * dev,unsigned long key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))555 static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 unsigned long key, int index, bool available,
557 unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 bool (*assert)(struct opp_table *opp_table))
559 {
560 /*
561 * The value of key will be updated here, but will be ignored as the
562 * caller doesn't need it.
563 */
564 return _find_key(dev, &key, index, available, read, _compare_exact,
565 assert);
566 }
567
_opp_table_find_key_ceil(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 unsigned long *key, int index, bool available,
570 unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 bool (*assert)(struct opp_table *opp_table))
572 {
573 return _opp_table_find_key(opp_table, key, index, available, read,
574 _compare_ceil, assert);
575 }
576
_find_key_ceil(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 int index, bool available,
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table))
581 {
582 return _find_key(dev, key, index, available, read, _compare_ceil,
583 assert);
584 }
585
_find_key_floor(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))586 static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 unsigned long *key, int index, bool available,
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table))
590 {
591 return _find_key(dev, key, index, available, read, _compare_floor,
592 assert);
593 }
594
595 /**
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev: device for which we do this operation
598 * @freq: frequency to search for
599 * @available: true/false - match for available opp
600 *
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL: for bad pointer
605 * ERANGE: no match found for search
606 * ENODEV: if device not found in list of registered devices
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
617 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 unsigned long freq, bool available)
620 {
621 return _find_key_exact(dev, freq, 0, available, _read_freq,
622 assert_single_clk);
623 }
624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625
626 /**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 * clock corresponding to the index
629 * @dev: Device for which we do this operation
630 * @freq: frequency to search for
631 * @index: Clock index
632 * @available: true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL: for bad pointer
640 * ERANGE: no match found for search
641 * ENODEV: if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646 struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device * dev,unsigned long freq,u32 index,bool available)647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 u32 index, bool available)
649 {
650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651 }
652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 unsigned long *freq)
656 {
657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 assert_single_clk);
659 }
660
661 /**
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev: device for which we do this operation
664 * @freq: Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL: for bad pointer
673 * ERANGE: no match found for search
674 * ENODEV: if device not found in list of registered devices
675 *
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
678 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 unsigned long *freq)
681 {
682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683 }
684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685
686 /**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 * clock corresponding to the index
689 * @dev: Device for which we do this operation
690 * @freq: Start frequency
691 * @index: Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL: for bad pointer
700 * ERANGE: no match found for search
701 * ENODEV: if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706 struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device * dev,unsigned long * freq,u32 index)707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 u32 index)
709 {
710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711 }
712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
714 /**
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev: device for which we do this operation
717 * @freq: Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL: for bad pointer
726 * ERANGE: no match found for search
727 * ENODEV: if device not found in list of registered devices
728 *
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
731 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 unsigned long *freq)
734 {
735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736 }
737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738
739 /**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 * clock corresponding to the index
742 * @dev: Device for which we do this operation
743 * @freq: Start frequency
744 * @index: Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL: for bad pointer
753 * ERANGE: no match found for search
754 * ENODEV: if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759 struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device * dev,unsigned long * freq,u32 index)760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 u32 index)
762 {
763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764 }
765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
767 /**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev: device for which we do this operation
770 * @level: level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL: for bad pointer
776 * ERANGE: no match found for search
777 * ENODEV: if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 unsigned int level)
784 {
785 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786 }
787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789 /**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev: device for which we do this operation
792 * @level: level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL: for bad pointer
798 * ERANGE: no match found for search
799 * ENODEV: if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 unsigned int *level)
806 {
807 unsigned long temp = *level;
808 struct dev_pm_opp *opp;
809
810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 *level = temp;
812 return opp;
813 }
814 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
815
816 /**
817 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
818 * @dev: device for which we do this operation
819 * @bw: start bandwidth
820 * @index: which bandwidth to compare, in case of OPPs with several values
821 *
822 * Search for the matching floor *available* OPP from a starting bandwidth
823 * for a device.
824 *
825 * Return: matching *opp and refreshes *bw accordingly, else returns
826 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
827 * values can be:
828 * EINVAL: for bad pointer
829 * ERANGE: no match found for search
830 * ENODEV: if device not found in list of registered devices
831 *
832 * The callers are required to call dev_pm_opp_put() for the returned OPP after
833 * use.
834 */
dev_pm_opp_find_bw_ceil(struct device * dev,unsigned int * bw,int index)835 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
836 int index)
837 {
838 unsigned long temp = *bw;
839 struct dev_pm_opp *opp;
840
841 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
842 *bw = temp;
843 return opp;
844 }
845 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
846
847 /**
848 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
849 * @dev: device for which we do this operation
850 * @bw: start bandwidth
851 * @index: which bandwidth to compare, in case of OPPs with several values
852 *
853 * Search for the matching floor *available* OPP from a starting bandwidth
854 * for a device.
855 *
856 * Return: matching *opp and refreshes *bw accordingly, else returns
857 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
858 * values can be:
859 * EINVAL: for bad pointer
860 * ERANGE: no match found for search
861 * ENODEV: if device not found in list of registered devices
862 *
863 * The callers are required to call dev_pm_opp_put() for the returned OPP after
864 * use.
865 */
dev_pm_opp_find_bw_floor(struct device * dev,unsigned int * bw,int index)866 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
867 unsigned int *bw, int index)
868 {
869 unsigned long temp = *bw;
870 struct dev_pm_opp *opp;
871
872 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
873 *bw = temp;
874 return opp;
875 }
876 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
877
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)878 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
879 struct dev_pm_opp_supply *supply)
880 {
881 int ret;
882
883 /* Regulator not available for device */
884 if (IS_ERR(reg)) {
885 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
886 PTR_ERR(reg));
887 return 0;
888 }
889
890 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
891 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
892
893 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
894 supply->u_volt, supply->u_volt_max);
895 if (ret)
896 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
897 __func__, supply->u_volt_min, supply->u_volt,
898 supply->u_volt_max, ret);
899
900 return ret;
901 }
902
903 static int
_opp_config_clk_single(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)904 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
905 struct dev_pm_opp *opp, void *data, bool scaling_down)
906 {
907 unsigned long *target = data;
908 unsigned long freq;
909 int ret;
910
911 /* One of target and opp must be available */
912 if (target) {
913 freq = *target;
914 } else if (opp) {
915 freq = opp->rates[0];
916 } else {
917 WARN_ON(1);
918 return -EINVAL;
919 }
920
921 ret = clk_set_rate(opp_table->clk, freq);
922 if (ret) {
923 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
924 ret);
925 } else {
926 opp_table->rate_clk_single = freq;
927 }
928
929 return ret;
930 }
931
932 /*
933 * Simple implementation for configuring multiple clocks. Configure clocks in
934 * the order in which they are present in the array while scaling up.
935 */
dev_pm_opp_config_clks_simple(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)936 int dev_pm_opp_config_clks_simple(struct device *dev,
937 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
938 bool scaling_down)
939 {
940 int ret, i;
941
942 if (scaling_down) {
943 for (i = opp_table->clk_count - 1; i >= 0; i--) {
944 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
945 if (ret) {
946 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
947 ret);
948 return ret;
949 }
950 }
951 } else {
952 for (i = 0; i < opp_table->clk_count; i++) {
953 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
954 if (ret) {
955 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
956 ret);
957 return ret;
958 }
959 }
960 }
961
962 return 0;
963 }
964 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
965
_opp_config_regulator_single(struct device * dev,struct dev_pm_opp * old_opp,struct dev_pm_opp * new_opp,struct regulator ** regulators,unsigned int count)966 static int _opp_config_regulator_single(struct device *dev,
967 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
968 struct regulator **regulators, unsigned int count)
969 {
970 struct regulator *reg = regulators[0];
971 int ret;
972
973 /* This function only supports single regulator per device */
974 if (WARN_ON(count > 1)) {
975 dev_err(dev, "multiple regulators are not supported\n");
976 return -EINVAL;
977 }
978
979 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
980 if (ret)
981 return ret;
982
983 /*
984 * Enable the regulator after setting its voltages, otherwise it breaks
985 * some boot-enabled regulators.
986 */
987 if (unlikely(!new_opp->opp_table->enabled)) {
988 ret = regulator_enable(reg);
989 if (ret < 0)
990 dev_warn(dev, "Failed to enable regulator: %d", ret);
991 }
992
993 return 0;
994 }
995
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)996 static int _set_opp_bw(const struct opp_table *opp_table,
997 struct dev_pm_opp *opp, struct device *dev)
998 {
999 u32 avg, peak;
1000 int i, ret;
1001
1002 if (!opp_table->paths)
1003 return 0;
1004
1005 for (i = 0; i < opp_table->path_count; i++) {
1006 if (!opp) {
1007 avg = 0;
1008 peak = 0;
1009 } else {
1010 avg = opp->bandwidth[i].avg;
1011 peak = opp->bandwidth[i].peak;
1012 }
1013 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1014 if (ret) {
1015 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1016 opp ? "set" : "remove", i, ret);
1017 return ret;
1018 }
1019 }
1020
1021 return 0;
1022 }
1023
_set_performance_state(struct device * dev,struct device * pd_dev,struct dev_pm_opp * opp,int i)1024 static int _set_performance_state(struct device *dev, struct device *pd_dev,
1025 struct dev_pm_opp *opp, int i)
1026 {
1027 unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0;
1028 int ret;
1029
1030 if (!pd_dev)
1031 return 0;
1032
1033 ret = dev_pm_domain_set_performance_state(pd_dev, pstate);
1034 if (ret) {
1035 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
1036 dev_name(pd_dev), pstate, ret);
1037 }
1038
1039 return ret;
1040 }
1041
_opp_set_required_opps_generic(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool scaling_down)1042 static int _opp_set_required_opps_generic(struct device *dev,
1043 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1044 {
1045 dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
1046 return -ENOENT;
1047 }
1048
_opp_set_required_opps_genpd(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool scaling_down)1049 static int _opp_set_required_opps_genpd(struct device *dev,
1050 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1051 {
1052 struct device **genpd_virt_devs =
1053 opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
1054 int i, ret = 0;
1055
1056 /*
1057 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
1058 * after it is freed from another thread.
1059 */
1060 mutex_lock(&opp_table->genpd_virt_dev_lock);
1061
1062 /* Scaling up? Set required OPPs in normal order, else reverse */
1063 if (!scaling_down) {
1064 for (i = 0; i < opp_table->required_opp_count; i++) {
1065 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1066 if (ret)
1067 break;
1068 }
1069 } else {
1070 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1071 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1072 if (ret)
1073 break;
1074 }
1075 }
1076
1077 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1078
1079 return ret;
1080 }
1081
1082 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)1083 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1084 struct dev_pm_opp *opp, bool up)
1085 {
1086 /* required-opps not fully initialized yet */
1087 if (lazy_linking_pending(opp_table))
1088 return -EBUSY;
1089
1090 if (opp_table->set_required_opps)
1091 return opp_table->set_required_opps(dev, opp_table, opp, up);
1092
1093 return 0;
1094 }
1095
1096 /* Update set_required_opps handler */
_update_set_required_opps(struct opp_table * opp_table)1097 void _update_set_required_opps(struct opp_table *opp_table)
1098 {
1099 /* Already set */
1100 if (opp_table->set_required_opps)
1101 return;
1102
1103 /* All required OPPs will belong to genpd or none */
1104 if (opp_table->required_opp_tables[0]->is_genpd)
1105 opp_table->set_required_opps = _opp_set_required_opps_genpd;
1106 else
1107 opp_table->set_required_opps = _opp_set_required_opps_generic;
1108 }
1109
_set_opp_level(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp)1110 static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1111 struct dev_pm_opp *opp)
1112 {
1113 unsigned int level = 0;
1114 int ret = 0;
1115
1116 if (opp) {
1117 if (!opp->level)
1118 return 0;
1119
1120 level = opp->level;
1121 }
1122
1123 /* Request a new performance state through the device's PM domain. */
1124 ret = dev_pm_domain_set_performance_state(dev, level);
1125 if (ret)
1126 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1127 ret);
1128
1129 return ret;
1130 }
1131
_find_current_opp(struct device * dev,struct opp_table * opp_table)1132 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1133 {
1134 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1135 unsigned long freq;
1136
1137 if (!IS_ERR(opp_table->clk)) {
1138 freq = clk_get_rate(opp_table->clk);
1139 opp = _find_freq_ceil(opp_table, &freq);
1140 }
1141
1142 /*
1143 * Unable to find the current OPP ? Pick the first from the list since
1144 * it is in ascending order, otherwise rest of the code will need to
1145 * make special checks to validate current_opp.
1146 */
1147 if (IS_ERR(opp)) {
1148 mutex_lock(&opp_table->lock);
1149 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1150 dev_pm_opp_get(opp);
1151 mutex_unlock(&opp_table->lock);
1152 }
1153
1154 opp_table->current_opp = opp;
1155 }
1156
_disable_opp_table(struct device * dev,struct opp_table * opp_table)1157 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1158 {
1159 int ret;
1160
1161 if (!opp_table->enabled)
1162 return 0;
1163
1164 /*
1165 * Some drivers need to support cases where some platforms may
1166 * have OPP table for the device, while others don't and
1167 * opp_set_rate() just needs to behave like clk_set_rate().
1168 */
1169 if (!_get_opp_count(opp_table))
1170 return 0;
1171
1172 ret = _set_opp_bw(opp_table, NULL, dev);
1173 if (ret)
1174 return ret;
1175
1176 if (opp_table->regulators)
1177 regulator_disable(opp_table->regulators[0]);
1178
1179 ret = _set_opp_level(dev, opp_table, NULL);
1180 if (ret)
1181 goto out;
1182
1183 ret = _set_required_opps(dev, opp_table, NULL, false);
1184
1185 out:
1186 opp_table->enabled = false;
1187 return ret;
1188 }
1189
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * clk_data,bool forced)1190 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1191 struct dev_pm_opp *opp, void *clk_data, bool forced)
1192 {
1193 struct dev_pm_opp *old_opp;
1194 int scaling_down, ret;
1195
1196 if (unlikely(!opp))
1197 return _disable_opp_table(dev, opp_table);
1198
1199 /* Find the currently set OPP if we don't know already */
1200 if (unlikely(!opp_table->current_opp))
1201 _find_current_opp(dev, opp_table);
1202
1203 old_opp = opp_table->current_opp;
1204
1205 /* Return early if nothing to do */
1206 if (!forced && old_opp == opp && opp_table->enabled) {
1207 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1208 return 0;
1209 }
1210
1211 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1212 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1213 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1214 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1215
1216 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1217 if (scaling_down == -1)
1218 scaling_down = 0;
1219
1220 /* Scaling up? Configure required OPPs before frequency */
1221 if (!scaling_down) {
1222 ret = _set_required_opps(dev, opp_table, opp, true);
1223 if (ret) {
1224 dev_err(dev, "Failed to set required opps: %d\n", ret);
1225 return ret;
1226 }
1227
1228 ret = _set_opp_level(dev, opp_table, opp);
1229 if (ret)
1230 return ret;
1231
1232 ret = _set_opp_bw(opp_table, opp, dev);
1233 if (ret) {
1234 dev_err(dev, "Failed to set bw: %d\n", ret);
1235 return ret;
1236 }
1237
1238 if (opp_table->config_regulators) {
1239 ret = opp_table->config_regulators(dev, old_opp, opp,
1240 opp_table->regulators,
1241 opp_table->regulator_count);
1242 if (ret) {
1243 dev_err(dev, "Failed to set regulator voltages: %d\n",
1244 ret);
1245 return ret;
1246 }
1247 }
1248 }
1249
1250 if (opp_table->config_clks) {
1251 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1252 if (ret)
1253 return ret;
1254 }
1255
1256 /* Scaling down? Configure required OPPs after frequency */
1257 if (scaling_down) {
1258 if (opp_table->config_regulators) {
1259 ret = opp_table->config_regulators(dev, old_opp, opp,
1260 opp_table->regulators,
1261 opp_table->regulator_count);
1262 if (ret) {
1263 dev_err(dev, "Failed to set regulator voltages: %d\n",
1264 ret);
1265 return ret;
1266 }
1267 }
1268
1269 ret = _set_opp_bw(opp_table, opp, dev);
1270 if (ret) {
1271 dev_err(dev, "Failed to set bw: %d\n", ret);
1272 return ret;
1273 }
1274
1275 ret = _set_opp_level(dev, opp_table, opp);
1276 if (ret)
1277 return ret;
1278
1279 ret = _set_required_opps(dev, opp_table, opp, false);
1280 if (ret) {
1281 dev_err(dev, "Failed to set required opps: %d\n", ret);
1282 return ret;
1283 }
1284 }
1285
1286 opp_table->enabled = true;
1287 dev_pm_opp_put(old_opp);
1288
1289 /* Make sure current_opp doesn't get freed */
1290 dev_pm_opp_get(opp);
1291 opp_table->current_opp = opp;
1292
1293 return ret;
1294 }
1295
1296 /**
1297 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1298 * @dev: device for which we do this operation
1299 * @target_freq: frequency to achieve
1300 *
1301 * This configures the power-supplies to the levels specified by the OPP
1302 * corresponding to the target_freq, and programs the clock to a value <=
1303 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1304 * provided by the opp, should have already rounded to the target OPP's
1305 * frequency.
1306 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1307 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1308 {
1309 struct opp_table *opp_table;
1310 unsigned long freq = 0, temp_freq;
1311 struct dev_pm_opp *opp = NULL;
1312 bool forced = false;
1313 int ret;
1314
1315 opp_table = _find_opp_table(dev);
1316 if (IS_ERR(opp_table)) {
1317 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1318 return PTR_ERR(opp_table);
1319 }
1320
1321 if (target_freq) {
1322 /*
1323 * For IO devices which require an OPP on some platforms/SoCs
1324 * while just needing to scale the clock on some others
1325 * we look for empty OPP tables with just a clock handle and
1326 * scale only the clk. This makes dev_pm_opp_set_rate()
1327 * equivalent to a clk_set_rate()
1328 */
1329 if (!_get_opp_count(opp_table)) {
1330 ret = opp_table->config_clks(dev, opp_table, NULL,
1331 &target_freq, false);
1332 goto put_opp_table;
1333 }
1334
1335 freq = clk_round_rate(opp_table->clk, target_freq);
1336 if ((long)freq <= 0)
1337 freq = target_freq;
1338
1339 /*
1340 * The clock driver may support finer resolution of the
1341 * frequencies than the OPP table, don't update the frequency we
1342 * pass to clk_set_rate() here.
1343 */
1344 temp_freq = freq;
1345 opp = _find_freq_ceil(opp_table, &temp_freq);
1346 if (IS_ERR(opp)) {
1347 ret = PTR_ERR(opp);
1348 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1349 __func__, freq, ret);
1350 goto put_opp_table;
1351 }
1352
1353 /*
1354 * An OPP entry specifies the highest frequency at which other
1355 * properties of the OPP entry apply. Even if the new OPP is
1356 * same as the old one, we may still reach here for a different
1357 * value of the frequency. In such a case, do not abort but
1358 * configure the hardware to the desired frequency forcefully.
1359 */
1360 forced = opp_table->rate_clk_single != freq;
1361 }
1362
1363 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1364
1365 if (freq)
1366 dev_pm_opp_put(opp);
1367
1368 put_opp_table:
1369 dev_pm_opp_put_opp_table(opp_table);
1370 return ret;
1371 }
1372 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1373
1374 /**
1375 * dev_pm_opp_set_opp() - Configure device for OPP
1376 * @dev: device for which we do this operation
1377 * @opp: OPP to set to
1378 *
1379 * This configures the device based on the properties of the OPP passed to this
1380 * routine.
1381 *
1382 * Return: 0 on success, a negative error number otherwise.
1383 */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1384 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1385 {
1386 struct opp_table *opp_table;
1387 int ret;
1388
1389 opp_table = _find_opp_table(dev);
1390 if (IS_ERR(opp_table)) {
1391 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1392 return PTR_ERR(opp_table);
1393 }
1394
1395 ret = _set_opp(dev, opp_table, opp, NULL, false);
1396 dev_pm_opp_put_opp_table(opp_table);
1397
1398 return ret;
1399 }
1400 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1401
1402 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1403 static void _remove_opp_dev(struct opp_device *opp_dev,
1404 struct opp_table *opp_table)
1405 {
1406 opp_debug_unregister(opp_dev, opp_table);
1407 list_del(&opp_dev->node);
1408 kfree(opp_dev);
1409 }
1410
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1411 struct opp_device *_add_opp_dev(const struct device *dev,
1412 struct opp_table *opp_table)
1413 {
1414 struct opp_device *opp_dev;
1415
1416 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1417 if (!opp_dev)
1418 return NULL;
1419
1420 /* Initialize opp-dev */
1421 opp_dev->dev = dev;
1422
1423 mutex_lock(&opp_table->lock);
1424 list_add(&opp_dev->node, &opp_table->dev_list);
1425 mutex_unlock(&opp_table->lock);
1426
1427 /* Create debugfs entries for the opp_table */
1428 opp_debug_register(opp_dev, opp_table);
1429
1430 return opp_dev;
1431 }
1432
_allocate_opp_table(struct device * dev,int index)1433 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1434 {
1435 struct opp_table *opp_table;
1436 struct opp_device *opp_dev;
1437 int ret;
1438
1439 /*
1440 * Allocate a new OPP table. In the infrequent case where a new
1441 * device is needed to be added, we pay this penalty.
1442 */
1443 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1444 if (!opp_table)
1445 return ERR_PTR(-ENOMEM);
1446
1447 mutex_init(&opp_table->lock);
1448 mutex_init(&opp_table->genpd_virt_dev_lock);
1449 INIT_LIST_HEAD(&opp_table->dev_list);
1450 INIT_LIST_HEAD(&opp_table->lazy);
1451
1452 opp_table->clk = ERR_PTR(-ENODEV);
1453
1454 /* Mark regulator count uninitialized */
1455 opp_table->regulator_count = -1;
1456
1457 opp_dev = _add_opp_dev(dev, opp_table);
1458 if (!opp_dev) {
1459 ret = -ENOMEM;
1460 goto err;
1461 }
1462
1463 _of_init_opp_table(opp_table, dev, index);
1464
1465 /* Find interconnect path(s) for the device */
1466 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1467 if (ret) {
1468 if (ret == -EPROBE_DEFER)
1469 goto remove_opp_dev;
1470
1471 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1472 __func__, ret);
1473 }
1474
1475 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1476 INIT_LIST_HEAD(&opp_table->opp_list);
1477 kref_init(&opp_table->kref);
1478
1479 return opp_table;
1480
1481 remove_opp_dev:
1482 _of_clear_opp_table(opp_table);
1483 _remove_opp_dev(opp_dev, opp_table);
1484 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1485 mutex_destroy(&opp_table->lock);
1486 err:
1487 kfree(opp_table);
1488 return ERR_PTR(ret);
1489 }
1490
_get_opp_table_kref(struct opp_table * opp_table)1491 void _get_opp_table_kref(struct opp_table *opp_table)
1492 {
1493 kref_get(&opp_table->kref);
1494 }
1495
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1496 static struct opp_table *_update_opp_table_clk(struct device *dev,
1497 struct opp_table *opp_table,
1498 bool getclk)
1499 {
1500 int ret;
1501
1502 /*
1503 * Return early if we don't need to get clk or we have already done it
1504 * earlier.
1505 */
1506 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1507 opp_table->clks)
1508 return opp_table;
1509
1510 /* Find clk for the device */
1511 opp_table->clk = clk_get(dev, NULL);
1512
1513 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1514 if (!ret) {
1515 opp_table->config_clks = _opp_config_clk_single;
1516 opp_table->clk_count = 1;
1517 return opp_table;
1518 }
1519
1520 if (ret == -ENOENT) {
1521 /*
1522 * There are few platforms which don't want the OPP core to
1523 * manage device's clock settings. In such cases neither the
1524 * platform provides the clks explicitly to us, nor the DT
1525 * contains a valid clk entry. The OPP nodes in DT may still
1526 * contain "opp-hz" property though, which we need to parse and
1527 * allow the platform to find an OPP based on freq later on.
1528 *
1529 * This is a simple solution to take care of such corner cases,
1530 * i.e. make the clk_count 1, which lets us allocate space for
1531 * frequency in opp->rates and also parse the entries in DT.
1532 */
1533 opp_table->clk_count = 1;
1534
1535 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1536 return opp_table;
1537 }
1538
1539 dev_pm_opp_put_opp_table(opp_table);
1540 dev_err_probe(dev, ret, "Couldn't find clock\n");
1541
1542 return ERR_PTR(ret);
1543 }
1544
1545 /*
1546 * We need to make sure that the OPP table for a device doesn't get added twice,
1547 * if this routine gets called in parallel with the same device pointer.
1548 *
1549 * The simplest way to enforce that is to perform everything (find existing
1550 * table and if not found, create a new one) under the opp_table_lock, so only
1551 * one creator gets access to the same. But that expands the critical section
1552 * under the lock and may end up causing circular dependencies with frameworks
1553 * like debugfs, interconnect or clock framework as they may be direct or
1554 * indirect users of OPP core.
1555 *
1556 * And for that reason we have to go for a bit tricky implementation here, which
1557 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1558 * of adding an OPP table and others should wait for it to finish.
1559 */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1560 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1561 bool getclk)
1562 {
1563 struct opp_table *opp_table;
1564
1565 again:
1566 mutex_lock(&opp_table_lock);
1567
1568 opp_table = _find_opp_table_unlocked(dev);
1569 if (!IS_ERR(opp_table))
1570 goto unlock;
1571
1572 /*
1573 * The opp_tables list or an OPP table's dev_list is getting updated by
1574 * another user, wait for it to finish.
1575 */
1576 if (unlikely(opp_tables_busy)) {
1577 mutex_unlock(&opp_table_lock);
1578 cpu_relax();
1579 goto again;
1580 }
1581
1582 opp_tables_busy = true;
1583 opp_table = _managed_opp(dev, index);
1584
1585 /* Drop the lock to reduce the size of critical section */
1586 mutex_unlock(&opp_table_lock);
1587
1588 if (opp_table) {
1589 if (!_add_opp_dev(dev, opp_table)) {
1590 dev_pm_opp_put_opp_table(opp_table);
1591 opp_table = ERR_PTR(-ENOMEM);
1592 }
1593
1594 mutex_lock(&opp_table_lock);
1595 } else {
1596 opp_table = _allocate_opp_table(dev, index);
1597
1598 mutex_lock(&opp_table_lock);
1599 if (!IS_ERR(opp_table))
1600 list_add(&opp_table->node, &opp_tables);
1601 }
1602
1603 opp_tables_busy = false;
1604
1605 unlock:
1606 mutex_unlock(&opp_table_lock);
1607
1608 return _update_opp_table_clk(dev, opp_table, getclk);
1609 }
1610
_add_opp_table(struct device * dev,bool getclk)1611 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1612 {
1613 return _add_opp_table_indexed(dev, 0, getclk);
1614 }
1615
dev_pm_opp_get_opp_table(struct device * dev)1616 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1617 {
1618 return _find_opp_table(dev);
1619 }
1620 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1621
_opp_table_kref_release(struct kref * kref)1622 static void _opp_table_kref_release(struct kref *kref)
1623 {
1624 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1625 struct opp_device *opp_dev, *temp;
1626 int i;
1627
1628 /* Drop the lock as soon as we can */
1629 list_del(&opp_table->node);
1630 mutex_unlock(&opp_table_lock);
1631
1632 if (opp_table->current_opp)
1633 dev_pm_opp_put(opp_table->current_opp);
1634
1635 _of_clear_opp_table(opp_table);
1636
1637 /* Release automatically acquired single clk */
1638 if (!IS_ERR(opp_table->clk))
1639 clk_put(opp_table->clk);
1640
1641 if (opp_table->paths) {
1642 for (i = 0; i < opp_table->path_count; i++)
1643 icc_put(opp_table->paths[i]);
1644 kfree(opp_table->paths);
1645 }
1646
1647 WARN_ON(!list_empty(&opp_table->opp_list));
1648
1649 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1650 _remove_opp_dev(opp_dev, opp_table);
1651
1652 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1653 mutex_destroy(&opp_table->lock);
1654 kfree(opp_table);
1655 }
1656
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1657 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1658 {
1659 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1660 &opp_table_lock);
1661 }
1662 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1663
_opp_free(struct dev_pm_opp * opp)1664 void _opp_free(struct dev_pm_opp *opp)
1665 {
1666 kfree(opp);
1667 }
1668
_opp_kref_release(struct kref * kref)1669 static void _opp_kref_release(struct kref *kref)
1670 {
1671 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1672 struct opp_table *opp_table = opp->opp_table;
1673
1674 list_del(&opp->node);
1675 mutex_unlock(&opp_table->lock);
1676
1677 /*
1678 * Notify the changes in the availability of the operable
1679 * frequency/voltage list.
1680 */
1681 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1682 _of_clear_opp(opp_table, opp);
1683 opp_debug_remove_one(opp);
1684 kfree(opp);
1685 }
1686
dev_pm_opp_get(struct dev_pm_opp * opp)1687 void dev_pm_opp_get(struct dev_pm_opp *opp)
1688 {
1689 kref_get(&opp->kref);
1690 }
1691
dev_pm_opp_put(struct dev_pm_opp * opp)1692 void dev_pm_opp_put(struct dev_pm_opp *opp)
1693 {
1694 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1695 }
1696 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1697
1698 /**
1699 * dev_pm_opp_remove() - Remove an OPP from OPP table
1700 * @dev: device for which we do this operation
1701 * @freq: OPP to remove with matching 'freq'
1702 *
1703 * This function removes an opp from the opp table.
1704 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1705 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1706 {
1707 struct dev_pm_opp *opp = NULL, *iter;
1708 struct opp_table *opp_table;
1709
1710 opp_table = _find_opp_table(dev);
1711 if (IS_ERR(opp_table))
1712 return;
1713
1714 if (!assert_single_clk(opp_table))
1715 goto put_table;
1716
1717 mutex_lock(&opp_table->lock);
1718
1719 list_for_each_entry(iter, &opp_table->opp_list, node) {
1720 if (iter->rates[0] == freq) {
1721 opp = iter;
1722 break;
1723 }
1724 }
1725
1726 mutex_unlock(&opp_table->lock);
1727
1728 if (opp) {
1729 dev_pm_opp_put(opp);
1730
1731 /* Drop the reference taken by dev_pm_opp_add() */
1732 dev_pm_opp_put_opp_table(opp_table);
1733 } else {
1734 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1735 __func__, freq);
1736 }
1737
1738 put_table:
1739 /* Drop the reference taken by _find_opp_table() */
1740 dev_pm_opp_put_opp_table(opp_table);
1741 }
1742 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1743
_opp_get_next(struct opp_table * opp_table,bool dynamic)1744 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1745 bool dynamic)
1746 {
1747 struct dev_pm_opp *opp = NULL, *temp;
1748
1749 mutex_lock(&opp_table->lock);
1750 list_for_each_entry(temp, &opp_table->opp_list, node) {
1751 /*
1752 * Refcount must be dropped only once for each OPP by OPP core,
1753 * do that with help of "removed" flag.
1754 */
1755 if (!temp->removed && dynamic == temp->dynamic) {
1756 opp = temp;
1757 break;
1758 }
1759 }
1760
1761 mutex_unlock(&opp_table->lock);
1762 return opp;
1763 }
1764
1765 /*
1766 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1767 * happen lock less to avoid circular dependency issues. This routine must be
1768 * called without the opp_table->lock held.
1769 */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1770 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1771 {
1772 struct dev_pm_opp *opp;
1773
1774 while ((opp = _opp_get_next(opp_table, dynamic))) {
1775 opp->removed = true;
1776 dev_pm_opp_put(opp);
1777
1778 /* Drop the references taken by dev_pm_opp_add() */
1779 if (dynamic)
1780 dev_pm_opp_put_opp_table(opp_table);
1781 }
1782 }
1783
_opp_remove_all_static(struct opp_table * opp_table)1784 bool _opp_remove_all_static(struct opp_table *opp_table)
1785 {
1786 mutex_lock(&opp_table->lock);
1787
1788 if (!opp_table->parsed_static_opps) {
1789 mutex_unlock(&opp_table->lock);
1790 return false;
1791 }
1792
1793 if (--opp_table->parsed_static_opps) {
1794 mutex_unlock(&opp_table->lock);
1795 return true;
1796 }
1797
1798 mutex_unlock(&opp_table->lock);
1799
1800 _opp_remove_all(opp_table, false);
1801 return true;
1802 }
1803
1804 /**
1805 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1806 * @dev: device for which we do this operation
1807 *
1808 * This function removes all dynamically created OPPs from the opp table.
1809 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1810 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1811 {
1812 struct opp_table *opp_table;
1813
1814 opp_table = _find_opp_table(dev);
1815 if (IS_ERR(opp_table))
1816 return;
1817
1818 _opp_remove_all(opp_table, true);
1819
1820 /* Drop the reference taken by _find_opp_table() */
1821 dev_pm_opp_put_opp_table(opp_table);
1822 }
1823 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1824
_opp_allocate(struct opp_table * opp_table)1825 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1826 {
1827 struct dev_pm_opp *opp;
1828 int supply_count, supply_size, icc_size, clk_size;
1829
1830 /* Allocate space for at least one supply */
1831 supply_count = opp_table->regulator_count > 0 ?
1832 opp_table->regulator_count : 1;
1833 supply_size = sizeof(*opp->supplies) * supply_count;
1834 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1835 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1836
1837 /* allocate new OPP node and supplies structures */
1838 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1839 if (!opp)
1840 return NULL;
1841
1842 /* Put the supplies, bw and clock at the end of the OPP structure */
1843 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1844
1845 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1846
1847 if (icc_size)
1848 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1849
1850 INIT_LIST_HEAD(&opp->node);
1851
1852 return opp;
1853 }
1854
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1855 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1856 struct opp_table *opp_table)
1857 {
1858 struct regulator *reg;
1859 int i;
1860
1861 if (!opp_table->regulators)
1862 return true;
1863
1864 for (i = 0; i < opp_table->regulator_count; i++) {
1865 reg = opp_table->regulators[i];
1866
1867 if (!regulator_is_supported_voltage(reg,
1868 opp->supplies[i].u_volt_min,
1869 opp->supplies[i].u_volt_max)) {
1870 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1871 __func__, opp->supplies[i].u_volt_min,
1872 opp->supplies[i].u_volt_max);
1873 return false;
1874 }
1875 }
1876
1877 return true;
1878 }
1879
_opp_compare_rate(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1880 static int _opp_compare_rate(struct opp_table *opp_table,
1881 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1882 {
1883 int i;
1884
1885 for (i = 0; i < opp_table->clk_count; i++) {
1886 if (opp1->rates[i] != opp2->rates[i])
1887 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1888 }
1889
1890 /* Same rates for both OPPs */
1891 return 0;
1892 }
1893
_opp_compare_bw(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1894 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1895 struct dev_pm_opp *opp2)
1896 {
1897 int i;
1898
1899 for (i = 0; i < opp_table->path_count; i++) {
1900 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1901 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1902 }
1903
1904 /* Same bw for both OPPs */
1905 return 0;
1906 }
1907
1908 /*
1909 * Returns
1910 * 0: opp1 == opp2
1911 * 1: opp1 > opp2
1912 * -1: opp1 < opp2
1913 */
_opp_compare_key(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1914 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1915 struct dev_pm_opp *opp2)
1916 {
1917 int ret;
1918
1919 ret = _opp_compare_rate(opp_table, opp1, opp2);
1920 if (ret)
1921 return ret;
1922
1923 ret = _opp_compare_bw(opp_table, opp1, opp2);
1924 if (ret)
1925 return ret;
1926
1927 if (opp1->level != opp2->level)
1928 return opp1->level < opp2->level ? -1 : 1;
1929
1930 /* Duplicate OPPs */
1931 return 0;
1932 }
1933
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1934 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1935 struct opp_table *opp_table,
1936 struct list_head **head)
1937 {
1938 struct dev_pm_opp *opp;
1939 int opp_cmp;
1940
1941 /*
1942 * Insert new OPP in order of increasing frequency and discard if
1943 * already present.
1944 *
1945 * Need to use &opp_table->opp_list in the condition part of the 'for'
1946 * loop, don't replace it with head otherwise it will become an infinite
1947 * loop.
1948 */
1949 list_for_each_entry(opp, &opp_table->opp_list, node) {
1950 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1951 if (opp_cmp > 0) {
1952 *head = &opp->node;
1953 continue;
1954 }
1955
1956 if (opp_cmp < 0)
1957 return 0;
1958
1959 /* Duplicate OPPs */
1960 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1961 __func__, opp->rates[0], opp->supplies[0].u_volt,
1962 opp->available, new_opp->rates[0],
1963 new_opp->supplies[0].u_volt, new_opp->available);
1964
1965 /* Should we compare voltages for all regulators here ? */
1966 return opp->available &&
1967 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1968 }
1969
1970 return 0;
1971 }
1972
_required_opps_available(struct dev_pm_opp * opp,int count)1973 void _required_opps_available(struct dev_pm_opp *opp, int count)
1974 {
1975 int i;
1976
1977 for (i = 0; i < count; i++) {
1978 if (opp->required_opps[i]->available)
1979 continue;
1980
1981 opp->available = false;
1982 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1983 __func__, opp->required_opps[i]->np, opp->rates[0]);
1984 return;
1985 }
1986 }
1987
1988 /*
1989 * Returns:
1990 * 0: On success. And appropriate error message for duplicate OPPs.
1991 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1992 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1993 * sure we don't print error messages unnecessarily if different parts of
1994 * kernel try to initialize the OPP table.
1995 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1996 * should be considered an error by the callers of _opp_add().
1997 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table)1998 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1999 struct opp_table *opp_table)
2000 {
2001 struct list_head *head;
2002 int ret;
2003
2004 mutex_lock(&opp_table->lock);
2005 head = &opp_table->opp_list;
2006
2007 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2008 if (ret) {
2009 mutex_unlock(&opp_table->lock);
2010 return ret;
2011 }
2012
2013 list_add(&new_opp->node, head);
2014 mutex_unlock(&opp_table->lock);
2015
2016 new_opp->opp_table = opp_table;
2017 kref_init(&new_opp->kref);
2018
2019 opp_debug_create_one(new_opp, opp_table);
2020
2021 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2022 new_opp->available = false;
2023 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2024 __func__, new_opp->rates[0]);
2025 }
2026
2027 /* required-opps not fully initialized yet */
2028 if (lazy_linking_pending(opp_table))
2029 return 0;
2030
2031 _required_opps_available(new_opp, opp_table->required_opp_count);
2032
2033 return 0;
2034 }
2035
2036 /**
2037 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2038 * @opp_table: OPP table
2039 * @dev: device for which we do this operation
2040 * @data: The OPP data for the OPP to add
2041 * @dynamic: Dynamically added OPPs.
2042 *
2043 * This function adds an opp definition to the opp table and returns status.
2044 * The opp is made available by default and it can be controlled using
2045 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2046 *
2047 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2048 * and freed by dev_pm_opp_of_remove_table.
2049 *
2050 * Return:
2051 * 0 On success OR
2052 * Duplicate OPPs (both freq and volt are same) and opp->available
2053 * -EEXIST Freq are same and volt are different OR
2054 * Duplicate OPPs (both freq and volt are same) and !opp->available
2055 * -ENOMEM Memory allocation failure
2056 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,struct dev_pm_opp_data * data,bool dynamic)2057 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2058 struct dev_pm_opp_data *data, bool dynamic)
2059 {
2060 struct dev_pm_opp *new_opp;
2061 unsigned long tol, u_volt = data->u_volt;
2062 int ret;
2063
2064 if (!assert_single_clk(opp_table))
2065 return -EINVAL;
2066
2067 new_opp = _opp_allocate(opp_table);
2068 if (!new_opp)
2069 return -ENOMEM;
2070
2071 /* populate the opp table */
2072 new_opp->rates[0] = data->freq;
2073 new_opp->level = data->level;
2074 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2075 new_opp->supplies[0].u_volt = u_volt;
2076 new_opp->supplies[0].u_volt_min = u_volt - tol;
2077 new_opp->supplies[0].u_volt_max = u_volt + tol;
2078 new_opp->available = true;
2079 new_opp->dynamic = dynamic;
2080
2081 ret = _opp_add(dev, new_opp, opp_table);
2082 if (ret) {
2083 /* Don't return error for duplicate OPPs */
2084 if (ret == -EBUSY)
2085 ret = 0;
2086 goto free_opp;
2087 }
2088
2089 /*
2090 * Notify the changes in the availability of the operable
2091 * frequency/voltage list.
2092 */
2093 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2094 return 0;
2095
2096 free_opp:
2097 _opp_free(new_opp);
2098
2099 return ret;
2100 }
2101
2102 /**
2103 * _opp_set_supported_hw() - Set supported platforms
2104 * @dev: Device for which supported-hw has to be set.
2105 * @versions: Array of hierarchy of versions to match.
2106 * @count: Number of elements in the array.
2107 *
2108 * This is required only for the V2 bindings, and it enables a platform to
2109 * specify the hierarchy of versions it supports. OPP layer will then enable
2110 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2111 * property.
2112 */
_opp_set_supported_hw(struct opp_table * opp_table,const u32 * versions,unsigned int count)2113 static int _opp_set_supported_hw(struct opp_table *opp_table,
2114 const u32 *versions, unsigned int count)
2115 {
2116 /* Another CPU that shares the OPP table has set the property ? */
2117 if (opp_table->supported_hw)
2118 return 0;
2119
2120 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2121 GFP_KERNEL);
2122 if (!opp_table->supported_hw)
2123 return -ENOMEM;
2124
2125 opp_table->supported_hw_count = count;
2126
2127 return 0;
2128 }
2129
2130 /**
2131 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2132 * @opp_table: OPP table returned by _opp_set_supported_hw().
2133 *
2134 * This is required only for the V2 bindings, and is called for a matching
2135 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2136 * will not be freed.
2137 */
_opp_put_supported_hw(struct opp_table * opp_table)2138 static void _opp_put_supported_hw(struct opp_table *opp_table)
2139 {
2140 if (opp_table->supported_hw) {
2141 kfree(opp_table->supported_hw);
2142 opp_table->supported_hw = NULL;
2143 opp_table->supported_hw_count = 0;
2144 }
2145 }
2146
2147 /**
2148 * _opp_set_prop_name() - Set prop-extn name
2149 * @dev: Device for which the prop-name has to be set.
2150 * @name: name to postfix to properties.
2151 *
2152 * This is required only for the V2 bindings, and it enables a platform to
2153 * specify the extn to be used for certain property names. The properties to
2154 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155 * should postfix the property name with -<name> while looking for them.
2156 */
_opp_set_prop_name(struct opp_table * opp_table,const char * name)2157 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158 {
2159 /* Another CPU that shares the OPP table has set the property ? */
2160 if (!opp_table->prop_name) {
2161 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162 if (!opp_table->prop_name)
2163 return -ENOMEM;
2164 }
2165
2166 return 0;
2167 }
2168
2169 /**
2170 * _opp_put_prop_name() - Releases resources blocked for prop-name
2171 * @opp_table: OPP table returned by _opp_set_prop_name().
2172 *
2173 * This is required only for the V2 bindings, and is called for a matching
2174 * _opp_set_prop_name(). Until this is called, the opp_table structure
2175 * will not be freed.
2176 */
_opp_put_prop_name(struct opp_table * opp_table)2177 static void _opp_put_prop_name(struct opp_table *opp_table)
2178 {
2179 if (opp_table->prop_name) {
2180 kfree(opp_table->prop_name);
2181 opp_table->prop_name = NULL;
2182 }
2183 }
2184
2185 /**
2186 * _opp_set_regulators() - Set regulator names for the device
2187 * @dev: Device for which regulator name is being set.
2188 * @names: Array of pointers to the names of the regulator.
2189 * @count: Number of regulators.
2190 *
2191 * In order to support OPP switching, OPP layer needs to know the name of the
2192 * device's regulators, as the core would be required to switch voltages as
2193 * well.
2194 *
2195 * This must be called before any OPPs are initialized for the device.
2196 */
_opp_set_regulators(struct opp_table * opp_table,struct device * dev,const char * const names[])2197 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2198 const char * const names[])
2199 {
2200 const char * const *temp = names;
2201 struct regulator *reg;
2202 int count = 0, ret, i;
2203
2204 /* Count number of regulators */
2205 while (*temp++)
2206 count++;
2207
2208 if (!count)
2209 return -EINVAL;
2210
2211 /* Another CPU that shares the OPP table has set the regulators ? */
2212 if (opp_table->regulators)
2213 return 0;
2214
2215 opp_table->regulators = kmalloc_array(count,
2216 sizeof(*opp_table->regulators),
2217 GFP_KERNEL);
2218 if (!opp_table->regulators)
2219 return -ENOMEM;
2220
2221 for (i = 0; i < count; i++) {
2222 reg = regulator_get_optional(dev, names[i]);
2223 if (IS_ERR(reg)) {
2224 ret = dev_err_probe(dev, PTR_ERR(reg),
2225 "%s: no regulator (%s) found\n",
2226 __func__, names[i]);
2227 goto free_regulators;
2228 }
2229
2230 opp_table->regulators[i] = reg;
2231 }
2232
2233 opp_table->regulator_count = count;
2234
2235 /* Set generic config_regulators() for single regulators here */
2236 if (count == 1)
2237 opp_table->config_regulators = _opp_config_regulator_single;
2238
2239 return 0;
2240
2241 free_regulators:
2242 while (i != 0)
2243 regulator_put(opp_table->regulators[--i]);
2244
2245 kfree(opp_table->regulators);
2246 opp_table->regulators = NULL;
2247 opp_table->regulator_count = -1;
2248
2249 return ret;
2250 }
2251
2252 /**
2253 * _opp_put_regulators() - Releases resources blocked for regulator
2254 * @opp_table: OPP table returned from _opp_set_regulators().
2255 */
_opp_put_regulators(struct opp_table * opp_table)2256 static void _opp_put_regulators(struct opp_table *opp_table)
2257 {
2258 int i;
2259
2260 if (!opp_table->regulators)
2261 return;
2262
2263 if (opp_table->enabled) {
2264 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2265 regulator_disable(opp_table->regulators[i]);
2266 }
2267
2268 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2269 regulator_put(opp_table->regulators[i]);
2270
2271 kfree(opp_table->regulators);
2272 opp_table->regulators = NULL;
2273 opp_table->regulator_count = -1;
2274 }
2275
_put_clks(struct opp_table * opp_table,int count)2276 static void _put_clks(struct opp_table *opp_table, int count)
2277 {
2278 int i;
2279
2280 for (i = count - 1; i >= 0; i--)
2281 clk_put(opp_table->clks[i]);
2282
2283 kfree(opp_table->clks);
2284 opp_table->clks = NULL;
2285 }
2286
2287 /**
2288 * _opp_set_clknames() - Set clk names for the device
2289 * @dev: Device for which clk names is being set.
2290 * @names: Clk names.
2291 *
2292 * In order to support OPP switching, OPP layer needs to get pointers to the
2293 * clocks for the device. Simple cases work fine without using this routine
2294 * (i.e. by passing connection-id as NULL), but for a device with multiple
2295 * clocks available, the OPP core needs to know the exact names of the clks to
2296 * use.
2297 *
2298 * This must be called before any OPPs are initialized for the device.
2299 */
_opp_set_clknames(struct opp_table * opp_table,struct device * dev,const char * const names[],config_clks_t config_clks)2300 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2301 const char * const names[],
2302 config_clks_t config_clks)
2303 {
2304 const char * const *temp = names;
2305 int count = 0, ret, i;
2306 struct clk *clk;
2307
2308 /* Count number of clks */
2309 while (*temp++)
2310 count++;
2311
2312 /*
2313 * This is a special case where we have a single clock, whose connection
2314 * id name is NULL, i.e. first two entries are NULL in the array.
2315 */
2316 if (!count && !names[1])
2317 count = 1;
2318
2319 /* Fail early for invalid configurations */
2320 if (!count || (!config_clks && count > 1))
2321 return -EINVAL;
2322
2323 /* Another CPU that shares the OPP table has set the clkname ? */
2324 if (opp_table->clks)
2325 return 0;
2326
2327 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2328 GFP_KERNEL);
2329 if (!opp_table->clks)
2330 return -ENOMEM;
2331
2332 /* Find clks for the device */
2333 for (i = 0; i < count; i++) {
2334 clk = clk_get(dev, names[i]);
2335 if (IS_ERR(clk)) {
2336 ret = dev_err_probe(dev, PTR_ERR(clk),
2337 "%s: Couldn't find clock with name: %s\n",
2338 __func__, names[i]);
2339 goto free_clks;
2340 }
2341
2342 opp_table->clks[i] = clk;
2343 }
2344
2345 opp_table->clk_count = count;
2346 opp_table->config_clks = config_clks;
2347
2348 /* Set generic single clk set here */
2349 if (count == 1) {
2350 if (!opp_table->config_clks)
2351 opp_table->config_clks = _opp_config_clk_single;
2352
2353 /*
2354 * We could have just dropped the "clk" field and used "clks"
2355 * everywhere. Instead we kept the "clk" field around for
2356 * following reasons:
2357 *
2358 * - avoiding clks[0] everywhere else.
2359 * - not running single clk helpers for multiple clk usecase by
2360 * mistake.
2361 *
2362 * Since this is single-clk case, just update the clk pointer
2363 * too.
2364 */
2365 opp_table->clk = opp_table->clks[0];
2366 }
2367
2368 return 0;
2369
2370 free_clks:
2371 _put_clks(opp_table, i);
2372 return ret;
2373 }
2374
2375 /**
2376 * _opp_put_clknames() - Releases resources blocked for clks.
2377 * @opp_table: OPP table returned from _opp_set_clknames().
2378 */
_opp_put_clknames(struct opp_table * opp_table)2379 static void _opp_put_clknames(struct opp_table *opp_table)
2380 {
2381 if (!opp_table->clks)
2382 return;
2383
2384 opp_table->config_clks = NULL;
2385 opp_table->clk = ERR_PTR(-ENODEV);
2386
2387 _put_clks(opp_table, opp_table->clk_count);
2388 }
2389
2390 /**
2391 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2392 * @dev: Device for which the helper is getting registered.
2393 * @config_regulators: Custom set regulator helper.
2394 *
2395 * This is useful to support platforms with multiple regulators per device.
2396 *
2397 * This must be called before any OPPs are initialized for the device.
2398 */
_opp_set_config_regulators_helper(struct opp_table * opp_table,struct device * dev,config_regulators_t config_regulators)2399 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2400 struct device *dev, config_regulators_t config_regulators)
2401 {
2402 /* Another CPU that shares the OPP table has set the helper ? */
2403 if (!opp_table->config_regulators)
2404 opp_table->config_regulators = config_regulators;
2405
2406 return 0;
2407 }
2408
2409 /**
2410 * _opp_put_config_regulators_helper() - Releases resources blocked for
2411 * config_regulators helper.
2412 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2413 *
2414 * Release resources blocked for platform specific config_regulators helper.
2415 */
_opp_put_config_regulators_helper(struct opp_table * opp_table)2416 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2417 {
2418 if (opp_table->config_regulators)
2419 opp_table->config_regulators = NULL;
2420 }
2421
_detach_genpd(struct opp_table * opp_table)2422 static void _detach_genpd(struct opp_table *opp_table)
2423 {
2424 int index;
2425
2426 if (!opp_table->genpd_virt_devs)
2427 return;
2428
2429 for (index = 0; index < opp_table->required_opp_count; index++) {
2430 if (!opp_table->genpd_virt_devs[index])
2431 continue;
2432
2433 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2434 opp_table->genpd_virt_devs[index] = NULL;
2435 }
2436
2437 kfree(opp_table->genpd_virt_devs);
2438 opp_table->genpd_virt_devs = NULL;
2439 }
2440
2441 /**
2442 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2443 * @dev: Consumer device for which the genpd is getting attached.
2444 * @names: Null terminated array of pointers containing names of genpd to attach.
2445 * @virt_devs: Pointer to return the array of virtual devices.
2446 *
2447 * Multiple generic power domains for a device are supported with the help of
2448 * virtual genpd devices, which are created for each consumer device - genpd
2449 * pair. These are the device structures which are attached to the power domain
2450 * and are required by the OPP core to set the performance state of the genpd.
2451 * The same API also works for the case where single genpd is available and so
2452 * we don't need to support that separately.
2453 *
2454 * This helper will normally be called by the consumer driver of the device
2455 * "dev", as only that has details of the genpd names.
2456 *
2457 * This helper needs to be called once with a list of all genpd to attach.
2458 * Otherwise the original device structure will be used instead by the OPP core.
2459 *
2460 * The order of entries in the names array must match the order in which
2461 * "required-opps" are added in DT.
2462 */
_opp_attach_genpd(struct opp_table * opp_table,struct device * dev,const char * const * names,struct device *** virt_devs)2463 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2464 const char * const *names, struct device ***virt_devs)
2465 {
2466 struct device *virt_dev;
2467 int index = 0, ret = -EINVAL;
2468 const char * const *name = names;
2469
2470 if (opp_table->genpd_virt_devs)
2471 return 0;
2472
2473 /*
2474 * If the genpd's OPP table isn't already initialized, parsing of the
2475 * required-opps fail for dev. We should retry this after genpd's OPP
2476 * table is added.
2477 */
2478 if (!opp_table->required_opp_count)
2479 return -EPROBE_DEFER;
2480
2481 mutex_lock(&opp_table->genpd_virt_dev_lock);
2482
2483 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2484 sizeof(*opp_table->genpd_virt_devs),
2485 GFP_KERNEL);
2486 if (!opp_table->genpd_virt_devs)
2487 goto unlock;
2488
2489 while (*name) {
2490 if (index >= opp_table->required_opp_count) {
2491 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2492 *name, opp_table->required_opp_count, index);
2493 goto err;
2494 }
2495
2496 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2497 if (IS_ERR_OR_NULL(virt_dev)) {
2498 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2499 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2500 goto err;
2501 }
2502
2503 opp_table->genpd_virt_devs[index] = virt_dev;
2504 index++;
2505 name++;
2506 }
2507
2508 if (virt_devs)
2509 *virt_devs = opp_table->genpd_virt_devs;
2510 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2511
2512 return 0;
2513
2514 err:
2515 _detach_genpd(opp_table);
2516 unlock:
2517 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2518 return ret;
2519
2520 }
2521
2522 /**
2523 * _opp_detach_genpd() - Detach genpd(s) from the device.
2524 * @opp_table: OPP table returned by _opp_attach_genpd().
2525 *
2526 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2527 * OPP table.
2528 */
_opp_detach_genpd(struct opp_table * opp_table)2529 static void _opp_detach_genpd(struct opp_table *opp_table)
2530 {
2531 /*
2532 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2533 * used in parallel.
2534 */
2535 mutex_lock(&opp_table->genpd_virt_dev_lock);
2536 _detach_genpd(opp_table);
2537 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2538 }
2539
_opp_clear_config(struct opp_config_data * data)2540 static void _opp_clear_config(struct opp_config_data *data)
2541 {
2542 if (data->flags & OPP_CONFIG_GENPD)
2543 _opp_detach_genpd(data->opp_table);
2544 if (data->flags & OPP_CONFIG_REGULATOR)
2545 _opp_put_regulators(data->opp_table);
2546 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2547 _opp_put_supported_hw(data->opp_table);
2548 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2549 _opp_put_config_regulators_helper(data->opp_table);
2550 if (data->flags & OPP_CONFIG_PROP_NAME)
2551 _opp_put_prop_name(data->opp_table);
2552 if (data->flags & OPP_CONFIG_CLK)
2553 _opp_put_clknames(data->opp_table);
2554
2555 dev_pm_opp_put_opp_table(data->opp_table);
2556 kfree(data);
2557 }
2558
2559 /**
2560 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2561 * @dev: Device for which configuration is being set.
2562 * @config: OPP configuration.
2563 *
2564 * This allows all device OPP configurations to be performed at once.
2565 *
2566 * This must be called before any OPPs are initialized for the device. This may
2567 * be called multiple times for the same OPP table, for example once for each
2568 * CPU that share the same table. This must be balanced by the same number of
2569 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2570 *
2571 * This returns a token to the caller, which must be passed to
2572 * dev_pm_opp_clear_config() to free the resources later. The value of the
2573 * returned token will be >= 1 for success and negative for errors. The minimum
2574 * value of 1 is chosen here to make it easy for callers to manage the resource.
2575 */
dev_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2576 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2577 {
2578 struct opp_table *opp_table;
2579 struct opp_config_data *data;
2580 unsigned int id;
2581 int ret;
2582
2583 data = kmalloc(sizeof(*data), GFP_KERNEL);
2584 if (!data)
2585 return -ENOMEM;
2586
2587 opp_table = _add_opp_table(dev, false);
2588 if (IS_ERR(opp_table)) {
2589 kfree(data);
2590 return PTR_ERR(opp_table);
2591 }
2592
2593 data->opp_table = opp_table;
2594 data->flags = 0;
2595
2596 /* This should be called before OPPs are initialized */
2597 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2598 ret = -EBUSY;
2599 goto err;
2600 }
2601
2602 /* Configure clocks */
2603 if (config->clk_names) {
2604 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2605 config->config_clks);
2606 if (ret)
2607 goto err;
2608
2609 data->flags |= OPP_CONFIG_CLK;
2610 } else if (config->config_clks) {
2611 /* Don't allow config callback without clocks */
2612 ret = -EINVAL;
2613 goto err;
2614 }
2615
2616 /* Configure property names */
2617 if (config->prop_name) {
2618 ret = _opp_set_prop_name(opp_table, config->prop_name);
2619 if (ret)
2620 goto err;
2621
2622 data->flags |= OPP_CONFIG_PROP_NAME;
2623 }
2624
2625 /* Configure config_regulators helper */
2626 if (config->config_regulators) {
2627 ret = _opp_set_config_regulators_helper(opp_table, dev,
2628 config->config_regulators);
2629 if (ret)
2630 goto err;
2631
2632 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2633 }
2634
2635 /* Configure supported hardware */
2636 if (config->supported_hw) {
2637 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2638 config->supported_hw_count);
2639 if (ret)
2640 goto err;
2641
2642 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2643 }
2644
2645 /* Configure supplies */
2646 if (config->regulator_names) {
2647 ret = _opp_set_regulators(opp_table, dev,
2648 config->regulator_names);
2649 if (ret)
2650 goto err;
2651
2652 data->flags |= OPP_CONFIG_REGULATOR;
2653 }
2654
2655 /* Attach genpds */
2656 if (config->genpd_names) {
2657 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2658 config->virt_devs);
2659 if (ret)
2660 goto err;
2661
2662 data->flags |= OPP_CONFIG_GENPD;
2663 }
2664
2665 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2666 GFP_KERNEL);
2667 if (ret)
2668 goto err;
2669
2670 return id;
2671
2672 err:
2673 _opp_clear_config(data);
2674 return ret;
2675 }
2676 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2677
2678 /**
2679 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2680 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2681 *
2682 * This allows all device OPP configurations to be cleared at once. This must be
2683 * called once for each call made to dev_pm_opp_set_config(), in order to free
2684 * the OPPs properly.
2685 *
2686 * Currently the first call itself ends up freeing all the OPP configurations,
2687 * while the later ones only drop the OPP table reference. This works well for
2688 * now as we would never want to use an half initialized OPP table and want to
2689 * remove the configurations together.
2690 */
dev_pm_opp_clear_config(int token)2691 void dev_pm_opp_clear_config(int token)
2692 {
2693 struct opp_config_data *data;
2694
2695 /*
2696 * This lets the callers call this unconditionally and keep their code
2697 * simple.
2698 */
2699 if (unlikely(token <= 0))
2700 return;
2701
2702 data = xa_erase(&opp_configs, token);
2703 if (WARN_ON(!data))
2704 return;
2705
2706 _opp_clear_config(data);
2707 }
2708 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2709
devm_pm_opp_config_release(void * token)2710 static void devm_pm_opp_config_release(void *token)
2711 {
2712 dev_pm_opp_clear_config((unsigned long)token);
2713 }
2714
2715 /**
2716 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2717 * @dev: Device for which configuration is being set.
2718 * @config: OPP configuration.
2719 *
2720 * This allows all device OPP configurations to be performed at once.
2721 * This is a resource-managed variant of dev_pm_opp_set_config().
2722 *
2723 * Return: 0 on success and errorno otherwise.
2724 */
devm_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2725 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2726 {
2727 int token = dev_pm_opp_set_config(dev, config);
2728
2729 if (token < 0)
2730 return token;
2731
2732 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2733 (void *) ((unsigned long) token));
2734 }
2735 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2736
2737 /**
2738 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2739 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2740 * @dst_table: Required OPP table of the @src_table.
2741 * @src_opp: OPP from the @src_table.
2742 *
2743 * This function returns the OPP (present in @dst_table) pointed out by the
2744 * "required-opps" property of the @src_opp (present in @src_table).
2745 *
2746 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2747 * use.
2748 *
2749 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2750 */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2751 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2752 struct opp_table *dst_table,
2753 struct dev_pm_opp *src_opp)
2754 {
2755 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2756 int i;
2757
2758 if (!src_table || !dst_table || !src_opp ||
2759 !src_table->required_opp_tables)
2760 return ERR_PTR(-EINVAL);
2761
2762 /* required-opps not fully initialized yet */
2763 if (lazy_linking_pending(src_table))
2764 return ERR_PTR(-EBUSY);
2765
2766 for (i = 0; i < src_table->required_opp_count; i++) {
2767 if (src_table->required_opp_tables[i] == dst_table) {
2768 mutex_lock(&src_table->lock);
2769
2770 list_for_each_entry(opp, &src_table->opp_list, node) {
2771 if (opp == src_opp) {
2772 dest_opp = opp->required_opps[i];
2773 dev_pm_opp_get(dest_opp);
2774 break;
2775 }
2776 }
2777
2778 mutex_unlock(&src_table->lock);
2779 break;
2780 }
2781 }
2782
2783 if (IS_ERR(dest_opp)) {
2784 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2785 src_table, dst_table);
2786 }
2787
2788 return dest_opp;
2789 }
2790 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2791
2792 /**
2793 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2794 * @src_table: OPP table which has dst_table as one of its required OPP table.
2795 * @dst_table: Required OPP table of the src_table.
2796 * @pstate: Current performance state of the src_table.
2797 *
2798 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2799 * "required-opps" property of the OPP (present in @src_table) which has
2800 * performance state set to @pstate.
2801 *
2802 * Return: Zero or positive performance state on success, otherwise negative
2803 * value on errors.
2804 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2805 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2806 struct opp_table *dst_table,
2807 unsigned int pstate)
2808 {
2809 struct dev_pm_opp *opp;
2810 int dest_pstate = -EINVAL;
2811 int i;
2812
2813 /*
2814 * Normally the src_table will have the "required_opps" property set to
2815 * point to one of the OPPs in the dst_table, but in some cases the
2816 * genpd and its master have one to one mapping of performance states
2817 * and so none of them have the "required-opps" property set. Return the
2818 * pstate of the src_table as it is in such cases.
2819 */
2820 if (!src_table || !src_table->required_opp_count)
2821 return pstate;
2822
2823 /* Both OPP tables must belong to genpds */
2824 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2825 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2826 return -EINVAL;
2827 }
2828
2829 /* required-opps not fully initialized yet */
2830 if (lazy_linking_pending(src_table))
2831 return -EBUSY;
2832
2833 for (i = 0; i < src_table->required_opp_count; i++) {
2834 if (src_table->required_opp_tables[i]->np == dst_table->np)
2835 break;
2836 }
2837
2838 if (unlikely(i == src_table->required_opp_count)) {
2839 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2840 __func__, src_table, dst_table);
2841 return -EINVAL;
2842 }
2843
2844 mutex_lock(&src_table->lock);
2845
2846 list_for_each_entry(opp, &src_table->opp_list, node) {
2847 if (opp->level == pstate) {
2848 dest_pstate = opp->required_opps[i]->level;
2849 goto unlock;
2850 }
2851 }
2852
2853 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2854 dst_table);
2855
2856 unlock:
2857 mutex_unlock(&src_table->lock);
2858
2859 return dest_pstate;
2860 }
2861
2862 /**
2863 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2864 * @dev: The device for which we do this operation
2865 * @data: The OPP data for the OPP to add
2866 *
2867 * This function adds an opp definition to the opp table and returns status.
2868 * The opp is made available by default and it can be controlled using
2869 * dev_pm_opp_enable/disable functions.
2870 *
2871 * Return:
2872 * 0 On success OR
2873 * Duplicate OPPs (both freq and volt are same) and opp->available
2874 * -EEXIST Freq are same and volt are different OR
2875 * Duplicate OPPs (both freq and volt are same) and !opp->available
2876 * -ENOMEM Memory allocation failure
2877 */
dev_pm_opp_add_dynamic(struct device * dev,struct dev_pm_opp_data * data)2878 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2879 {
2880 struct opp_table *opp_table;
2881 int ret;
2882
2883 opp_table = _add_opp_table(dev, true);
2884 if (IS_ERR(opp_table))
2885 return PTR_ERR(opp_table);
2886
2887 /* Fix regulator count for dynamic OPPs */
2888 opp_table->regulator_count = 1;
2889
2890 ret = _opp_add_v1(opp_table, dev, data, true);
2891 if (ret)
2892 dev_pm_opp_put_opp_table(opp_table);
2893
2894 return ret;
2895 }
2896 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2897
2898 /**
2899 * _opp_set_availability() - helper to set the availability of an opp
2900 * @dev: device for which we do this operation
2901 * @freq: OPP frequency to modify availability
2902 * @availability_req: availability status requested for this opp
2903 *
2904 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2905 * which is isolated here.
2906 *
2907 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2908 * copy operation, returns 0 if no modification was done OR modification was
2909 * successful.
2910 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2911 static int _opp_set_availability(struct device *dev, unsigned long freq,
2912 bool availability_req)
2913 {
2914 struct opp_table *opp_table;
2915 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2916 int r = 0;
2917
2918 /* Find the opp_table */
2919 opp_table = _find_opp_table(dev);
2920 if (IS_ERR(opp_table)) {
2921 r = PTR_ERR(opp_table);
2922 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2923 return r;
2924 }
2925
2926 if (!assert_single_clk(opp_table)) {
2927 r = -EINVAL;
2928 goto put_table;
2929 }
2930
2931 mutex_lock(&opp_table->lock);
2932
2933 /* Do we have the frequency? */
2934 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2935 if (tmp_opp->rates[0] == freq) {
2936 opp = tmp_opp;
2937 break;
2938 }
2939 }
2940
2941 if (IS_ERR(opp)) {
2942 r = PTR_ERR(opp);
2943 goto unlock;
2944 }
2945
2946 /* Is update really needed? */
2947 if (opp->available == availability_req)
2948 goto unlock;
2949
2950 opp->available = availability_req;
2951
2952 dev_pm_opp_get(opp);
2953 mutex_unlock(&opp_table->lock);
2954
2955 /* Notify the change of the OPP availability */
2956 if (availability_req)
2957 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2958 opp);
2959 else
2960 blocking_notifier_call_chain(&opp_table->head,
2961 OPP_EVENT_DISABLE, opp);
2962
2963 dev_pm_opp_put(opp);
2964 goto put_table;
2965
2966 unlock:
2967 mutex_unlock(&opp_table->lock);
2968 put_table:
2969 dev_pm_opp_put_opp_table(opp_table);
2970 return r;
2971 }
2972
2973 /**
2974 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2975 * @dev: device for which we do this operation
2976 * @freq: OPP frequency to adjust voltage of
2977 * @u_volt: new OPP target voltage
2978 * @u_volt_min: new OPP min voltage
2979 * @u_volt_max: new OPP max voltage
2980 *
2981 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2982 * copy operation, returns 0 if no modifcation was done OR modification was
2983 * successful.
2984 */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2985 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2986 unsigned long u_volt, unsigned long u_volt_min,
2987 unsigned long u_volt_max)
2988
2989 {
2990 struct opp_table *opp_table;
2991 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2992 int r = 0;
2993
2994 /* Find the opp_table */
2995 opp_table = _find_opp_table(dev);
2996 if (IS_ERR(opp_table)) {
2997 r = PTR_ERR(opp_table);
2998 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2999 return r;
3000 }
3001
3002 if (!assert_single_clk(opp_table)) {
3003 r = -EINVAL;
3004 goto put_table;
3005 }
3006
3007 mutex_lock(&opp_table->lock);
3008
3009 /* Do we have the frequency? */
3010 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
3011 if (tmp_opp->rates[0] == freq) {
3012 opp = tmp_opp;
3013 break;
3014 }
3015 }
3016
3017 if (IS_ERR(opp)) {
3018 r = PTR_ERR(opp);
3019 goto adjust_unlock;
3020 }
3021
3022 /* Is update really needed? */
3023 if (opp->supplies->u_volt == u_volt)
3024 goto adjust_unlock;
3025
3026 opp->supplies->u_volt = u_volt;
3027 opp->supplies->u_volt_min = u_volt_min;
3028 opp->supplies->u_volt_max = u_volt_max;
3029
3030 dev_pm_opp_get(opp);
3031 mutex_unlock(&opp_table->lock);
3032
3033 /* Notify the voltage change of the OPP */
3034 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3035 opp);
3036
3037 dev_pm_opp_put(opp);
3038 goto put_table;
3039
3040 adjust_unlock:
3041 mutex_unlock(&opp_table->lock);
3042 put_table:
3043 dev_pm_opp_put_opp_table(opp_table);
3044 return r;
3045 }
3046 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3047
3048 /**
3049 * dev_pm_opp_enable() - Enable a specific OPP
3050 * @dev: device for which we do this operation
3051 * @freq: OPP frequency to enable
3052 *
3053 * Enables a provided opp. If the operation is valid, this returns 0, else the
3054 * corresponding error value. It is meant to be used for users an OPP available
3055 * after being temporarily made unavailable with dev_pm_opp_disable.
3056 *
3057 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3058 * copy operation, returns 0 if no modification was done OR modification was
3059 * successful.
3060 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)3061 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3062 {
3063 return _opp_set_availability(dev, freq, true);
3064 }
3065 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3066
3067 /**
3068 * dev_pm_opp_disable() - Disable a specific OPP
3069 * @dev: device for which we do this operation
3070 * @freq: OPP frequency to disable
3071 *
3072 * Disables a provided opp. If the operation is valid, this returns
3073 * 0, else the corresponding error value. It is meant to be a temporary
3074 * control by users to make this OPP not available until the circumstances are
3075 * right to make it available again (with a call to dev_pm_opp_enable).
3076 *
3077 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3078 * copy operation, returns 0 if no modification was done OR modification was
3079 * successful.
3080 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)3081 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3082 {
3083 return _opp_set_availability(dev, freq, false);
3084 }
3085 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3086
3087 /**
3088 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3089 * @dev: Device for which notifier needs to be registered
3090 * @nb: Notifier block to be registered
3091 *
3092 * Return: 0 on success or a negative error value.
3093 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)3094 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3095 {
3096 struct opp_table *opp_table;
3097 int ret;
3098
3099 opp_table = _find_opp_table(dev);
3100 if (IS_ERR(opp_table))
3101 return PTR_ERR(opp_table);
3102
3103 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3104
3105 dev_pm_opp_put_opp_table(opp_table);
3106
3107 return ret;
3108 }
3109 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3110
3111 /**
3112 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3113 * @dev: Device for which notifier needs to be unregistered
3114 * @nb: Notifier block to be unregistered
3115 *
3116 * Return: 0 on success or a negative error value.
3117 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)3118 int dev_pm_opp_unregister_notifier(struct device *dev,
3119 struct notifier_block *nb)
3120 {
3121 struct opp_table *opp_table;
3122 int ret;
3123
3124 opp_table = _find_opp_table(dev);
3125 if (IS_ERR(opp_table))
3126 return PTR_ERR(opp_table);
3127
3128 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3129
3130 dev_pm_opp_put_opp_table(opp_table);
3131
3132 return ret;
3133 }
3134 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3135
3136 /**
3137 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3138 * @dev: device pointer used to lookup OPP table.
3139 *
3140 * Free both OPPs created using static entries present in DT and the
3141 * dynamically added entries.
3142 */
dev_pm_opp_remove_table(struct device * dev)3143 void dev_pm_opp_remove_table(struct device *dev)
3144 {
3145 struct opp_table *opp_table;
3146
3147 /* Check for existing table for 'dev' */
3148 opp_table = _find_opp_table(dev);
3149 if (IS_ERR(opp_table)) {
3150 int error = PTR_ERR(opp_table);
3151
3152 if (error != -ENODEV)
3153 WARN(1, "%s: opp_table: %d\n",
3154 IS_ERR_OR_NULL(dev) ?
3155 "Invalid device" : dev_name(dev),
3156 error);
3157 return;
3158 }
3159
3160 /*
3161 * Drop the extra reference only if the OPP table was successfully added
3162 * with dev_pm_opp_of_add_table() earlier.
3163 **/
3164 if (_opp_remove_all_static(opp_table))
3165 dev_pm_opp_put_opp_table(opp_table);
3166
3167 /* Drop reference taken by _find_opp_table() */
3168 dev_pm_opp_put_opp_table(opp_table);
3169 }
3170 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3171
3172 /**
3173 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3174 * @dev: device for which we do this operation
3175 *
3176 * Sync voltage state of the OPP table regulators.
3177 *
3178 * Return: 0 on success or a negative error value.
3179 */
dev_pm_opp_sync_regulators(struct device * dev)3180 int dev_pm_opp_sync_regulators(struct device *dev)
3181 {
3182 struct opp_table *opp_table;
3183 struct regulator *reg;
3184 int i, ret = 0;
3185
3186 /* Device may not have OPP table */
3187 opp_table = _find_opp_table(dev);
3188 if (IS_ERR(opp_table))
3189 return 0;
3190
3191 /* Regulator may not be required for the device */
3192 if (unlikely(!opp_table->regulators))
3193 goto put_table;
3194
3195 /* Nothing to sync if voltage wasn't changed */
3196 if (!opp_table->enabled)
3197 goto put_table;
3198
3199 for (i = 0; i < opp_table->regulator_count; i++) {
3200 reg = opp_table->regulators[i];
3201 ret = regulator_sync_voltage(reg);
3202 if (ret)
3203 break;
3204 }
3205 put_table:
3206 /* Drop reference taken by _find_opp_table() */
3207 dev_pm_opp_put_opp_table(opp_table);
3208
3209 return ret;
3210 }
3211 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3212