1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ARMv8 PMUv3 Performance Events handling code.
4 *
5 * Copyright (C) 2012 ARM Limited
6 * Author: Will Deacon <will.deacon@arm.com>
7 *
8 * This code is based heavily on the ARMv7 perf event code.
9 */
10
11 #include <asm/irq_regs.h>
12 #include <asm/perf_event.h>
13 #include <asm/virt.h>
14
15 #include <clocksource/arm_arch_timer.h>
16
17 #include <linux/acpi.h>
18 #include <linux/clocksource.h>
19 #include <linux/of.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/perf/arm_pmuv3.h>
22 #include <linux/platform_device.h>
23 #include <linux/sched_clock.h>
24 #include <linux/smp.h>
25 #include <linux/nmi.h>
26 #include <trace/hooks/perf.h>
27 #include <asm/arm_pmuv3.h>
28
29 /* ARMv8 Cortex-A53 specific event types. */
30 #define ARMV8_A53_PERFCTR_PREF_LINEFILL 0xC2
31
32 /* ARMv8 Cavium ThunderX specific event types. */
33 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST 0xE9
34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS 0xEA
35 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS 0xEB
36 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS 0xEC
37 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS 0xED
38
39 /*
40 * ARMv8 Architectural defined events, not all of these may
41 * be supported on any given implementation. Unsupported events will
42 * be disabled at run-time based on the PMCEID registers.
43 */
44 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
45 PERF_MAP_ALL_UNSUPPORTED,
46 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
47 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INST_RETIRED,
48 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE,
49 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
50 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
51 [PERF_COUNT_HW_BUS_CYCLES] = ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
52 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
53 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
54 };
55
56 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
57 [PERF_COUNT_HW_CACHE_OP_MAX]
58 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
59 PERF_CACHE_MAP_ALL_UNSUPPORTED,
60
61 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE,
62 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
63
64 [C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE,
65 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
66
67 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
68 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB,
69
70 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
71 [C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB,
72
73 [C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
74 [C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
75
76 [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_BR_PRED,
77 [C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
78 };
79
80 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
81 [PERF_COUNT_HW_CACHE_OP_MAX]
82 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
83 PERF_CACHE_MAP_ALL_UNSUPPORTED,
84
85 [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
86
87 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
88 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
89 };
90
91 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
92 [PERF_COUNT_HW_CACHE_OP_MAX]
93 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
94 PERF_CACHE_MAP_ALL_UNSUPPORTED,
95
96 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
97 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
98 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
99 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
100
101 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
102 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
103
104 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
105 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
106 };
107
108 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
109 [PERF_COUNT_HW_CACHE_OP_MAX]
110 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
111 PERF_CACHE_MAP_ALL_UNSUPPORTED,
112
113 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
114 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
115 };
116
117 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
118 [PERF_COUNT_HW_CACHE_OP_MAX]
119 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
120 PERF_CACHE_MAP_ALL_UNSUPPORTED,
121
122 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
123 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
124 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
125 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
126 [C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
127 [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
128
129 [C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
130 [C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
131
132 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
133 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
134 [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
135 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
136 };
137
138 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
139 [PERF_COUNT_HW_CACHE_OP_MAX]
140 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
141 PERF_CACHE_MAP_ALL_UNSUPPORTED,
142
143 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
144 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
145 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
146 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
147
148 [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
149 [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
150 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
151 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
152
153 [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
154 [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
155 };
156
157 static ssize_t
armv8pmu_events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)158 armv8pmu_events_sysfs_show(struct device *dev,
159 struct device_attribute *attr, char *page)
160 {
161 struct perf_pmu_events_attr *pmu_attr;
162
163 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
164
165 return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
166 }
167
168 #define ARMV8_EVENT_ATTR(name, config) \
169 PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
170
171 static struct attribute *armv8_pmuv3_event_attrs[] = {
172 /*
173 * Don't expose the sw_incr event in /sys. It's not usable as writes to
174 * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation
175 * means we don't have a fixed event<->counter relationship regardless.
176 */
177 ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
178 ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
179 ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
180 ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
181 ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
182 ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
183 ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
184 ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
185 ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
186 ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
187 ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
188 ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
189 ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
190 ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
191 ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
192 ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
193 ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
194 ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
195 ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
196 ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
197 ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
198 ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
199 ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
200 ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
201 ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
202 ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
203 ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
204 ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
205 ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
206 /* Don't expose the chain event in /sys, since it's useless in isolation */
207 ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
208 ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
209 ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
210 ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
211 ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
212 ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
213 ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
214 ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
215 ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
216 ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
217 ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
218 ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
219 ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
220 ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
221 ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
222 ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
223 ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
224 ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
225 ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
226 ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
227 ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
228 ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
229 ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
230 ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
231 ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
232 ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
233 ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
234 ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
235 ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
236 ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
237 ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
238 ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
239 ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
240 ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
241 ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
242 ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
243 ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
244 ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
245 ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
246 ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
247 ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
248 ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
249 ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
250 ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
251 ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
252 ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
253 ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
254 ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
255 ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
256 ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
257 ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
258 ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
259 ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
260 ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
261 ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
262 ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
263 ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
264 ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
265 ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
266 NULL,
267 };
268
269 static umode_t
armv8pmu_event_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)270 armv8pmu_event_attr_is_visible(struct kobject *kobj,
271 struct attribute *attr, int unused)
272 {
273 struct device *dev = kobj_to_dev(kobj);
274 struct pmu *pmu = dev_get_drvdata(dev);
275 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
276 struct perf_pmu_events_attr *pmu_attr;
277
278 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
279
280 if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
281 test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
282 return attr->mode;
283
284 if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
285 u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
286
287 if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
288 test_bit(id, cpu_pmu->pmceid_ext_bitmap))
289 return attr->mode;
290 }
291
292 return 0;
293 }
294
295 static const struct attribute_group armv8_pmuv3_events_attr_group = {
296 .name = "events",
297 .attrs = armv8_pmuv3_event_attrs,
298 .is_visible = armv8pmu_event_attr_is_visible,
299 };
300
301 PMU_FORMAT_ATTR(event, "config:0-15");
302 PMU_FORMAT_ATTR(long, "config1:0");
303 PMU_FORMAT_ATTR(rdpmc, "config1:1");
304
305 static int sysctl_perf_user_access __read_mostly;
306
armv8pmu_event_is_64bit(struct perf_event * event)307 static inline bool armv8pmu_event_is_64bit(struct perf_event *event)
308 {
309 return event->attr.config1 & 0x1;
310 }
311
armv8pmu_event_want_user_access(struct perf_event * event)312 static inline bool armv8pmu_event_want_user_access(struct perf_event *event)
313 {
314 return event->attr.config1 & 0x2;
315 }
316
317 static struct attribute *armv8_pmuv3_format_attrs[] = {
318 &format_attr_event.attr,
319 &format_attr_long.attr,
320 &format_attr_rdpmc.attr,
321 NULL,
322 };
323
324 static const struct attribute_group armv8_pmuv3_format_attr_group = {
325 .name = "format",
326 .attrs = armv8_pmuv3_format_attrs,
327 };
328
slots_show(struct device * dev,struct device_attribute * attr,char * page)329 static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
330 char *page)
331 {
332 struct pmu *pmu = dev_get_drvdata(dev);
333 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
334 u32 slots = cpu_pmu->reg_pmmir & ARMV8_PMU_SLOTS_MASK;
335
336 return sysfs_emit(page, "0x%08x\n", slots);
337 }
338
339 static DEVICE_ATTR_RO(slots);
340
bus_slots_show(struct device * dev,struct device_attribute * attr,char * page)341 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
342 char *page)
343 {
344 struct pmu *pmu = dev_get_drvdata(dev);
345 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
346 u32 bus_slots = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_SLOTS_SHIFT)
347 & ARMV8_PMU_BUS_SLOTS_MASK;
348
349 return sysfs_emit(page, "0x%08x\n", bus_slots);
350 }
351
352 static DEVICE_ATTR_RO(bus_slots);
353
bus_width_show(struct device * dev,struct device_attribute * attr,char * page)354 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
355 char *page)
356 {
357 struct pmu *pmu = dev_get_drvdata(dev);
358 struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
359 u32 bus_width = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_WIDTH_SHIFT)
360 & ARMV8_PMU_BUS_WIDTH_MASK;
361 u32 val = 0;
362
363 /* Encoded as Log2(number of bytes), plus one */
364 if (bus_width > 2 && bus_width < 13)
365 val = 1 << (bus_width - 1);
366
367 return sysfs_emit(page, "0x%08x\n", val);
368 }
369
370 static DEVICE_ATTR_RO(bus_width);
371
372 static struct attribute *armv8_pmuv3_caps_attrs[] = {
373 &dev_attr_slots.attr,
374 &dev_attr_bus_slots.attr,
375 &dev_attr_bus_width.attr,
376 NULL,
377 };
378
379 static const struct attribute_group armv8_pmuv3_caps_attr_group = {
380 .name = "caps",
381 .attrs = armv8_pmuv3_caps_attrs,
382 };
383
384 /*
385 * Perf Events' indices
386 */
387 #define ARMV8_IDX_CYCLE_COUNTER 0
388 #define ARMV8_IDX_COUNTER0 1
389 #define ARMV8_IDX_CYCLE_COUNTER_USER 32
390
391 /*
392 * We unconditionally enable ARMv8.5-PMU long event counter support
393 * (64-bit events) where supported. Indicate if this arm_pmu has long
394 * event counter support.
395 *
396 * On AArch32, long counters make no sense (you can't access the top
397 * bits), so we only enable this on AArch64.
398 */
armv8pmu_has_long_event(struct arm_pmu * cpu_pmu)399 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
400 {
401 return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
402 }
403
armv8pmu_event_has_user_read(struct perf_event * event)404 static inline bool armv8pmu_event_has_user_read(struct perf_event *event)
405 {
406 return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
407 }
408
409 /*
410 * We must chain two programmable counters for 64 bit events,
411 * except when we have allocated the 64bit cycle counter (for CPU
412 * cycles event) or when user space counter access is enabled.
413 */
armv8pmu_event_is_chained(struct perf_event * event)414 static inline bool armv8pmu_event_is_chained(struct perf_event *event)
415 {
416 int idx = event->hw.idx;
417 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
418
419 return !armv8pmu_event_has_user_read(event) &&
420 armv8pmu_event_is_64bit(event) &&
421 !armv8pmu_has_long_event(cpu_pmu) &&
422 (idx != ARMV8_IDX_CYCLE_COUNTER);
423 }
424
425 /*
426 * ARMv8 low level PMU access
427 */
428
429 /*
430 * Perf Event to low level counters mapping
431 */
432 #define ARMV8_IDX_TO_COUNTER(x) \
433 (((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK)
434
armv8pmu_pmcr_read(void)435 static inline u64 armv8pmu_pmcr_read(void)
436 {
437 return read_pmcr();
438 }
439
armv8pmu_pmcr_write(u64 val)440 static inline void armv8pmu_pmcr_write(u64 val)
441 {
442 val &= ARMV8_PMU_PMCR_MASK;
443 isb();
444 write_pmcr(val);
445 }
446
armv8pmu_has_overflowed(u32 pmovsr)447 static inline int armv8pmu_has_overflowed(u32 pmovsr)
448 {
449 return pmovsr & ARMV8_PMU_OVERFLOWED_MASK;
450 }
451
armv8pmu_counter_has_overflowed(u32 pmnc,int idx)452 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
453 {
454 return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx));
455 }
456
armv8pmu_read_evcntr(int idx)457 static inline u64 armv8pmu_read_evcntr(int idx)
458 {
459 u32 counter = ARMV8_IDX_TO_COUNTER(idx);
460
461 return read_pmevcntrn(counter);
462 }
463
armv8pmu_read_hw_counter(struct perf_event * event)464 static inline u64 armv8pmu_read_hw_counter(struct perf_event *event)
465 {
466 int idx = event->hw.idx;
467 u64 val = armv8pmu_read_evcntr(idx);
468
469 if (armv8pmu_event_is_chained(event))
470 val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
471 return val;
472 }
473
474 /*
475 * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
476 * is set the event counters also become 64-bit counters. Unless the
477 * user has requested a long counter (attr.config1) then we want to
478 * interrupt upon 32-bit overflow - we achieve this by applying a bias.
479 */
armv8pmu_event_needs_bias(struct perf_event * event)480 static bool armv8pmu_event_needs_bias(struct perf_event *event)
481 {
482 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
483 struct hw_perf_event *hwc = &event->hw;
484 int idx = hwc->idx;
485
486 if (armv8pmu_event_is_64bit(event))
487 return false;
488
489 if (armv8pmu_has_long_event(cpu_pmu) ||
490 idx == ARMV8_IDX_CYCLE_COUNTER)
491 return true;
492
493 return false;
494 }
495
armv8pmu_bias_long_counter(struct perf_event * event,u64 value)496 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
497 {
498 if (armv8pmu_event_needs_bias(event))
499 value |= GENMASK_ULL(63, 32);
500
501 return value;
502 }
503
armv8pmu_unbias_long_counter(struct perf_event * event,u64 value)504 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
505 {
506 if (armv8pmu_event_needs_bias(event))
507 value &= ~GENMASK_ULL(63, 32);
508
509 return value;
510 }
511
armv8pmu_read_counter(struct perf_event * event)512 static u64 armv8pmu_read_counter(struct perf_event *event)
513 {
514 struct hw_perf_event *hwc = &event->hw;
515 int idx = hwc->idx;
516 u64 value;
517
518 if (idx == ARMV8_IDX_CYCLE_COUNTER)
519 value = read_pmccntr();
520 else
521 value = armv8pmu_read_hw_counter(event);
522
523 return armv8pmu_unbias_long_counter(event, value);
524 }
525
armv8pmu_write_evcntr(int idx,u64 value)526 static inline void armv8pmu_write_evcntr(int idx, u64 value)
527 {
528 u32 counter = ARMV8_IDX_TO_COUNTER(idx);
529
530 write_pmevcntrn(counter, value);
531 }
532
armv8pmu_write_hw_counter(struct perf_event * event,u64 value)533 static inline void armv8pmu_write_hw_counter(struct perf_event *event,
534 u64 value)
535 {
536 int idx = event->hw.idx;
537
538 if (armv8pmu_event_is_chained(event)) {
539 armv8pmu_write_evcntr(idx, upper_32_bits(value));
540 armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
541 } else {
542 armv8pmu_write_evcntr(idx, value);
543 }
544 }
545
armv8pmu_write_counter(struct perf_event * event,u64 value)546 static void armv8pmu_write_counter(struct perf_event *event, u64 value)
547 {
548 struct hw_perf_event *hwc = &event->hw;
549 int idx = hwc->idx;
550
551 value = armv8pmu_bias_long_counter(event, value);
552
553 if (idx == ARMV8_IDX_CYCLE_COUNTER)
554 write_pmccntr(value);
555 else
556 armv8pmu_write_hw_counter(event, value);
557 }
558
armv8pmu_write_evtype(int idx,u32 val)559 static inline void armv8pmu_write_evtype(int idx, u32 val)
560 {
561 u32 counter = ARMV8_IDX_TO_COUNTER(idx);
562
563 val &= ARMV8_PMU_EVTYPE_MASK;
564 write_pmevtypern(counter, val);
565 }
566
armv8pmu_write_event_type(struct perf_event * event)567 static inline void armv8pmu_write_event_type(struct perf_event *event)
568 {
569 struct hw_perf_event *hwc = &event->hw;
570 int idx = hwc->idx;
571
572 /*
573 * For chained events, the low counter is programmed to count
574 * the event of interest and the high counter is programmed
575 * with CHAIN event code with filters set to count at all ELs.
576 */
577 if (armv8pmu_event_is_chained(event)) {
578 u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
579 ARMV8_PMU_INCLUDE_EL2;
580
581 armv8pmu_write_evtype(idx - 1, hwc->config_base);
582 armv8pmu_write_evtype(idx, chain_evt);
583 } else {
584 if (idx == ARMV8_IDX_CYCLE_COUNTER)
585 write_pmccfiltr(hwc->config_base);
586 else
587 armv8pmu_write_evtype(idx, hwc->config_base);
588 }
589 }
590
armv8pmu_event_cnten_mask(struct perf_event * event)591 static u32 armv8pmu_event_cnten_mask(struct perf_event *event)
592 {
593 int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
594 u32 mask = BIT(counter);
595
596 if (armv8pmu_event_is_chained(event))
597 mask |= BIT(counter - 1);
598 return mask;
599 }
600
armv8pmu_enable_counter(u32 mask)601 static inline void armv8pmu_enable_counter(u32 mask)
602 {
603 /*
604 * Make sure event configuration register writes are visible before we
605 * enable the counter.
606 * */
607 isb();
608 write_pmcntenset(mask);
609 }
610
armv8pmu_enable_event_counter(struct perf_event * event)611 static inline void armv8pmu_enable_event_counter(struct perf_event *event)
612 {
613 struct perf_event_attr *attr = &event->attr;
614 u32 mask = armv8pmu_event_cnten_mask(event);
615
616 kvm_set_pmu_events(mask, attr);
617
618 /* We rely on the hypervisor switch code to enable guest counters */
619 if (!kvm_pmu_counter_deferred(attr))
620 armv8pmu_enable_counter(mask);
621 }
622
armv8pmu_disable_counter(u32 mask)623 static inline void armv8pmu_disable_counter(u32 mask)
624 {
625 write_pmcntenclr(mask);
626 /*
627 * Make sure the effects of disabling the counter are visible before we
628 * start configuring the event.
629 */
630 isb();
631 }
632
armv8pmu_disable_event_counter(struct perf_event * event)633 static inline void armv8pmu_disable_event_counter(struct perf_event *event)
634 {
635 struct perf_event_attr *attr = &event->attr;
636 u32 mask = armv8pmu_event_cnten_mask(event);
637
638 kvm_clr_pmu_events(mask);
639
640 /* We rely on the hypervisor switch code to disable guest counters */
641 if (!kvm_pmu_counter_deferred(attr))
642 armv8pmu_disable_counter(mask);
643 }
644
armv8pmu_enable_intens(u32 mask)645 static inline void armv8pmu_enable_intens(u32 mask)
646 {
647 write_pmintenset(mask);
648 }
649
armv8pmu_enable_event_irq(struct perf_event * event)650 static inline void armv8pmu_enable_event_irq(struct perf_event *event)
651 {
652 u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
653 armv8pmu_enable_intens(BIT(counter));
654 }
655
armv8pmu_disable_intens(u32 mask)656 static inline void armv8pmu_disable_intens(u32 mask)
657 {
658 write_pmintenclr(mask);
659 isb();
660 /* Clear the overflow flag in case an interrupt is pending. */
661 write_pmovsclr(mask);
662 isb();
663 }
664
armv8pmu_disable_event_irq(struct perf_event * event)665 static inline void armv8pmu_disable_event_irq(struct perf_event *event)
666 {
667 u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
668 armv8pmu_disable_intens(BIT(counter));
669 }
670
armv8pmu_getreset_flags(void)671 static inline u32 armv8pmu_getreset_flags(void)
672 {
673 u32 value;
674
675 /* Read */
676 value = read_pmovsclr();
677
678 /* Write to clear flags */
679 value &= ARMV8_PMU_OVSR_MASK;
680 write_pmovsclr(value);
681
682 return value;
683 }
684
update_pmuserenr(u64 val)685 static void update_pmuserenr(u64 val)
686 {
687 lockdep_assert_irqs_disabled();
688
689 /*
690 * The current PMUSERENR_EL0 value might be the value for the guest.
691 * If that's the case, have KVM keep tracking of the register value
692 * for the host EL0 so that KVM can restore it before returning to
693 * the host EL0. Otherwise, update the register now.
694 */
695 if (kvm_set_pmuserenr(val))
696 return;
697
698 write_pmuserenr(val);
699 }
700
armv8pmu_disable_user_access(void)701 static void armv8pmu_disable_user_access(void)
702 {
703 update_pmuserenr(0);
704 }
705
armv8pmu_enable_user_access(struct arm_pmu * cpu_pmu)706 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
707 {
708 int i;
709 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
710
711 /* Clear any unused counters to avoid leaking their contents */
712 for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) {
713 if (i == ARMV8_IDX_CYCLE_COUNTER)
714 write_pmccntr(0);
715 else
716 armv8pmu_write_evcntr(i, 0);
717 }
718
719 update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
720 }
721
armv8pmu_enable_event(struct perf_event * event)722 static void armv8pmu_enable_event(struct perf_event *event)
723 {
724 /*
725 * Enable counter and interrupt, and set the counter to count
726 * the event that we're interested in.
727 */
728 armv8pmu_disable_event_counter(event);
729 armv8pmu_write_event_type(event);
730 armv8pmu_enable_event_irq(event);
731 armv8pmu_enable_event_counter(event);
732 }
733
armv8pmu_disable_event(struct perf_event * event)734 static void armv8pmu_disable_event(struct perf_event *event)
735 {
736 armv8pmu_disable_event_counter(event);
737 armv8pmu_disable_event_irq(event);
738 }
739
armv8pmu_start(struct arm_pmu * cpu_pmu)740 static void armv8pmu_start(struct arm_pmu *cpu_pmu)
741 {
742 struct perf_event_context *ctx;
743 int nr_user = 0;
744
745 ctx = perf_cpu_task_ctx();
746 if (ctx)
747 nr_user = ctx->nr_user;
748
749 if (sysctl_perf_user_access && nr_user)
750 armv8pmu_enable_user_access(cpu_pmu);
751 else
752 armv8pmu_disable_user_access();
753
754 /* Enable all counters */
755 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
756
757 kvm_vcpu_pmu_resync_el0();
758 }
759
armv8pmu_stop(struct arm_pmu * cpu_pmu)760 static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
761 {
762 /* Disable all counters */
763 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
764 }
765
armv8pmu_handle_irq(struct arm_pmu * cpu_pmu)766 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
767 {
768 u32 pmovsr;
769 struct perf_sample_data data;
770 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
771 struct pt_regs *regs;
772 int idx;
773
774 /*
775 * Get and reset the IRQ flags
776 */
777 pmovsr = armv8pmu_getreset_flags();
778
779 /*
780 * Did an overflow occur?
781 */
782 if (!armv8pmu_has_overflowed(pmovsr))
783 return IRQ_NONE;
784
785 /*
786 * Handle the counter(s) overflow(s)
787 */
788 regs = get_irq_regs();
789
790 /*
791 * Stop the PMU while processing the counter overflows
792 * to prevent skews in group events.
793 */
794 armv8pmu_stop(cpu_pmu);
795 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
796 struct perf_event *event = cpuc->events[idx];
797 struct hw_perf_event *hwc;
798
799 /* Ignore if we don't have an event. */
800 if (!event)
801 continue;
802
803 /*
804 * We have a single interrupt for all counters. Check that
805 * each counter has overflowed before we process it.
806 */
807 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
808 continue;
809
810 hwc = &event->hw;
811 armpmu_event_update(event);
812 trace_android_rvh_armv8pmu_counter_overflowed(event);
813 perf_sample_data_init(&data, 0, hwc->last_period);
814 if (!armpmu_event_set_period(event))
815 continue;
816
817 /*
818 * Perf event overflow will queue the processing of the event as
819 * an irq_work which will be taken care of in the handling of
820 * IPI_IRQ_WORK.
821 */
822 if (perf_event_overflow(event, &data, regs))
823 cpu_pmu->disable(event);
824 }
825 armv8pmu_start(cpu_pmu);
826
827 return IRQ_HANDLED;
828 }
829
armv8pmu_get_single_idx(struct pmu_hw_events * cpuc,struct arm_pmu * cpu_pmu)830 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
831 struct arm_pmu *cpu_pmu)
832 {
833 int idx;
834
835 for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) {
836 if (!test_and_set_bit(idx, cpuc->used_mask))
837 return idx;
838 }
839 return -EAGAIN;
840 }
841
armv8pmu_get_chain_idx(struct pmu_hw_events * cpuc,struct arm_pmu * cpu_pmu)842 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
843 struct arm_pmu *cpu_pmu)
844 {
845 int idx;
846
847 /*
848 * Chaining requires two consecutive event counters, where
849 * the lower idx must be even.
850 */
851 for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) {
852 if (!test_and_set_bit(idx, cpuc->used_mask)) {
853 /* Check if the preceding even counter is available */
854 if (!test_and_set_bit(idx - 1, cpuc->used_mask))
855 return idx;
856 /* Release the Odd counter */
857 clear_bit(idx, cpuc->used_mask);
858 }
859 }
860 return -EAGAIN;
861 }
862
armv8pmu_get_event_idx(struct pmu_hw_events * cpuc,struct perf_event * event)863 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
864 struct perf_event *event)
865 {
866 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
867 struct hw_perf_event *hwc = &event->hw;
868 unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
869
870 /* Always prefer to place a cycle counter into the cycle counter. */
871 if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) {
872 if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
873 return ARMV8_IDX_CYCLE_COUNTER;
874 else if (armv8pmu_event_is_64bit(event) &&
875 armv8pmu_event_want_user_access(event) &&
876 !armv8pmu_has_long_event(cpu_pmu))
877 return -EAGAIN;
878 }
879
880 /*
881 * Otherwise use events counters
882 */
883 if (armv8pmu_event_is_chained(event))
884 return armv8pmu_get_chain_idx(cpuc, cpu_pmu);
885 else
886 return armv8pmu_get_single_idx(cpuc, cpu_pmu);
887 }
888
armv8pmu_clear_event_idx(struct pmu_hw_events * cpuc,struct perf_event * event)889 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
890 struct perf_event *event)
891 {
892 int idx = event->hw.idx;
893
894 clear_bit(idx, cpuc->used_mask);
895 if (armv8pmu_event_is_chained(event))
896 clear_bit(idx - 1, cpuc->used_mask);
897 }
898
armv8pmu_user_event_idx(struct perf_event * event)899 static int armv8pmu_user_event_idx(struct perf_event *event)
900 {
901 if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
902 return 0;
903
904 /*
905 * We remap the cycle counter index to 32 to
906 * match the offset applied to the rest of
907 * the counter indices.
908 */
909 if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER)
910 return ARMV8_IDX_CYCLE_COUNTER_USER;
911
912 return event->hw.idx;
913 }
914
915 /*
916 * Add an event filter to a given event.
917 */
armv8pmu_set_event_filter(struct hw_perf_event * event,struct perf_event_attr * attr)918 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
919 struct perf_event_attr *attr)
920 {
921 unsigned long config_base = 0;
922
923 if (attr->exclude_idle)
924 return -EPERM;
925
926 /*
927 * If we're running in hyp mode, then we *are* the hypervisor.
928 * Therefore we ignore exclude_hv in this configuration, since
929 * there's no hypervisor to sample anyway. This is consistent
930 * with other architectures (x86 and Power).
931 */
932 if (is_kernel_in_hyp_mode()) {
933 if (!attr->exclude_kernel && !attr->exclude_host)
934 config_base |= ARMV8_PMU_INCLUDE_EL2;
935 if (attr->exclude_guest)
936 config_base |= ARMV8_PMU_EXCLUDE_EL1;
937 if (attr->exclude_host)
938 config_base |= ARMV8_PMU_EXCLUDE_EL0;
939 } else {
940 if (!attr->exclude_hv && !attr->exclude_host)
941 config_base |= ARMV8_PMU_INCLUDE_EL2;
942 }
943
944 /*
945 * Filter out !VHE kernels and guest kernels
946 */
947 if (attr->exclude_kernel)
948 config_base |= ARMV8_PMU_EXCLUDE_EL1;
949
950 if (attr->exclude_user)
951 config_base |= ARMV8_PMU_EXCLUDE_EL0;
952
953 /*
954 * Install the filter into config_base as this is used to
955 * construct the event type.
956 */
957 event->config_base = config_base;
958
959 return 0;
960 }
961
armv8pmu_reset(void * info)962 static void armv8pmu_reset(void *info)
963 {
964 struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
965 u64 pmcr;
966
967 /* The counter and interrupt enable registers are unknown at reset. */
968 armv8pmu_disable_counter(U32_MAX);
969 armv8pmu_disable_intens(U32_MAX);
970
971 /* Clear the counters we flip at guest entry/exit */
972 kvm_clr_pmu_events(U32_MAX);
973
974 /*
975 * Initialize & Reset PMNC. Request overflow interrupt for
976 * 64 bit cycle counter but cheat in armv8pmu_write_counter().
977 */
978 pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
979
980 /* Enable long event counter support where available */
981 if (armv8pmu_has_long_event(cpu_pmu))
982 pmcr |= ARMV8_PMU_PMCR_LP;
983
984 armv8pmu_pmcr_write(pmcr);
985 }
986
__armv8_pmuv3_map_event_id(struct arm_pmu * armpmu,struct perf_event * event)987 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
988 struct perf_event *event)
989 {
990 if (event->attr.type == PERF_TYPE_HARDWARE &&
991 event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
992
993 if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
994 armpmu->pmceid_bitmap))
995 return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
996
997 if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
998 armpmu->pmceid_bitmap))
999 return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
1000
1001 return HW_OP_UNSUPPORTED;
1002 }
1003
1004 return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1005 &armv8_pmuv3_perf_cache_map,
1006 ARMV8_PMU_EVTYPE_EVENT);
1007 }
1008
__armv8_pmuv3_map_event(struct perf_event * event,const unsigned (* extra_event_map)[PERF_COUNT_HW_MAX],const unsigned (* extra_cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX])1009 static int __armv8_pmuv3_map_event(struct perf_event *event,
1010 const unsigned (*extra_event_map)
1011 [PERF_COUNT_HW_MAX],
1012 const unsigned (*extra_cache_map)
1013 [PERF_COUNT_HW_CACHE_MAX]
1014 [PERF_COUNT_HW_CACHE_OP_MAX]
1015 [PERF_COUNT_HW_CACHE_RESULT_MAX])
1016 {
1017 int hw_event_id;
1018 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1019
1020 hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1021
1022 /*
1023 * CHAIN events only work when paired with an adjacent counter, and it
1024 * never makes sense for a user to open one in isolation, as they'll be
1025 * rotated arbitrarily.
1026 */
1027 if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1028 return -EINVAL;
1029
1030 if (armv8pmu_event_is_64bit(event))
1031 event->hw.flags |= ARMPMU_EVT_64BIT;
1032
1033 /*
1034 * User events must be allocated into a single counter, and so
1035 * must not be chained.
1036 *
1037 * Most 64-bit events require long counter support, but 64-bit
1038 * CPU_CYCLES events can be placed into the dedicated cycle
1039 * counter when this is free.
1040 */
1041 if (armv8pmu_event_want_user_access(event)) {
1042 if (!(event->attach_state & PERF_ATTACH_TASK))
1043 return -EINVAL;
1044 if (armv8pmu_event_is_64bit(event) &&
1045 (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1046 !armv8pmu_has_long_event(armpmu))
1047 return -EOPNOTSUPP;
1048
1049 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1050 }
1051
1052 /* Only expose micro/arch events supported by this PMU */
1053 if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1054 && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1055 return hw_event_id;
1056 }
1057
1058 return armpmu_map_event(event, extra_event_map, extra_cache_map,
1059 ARMV8_PMU_EVTYPE_EVENT);
1060 }
1061
armv8_pmuv3_map_event(struct perf_event * event)1062 static int armv8_pmuv3_map_event(struct perf_event *event)
1063 {
1064 return __armv8_pmuv3_map_event(event, NULL, NULL);
1065 }
1066
armv8_a53_map_event(struct perf_event * event)1067 static int armv8_a53_map_event(struct perf_event *event)
1068 {
1069 return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1070 }
1071
armv8_a57_map_event(struct perf_event * event)1072 static int armv8_a57_map_event(struct perf_event *event)
1073 {
1074 return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1075 }
1076
armv8_a73_map_event(struct perf_event * event)1077 static int armv8_a73_map_event(struct perf_event *event)
1078 {
1079 return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1080 }
1081
armv8_thunder_map_event(struct perf_event * event)1082 static int armv8_thunder_map_event(struct perf_event *event)
1083 {
1084 return __armv8_pmuv3_map_event(event, NULL,
1085 &armv8_thunder_perf_cache_map);
1086 }
1087
armv8_vulcan_map_event(struct perf_event * event)1088 static int armv8_vulcan_map_event(struct perf_event *event)
1089 {
1090 return __armv8_pmuv3_map_event(event, NULL,
1091 &armv8_vulcan_perf_cache_map);
1092 }
1093
1094 struct armv8pmu_probe_info {
1095 struct arm_pmu *pmu;
1096 bool present;
1097 };
1098
__armv8pmu_probe_pmu(void * info)1099 static void __armv8pmu_probe_pmu(void *info)
1100 {
1101 struct armv8pmu_probe_info *probe = info;
1102 struct arm_pmu *cpu_pmu = probe->pmu;
1103 u64 pmceid_raw[2];
1104 u32 pmceid[2];
1105 int pmuver;
1106
1107 pmuver = read_pmuver();
1108 if (!pmuv3_implemented(pmuver))
1109 return;
1110
1111 cpu_pmu->pmuver = pmuver;
1112 probe->present = true;
1113
1114 /* Read the nb of CNTx counters supported from PMNC */
1115 cpu_pmu->num_events = (armv8pmu_pmcr_read() >> ARMV8_PMU_PMCR_N_SHIFT)
1116 & ARMV8_PMU_PMCR_N_MASK;
1117
1118 /* Add the CPU cycles counter */
1119 cpu_pmu->num_events += 1;
1120
1121 pmceid[0] = pmceid_raw[0] = read_pmceid0();
1122 pmceid[1] = pmceid_raw[1] = read_pmceid1();
1123
1124 bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1125 pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1126
1127 pmceid[0] = pmceid_raw[0] >> 32;
1128 pmceid[1] = pmceid_raw[1] >> 32;
1129
1130 bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1131 pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1132
1133 /* store PMMIR register for sysfs */
1134 if (is_pmuv3p4(pmuver) && (pmceid_raw[1] & BIT(31)))
1135 cpu_pmu->reg_pmmir = read_pmmir();
1136 else
1137 cpu_pmu->reg_pmmir = 0;
1138 }
1139
armv8pmu_probe_pmu(struct arm_pmu * cpu_pmu)1140 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1141 {
1142 struct armv8pmu_probe_info probe = {
1143 .pmu = cpu_pmu,
1144 .present = false,
1145 };
1146 int ret;
1147
1148 ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1149 __armv8pmu_probe_pmu,
1150 &probe, 1);
1151 if (ret)
1152 return ret;
1153
1154 return probe.present ? 0 : -ENODEV;
1155 }
1156
armv8pmu_disable_user_access_ipi(void * unused)1157 static void armv8pmu_disable_user_access_ipi(void *unused)
1158 {
1159 armv8pmu_disable_user_access();
1160 }
1161
armv8pmu_proc_user_access_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1162 static int armv8pmu_proc_user_access_handler(struct ctl_table *table, int write,
1163 void *buffer, size_t *lenp, loff_t *ppos)
1164 {
1165 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1166 if (ret || !write || sysctl_perf_user_access)
1167 return ret;
1168
1169 on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1170 return 0;
1171 }
1172
1173 static struct ctl_table armv8_pmu_sysctl_table[] = {
1174 {
1175 .procname = "perf_user_access",
1176 .data = &sysctl_perf_user_access,
1177 .maxlen = sizeof(unsigned int),
1178 .mode = 0644,
1179 .proc_handler = armv8pmu_proc_user_access_handler,
1180 .extra1 = SYSCTL_ZERO,
1181 .extra2 = SYSCTL_ONE,
1182 },
1183 { }
1184 };
1185
armv8_pmu_register_sysctl_table(void)1186 static void armv8_pmu_register_sysctl_table(void)
1187 {
1188 static u32 tbl_registered = 0;
1189
1190 if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1191 register_sysctl("kernel", armv8_pmu_sysctl_table);
1192 }
1193
armv8_pmu_init(struct arm_pmu * cpu_pmu,char * name,int (* map_event)(struct perf_event * event),const struct attribute_group * events,const struct attribute_group * format,const struct attribute_group * caps)1194 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1195 int (*map_event)(struct perf_event *event),
1196 const struct attribute_group *events,
1197 const struct attribute_group *format,
1198 const struct attribute_group *caps)
1199 {
1200 int ret = armv8pmu_probe_pmu(cpu_pmu);
1201 if (ret)
1202 return ret;
1203
1204 cpu_pmu->handle_irq = armv8pmu_handle_irq;
1205 cpu_pmu->enable = armv8pmu_enable_event;
1206 cpu_pmu->disable = armv8pmu_disable_event;
1207 cpu_pmu->read_counter = armv8pmu_read_counter;
1208 cpu_pmu->write_counter = armv8pmu_write_counter;
1209 cpu_pmu->get_event_idx = armv8pmu_get_event_idx;
1210 cpu_pmu->clear_event_idx = armv8pmu_clear_event_idx;
1211 cpu_pmu->start = armv8pmu_start;
1212 cpu_pmu->stop = armv8pmu_stop;
1213 cpu_pmu->reset = armv8pmu_reset;
1214 cpu_pmu->set_event_filter = armv8pmu_set_event_filter;
1215
1216 cpu_pmu->pmu.event_idx = armv8pmu_user_event_idx;
1217
1218 cpu_pmu->name = name;
1219 cpu_pmu->map_event = map_event;
1220 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = events ?
1221 events : &armv8_pmuv3_events_attr_group;
1222 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = format ?
1223 format : &armv8_pmuv3_format_attr_group;
1224 cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = caps ?
1225 caps : &armv8_pmuv3_caps_attr_group;
1226
1227 armv8_pmu_register_sysctl_table();
1228 return 0;
1229 }
1230
armv8_pmu_init_nogroups(struct arm_pmu * cpu_pmu,char * name,int (* map_event)(struct perf_event * event))1231 static int armv8_pmu_init_nogroups(struct arm_pmu *cpu_pmu, char *name,
1232 int (*map_event)(struct perf_event *event))
1233 {
1234 return armv8_pmu_init(cpu_pmu, name, map_event, NULL, NULL, NULL);
1235 }
1236
1237 #define PMUV3_INIT_SIMPLE(name) \
1238 static int name##_pmu_init(struct arm_pmu *cpu_pmu) \
1239 { \
1240 return armv8_pmu_init_nogroups(cpu_pmu, #name, armv8_pmuv3_map_event);\
1241 }
1242
1243 PMUV3_INIT_SIMPLE(armv8_pmuv3)
1244
PMUV3_INIT_SIMPLE(armv8_cortex_a34)1245 PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1246 PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1247 PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1248 PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1249 PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1250 PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1251 PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1252 PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1253 PMUV3_INIT_SIMPLE(armv9_cortex_a520)
1254 PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1255 PMUV3_INIT_SIMPLE(armv9_cortex_a715)
1256 PMUV3_INIT_SIMPLE(armv9_cortex_a720)
1257 PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1258 PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1259 PMUV3_INIT_SIMPLE(armv9_cortex_x3)
1260 PMUV3_INIT_SIMPLE(armv9_cortex_x4)
1261 PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1262 PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1263 PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1264 PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1265
1266 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1267 PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1268
1269 static int armv8_a35_pmu_init(struct arm_pmu *cpu_pmu)
1270 {
1271 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a35",
1272 armv8_a53_map_event);
1273 }
1274
armv8_a53_pmu_init(struct arm_pmu * cpu_pmu)1275 static int armv8_a53_pmu_init(struct arm_pmu *cpu_pmu)
1276 {
1277 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a53",
1278 armv8_a53_map_event);
1279 }
1280
armv8_a57_pmu_init(struct arm_pmu * cpu_pmu)1281 static int armv8_a57_pmu_init(struct arm_pmu *cpu_pmu)
1282 {
1283 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a57",
1284 armv8_a57_map_event);
1285 }
1286
armv8_a72_pmu_init(struct arm_pmu * cpu_pmu)1287 static int armv8_a72_pmu_init(struct arm_pmu *cpu_pmu)
1288 {
1289 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a72",
1290 armv8_a57_map_event);
1291 }
1292
armv8_a73_pmu_init(struct arm_pmu * cpu_pmu)1293 static int armv8_a73_pmu_init(struct arm_pmu *cpu_pmu)
1294 {
1295 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a73",
1296 armv8_a73_map_event);
1297 }
1298
armv8_thunder_pmu_init(struct arm_pmu * cpu_pmu)1299 static int armv8_thunder_pmu_init(struct arm_pmu *cpu_pmu)
1300 {
1301 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cavium_thunder",
1302 armv8_thunder_map_event);
1303 }
1304
armv8_vulcan_pmu_init(struct arm_pmu * cpu_pmu)1305 static int armv8_vulcan_pmu_init(struct arm_pmu *cpu_pmu)
1306 {
1307 return armv8_pmu_init_nogroups(cpu_pmu, "armv8_brcm_vulcan",
1308 armv8_vulcan_map_event);
1309 }
1310
1311 static const struct of_device_id armv8_pmu_of_device_ids[] = {
1312 {.compatible = "arm,armv8-pmuv3", .data = armv8_pmuv3_pmu_init},
1313 {.compatible = "arm,cortex-a34-pmu", .data = armv8_cortex_a34_pmu_init},
1314 {.compatible = "arm,cortex-a35-pmu", .data = armv8_a35_pmu_init},
1315 {.compatible = "arm,cortex-a53-pmu", .data = armv8_a53_pmu_init},
1316 {.compatible = "arm,cortex-a55-pmu", .data = armv8_cortex_a55_pmu_init},
1317 {.compatible = "arm,cortex-a57-pmu", .data = armv8_a57_pmu_init},
1318 {.compatible = "arm,cortex-a65-pmu", .data = armv8_cortex_a65_pmu_init},
1319 {.compatible = "arm,cortex-a72-pmu", .data = armv8_a72_pmu_init},
1320 {.compatible = "arm,cortex-a73-pmu", .data = armv8_a73_pmu_init},
1321 {.compatible = "arm,cortex-a75-pmu", .data = armv8_cortex_a75_pmu_init},
1322 {.compatible = "arm,cortex-a76-pmu", .data = armv8_cortex_a76_pmu_init},
1323 {.compatible = "arm,cortex-a77-pmu", .data = armv8_cortex_a77_pmu_init},
1324 {.compatible = "arm,cortex-a78-pmu", .data = armv8_cortex_a78_pmu_init},
1325 {.compatible = "arm,cortex-a510-pmu", .data = armv9_cortex_a510_pmu_init},
1326 {.compatible = "arm,cortex-a520-pmu", .data = armv9_cortex_a520_pmu_init},
1327 {.compatible = "arm,cortex-a710-pmu", .data = armv9_cortex_a710_pmu_init},
1328 {.compatible = "arm,cortex-a715-pmu", .data = armv9_cortex_a715_pmu_init},
1329 {.compatible = "arm,cortex-a720-pmu", .data = armv9_cortex_a720_pmu_init},
1330 {.compatible = "arm,cortex-x1-pmu", .data = armv8_cortex_x1_pmu_init},
1331 {.compatible = "arm,cortex-x2-pmu", .data = armv9_cortex_x2_pmu_init},
1332 {.compatible = "arm,cortex-x3-pmu", .data = armv9_cortex_x3_pmu_init},
1333 {.compatible = "arm,cortex-x4-pmu", .data = armv9_cortex_x4_pmu_init},
1334 {.compatible = "arm,neoverse-e1-pmu", .data = armv8_neoverse_e1_pmu_init},
1335 {.compatible = "arm,neoverse-n1-pmu", .data = armv8_neoverse_n1_pmu_init},
1336 {.compatible = "arm,neoverse-n2-pmu", .data = armv9_neoverse_n2_pmu_init},
1337 {.compatible = "arm,neoverse-v1-pmu", .data = armv8_neoverse_v1_pmu_init},
1338 {.compatible = "cavium,thunder-pmu", .data = armv8_thunder_pmu_init},
1339 {.compatible = "brcm,vulcan-pmu", .data = armv8_vulcan_pmu_init},
1340 {.compatible = "nvidia,carmel-pmu", .data = armv8_nvidia_carmel_pmu_init},
1341 {.compatible = "nvidia,denver-pmu", .data = armv8_nvidia_denver_pmu_init},
1342 {},
1343 };
1344
armv8_pmu_device_probe(struct platform_device * pdev)1345 static int armv8_pmu_device_probe(struct platform_device *pdev)
1346 {
1347 return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1348 }
1349
1350 static struct platform_driver armv8_pmu_driver = {
1351 .driver = {
1352 .name = ARMV8_PMU_PDEV_NAME,
1353 .of_match_table = armv8_pmu_of_device_ids,
1354 .suppress_bind_attrs = true,
1355 },
1356 .probe = armv8_pmu_device_probe,
1357 };
1358
armv8_pmu_driver_init(void)1359 static int __init armv8_pmu_driver_init(void)
1360 {
1361 int ret;
1362
1363 if (acpi_disabled)
1364 ret = platform_driver_register(&armv8_pmu_driver);
1365 else
1366 ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1367
1368 if (!ret)
1369 lockup_detector_retry_init();
1370
1371 return ret;
1372 }
device_initcall(armv8_pmu_driver_init)1373 device_initcall(armv8_pmu_driver_init)
1374
1375 void arch_perf_update_userpage(struct perf_event *event,
1376 struct perf_event_mmap_page *userpg, u64 now)
1377 {
1378 struct clock_read_data *rd;
1379 unsigned int seq;
1380 u64 ns;
1381
1382 userpg->cap_user_time = 0;
1383 userpg->cap_user_time_zero = 0;
1384 userpg->cap_user_time_short = 0;
1385 userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1386
1387 if (userpg->cap_user_rdpmc) {
1388 if (event->hw.flags & ARMPMU_EVT_64BIT)
1389 userpg->pmc_width = 64;
1390 else
1391 userpg->pmc_width = 32;
1392 }
1393
1394 do {
1395 rd = sched_clock_read_begin(&seq);
1396
1397 if (rd->read_sched_clock != arch_timer_read_counter)
1398 return;
1399
1400 userpg->time_mult = rd->mult;
1401 userpg->time_shift = rd->shift;
1402 userpg->time_zero = rd->epoch_ns;
1403 userpg->time_cycles = rd->epoch_cyc;
1404 userpg->time_mask = rd->sched_clock_mask;
1405
1406 /*
1407 * Subtract the cycle base, such that software that
1408 * doesn't know about cap_user_time_short still 'works'
1409 * assuming no wraps.
1410 */
1411 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1412 userpg->time_zero -= ns;
1413
1414 } while (sched_clock_read_retry(seq));
1415
1416 userpg->time_offset = userpg->time_zero - now;
1417
1418 /*
1419 * time_shift is not expected to be greater than 31 due to
1420 * the original published conversion algorithm shifting a
1421 * 32-bit value (now specifies a 64-bit value) - refer
1422 * perf_event_mmap_page documentation in perf_event.h.
1423 */
1424 if (userpg->time_shift == 32) {
1425 userpg->time_shift = 31;
1426 userpg->time_mult >>= 1;
1427 }
1428
1429 /*
1430 * Internal timekeeping for enabled/running/stopped times
1431 * is always computed with the sched_clock.
1432 */
1433 userpg->cap_user_time = 1;
1434 userpg->cap_user_time_zero = 1;
1435 userpg->cap_user_time_short = 1;
1436 }
1437