1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/rcupdate.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/string_helpers.h>
32 #include <linux/swiotlb.h>
33 #include <linux/sysfs.h>
34 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
35
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49
50 /**
51 * __fwnode_link_add - Create a link between two fwnode_handles.
52 * @con: Consumer end of the link.
53 * @sup: Supplier end of the link.
54 *
55 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
56 * represents the detail that the firmware lists @sup fwnode as supplying a
57 * resource to @con.
58 *
59 * The driver core will use the fwnode link to create a device link between the
60 * two device objects corresponding to @con and @sup when they are created. The
61 * driver core will automatically delete the fwnode link between @con and @sup
62 * after doing that.
63 *
64 * Attempts to create duplicate links between the same pair of fwnode handles
65 * are ignored and there is no reference counting.
66 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)67 static int __fwnode_link_add(struct fwnode_handle *con,
68 struct fwnode_handle *sup, u8 flags)
69 {
70 struct fwnode_link *link;
71
72 list_for_each_entry(link, &sup->consumers, s_hook)
73 if (link->consumer == con) {
74 link->flags |= flags;
75 return 0;
76 }
77
78 link = kzalloc(sizeof(*link), GFP_KERNEL);
79 if (!link)
80 return -ENOMEM;
81
82 link->supplier = sup;
83 INIT_LIST_HEAD(&link->s_hook);
84 link->consumer = con;
85 INIT_LIST_HEAD(&link->c_hook);
86 link->flags = flags;
87
88 list_add(&link->s_hook, &sup->consumers);
89 list_add(&link->c_hook, &con->suppliers);
90 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
91 con, sup);
92
93 return 0;
94 }
95
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)96 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
97 {
98 int ret;
99
100 mutex_lock(&fwnode_link_lock);
101 ret = __fwnode_link_add(con, sup, 0);
102 mutex_unlock(&fwnode_link_lock);
103 return ret;
104 }
105
106 /**
107 * __fwnode_link_del - Delete a link between two fwnode_handles.
108 * @link: the fwnode_link to be deleted
109 *
110 * The fwnode_link_lock needs to be held when this function is called.
111 */
__fwnode_link_del(struct fwnode_link * link)112 static void __fwnode_link_del(struct fwnode_link *link)
113 {
114 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
115 link->consumer, link->supplier);
116 list_del(&link->s_hook);
117 list_del(&link->c_hook);
118 kfree(link);
119 }
120
121 /**
122 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
123 * @link: the fwnode_link to be marked
124 *
125 * The fwnode_link_lock needs to be held when this function is called.
126 */
__fwnode_link_cycle(struct fwnode_link * link)127 static void __fwnode_link_cycle(struct fwnode_link *link)
128 {
129 pr_debug("%pfwf: Relaxing link with %pfwf\n",
130 link->consumer, link->supplier);
131 link->flags |= FWLINK_FLAG_CYCLE;
132 }
133
134 /**
135 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
136 * @fwnode: fwnode whose supplier links need to be deleted
137 *
138 * Deletes all supplier links connecting directly to @fwnode.
139 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)140 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
141 {
142 struct fwnode_link *link, *tmp;
143
144 mutex_lock(&fwnode_link_lock);
145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 __fwnode_link_del(link);
147 mutex_unlock(&fwnode_link_lock);
148 }
149
150 /**
151 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
152 * @fwnode: fwnode whose consumer links need to be deleted
153 *
154 * Deletes all consumer links connecting directly to @fwnode.
155 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)156 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
157 {
158 struct fwnode_link *link, *tmp;
159
160 mutex_lock(&fwnode_link_lock);
161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 __fwnode_link_del(link);
163 mutex_unlock(&fwnode_link_lock);
164 }
165
166 /**
167 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
168 * @fwnode: fwnode whose links needs to be deleted
169 *
170 * Deletes all links connecting directly to a fwnode.
171 */
fwnode_links_purge(struct fwnode_handle * fwnode)172 void fwnode_links_purge(struct fwnode_handle *fwnode)
173 {
174 fwnode_links_purge_suppliers(fwnode);
175 fwnode_links_purge_consumers(fwnode);
176 }
177
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)178 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
179 {
180 struct fwnode_handle *child;
181
182 /* Don't purge consumer links of an added child */
183 if (fwnode->dev)
184 return;
185
186 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
187 fwnode_links_purge_consumers(fwnode);
188
189 fwnode_for_each_available_child_node(fwnode, child)
190 fw_devlink_purge_absent_suppliers(child);
191 }
192 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
193
194 /**
195 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
196 * @from: move consumers away from this fwnode
197 * @to: move consumers to this fwnode
198 *
199 * Move all consumer links from @from fwnode to @to fwnode.
200 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)201 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
202 struct fwnode_handle *to)
203 {
204 struct fwnode_link *link, *tmp;
205
206 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
207 __fwnode_link_add(link->consumer, to, link->flags);
208 __fwnode_link_del(link);
209 }
210 }
211
212 /**
213 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
214 * @fwnode: fwnode from which to pick up dangling consumers
215 * @new_sup: fwnode of new supplier
216 *
217 * If the @fwnode has a corresponding struct device and the device supports
218 * probing (that is, added to a bus), then we want to let fw_devlink create
219 * MANAGED device links to this device, so leave @fwnode and its descendant's
220 * fwnode links alone.
221 *
222 * Otherwise, move its consumers to the new supplier @new_sup.
223 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)224 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
225 struct fwnode_handle *new_sup)
226 {
227 struct fwnode_handle *child;
228
229 if (fwnode->dev && fwnode->dev->bus)
230 return;
231
232 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
233 __fwnode_links_move_consumers(fwnode, new_sup);
234
235 fwnode_for_each_available_child_node(fwnode, child)
236 __fw_devlink_pickup_dangling_consumers(child, new_sup);
237 }
238
239 static DEFINE_MUTEX(device_links_lock);
240 DEFINE_STATIC_SRCU(device_links_srcu);
241
device_links_write_lock(void)242 static inline void device_links_write_lock(void)
243 {
244 mutex_lock(&device_links_lock);
245 }
246
device_links_write_unlock(void)247 static inline void device_links_write_unlock(void)
248 {
249 mutex_unlock(&device_links_lock);
250 }
251
device_links_read_lock(void)252 int device_links_read_lock(void) __acquires(&device_links_srcu)
253 {
254 return srcu_read_lock(&device_links_srcu);
255 }
256
device_links_read_unlock(int idx)257 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
258 {
259 srcu_read_unlock(&device_links_srcu, idx);
260 }
261
device_links_read_lock_held(void)262 int device_links_read_lock_held(void)
263 {
264 return srcu_read_lock_held(&device_links_srcu);
265 }
266
device_link_synchronize_removal(void)267 static void device_link_synchronize_removal(void)
268 {
269 synchronize_srcu(&device_links_srcu);
270 }
271
device_link_remove_from_lists(struct device_link * link)272 static void device_link_remove_from_lists(struct device_link *link)
273 {
274 list_del_rcu(&link->s_node);
275 list_del_rcu(&link->c_node);
276 }
277
device_is_ancestor(struct device * dev,struct device * target)278 static bool device_is_ancestor(struct device *dev, struct device *target)
279 {
280 while (target->parent) {
281 target = target->parent;
282 if (dev == target)
283 return true;
284 }
285 return false;
286 }
287
288 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
289 DL_FLAG_CYCLE | \
290 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)291 static inline bool device_link_flag_is_sync_state_only(u32 flags)
292 {
293 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
294 }
295
296 /**
297 * device_is_dependent - Check if one device depends on another one
298 * @dev: Device to check dependencies for.
299 * @target: Device to check against.
300 *
301 * Check if @target depends on @dev or any device dependent on it (its child or
302 * its consumer etc). Return 1 if that is the case or 0 otherwise.
303 */
device_is_dependent(struct device * dev,void * target)304 int device_is_dependent(struct device *dev, void *target)
305 {
306 struct device_link *link;
307 int ret;
308
309 /*
310 * The "ancestors" check is needed to catch the case when the target
311 * device has not been completely initialized yet and it is still
312 * missing from the list of children of its parent device.
313 */
314 if (dev == target || device_is_ancestor(dev, target))
315 return 1;
316
317 ret = device_for_each_child(dev, target, device_is_dependent);
318 if (ret)
319 return ret;
320
321 list_for_each_entry(link, &dev->links.consumers, s_node) {
322 if (device_link_flag_is_sync_state_only(link->flags))
323 continue;
324
325 if (link->consumer == target)
326 return 1;
327
328 ret = device_is_dependent(link->consumer, target);
329 if (ret)
330 break;
331 }
332 return ret;
333 }
334
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)335 static void device_link_init_status(struct device_link *link,
336 struct device *consumer,
337 struct device *supplier)
338 {
339 switch (supplier->links.status) {
340 case DL_DEV_PROBING:
341 switch (consumer->links.status) {
342 case DL_DEV_PROBING:
343 /*
344 * A consumer driver can create a link to a supplier
345 * that has not completed its probing yet as long as it
346 * knows that the supplier is already functional (for
347 * example, it has just acquired some resources from the
348 * supplier).
349 */
350 link->status = DL_STATE_CONSUMER_PROBE;
351 break;
352 default:
353 link->status = DL_STATE_DORMANT;
354 break;
355 }
356 break;
357 case DL_DEV_DRIVER_BOUND:
358 switch (consumer->links.status) {
359 case DL_DEV_PROBING:
360 link->status = DL_STATE_CONSUMER_PROBE;
361 break;
362 case DL_DEV_DRIVER_BOUND:
363 link->status = DL_STATE_ACTIVE;
364 break;
365 default:
366 link->status = DL_STATE_AVAILABLE;
367 break;
368 }
369 break;
370 case DL_DEV_UNBINDING:
371 link->status = DL_STATE_SUPPLIER_UNBIND;
372 break;
373 default:
374 link->status = DL_STATE_DORMANT;
375 break;
376 }
377 }
378
device_reorder_to_tail(struct device * dev,void * not_used)379 static int device_reorder_to_tail(struct device *dev, void *not_used)
380 {
381 struct device_link *link;
382
383 /*
384 * Devices that have not been registered yet will be put to the ends
385 * of the lists during the registration, so skip them here.
386 */
387 if (device_is_registered(dev))
388 devices_kset_move_last(dev);
389
390 if (device_pm_initialized(dev))
391 device_pm_move_last(dev);
392
393 device_for_each_child(dev, NULL, device_reorder_to_tail);
394 list_for_each_entry(link, &dev->links.consumers, s_node) {
395 if (device_link_flag_is_sync_state_only(link->flags))
396 continue;
397 device_reorder_to_tail(link->consumer, NULL);
398 }
399
400 return 0;
401 }
402
403 /**
404 * device_pm_move_to_tail - Move set of devices to the end of device lists
405 * @dev: Device to move
406 *
407 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
408 *
409 * It moves the @dev along with all of its children and all of its consumers
410 * to the ends of the device_kset and dpm_list, recursively.
411 */
device_pm_move_to_tail(struct device * dev)412 void device_pm_move_to_tail(struct device *dev)
413 {
414 int idx;
415
416 idx = device_links_read_lock();
417 device_pm_lock();
418 device_reorder_to_tail(dev, NULL);
419 device_pm_unlock();
420 device_links_read_unlock(idx);
421 }
422
423 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
424
status_show(struct device * dev,struct device_attribute * attr,char * buf)425 static ssize_t status_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
427 {
428 const char *output;
429
430 switch (to_devlink(dev)->status) {
431 case DL_STATE_NONE:
432 output = "not tracked";
433 break;
434 case DL_STATE_DORMANT:
435 output = "dormant";
436 break;
437 case DL_STATE_AVAILABLE:
438 output = "available";
439 break;
440 case DL_STATE_CONSUMER_PROBE:
441 output = "consumer probing";
442 break;
443 case DL_STATE_ACTIVE:
444 output = "active";
445 break;
446 case DL_STATE_SUPPLIER_UNBIND:
447 output = "supplier unbinding";
448 break;
449 default:
450 output = "unknown";
451 break;
452 }
453
454 return sysfs_emit(buf, "%s\n", output);
455 }
456 static DEVICE_ATTR_RO(status);
457
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)458 static ssize_t auto_remove_on_show(struct device *dev,
459 struct device_attribute *attr, char *buf)
460 {
461 struct device_link *link = to_devlink(dev);
462 const char *output;
463
464 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
465 output = "supplier unbind";
466 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
467 output = "consumer unbind";
468 else
469 output = "never";
470
471 return sysfs_emit(buf, "%s\n", output);
472 }
473 static DEVICE_ATTR_RO(auto_remove_on);
474
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)475 static ssize_t runtime_pm_show(struct device *dev,
476 struct device_attribute *attr, char *buf)
477 {
478 struct device_link *link = to_devlink(dev);
479
480 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
481 }
482 static DEVICE_ATTR_RO(runtime_pm);
483
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)484 static ssize_t sync_state_only_show(struct device *dev,
485 struct device_attribute *attr, char *buf)
486 {
487 struct device_link *link = to_devlink(dev);
488
489 return sysfs_emit(buf, "%d\n",
490 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
491 }
492 static DEVICE_ATTR_RO(sync_state_only);
493
494 static struct attribute *devlink_attrs[] = {
495 &dev_attr_status.attr,
496 &dev_attr_auto_remove_on.attr,
497 &dev_attr_runtime_pm.attr,
498 &dev_attr_sync_state_only.attr,
499 NULL,
500 };
501 ATTRIBUTE_GROUPS(devlink);
502
device_link_release_fn(struct work_struct * work)503 static void device_link_release_fn(struct work_struct *work)
504 {
505 struct device_link *link = container_of(work, struct device_link, rm_work);
506
507 /* Ensure that all references to the link object have been dropped. */
508 device_link_synchronize_removal();
509
510 pm_runtime_release_supplier(link);
511 /*
512 * If supplier_preactivated is set, the link has been dropped between
513 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
514 * in __driver_probe_device(). In that case, drop the supplier's
515 * PM-runtime usage counter to remove the reference taken by
516 * pm_runtime_get_suppliers().
517 */
518 if (link->supplier_preactivated)
519 pm_runtime_put_noidle(link->supplier);
520
521 pm_request_idle(link->supplier);
522
523 put_device(link->consumer);
524 put_device(link->supplier);
525 kfree(link);
526 }
527
devlink_dev_release(struct device * dev)528 static void devlink_dev_release(struct device *dev)
529 {
530 struct device_link *link = to_devlink(dev);
531
532 INIT_WORK(&link->rm_work, device_link_release_fn);
533 /*
534 * It may take a while to complete this work because of the SRCU
535 * synchronization in device_link_release_fn() and if the consumer or
536 * supplier devices get deleted when it runs, so put it into the
537 * dedicated workqueue.
538 */
539 queue_work(device_link_wq, &link->rm_work);
540 }
541
542 /**
543 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
544 */
device_link_wait_removal(void)545 void device_link_wait_removal(void)
546 {
547 /*
548 * devlink removal jobs are queued in the dedicated work queue.
549 * To be sure that all removal jobs are terminated, ensure that any
550 * scheduled work has run to completion.
551 */
552 flush_workqueue(device_link_wq);
553 }
554 EXPORT_SYMBOL_GPL(device_link_wait_removal);
555
556 static struct class devlink_class = {
557 .name = "devlink",
558 .dev_groups = devlink_groups,
559 .dev_release = devlink_dev_release,
560 };
561
devlink_add_symlinks(struct device * dev)562 static int devlink_add_symlinks(struct device *dev)
563 {
564 int ret;
565 size_t len;
566 struct device_link *link = to_devlink(dev);
567 struct device *sup = link->supplier;
568 struct device *con = link->consumer;
569 char *buf;
570
571 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
572 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
573 len += strlen(":");
574 len += strlen("supplier:") + 1;
575 buf = kzalloc(len, GFP_KERNEL);
576 if (!buf)
577 return -ENOMEM;
578
579 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
580 if (ret)
581 goto out;
582
583 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
584 if (ret)
585 goto err_con;
586
587 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
588 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
589 if (ret)
590 goto err_con_dev;
591
592 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
594 if (ret)
595 goto err_sup_dev;
596
597 goto out;
598
599 err_sup_dev:
600 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
601 sysfs_remove_link(&sup->kobj, buf);
602 err_con_dev:
603 sysfs_remove_link(&link->link_dev.kobj, "consumer");
604 err_con:
605 sysfs_remove_link(&link->link_dev.kobj, "supplier");
606 out:
607 kfree(buf);
608 return ret;
609 }
610
devlink_remove_symlinks(struct device * dev)611 static void devlink_remove_symlinks(struct device *dev)
612 {
613 struct device_link *link = to_devlink(dev);
614 size_t len;
615 struct device *sup = link->supplier;
616 struct device *con = link->consumer;
617 char *buf;
618
619 sysfs_remove_link(&link->link_dev.kobj, "consumer");
620 sysfs_remove_link(&link->link_dev.kobj, "supplier");
621
622 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
623 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
624 len += strlen(":");
625 len += strlen("supplier:") + 1;
626 buf = kzalloc(len, GFP_KERNEL);
627 if (!buf) {
628 WARN(1, "Unable to properly free device link symlinks!\n");
629 return;
630 }
631
632 if (device_is_registered(con)) {
633 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
634 sysfs_remove_link(&con->kobj, buf);
635 }
636 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
637 sysfs_remove_link(&sup->kobj, buf);
638 kfree(buf);
639 }
640
641 static struct class_interface devlink_class_intf = {
642 .class = &devlink_class,
643 .add_dev = devlink_add_symlinks,
644 .remove_dev = devlink_remove_symlinks,
645 };
646
devlink_class_init(void)647 static int __init devlink_class_init(void)
648 {
649 int ret;
650
651 ret = class_register(&devlink_class);
652 if (ret)
653 return ret;
654
655 ret = class_interface_register(&devlink_class_intf);
656 if (ret)
657 class_unregister(&devlink_class);
658
659 return ret;
660 }
661 postcore_initcall(devlink_class_init);
662
663 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
664 DL_FLAG_AUTOREMOVE_SUPPLIER | \
665 DL_FLAG_AUTOPROBE_CONSUMER | \
666 DL_FLAG_SYNC_STATE_ONLY | \
667 DL_FLAG_INFERRED | \
668 DL_FLAG_CYCLE)
669
670 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
671 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
672
673 /**
674 * device_link_add - Create a link between two devices.
675 * @consumer: Consumer end of the link.
676 * @supplier: Supplier end of the link.
677 * @flags: Link flags.
678 *
679 * The caller is responsible for the proper synchronization of the link creation
680 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
681 * runtime PM framework to take the link into account. Second, if the
682 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
683 * be forced into the active meta state and reference-counted upon the creation
684 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
685 * ignored.
686 *
687 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
688 * expected to release the link returned by it directly with the help of either
689 * device_link_del() or device_link_remove().
690 *
691 * If that flag is not set, however, the caller of this function is handing the
692 * management of the link over to the driver core entirely and its return value
693 * can only be used to check whether or not the link is present. In that case,
694 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
695 * flags can be used to indicate to the driver core when the link can be safely
696 * deleted. Namely, setting one of them in @flags indicates to the driver core
697 * that the link is not going to be used (by the given caller of this function)
698 * after unbinding the consumer or supplier driver, respectively, from its
699 * device, so the link can be deleted at that point. If none of them is set,
700 * the link will be maintained until one of the devices pointed to by it (either
701 * the consumer or the supplier) is unregistered.
702 *
703 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
704 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
705 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
706 * be used to request the driver core to automatically probe for a consumer
707 * driver after successfully binding a driver to the supplier device.
708 *
709 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
710 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
711 * the same time is invalid and will cause NULL to be returned upfront.
712 * However, if a device link between the given @consumer and @supplier pair
713 * exists already when this function is called for them, the existing link will
714 * be returned regardless of its current type and status (the link's flags may
715 * be modified then). The caller of this function is then expected to treat
716 * the link as though it has just been created, so (in particular) if
717 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
718 * explicitly when not needed any more (as stated above).
719 *
720 * A side effect of the link creation is re-ordering of dpm_list and the
721 * devices_kset list by moving the consumer device and all devices depending
722 * on it to the ends of these lists (that does not happen to devices that have
723 * not been registered when this function is called).
724 *
725 * The supplier device is required to be registered when this function is called
726 * and NULL will be returned if that is not the case. The consumer device need
727 * not be registered, however.
728 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)729 struct device_link *device_link_add(struct device *consumer,
730 struct device *supplier, u32 flags)
731 {
732 struct device_link *link;
733
734 if (!consumer || !supplier || consumer == supplier ||
735 flags & ~DL_ADD_VALID_FLAGS ||
736 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
737 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
738 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
739 DL_FLAG_AUTOREMOVE_SUPPLIER)))
740 return NULL;
741
742 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
743 if (pm_runtime_get_sync(supplier) < 0) {
744 pm_runtime_put_noidle(supplier);
745 return NULL;
746 }
747 }
748
749 if (!(flags & DL_FLAG_STATELESS))
750 flags |= DL_FLAG_MANAGED;
751
752 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
753 !device_link_flag_is_sync_state_only(flags))
754 return NULL;
755
756 device_links_write_lock();
757 device_pm_lock();
758
759 /*
760 * If the supplier has not been fully registered yet or there is a
761 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
762 * the supplier already in the graph, return NULL. If the link is a
763 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
764 * because it only affects sync_state() callbacks.
765 */
766 if (!device_pm_initialized(supplier)
767 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
768 device_is_dependent(consumer, supplier))) {
769 link = NULL;
770 goto out;
771 }
772
773 /*
774 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
775 * So, only create it if the consumer hasn't probed yet.
776 */
777 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
778 consumer->links.status != DL_DEV_NO_DRIVER &&
779 consumer->links.status != DL_DEV_PROBING) {
780 link = NULL;
781 goto out;
782 }
783
784 /*
785 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
786 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
787 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
788 */
789 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
790 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
791
792 list_for_each_entry(link, &supplier->links.consumers, s_node) {
793 if (link->consumer != consumer)
794 continue;
795
796 if (link->flags & DL_FLAG_INFERRED &&
797 !(flags & DL_FLAG_INFERRED))
798 link->flags &= ~DL_FLAG_INFERRED;
799
800 if (flags & DL_FLAG_PM_RUNTIME) {
801 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
802 pm_runtime_new_link(consumer);
803 link->flags |= DL_FLAG_PM_RUNTIME;
804 }
805 if (flags & DL_FLAG_RPM_ACTIVE)
806 refcount_inc(&link->rpm_active);
807 }
808
809 if (flags & DL_FLAG_STATELESS) {
810 kref_get(&link->kref);
811 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
812 !(link->flags & DL_FLAG_STATELESS)) {
813 link->flags |= DL_FLAG_STATELESS;
814 goto reorder;
815 } else {
816 link->flags |= DL_FLAG_STATELESS;
817 goto out;
818 }
819 }
820
821 /*
822 * If the life time of the link following from the new flags is
823 * longer than indicated by the flags of the existing link,
824 * update the existing link to stay around longer.
825 */
826 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
827 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
828 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
829 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
830 }
831 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
832 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
833 DL_FLAG_AUTOREMOVE_SUPPLIER);
834 }
835 if (!(link->flags & DL_FLAG_MANAGED)) {
836 kref_get(&link->kref);
837 link->flags |= DL_FLAG_MANAGED;
838 device_link_init_status(link, consumer, supplier);
839 }
840 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
841 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
842 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
843 goto reorder;
844 }
845
846 goto out;
847 }
848
849 link = kzalloc(sizeof(*link), GFP_KERNEL);
850 if (!link)
851 goto out;
852
853 refcount_set(&link->rpm_active, 1);
854
855 get_device(supplier);
856 link->supplier = supplier;
857 INIT_LIST_HEAD(&link->s_node);
858 get_device(consumer);
859 link->consumer = consumer;
860 INIT_LIST_HEAD(&link->c_node);
861 link->flags = flags;
862 kref_init(&link->kref);
863
864 link->link_dev.class = &devlink_class;
865 device_set_pm_not_required(&link->link_dev);
866 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
867 dev_bus_name(supplier), dev_name(supplier),
868 dev_bus_name(consumer), dev_name(consumer));
869 if (device_register(&link->link_dev)) {
870 put_device(&link->link_dev);
871 link = NULL;
872 goto out;
873 }
874
875 if (flags & DL_FLAG_PM_RUNTIME) {
876 if (flags & DL_FLAG_RPM_ACTIVE)
877 refcount_inc(&link->rpm_active);
878
879 pm_runtime_new_link(consumer);
880 }
881
882 /* Determine the initial link state. */
883 if (flags & DL_FLAG_STATELESS)
884 link->status = DL_STATE_NONE;
885 else
886 device_link_init_status(link, consumer, supplier);
887
888 /*
889 * Some callers expect the link creation during consumer driver probe to
890 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
891 */
892 if (link->status == DL_STATE_CONSUMER_PROBE &&
893 flags & DL_FLAG_PM_RUNTIME)
894 pm_runtime_resume(supplier);
895
896 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
897 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
898
899 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
900 dev_dbg(consumer,
901 "Linked as a sync state only consumer to %s\n",
902 dev_name(supplier));
903 goto out;
904 }
905
906 reorder:
907 /*
908 * Move the consumer and all of the devices depending on it to the end
909 * of dpm_list and the devices_kset list.
910 *
911 * It is necessary to hold dpm_list locked throughout all that or else
912 * we may end up suspending with a wrong ordering of it.
913 */
914 device_reorder_to_tail(consumer, NULL);
915
916 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
917
918 out:
919 device_pm_unlock();
920 device_links_write_unlock();
921
922 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
923 pm_runtime_put(supplier);
924
925 return link;
926 }
927 EXPORT_SYMBOL_GPL(device_link_add);
928
__device_link_del(struct kref * kref)929 static void __device_link_del(struct kref *kref)
930 {
931 struct device_link *link = container_of(kref, struct device_link, kref);
932
933 dev_dbg(link->consumer, "Dropping the link to %s\n",
934 dev_name(link->supplier));
935
936 pm_runtime_drop_link(link);
937
938 device_link_remove_from_lists(link);
939 device_unregister(&link->link_dev);
940 }
941
device_link_put_kref(struct device_link * link)942 static void device_link_put_kref(struct device_link *link)
943 {
944 if (link->flags & DL_FLAG_STATELESS)
945 kref_put(&link->kref, __device_link_del);
946 else if (!device_is_registered(link->consumer))
947 __device_link_del(&link->kref);
948 else
949 WARN(1, "Unable to drop a managed device link reference\n");
950 }
951
952 /**
953 * device_link_del - Delete a stateless link between two devices.
954 * @link: Device link to delete.
955 *
956 * The caller must ensure proper synchronization of this function with runtime
957 * PM. If the link was added multiple times, it needs to be deleted as often.
958 * Care is required for hotplugged devices: Their links are purged on removal
959 * and calling device_link_del() is then no longer allowed.
960 */
device_link_del(struct device_link * link)961 void device_link_del(struct device_link *link)
962 {
963 device_links_write_lock();
964 device_link_put_kref(link);
965 device_links_write_unlock();
966 }
967 EXPORT_SYMBOL_GPL(device_link_del);
968
969 /**
970 * device_link_remove - Delete a stateless link between two devices.
971 * @consumer: Consumer end of the link.
972 * @supplier: Supplier end of the link.
973 *
974 * The caller must ensure proper synchronization of this function with runtime
975 * PM.
976 */
device_link_remove(void * consumer,struct device * supplier)977 void device_link_remove(void *consumer, struct device *supplier)
978 {
979 struct device_link *link;
980
981 if (WARN_ON(consumer == supplier))
982 return;
983
984 device_links_write_lock();
985
986 list_for_each_entry(link, &supplier->links.consumers, s_node) {
987 if (link->consumer == consumer) {
988 device_link_put_kref(link);
989 break;
990 }
991 }
992
993 device_links_write_unlock();
994 }
995 EXPORT_SYMBOL_GPL(device_link_remove);
996
device_links_missing_supplier(struct device * dev)997 static void device_links_missing_supplier(struct device *dev)
998 {
999 struct device_link *link;
1000
1001 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1002 if (link->status != DL_STATE_CONSUMER_PROBE)
1003 continue;
1004
1005 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1006 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1007 } else {
1008 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1009 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1010 }
1011 }
1012 }
1013
dev_is_best_effort(struct device * dev)1014 static bool dev_is_best_effort(struct device *dev)
1015 {
1016 return (fw_devlink_best_effort && dev->can_match) ||
1017 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1018 }
1019
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1020 static struct fwnode_handle *fwnode_links_check_suppliers(
1021 struct fwnode_handle *fwnode)
1022 {
1023 struct fwnode_link *link;
1024
1025 if (!fwnode || fw_devlink_is_permissive())
1026 return NULL;
1027
1028 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1029 if (!(link->flags & FWLINK_FLAG_CYCLE))
1030 return link->supplier;
1031
1032 return NULL;
1033 }
1034
1035 /**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers. Walk the list of the device's
1040 * links to suppliers and see if all of them are available. If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here. It only can go away in __device_release_driver() and
1045 * that function checks the device's links to consumers. This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
device_links_check_suppliers(struct device * dev)1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 struct device_link *link;
1054 int ret = 0, fwnode_ret = 0;
1055 struct fwnode_handle *sup_fw;
1056
1057 /*
1058 * Device waiting for supplier to become available is not allowed to
1059 * probe.
1060 */
1061 mutex_lock(&fwnode_link_lock);
1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 if (sup_fw) {
1064 if (!dev_is_best_effort(dev)) {
1065 fwnode_ret = -EPROBE_DEFER;
1066 dev_err_probe(dev, -EPROBE_DEFER,
1067 "wait for supplier %pfwf\n", sup_fw);
1068 } else {
1069 fwnode_ret = -EAGAIN;
1070 }
1071 }
1072 mutex_unlock(&fwnode_link_lock);
1073 if (fwnode_ret == -EPROBE_DEFER)
1074 return fwnode_ret;
1075
1076 device_links_write_lock();
1077
1078 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1079 if (!(link->flags & DL_FLAG_MANAGED))
1080 continue;
1081
1082 if (link->status != DL_STATE_AVAILABLE &&
1083 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1084
1085 if (dev_is_best_effort(dev) &&
1086 link->flags & DL_FLAG_INFERRED &&
1087 !link->supplier->can_match) {
1088 ret = -EAGAIN;
1089 continue;
1090 }
1091
1092 device_links_missing_supplier(dev);
1093 dev_err_probe(dev, -EPROBE_DEFER,
1094 "supplier %s not ready\n",
1095 dev_name(link->supplier));
1096 ret = -EPROBE_DEFER;
1097 break;
1098 }
1099 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1100 }
1101 dev->links.status = DL_DEV_PROBING;
1102
1103 device_links_write_unlock();
1104
1105 return ret ? ret : fwnode_ret;
1106 }
1107
1108 /**
1109 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1110 * @dev: Device to call sync_state() on
1111 * @list: List head to queue the @dev on
1112 *
1113 * Queues a device for a sync_state() callback when the device links write lock
1114 * isn't held. This allows the sync_state() execution flow to use device links
1115 * APIs. The caller must ensure this function is called with
1116 * device_links_write_lock() held.
1117 *
1118 * This function does a get_device() to make sure the device is not freed while
1119 * on this list.
1120 *
1121 * So the caller must also ensure that device_links_flush_sync_list() is called
1122 * as soon as the caller releases device_links_write_lock(). This is necessary
1123 * to make sure the sync_state() is called in a timely fashion and the
1124 * put_device() is called on this device.
1125 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1126 static void __device_links_queue_sync_state(struct device *dev,
1127 struct list_head *list)
1128 {
1129 struct device_link *link;
1130
1131 if (!dev_has_sync_state(dev))
1132 return;
1133 if (dev->state_synced)
1134 return;
1135
1136 list_for_each_entry(link, &dev->links.consumers, s_node) {
1137 if (!(link->flags & DL_FLAG_MANAGED))
1138 continue;
1139 if (link->status != DL_STATE_ACTIVE)
1140 return;
1141 }
1142
1143 /*
1144 * Set the flag here to avoid adding the same device to a list more
1145 * than once. This can happen if new consumers get added to the device
1146 * and probed before the list is flushed.
1147 */
1148 dev->state_synced = true;
1149
1150 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1151 return;
1152
1153 get_device(dev);
1154 list_add_tail(&dev->links.defer_sync, list);
1155 }
1156
1157 /**
1158 * device_links_flush_sync_list - Call sync_state() on a list of devices
1159 * @list: List of devices to call sync_state() on
1160 * @dont_lock_dev: Device for which lock is already held by the caller
1161 *
1162 * Calls sync_state() on all the devices that have been queued for it. This
1163 * function is used in conjunction with __device_links_queue_sync_state(). The
1164 * @dont_lock_dev parameter is useful when this function is called from a
1165 * context where a device lock is already held.
1166 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1167 static void device_links_flush_sync_list(struct list_head *list,
1168 struct device *dont_lock_dev)
1169 {
1170 struct device *dev, *tmp;
1171
1172 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1173 list_del_init(&dev->links.defer_sync);
1174
1175 if (dev != dont_lock_dev)
1176 device_lock(dev);
1177
1178 dev_sync_state(dev);
1179
1180 if (dev != dont_lock_dev)
1181 device_unlock(dev);
1182
1183 put_device(dev);
1184 }
1185 }
1186
device_links_supplier_sync_state_pause(void)1187 void device_links_supplier_sync_state_pause(void)
1188 {
1189 device_links_write_lock();
1190 defer_sync_state_count++;
1191 device_links_write_unlock();
1192 }
1193
device_links_supplier_sync_state_resume(void)1194 void device_links_supplier_sync_state_resume(void)
1195 {
1196 struct device *dev, *tmp;
1197 LIST_HEAD(sync_list);
1198
1199 device_links_write_lock();
1200 if (!defer_sync_state_count) {
1201 WARN(true, "Unmatched sync_state pause/resume!");
1202 goto out;
1203 }
1204 defer_sync_state_count--;
1205 if (defer_sync_state_count)
1206 goto out;
1207
1208 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1209 /*
1210 * Delete from deferred_sync list before queuing it to
1211 * sync_list because defer_sync is used for both lists.
1212 */
1213 list_del_init(&dev->links.defer_sync);
1214 __device_links_queue_sync_state(dev, &sync_list);
1215 }
1216 out:
1217 device_links_write_unlock();
1218
1219 device_links_flush_sync_list(&sync_list, NULL);
1220 }
1221
sync_state_resume_initcall(void)1222 static int sync_state_resume_initcall(void)
1223 {
1224 device_links_supplier_sync_state_resume();
1225 return 0;
1226 }
1227 late_initcall(sync_state_resume_initcall);
1228
__device_links_supplier_defer_sync(struct device * sup)1229 static void __device_links_supplier_defer_sync(struct device *sup)
1230 {
1231 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1232 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1233 }
1234
device_link_drop_managed(struct device_link * link)1235 static void device_link_drop_managed(struct device_link *link)
1236 {
1237 link->flags &= ~DL_FLAG_MANAGED;
1238 WRITE_ONCE(link->status, DL_STATE_NONE);
1239 kref_put(&link->kref, __device_link_del);
1240 }
1241
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1242 static ssize_t waiting_for_supplier_show(struct device *dev,
1243 struct device_attribute *attr,
1244 char *buf)
1245 {
1246 bool val;
1247
1248 device_lock(dev);
1249 mutex_lock(&fwnode_link_lock);
1250 val = !!fwnode_links_check_suppliers(dev->fwnode);
1251 mutex_unlock(&fwnode_link_lock);
1252 device_unlock(dev);
1253 return sysfs_emit(buf, "%u\n", val);
1254 }
1255 static DEVICE_ATTR_RO(waiting_for_supplier);
1256
1257 /**
1258 * device_links_force_bind - Prepares device to be force bound
1259 * @dev: Consumer device.
1260 *
1261 * device_bind_driver() force binds a device to a driver without calling any
1262 * driver probe functions. So the consumer really isn't going to wait for any
1263 * supplier before it's bound to the driver. We still want the device link
1264 * states to be sensible when this happens.
1265 *
1266 * In preparation for device_bind_driver(), this function goes through each
1267 * supplier device links and checks if the supplier is bound. If it is, then
1268 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1269 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1270 */
device_links_force_bind(struct device * dev)1271 void device_links_force_bind(struct device *dev)
1272 {
1273 struct device_link *link, *ln;
1274
1275 device_links_write_lock();
1276
1277 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1278 if (!(link->flags & DL_FLAG_MANAGED))
1279 continue;
1280
1281 if (link->status != DL_STATE_AVAILABLE) {
1282 device_link_drop_managed(link);
1283 continue;
1284 }
1285 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1286 }
1287 dev->links.status = DL_DEV_PROBING;
1288
1289 device_links_write_unlock();
1290 }
1291
1292 /**
1293 * device_links_driver_bound - Update device links after probing its driver.
1294 * @dev: Device to update the links for.
1295 *
1296 * The probe has been successful, so update links from this device to any
1297 * consumers by changing their status to "available".
1298 *
1299 * Also change the status of @dev's links to suppliers to "active".
1300 *
1301 * Links without the DL_FLAG_MANAGED flag set are ignored.
1302 */
device_links_driver_bound(struct device * dev)1303 void device_links_driver_bound(struct device *dev)
1304 {
1305 struct device_link *link, *ln;
1306 LIST_HEAD(sync_list);
1307
1308 /*
1309 * If a device binds successfully, it's expected to have created all
1310 * the device links it needs to or make new device links as it needs
1311 * them. So, fw_devlink no longer needs to create device links to any
1312 * of the device's suppliers.
1313 *
1314 * Also, if a child firmware node of this bound device is not added as a
1315 * device by now, assume it is never going to be added. Make this bound
1316 * device the fallback supplier to the dangling consumers of the child
1317 * firmware node because this bound device is probably implementing the
1318 * child firmware node functionality and we don't want the dangling
1319 * consumers to defer probe indefinitely waiting for a device for the
1320 * child firmware node.
1321 */
1322 if (dev->fwnode && dev->fwnode->dev == dev) {
1323 struct fwnode_handle *child;
1324 fwnode_links_purge_suppliers(dev->fwnode);
1325 mutex_lock(&fwnode_link_lock);
1326 fwnode_for_each_available_child_node(dev->fwnode, child)
1327 __fw_devlink_pickup_dangling_consumers(child,
1328 dev->fwnode);
1329 __fw_devlink_link_to_consumers(dev);
1330 mutex_unlock(&fwnode_link_lock);
1331 }
1332 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1333
1334 device_links_write_lock();
1335
1336 list_for_each_entry(link, &dev->links.consumers, s_node) {
1337 if (!(link->flags & DL_FLAG_MANAGED))
1338 continue;
1339
1340 /*
1341 * Links created during consumer probe may be in the "consumer
1342 * probe" state to start with if the supplier is still probing
1343 * when they are created and they may become "active" if the
1344 * consumer probe returns first. Skip them here.
1345 */
1346 if (link->status == DL_STATE_CONSUMER_PROBE ||
1347 link->status == DL_STATE_ACTIVE)
1348 continue;
1349
1350 WARN_ON(link->status != DL_STATE_DORMANT);
1351 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1352
1353 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1354 driver_deferred_probe_add(link->consumer);
1355 }
1356
1357 if (defer_sync_state_count)
1358 __device_links_supplier_defer_sync(dev);
1359 else
1360 __device_links_queue_sync_state(dev, &sync_list);
1361
1362 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1363 struct device *supplier;
1364
1365 if (!(link->flags & DL_FLAG_MANAGED))
1366 continue;
1367
1368 supplier = link->supplier;
1369 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1370 /*
1371 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1372 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1373 * save to drop the managed link completely.
1374 */
1375 device_link_drop_managed(link);
1376 } else if (dev_is_best_effort(dev) &&
1377 link->flags & DL_FLAG_INFERRED &&
1378 link->status != DL_STATE_CONSUMER_PROBE &&
1379 !link->supplier->can_match) {
1380 /*
1381 * When dev_is_best_effort() is true, we ignore device
1382 * links to suppliers that don't have a driver. If the
1383 * consumer device still managed to probe, there's no
1384 * point in maintaining a device link in a weird state
1385 * (consumer probed before supplier). So delete it.
1386 */
1387 device_link_drop_managed(link);
1388 } else {
1389 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1390 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1391 }
1392
1393 /*
1394 * This needs to be done even for the deleted
1395 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1396 * device link that was preventing the supplier from getting a
1397 * sync_state() call.
1398 */
1399 if (defer_sync_state_count)
1400 __device_links_supplier_defer_sync(supplier);
1401 else
1402 __device_links_queue_sync_state(supplier, &sync_list);
1403 }
1404
1405 dev->links.status = DL_DEV_DRIVER_BOUND;
1406
1407 device_links_write_unlock();
1408
1409 device_links_flush_sync_list(&sync_list, dev);
1410 }
1411
1412 /**
1413 * __device_links_no_driver - Update links of a device without a driver.
1414 * @dev: Device without a drvier.
1415 *
1416 * Delete all non-persistent links from this device to any suppliers.
1417 *
1418 * Persistent links stay around, but their status is changed to "available",
1419 * unless they already are in the "supplier unbind in progress" state in which
1420 * case they need not be updated.
1421 *
1422 * Links without the DL_FLAG_MANAGED flag set are ignored.
1423 */
__device_links_no_driver(struct device * dev)1424 static void __device_links_no_driver(struct device *dev)
1425 {
1426 struct device_link *link, *ln;
1427
1428 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1429 if (!(link->flags & DL_FLAG_MANAGED))
1430 continue;
1431
1432 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1433 device_link_drop_managed(link);
1434 continue;
1435 }
1436
1437 if (link->status != DL_STATE_CONSUMER_PROBE &&
1438 link->status != DL_STATE_ACTIVE)
1439 continue;
1440
1441 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1442 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1443 } else {
1444 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1445 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1446 }
1447 }
1448
1449 dev->links.status = DL_DEV_NO_DRIVER;
1450 }
1451
1452 /**
1453 * device_links_no_driver - Update links after failing driver probe.
1454 * @dev: Device whose driver has just failed to probe.
1455 *
1456 * Clean up leftover links to consumers for @dev and invoke
1457 * %__device_links_no_driver() to update links to suppliers for it as
1458 * appropriate.
1459 *
1460 * Links without the DL_FLAG_MANAGED flag set are ignored.
1461 */
device_links_no_driver(struct device * dev)1462 void device_links_no_driver(struct device *dev)
1463 {
1464 struct device_link *link;
1465
1466 device_links_write_lock();
1467
1468 list_for_each_entry(link, &dev->links.consumers, s_node) {
1469 if (!(link->flags & DL_FLAG_MANAGED))
1470 continue;
1471
1472 /*
1473 * The probe has failed, so if the status of the link is
1474 * "consumer probe" or "active", it must have been added by
1475 * a probing consumer while this device was still probing.
1476 * Change its state to "dormant", as it represents a valid
1477 * relationship, but it is not functionally meaningful.
1478 */
1479 if (link->status == DL_STATE_CONSUMER_PROBE ||
1480 link->status == DL_STATE_ACTIVE)
1481 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1482 }
1483
1484 __device_links_no_driver(dev);
1485
1486 device_links_write_unlock();
1487 }
1488
1489 /**
1490 * device_links_driver_cleanup - Update links after driver removal.
1491 * @dev: Device whose driver has just gone away.
1492 *
1493 * Update links to consumers for @dev by changing their status to "dormant" and
1494 * invoke %__device_links_no_driver() to update links to suppliers for it as
1495 * appropriate.
1496 *
1497 * Links without the DL_FLAG_MANAGED flag set are ignored.
1498 */
device_links_driver_cleanup(struct device * dev)1499 void device_links_driver_cleanup(struct device *dev)
1500 {
1501 struct device_link *link, *ln;
1502
1503 device_links_write_lock();
1504
1505 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1506 if (!(link->flags & DL_FLAG_MANAGED))
1507 continue;
1508
1509 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1510 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1511
1512 /*
1513 * autoremove the links between this @dev and its consumer
1514 * devices that are not active, i.e. where the link state
1515 * has moved to DL_STATE_SUPPLIER_UNBIND.
1516 */
1517 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1518 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1519 device_link_drop_managed(link);
1520
1521 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1522 }
1523
1524 list_del_init(&dev->links.defer_sync);
1525 __device_links_no_driver(dev);
1526
1527 device_links_write_unlock();
1528 }
1529
1530 /**
1531 * device_links_busy - Check if there are any busy links to consumers.
1532 * @dev: Device to check.
1533 *
1534 * Check each consumer of the device and return 'true' if its link's status
1535 * is one of "consumer probe" or "active" (meaning that the given consumer is
1536 * probing right now or its driver is present). Otherwise, change the link
1537 * state to "supplier unbind" to prevent the consumer from being probed
1538 * successfully going forward.
1539 *
1540 * Return 'false' if there are no probing or active consumers.
1541 *
1542 * Links without the DL_FLAG_MANAGED flag set are ignored.
1543 */
device_links_busy(struct device * dev)1544 bool device_links_busy(struct device *dev)
1545 {
1546 struct device_link *link;
1547 bool ret = false;
1548
1549 device_links_write_lock();
1550
1551 list_for_each_entry(link, &dev->links.consumers, s_node) {
1552 if (!(link->flags & DL_FLAG_MANAGED))
1553 continue;
1554
1555 if (link->status == DL_STATE_CONSUMER_PROBE
1556 || link->status == DL_STATE_ACTIVE) {
1557 ret = true;
1558 break;
1559 }
1560 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1561 }
1562
1563 dev->links.status = DL_DEV_UNBINDING;
1564
1565 device_links_write_unlock();
1566 return ret;
1567 }
1568
1569 /**
1570 * device_links_unbind_consumers - Force unbind consumers of the given device.
1571 * @dev: Device to unbind the consumers of.
1572 *
1573 * Walk the list of links to consumers for @dev and if any of them is in the
1574 * "consumer probe" state, wait for all device probes in progress to complete
1575 * and start over.
1576 *
1577 * If that's not the case, change the status of the link to "supplier unbind"
1578 * and check if the link was in the "active" state. If so, force the consumer
1579 * driver to unbind and start over (the consumer will not re-probe as we have
1580 * changed the state of the link already).
1581 *
1582 * Links without the DL_FLAG_MANAGED flag set are ignored.
1583 */
device_links_unbind_consumers(struct device * dev)1584 void device_links_unbind_consumers(struct device *dev)
1585 {
1586 struct device_link *link;
1587
1588 start:
1589 device_links_write_lock();
1590
1591 list_for_each_entry(link, &dev->links.consumers, s_node) {
1592 enum device_link_state status;
1593
1594 if (!(link->flags & DL_FLAG_MANAGED) ||
1595 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1596 continue;
1597
1598 status = link->status;
1599 if (status == DL_STATE_CONSUMER_PROBE) {
1600 device_links_write_unlock();
1601
1602 wait_for_device_probe();
1603 goto start;
1604 }
1605 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1606 if (status == DL_STATE_ACTIVE) {
1607 struct device *consumer = link->consumer;
1608
1609 get_device(consumer);
1610
1611 device_links_write_unlock();
1612
1613 device_release_driver_internal(consumer, NULL,
1614 consumer->parent);
1615 put_device(consumer);
1616 goto start;
1617 }
1618 }
1619
1620 device_links_write_unlock();
1621 }
1622
1623 /**
1624 * device_links_purge - Delete existing links to other devices.
1625 * @dev: Target device.
1626 */
device_links_purge(struct device * dev)1627 static void device_links_purge(struct device *dev)
1628 {
1629 struct device_link *link, *ln;
1630
1631 if (dev->class == &devlink_class)
1632 return;
1633
1634 /*
1635 * Delete all of the remaining links from this device to any other
1636 * devices (either consumers or suppliers).
1637 */
1638 device_links_write_lock();
1639
1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1641 WARN_ON(link->status == DL_STATE_ACTIVE);
1642 __device_link_del(&link->kref);
1643 }
1644
1645 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1646 WARN_ON(link->status != DL_STATE_DORMANT &&
1647 link->status != DL_STATE_NONE);
1648 __device_link_del(&link->kref);
1649 }
1650
1651 device_links_write_unlock();
1652 }
1653
1654 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1655 DL_FLAG_SYNC_STATE_ONLY)
1656 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1657 DL_FLAG_AUTOPROBE_CONSUMER)
1658 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1659 DL_FLAG_PM_RUNTIME)
1660
1661 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1662 static int __init fw_devlink_setup(char *arg)
1663 {
1664 if (!arg)
1665 return -EINVAL;
1666
1667 if (strcmp(arg, "off") == 0) {
1668 fw_devlink_flags = 0;
1669 } else if (strcmp(arg, "permissive") == 0) {
1670 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1671 } else if (strcmp(arg, "on") == 0) {
1672 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1673 } else if (strcmp(arg, "rpm") == 0) {
1674 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1675 }
1676 return 0;
1677 }
1678 early_param("fw_devlink", fw_devlink_setup);
1679
1680 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1681 static int __init fw_devlink_strict_setup(char *arg)
1682 {
1683 return kstrtobool(arg, &fw_devlink_strict);
1684 }
1685 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1686
1687 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1688 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1689
1690 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1691 static int fw_devlink_sync_state;
1692 #else
1693 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1694 #endif
1695
fw_devlink_sync_state_setup(char * arg)1696 static int __init fw_devlink_sync_state_setup(char *arg)
1697 {
1698 if (!arg)
1699 return -EINVAL;
1700
1701 if (strcmp(arg, "strict") == 0) {
1702 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1703 return 0;
1704 } else if (strcmp(arg, "timeout") == 0) {
1705 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1706 return 0;
1707 }
1708 return -EINVAL;
1709 }
1710 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1711
fw_devlink_get_flags(u8 fwlink_flags)1712 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1713 {
1714 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1715 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1716
1717 return fw_devlink_flags;
1718 }
1719
fw_devlink_is_permissive(void)1720 static bool fw_devlink_is_permissive(void)
1721 {
1722 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1723 }
1724
fw_devlink_is_strict(void)1725 bool fw_devlink_is_strict(void)
1726 {
1727 return fw_devlink_strict && !fw_devlink_is_permissive();
1728 }
1729
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1730 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1731 {
1732 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1733 return;
1734
1735 fwnode_call_int_op(fwnode, add_links);
1736 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1737 }
1738
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1739 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1740 {
1741 struct fwnode_handle *child = NULL;
1742
1743 fw_devlink_parse_fwnode(fwnode);
1744
1745 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1746 fw_devlink_parse_fwtree(child);
1747 }
1748
fw_devlink_relax_link(struct device_link * link)1749 static void fw_devlink_relax_link(struct device_link *link)
1750 {
1751 if (!(link->flags & DL_FLAG_INFERRED))
1752 return;
1753
1754 if (device_link_flag_is_sync_state_only(link->flags))
1755 return;
1756
1757 pm_runtime_drop_link(link);
1758 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1759 dev_dbg(link->consumer, "Relaxing link with %s\n",
1760 dev_name(link->supplier));
1761 }
1762
fw_devlink_no_driver(struct device * dev,void * data)1763 static int fw_devlink_no_driver(struct device *dev, void *data)
1764 {
1765 struct device_link *link = to_devlink(dev);
1766
1767 if (!link->supplier->can_match)
1768 fw_devlink_relax_link(link);
1769
1770 return 0;
1771 }
1772
fw_devlink_drivers_done(void)1773 void fw_devlink_drivers_done(void)
1774 {
1775 fw_devlink_drv_reg_done = true;
1776 device_links_write_lock();
1777 class_for_each_device(&devlink_class, NULL, NULL,
1778 fw_devlink_no_driver);
1779 device_links_write_unlock();
1780 }
1781
fw_devlink_dev_sync_state(struct device * dev,void * data)1782 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1783 {
1784 struct device_link *link = to_devlink(dev);
1785 struct device *sup = link->supplier;
1786
1787 if (!(link->flags & DL_FLAG_MANAGED) ||
1788 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1789 !dev_has_sync_state(sup))
1790 return 0;
1791
1792 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1793 dev_warn(sup, "sync_state() pending due to %s\n",
1794 dev_name(link->consumer));
1795 return 0;
1796 }
1797
1798 if (!list_empty(&sup->links.defer_sync))
1799 return 0;
1800
1801 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1802 sup->state_synced = true;
1803 get_device(sup);
1804 list_add_tail(&sup->links.defer_sync, data);
1805
1806 return 0;
1807 }
1808
fw_devlink_probing_done(void)1809 void fw_devlink_probing_done(void)
1810 {
1811 LIST_HEAD(sync_list);
1812
1813 device_links_write_lock();
1814 class_for_each_device(&devlink_class, NULL, &sync_list,
1815 fw_devlink_dev_sync_state);
1816 device_links_write_unlock();
1817 device_links_flush_sync_list(&sync_list, NULL);
1818 }
1819
1820 /**
1821 * wait_for_init_devices_probe - Try to probe any device needed for init
1822 *
1823 * Some devices might need to be probed and bound successfully before the kernel
1824 * boot sequence can finish and move on to init/userspace. For example, a
1825 * network interface might need to be bound to be able to mount a NFS rootfs.
1826 *
1827 * With fw_devlink=on by default, some of these devices might be blocked from
1828 * probing because they are waiting on a optional supplier that doesn't have a
1829 * driver. While fw_devlink will eventually identify such devices and unblock
1830 * the probing automatically, it might be too late by the time it unblocks the
1831 * probing of devices. For example, the IP4 autoconfig might timeout before
1832 * fw_devlink unblocks probing of the network interface.
1833 *
1834 * This function is available to temporarily try and probe all devices that have
1835 * a driver even if some of their suppliers haven't been added or don't have
1836 * drivers.
1837 *
1838 * The drivers can then decide which of the suppliers are optional vs mandatory
1839 * and probe the device if possible. By the time this function returns, all such
1840 * "best effort" probes are guaranteed to be completed. If a device successfully
1841 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1842 * device where the supplier hasn't yet probed successfully because they have to
1843 * be optional dependencies.
1844 *
1845 * Any devices that didn't successfully probe go back to being treated as if
1846 * this function was never called.
1847 *
1848 * This also means that some devices that aren't needed for init and could have
1849 * waited for their optional supplier to probe (when the supplier's module is
1850 * loaded later on) would end up probing prematurely with limited functionality.
1851 * So call this function only when boot would fail without it.
1852 */
wait_for_init_devices_probe(void)1853 void __init wait_for_init_devices_probe(void)
1854 {
1855 if (!fw_devlink_flags || fw_devlink_is_permissive())
1856 return;
1857
1858 /*
1859 * Wait for all ongoing probes to finish so that the "best effort" is
1860 * only applied to devices that can't probe otherwise.
1861 */
1862 wait_for_device_probe();
1863
1864 pr_info("Trying to probe devices needed for running init ...\n");
1865 fw_devlink_best_effort = true;
1866 driver_deferred_probe_trigger();
1867
1868 /*
1869 * Wait for all "best effort" probes to finish before going back to
1870 * normal enforcement.
1871 */
1872 wait_for_device_probe();
1873 fw_devlink_best_effort = false;
1874 }
1875
fw_devlink_unblock_consumers(struct device * dev)1876 static void fw_devlink_unblock_consumers(struct device *dev)
1877 {
1878 struct device_link *link;
1879
1880 if (!fw_devlink_flags || fw_devlink_is_permissive())
1881 return;
1882
1883 device_links_write_lock();
1884 list_for_each_entry(link, &dev->links.consumers, s_node)
1885 fw_devlink_relax_link(link);
1886 device_links_write_unlock();
1887 }
1888
1889
fwnode_init_without_drv(struct fwnode_handle * fwnode)1890 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1891 {
1892 struct device *dev;
1893 bool ret;
1894
1895 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1896 return false;
1897
1898 dev = get_dev_from_fwnode(fwnode);
1899 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1900 put_device(dev);
1901
1902 return ret;
1903 }
1904
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1905 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1906 {
1907 struct fwnode_handle *parent;
1908
1909 fwnode_for_each_parent_node(fwnode, parent) {
1910 if (fwnode_init_without_drv(parent)) {
1911 fwnode_handle_put(parent);
1912 return true;
1913 }
1914 }
1915
1916 return false;
1917 }
1918
1919 /**
1920 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1921 * @con: Potential consumer device.
1922 * @sup_handle: Potential supplier's fwnode.
1923 *
1924 * Needs to be called with fwnode_lock and device link lock held.
1925 *
1926 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1927 * depend on @con. This function can detect multiple cyles between @sup_handle
1928 * and @con. When such dependency cycles are found, convert all device links
1929 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1930 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1931 * converted into a device link in the future, they are created as
1932 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1933 * fw_devlink=permissive just between the devices in the cycle. We need to do
1934 * this because, at this point, fw_devlink can't tell which of these
1935 * dependencies is not a real dependency.
1936 *
1937 * Return true if one or more cycles were found. Otherwise, return false.
1938 */
__fw_devlink_relax_cycles(struct device * con,struct fwnode_handle * sup_handle)1939 static bool __fw_devlink_relax_cycles(struct device *con,
1940 struct fwnode_handle *sup_handle)
1941 {
1942 struct device *sup_dev = NULL, *par_dev = NULL;
1943 struct fwnode_link *link;
1944 struct device_link *dev_link;
1945 bool ret = false;
1946
1947 if (!sup_handle)
1948 return false;
1949
1950 /*
1951 * We aren't trying to find all cycles. Just a cycle between con and
1952 * sup_handle.
1953 */
1954 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1955 return false;
1956
1957 sup_handle->flags |= FWNODE_FLAG_VISITED;
1958
1959 sup_dev = get_dev_from_fwnode(sup_handle);
1960
1961 /* Termination condition. */
1962 if (sup_dev == con) {
1963 ret = true;
1964 goto out;
1965 }
1966
1967 /*
1968 * If sup_dev is bound to a driver and @con hasn't started binding to a
1969 * driver, sup_dev can't be a consumer of @con. So, no need to check
1970 * further.
1971 */
1972 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1973 con->links.status == DL_DEV_NO_DRIVER) {
1974 ret = false;
1975 goto out;
1976 }
1977
1978 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1979 if (__fw_devlink_relax_cycles(con, link->supplier)) {
1980 __fwnode_link_cycle(link);
1981 ret = true;
1982 }
1983 }
1984
1985 /*
1986 * Give priority to device parent over fwnode parent to account for any
1987 * quirks in how fwnodes are converted to devices.
1988 */
1989 if (sup_dev)
1990 par_dev = get_device(sup_dev->parent);
1991 else
1992 par_dev = fwnode_get_next_parent_dev(sup_handle);
1993
1994 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1995 ret = true;
1996
1997 if (!sup_dev)
1998 goto out;
1999
2000 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2001 /*
2002 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2003 * such due to a cycle.
2004 */
2005 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2006 !(dev_link->flags & DL_FLAG_CYCLE))
2007 continue;
2008
2009 if (__fw_devlink_relax_cycles(con,
2010 dev_link->supplier->fwnode)) {
2011 fw_devlink_relax_link(dev_link);
2012 dev_link->flags |= DL_FLAG_CYCLE;
2013 ret = true;
2014 }
2015 }
2016
2017 out:
2018 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2019 put_device(sup_dev);
2020 put_device(par_dev);
2021 return ret;
2022 }
2023
2024 /**
2025 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2026 * @con: consumer device for the device link
2027 * @sup_handle: fwnode handle of supplier
2028 * @link: fwnode link that's being converted to a device link
2029 *
2030 * This function will try to create a device link between the consumer device
2031 * @con and the supplier device represented by @sup_handle.
2032 *
2033 * The supplier has to be provided as a fwnode because incorrect cycles in
2034 * fwnode links can sometimes cause the supplier device to never be created.
2035 * This function detects such cases and returns an error if it cannot create a
2036 * device link from the consumer to a missing supplier.
2037 *
2038 * Returns,
2039 * 0 on successfully creating a device link
2040 * -EINVAL if the device link cannot be created as expected
2041 * -EAGAIN if the device link cannot be created right now, but it may be
2042 * possible to do that in the future
2043 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2044 static int fw_devlink_create_devlink(struct device *con,
2045 struct fwnode_handle *sup_handle,
2046 struct fwnode_link *link)
2047 {
2048 struct device *sup_dev;
2049 int ret = 0;
2050 u32 flags;
2051
2052 if (con->fwnode == link->consumer)
2053 flags = fw_devlink_get_flags(link->flags);
2054 else
2055 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2056
2057 /*
2058 * In some cases, a device P might also be a supplier to its child node
2059 * C. However, this would defer the probe of C until the probe of P
2060 * completes successfully. This is perfectly fine in the device driver
2061 * model. device_add() doesn't guarantee probe completion of the device
2062 * by the time it returns.
2063 *
2064 * However, there are a few drivers that assume C will finish probing
2065 * as soon as it's added and before P finishes probing. So, we provide
2066 * a flag to let fw_devlink know not to delay the probe of C until the
2067 * probe of P completes successfully.
2068 *
2069 * When such a flag is set, we can't create device links where P is the
2070 * supplier of C as that would delay the probe of C.
2071 */
2072 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2073 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2074 return -EINVAL;
2075
2076 /*
2077 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2078 * So, one might expect that cycle detection isn't necessary for them.
2079 * However, if the device link was marked as SYNC_STATE_ONLY because
2080 * it's part of a cycle, then we still need to do cycle detection. This
2081 * is because the consumer and supplier might be part of multiple cycles
2082 * and we need to detect all those cycles.
2083 */
2084 if (!device_link_flag_is_sync_state_only(flags) ||
2085 flags & DL_FLAG_CYCLE) {
2086 device_links_write_lock();
2087 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2088 __fwnode_link_cycle(link);
2089 flags = fw_devlink_get_flags(link->flags);
2090 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2091 sup_handle);
2092 }
2093 device_links_write_unlock();
2094 }
2095
2096 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2097 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2098 else
2099 sup_dev = get_dev_from_fwnode(sup_handle);
2100
2101 if (sup_dev) {
2102 /*
2103 * If it's one of those drivers that don't actually bind to
2104 * their device using driver core, then don't wait on this
2105 * supplier device indefinitely.
2106 */
2107 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2108 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2109 dev_dbg(con,
2110 "Not linking %pfwf - dev might never probe\n",
2111 sup_handle);
2112 ret = -EINVAL;
2113 goto out;
2114 }
2115
2116 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2117 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2118 flags, dev_name(sup_dev));
2119 ret = -EINVAL;
2120 }
2121
2122 goto out;
2123 }
2124
2125 /*
2126 * Supplier or supplier's ancestor already initialized without a struct
2127 * device or being probed by a driver.
2128 */
2129 if (fwnode_init_without_drv(sup_handle) ||
2130 fwnode_ancestor_init_without_drv(sup_handle)) {
2131 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2132 sup_handle);
2133 return -EINVAL;
2134 }
2135
2136 ret = -EAGAIN;
2137 out:
2138 put_device(sup_dev);
2139 return ret;
2140 }
2141
2142 /**
2143 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2144 * @dev: Device that needs to be linked to its consumers
2145 *
2146 * This function looks at all the consumer fwnodes of @dev and creates device
2147 * links between the consumer device and @dev (supplier).
2148 *
2149 * If the consumer device has not been added yet, then this function creates a
2150 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2151 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2152 * sync_state() callback before the real consumer device gets to be added and
2153 * then probed.
2154 *
2155 * Once device links are created from the real consumer to @dev (supplier), the
2156 * fwnode links are deleted.
2157 */
__fw_devlink_link_to_consumers(struct device * dev)2158 static void __fw_devlink_link_to_consumers(struct device *dev)
2159 {
2160 struct fwnode_handle *fwnode = dev->fwnode;
2161 struct fwnode_link *link, *tmp;
2162
2163 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2164 struct device *con_dev;
2165 bool own_link = true;
2166 int ret;
2167
2168 con_dev = get_dev_from_fwnode(link->consumer);
2169 /*
2170 * If consumer device is not available yet, make a "proxy"
2171 * SYNC_STATE_ONLY link from the consumer's parent device to
2172 * the supplier device. This is necessary to make sure the
2173 * supplier doesn't get a sync_state() callback before the real
2174 * consumer can create a device link to the supplier.
2175 *
2176 * This proxy link step is needed to handle the case where the
2177 * consumer's parent device is added before the supplier.
2178 */
2179 if (!con_dev) {
2180 con_dev = fwnode_get_next_parent_dev(link->consumer);
2181 /*
2182 * However, if the consumer's parent device is also the
2183 * parent of the supplier, don't create a
2184 * consumer-supplier link from the parent to its child
2185 * device. Such a dependency is impossible.
2186 */
2187 if (con_dev &&
2188 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2189 put_device(con_dev);
2190 con_dev = NULL;
2191 } else {
2192 own_link = false;
2193 }
2194 }
2195
2196 if (!con_dev)
2197 continue;
2198
2199 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2200 put_device(con_dev);
2201 if (!own_link || ret == -EAGAIN)
2202 continue;
2203
2204 __fwnode_link_del(link);
2205 }
2206 }
2207
2208 /**
2209 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2210 * @dev: The consumer device that needs to be linked to its suppliers
2211 * @fwnode: Root of the fwnode tree that is used to create device links
2212 *
2213 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2214 * @fwnode and creates device links between @dev (consumer) and all the
2215 * supplier devices of the entire fwnode tree at @fwnode.
2216 *
2217 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2218 * and the real suppliers of @dev. Once these device links are created, the
2219 * fwnode links are deleted.
2220 *
2221 * In addition, it also looks at all the suppliers of the entire fwnode tree
2222 * because some of the child devices of @dev that have not been added yet
2223 * (because @dev hasn't probed) might already have their suppliers added to
2224 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2225 * @dev (consumer) and these suppliers to make sure they don't execute their
2226 * sync_state() callbacks before these child devices have a chance to create
2227 * their device links. The fwnode links that correspond to the child devices
2228 * aren't delete because they are needed later to create the device links
2229 * between the real consumer and supplier devices.
2230 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2231 static void __fw_devlink_link_to_suppliers(struct device *dev,
2232 struct fwnode_handle *fwnode)
2233 {
2234 bool own_link = (dev->fwnode == fwnode);
2235 struct fwnode_link *link, *tmp;
2236 struct fwnode_handle *child = NULL;
2237
2238 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2239 int ret;
2240 struct fwnode_handle *sup = link->supplier;
2241
2242 ret = fw_devlink_create_devlink(dev, sup, link);
2243 if (!own_link || ret == -EAGAIN)
2244 continue;
2245
2246 __fwnode_link_del(link);
2247 }
2248
2249 /*
2250 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2251 * all the descendants. This proxy link step is needed to handle the
2252 * case where the supplier is added before the consumer's parent device
2253 * (@dev).
2254 */
2255 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2256 __fw_devlink_link_to_suppliers(dev, child);
2257 }
2258
fw_devlink_link_device(struct device * dev)2259 static void fw_devlink_link_device(struct device *dev)
2260 {
2261 struct fwnode_handle *fwnode = dev->fwnode;
2262
2263 if (!fw_devlink_flags)
2264 return;
2265
2266 fw_devlink_parse_fwtree(fwnode);
2267
2268 mutex_lock(&fwnode_link_lock);
2269 __fw_devlink_link_to_consumers(dev);
2270 __fw_devlink_link_to_suppliers(dev, fwnode);
2271 mutex_unlock(&fwnode_link_lock);
2272 }
2273
2274 /* Device links support end. */
2275
2276 int (*platform_notify)(struct device *dev) = NULL;
2277 int (*platform_notify_remove)(struct device *dev) = NULL;
2278 static struct kobject *dev_kobj;
2279
2280 /* /sys/dev/char */
2281 static struct kobject *sysfs_dev_char_kobj;
2282
2283 /* /sys/dev/block */
2284 static struct kobject *sysfs_dev_block_kobj;
2285
2286 static DEFINE_MUTEX(device_hotplug_lock);
2287
lock_device_hotplug(void)2288 void lock_device_hotplug(void)
2289 {
2290 mutex_lock(&device_hotplug_lock);
2291 }
2292
unlock_device_hotplug(void)2293 void unlock_device_hotplug(void)
2294 {
2295 mutex_unlock(&device_hotplug_lock);
2296 }
2297
lock_device_hotplug_sysfs(void)2298 int lock_device_hotplug_sysfs(void)
2299 {
2300 if (mutex_trylock(&device_hotplug_lock))
2301 return 0;
2302
2303 /* Avoid busy looping (5 ms of sleep should do). */
2304 msleep(5);
2305 return restart_syscall();
2306 }
2307
2308 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2309 static inline int device_is_not_partition(struct device *dev)
2310 {
2311 return !(dev->type == &part_type);
2312 }
2313 #else
device_is_not_partition(struct device * dev)2314 static inline int device_is_not_partition(struct device *dev)
2315 {
2316 return 1;
2317 }
2318 #endif
2319
device_platform_notify(struct device * dev)2320 static void device_platform_notify(struct device *dev)
2321 {
2322 acpi_device_notify(dev);
2323
2324 software_node_notify(dev);
2325
2326 if (platform_notify)
2327 platform_notify(dev);
2328 }
2329
device_platform_notify_remove(struct device * dev)2330 static void device_platform_notify_remove(struct device *dev)
2331 {
2332 if (platform_notify_remove)
2333 platform_notify_remove(dev);
2334
2335 software_node_notify_remove(dev);
2336
2337 acpi_device_notify_remove(dev);
2338 }
2339
2340 /**
2341 * dev_driver_string - Return a device's driver name, if at all possible
2342 * @dev: struct device to get the name of
2343 *
2344 * Will return the device's driver's name if it is bound to a device. If
2345 * the device is not bound to a driver, it will return the name of the bus
2346 * it is attached to. If it is not attached to a bus either, an empty
2347 * string will be returned.
2348 */
dev_driver_string(const struct device * dev)2349 const char *dev_driver_string(const struct device *dev)
2350 {
2351 struct device_driver *drv;
2352
2353 /* dev->driver can change to NULL underneath us because of unbinding,
2354 * so be careful about accessing it. dev->bus and dev->class should
2355 * never change once they are set, so they don't need special care.
2356 */
2357 drv = READ_ONCE(dev->driver);
2358 return drv ? drv->name : dev_bus_name(dev);
2359 }
2360 EXPORT_SYMBOL(dev_driver_string);
2361
2362 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2363
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2364 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2365 char *buf)
2366 {
2367 struct device_attribute *dev_attr = to_dev_attr(attr);
2368 struct device *dev = kobj_to_dev(kobj);
2369 ssize_t ret = -EIO;
2370
2371 if (dev_attr->show)
2372 ret = dev_attr->show(dev, dev_attr, buf);
2373 if (ret >= (ssize_t)PAGE_SIZE) {
2374 printk("dev_attr_show: %pS returned bad count\n",
2375 dev_attr->show);
2376 }
2377 return ret;
2378 }
2379
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2380 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2381 const char *buf, size_t count)
2382 {
2383 struct device_attribute *dev_attr = to_dev_attr(attr);
2384 struct device *dev = kobj_to_dev(kobj);
2385 ssize_t ret = -EIO;
2386
2387 if (dev_attr->store)
2388 ret = dev_attr->store(dev, dev_attr, buf, count);
2389 return ret;
2390 }
2391
2392 static const struct sysfs_ops dev_sysfs_ops = {
2393 .show = dev_attr_show,
2394 .store = dev_attr_store,
2395 };
2396
2397 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2398
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2399 ssize_t device_store_ulong(struct device *dev,
2400 struct device_attribute *attr,
2401 const char *buf, size_t size)
2402 {
2403 struct dev_ext_attribute *ea = to_ext_attr(attr);
2404 int ret;
2405 unsigned long new;
2406
2407 ret = kstrtoul(buf, 0, &new);
2408 if (ret)
2409 return ret;
2410 *(unsigned long *)(ea->var) = new;
2411 /* Always return full write size even if we didn't consume all */
2412 return size;
2413 }
2414 EXPORT_SYMBOL_GPL(device_store_ulong);
2415
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2416 ssize_t device_show_ulong(struct device *dev,
2417 struct device_attribute *attr,
2418 char *buf)
2419 {
2420 struct dev_ext_attribute *ea = to_ext_attr(attr);
2421 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2422 }
2423 EXPORT_SYMBOL_GPL(device_show_ulong);
2424
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2425 ssize_t device_store_int(struct device *dev,
2426 struct device_attribute *attr,
2427 const char *buf, size_t size)
2428 {
2429 struct dev_ext_attribute *ea = to_ext_attr(attr);
2430 int ret;
2431 long new;
2432
2433 ret = kstrtol(buf, 0, &new);
2434 if (ret)
2435 return ret;
2436
2437 if (new > INT_MAX || new < INT_MIN)
2438 return -EINVAL;
2439 *(int *)(ea->var) = new;
2440 /* Always return full write size even if we didn't consume all */
2441 return size;
2442 }
2443 EXPORT_SYMBOL_GPL(device_store_int);
2444
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2445 ssize_t device_show_int(struct device *dev,
2446 struct device_attribute *attr,
2447 char *buf)
2448 {
2449 struct dev_ext_attribute *ea = to_ext_attr(attr);
2450
2451 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2452 }
2453 EXPORT_SYMBOL_GPL(device_show_int);
2454
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2455 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2456 const char *buf, size_t size)
2457 {
2458 struct dev_ext_attribute *ea = to_ext_attr(attr);
2459
2460 if (kstrtobool(buf, ea->var) < 0)
2461 return -EINVAL;
2462
2463 return size;
2464 }
2465 EXPORT_SYMBOL_GPL(device_store_bool);
2466
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2467 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2468 char *buf)
2469 {
2470 struct dev_ext_attribute *ea = to_ext_attr(attr);
2471
2472 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2473 }
2474 EXPORT_SYMBOL_GPL(device_show_bool);
2475
2476 /**
2477 * device_release - free device structure.
2478 * @kobj: device's kobject.
2479 *
2480 * This is called once the reference count for the object
2481 * reaches 0. We forward the call to the device's release
2482 * method, which should handle actually freeing the structure.
2483 */
device_release(struct kobject * kobj)2484 static void device_release(struct kobject *kobj)
2485 {
2486 struct device *dev = kobj_to_dev(kobj);
2487 struct device_private *p = dev->p;
2488
2489 /*
2490 * Some platform devices are driven without driver attached
2491 * and managed resources may have been acquired. Make sure
2492 * all resources are released.
2493 *
2494 * Drivers still can add resources into device after device
2495 * is deleted but alive, so release devres here to avoid
2496 * possible memory leak.
2497 */
2498 devres_release_all(dev);
2499
2500 kfree(dev->dma_range_map);
2501
2502 if (dev->release)
2503 dev->release(dev);
2504 else if (dev->type && dev->type->release)
2505 dev->type->release(dev);
2506 else if (dev->class && dev->class->dev_release)
2507 dev->class->dev_release(dev);
2508 else
2509 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2510 dev_name(dev));
2511 kfree(p);
2512 }
2513
device_namespace(const struct kobject * kobj)2514 static const void *device_namespace(const struct kobject *kobj)
2515 {
2516 const struct device *dev = kobj_to_dev(kobj);
2517 const void *ns = NULL;
2518
2519 if (dev->class && dev->class->ns_type)
2520 ns = dev->class->namespace(dev);
2521
2522 return ns;
2523 }
2524
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2525 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2526 {
2527 const struct device *dev = kobj_to_dev(kobj);
2528
2529 if (dev->class && dev->class->get_ownership)
2530 dev->class->get_ownership(dev, uid, gid);
2531 }
2532
2533 static const struct kobj_type device_ktype = {
2534 .release = device_release,
2535 .sysfs_ops = &dev_sysfs_ops,
2536 .namespace = device_namespace,
2537 .get_ownership = device_get_ownership,
2538 };
2539
2540
dev_uevent_filter(const struct kobject * kobj)2541 static int dev_uevent_filter(const struct kobject *kobj)
2542 {
2543 const struct kobj_type *ktype = get_ktype(kobj);
2544
2545 if (ktype == &device_ktype) {
2546 const struct device *dev = kobj_to_dev(kobj);
2547 if (dev->bus)
2548 return 1;
2549 if (dev->class)
2550 return 1;
2551 }
2552 return 0;
2553 }
2554
dev_uevent_name(const struct kobject * kobj)2555 static const char *dev_uevent_name(const struct kobject *kobj)
2556 {
2557 const struct device *dev = kobj_to_dev(kobj);
2558
2559 if (dev->bus)
2560 return dev->bus->name;
2561 if (dev->class)
2562 return dev->class->name;
2563 return NULL;
2564 }
2565
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2566 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2567 {
2568 const struct device *dev = kobj_to_dev(kobj);
2569 struct device_driver *driver;
2570 int retval = 0;
2571
2572 /* add device node properties if present */
2573 if (MAJOR(dev->devt)) {
2574 const char *tmp;
2575 const char *name;
2576 umode_t mode = 0;
2577 kuid_t uid = GLOBAL_ROOT_UID;
2578 kgid_t gid = GLOBAL_ROOT_GID;
2579
2580 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2581 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2582 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2583 if (name) {
2584 add_uevent_var(env, "DEVNAME=%s", name);
2585 if (mode)
2586 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2587 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2588 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2589 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2590 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2591 kfree(tmp);
2592 }
2593 }
2594
2595 if (dev->type && dev->type->name)
2596 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2597
2598 /* Synchronize with module_remove_driver() */
2599 rcu_read_lock();
2600 driver = READ_ONCE(dev->driver);
2601 if (driver)
2602 add_uevent_var(env, "DRIVER=%s", driver->name);
2603 rcu_read_unlock();
2604
2605 /* Add common DT information about the device */
2606 of_device_uevent(dev, env);
2607
2608 /* have the bus specific function add its stuff */
2609 if (dev->bus && dev->bus->uevent) {
2610 retval = dev->bus->uevent(dev, env);
2611 if (retval)
2612 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2613 dev_name(dev), __func__, retval);
2614 }
2615
2616 /* have the class specific function add its stuff */
2617 if (dev->class && dev->class->dev_uevent) {
2618 retval = dev->class->dev_uevent(dev, env);
2619 if (retval)
2620 pr_debug("device: '%s': %s: class uevent() "
2621 "returned %d\n", dev_name(dev),
2622 __func__, retval);
2623 }
2624
2625 /* have the device type specific function add its stuff */
2626 if (dev->type && dev->type->uevent) {
2627 retval = dev->type->uevent(dev, env);
2628 if (retval)
2629 pr_debug("device: '%s': %s: dev_type uevent() "
2630 "returned %d\n", dev_name(dev),
2631 __func__, retval);
2632 }
2633
2634 return retval;
2635 }
2636
2637 static const struct kset_uevent_ops device_uevent_ops = {
2638 .filter = dev_uevent_filter,
2639 .name = dev_uevent_name,
2640 .uevent = dev_uevent,
2641 };
2642
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2643 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2644 char *buf)
2645 {
2646 struct kobject *top_kobj;
2647 struct kset *kset;
2648 struct kobj_uevent_env *env = NULL;
2649 int i;
2650 int len = 0;
2651 int retval;
2652
2653 /* search the kset, the device belongs to */
2654 top_kobj = &dev->kobj;
2655 while (!top_kobj->kset && top_kobj->parent)
2656 top_kobj = top_kobj->parent;
2657 if (!top_kobj->kset)
2658 goto out;
2659
2660 kset = top_kobj->kset;
2661 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2662 goto out;
2663
2664 /* respect filter */
2665 if (kset->uevent_ops && kset->uevent_ops->filter)
2666 if (!kset->uevent_ops->filter(&dev->kobj))
2667 goto out;
2668
2669 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2670 if (!env)
2671 return -ENOMEM;
2672
2673 /* let the kset specific function add its keys */
2674 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2675 if (retval)
2676 goto out;
2677
2678 /* copy keys to file */
2679 for (i = 0; i < env->envp_idx; i++)
2680 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2681 out:
2682 kfree(env);
2683 return len;
2684 }
2685
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2686 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2687 const char *buf, size_t count)
2688 {
2689 int rc;
2690
2691 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2692
2693 if (rc) {
2694 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2695 return rc;
2696 }
2697
2698 return count;
2699 }
2700 static DEVICE_ATTR_RW(uevent);
2701
online_show(struct device * dev,struct device_attribute * attr,char * buf)2702 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2703 char *buf)
2704 {
2705 bool val;
2706
2707 device_lock(dev);
2708 val = !dev->offline;
2709 device_unlock(dev);
2710 return sysfs_emit(buf, "%u\n", val);
2711 }
2712
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2713 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2714 const char *buf, size_t count)
2715 {
2716 bool val;
2717 int ret;
2718
2719 ret = kstrtobool(buf, &val);
2720 if (ret < 0)
2721 return ret;
2722
2723 ret = lock_device_hotplug_sysfs();
2724 if (ret)
2725 return ret;
2726
2727 ret = val ? device_online(dev) : device_offline(dev);
2728 unlock_device_hotplug();
2729 return ret < 0 ? ret : count;
2730 }
2731 static DEVICE_ATTR_RW(online);
2732
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2733 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2734 char *buf)
2735 {
2736 const char *loc;
2737
2738 switch (dev->removable) {
2739 case DEVICE_REMOVABLE:
2740 loc = "removable";
2741 break;
2742 case DEVICE_FIXED:
2743 loc = "fixed";
2744 break;
2745 default:
2746 loc = "unknown";
2747 }
2748 return sysfs_emit(buf, "%s\n", loc);
2749 }
2750 static DEVICE_ATTR_RO(removable);
2751
device_add_groups(struct device * dev,const struct attribute_group ** groups)2752 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2753 {
2754 return sysfs_create_groups(&dev->kobj, groups);
2755 }
2756 EXPORT_SYMBOL_GPL(device_add_groups);
2757
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2758 void device_remove_groups(struct device *dev,
2759 const struct attribute_group **groups)
2760 {
2761 sysfs_remove_groups(&dev->kobj, groups);
2762 }
2763 EXPORT_SYMBOL_GPL(device_remove_groups);
2764
2765 union device_attr_group_devres {
2766 const struct attribute_group *group;
2767 const struct attribute_group **groups;
2768 };
2769
devm_attr_group_remove(struct device * dev,void * res)2770 static void devm_attr_group_remove(struct device *dev, void *res)
2771 {
2772 union device_attr_group_devres *devres = res;
2773 const struct attribute_group *group = devres->group;
2774
2775 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2776 sysfs_remove_group(&dev->kobj, group);
2777 }
2778
devm_attr_groups_remove(struct device * dev,void * res)2779 static void devm_attr_groups_remove(struct device *dev, void *res)
2780 {
2781 union device_attr_group_devres *devres = res;
2782 const struct attribute_group **groups = devres->groups;
2783
2784 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2785 sysfs_remove_groups(&dev->kobj, groups);
2786 }
2787
2788 /**
2789 * devm_device_add_group - given a device, create a managed attribute group
2790 * @dev: The device to create the group for
2791 * @grp: The attribute group to create
2792 *
2793 * This function creates a group for the first time. It will explicitly
2794 * warn and error if any of the attribute files being created already exist.
2795 *
2796 * Returns 0 on success or error code on failure.
2797 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2798 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2799 {
2800 union device_attr_group_devres *devres;
2801 int error;
2802
2803 devres = devres_alloc(devm_attr_group_remove,
2804 sizeof(*devres), GFP_KERNEL);
2805 if (!devres)
2806 return -ENOMEM;
2807
2808 error = sysfs_create_group(&dev->kobj, grp);
2809 if (error) {
2810 devres_free(devres);
2811 return error;
2812 }
2813
2814 devres->group = grp;
2815 devres_add(dev, devres);
2816 return 0;
2817 }
2818 EXPORT_SYMBOL_GPL(devm_device_add_group);
2819
2820 /**
2821 * devm_device_add_groups - create a bunch of managed attribute groups
2822 * @dev: The device to create the group for
2823 * @groups: The attribute groups to create, NULL terminated
2824 *
2825 * This function creates a bunch of managed attribute groups. If an error
2826 * occurs when creating a group, all previously created groups will be
2827 * removed, unwinding everything back to the original state when this
2828 * function was called. It will explicitly warn and error if any of the
2829 * attribute files being created already exist.
2830 *
2831 * Returns 0 on success or error code from sysfs_create_group on failure.
2832 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2833 int devm_device_add_groups(struct device *dev,
2834 const struct attribute_group **groups)
2835 {
2836 union device_attr_group_devres *devres;
2837 int error;
2838
2839 devres = devres_alloc(devm_attr_groups_remove,
2840 sizeof(*devres), GFP_KERNEL);
2841 if (!devres)
2842 return -ENOMEM;
2843
2844 error = sysfs_create_groups(&dev->kobj, groups);
2845 if (error) {
2846 devres_free(devres);
2847 return error;
2848 }
2849
2850 devres->groups = groups;
2851 devres_add(dev, devres);
2852 return 0;
2853 }
2854 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2855
device_add_attrs(struct device * dev)2856 static int device_add_attrs(struct device *dev)
2857 {
2858 const struct class *class = dev->class;
2859 const struct device_type *type = dev->type;
2860 int error;
2861
2862 if (class) {
2863 error = device_add_groups(dev, class->dev_groups);
2864 if (error)
2865 return error;
2866 }
2867
2868 if (type) {
2869 error = device_add_groups(dev, type->groups);
2870 if (error)
2871 goto err_remove_class_groups;
2872 }
2873
2874 error = device_add_groups(dev, dev->groups);
2875 if (error)
2876 goto err_remove_type_groups;
2877
2878 if (device_supports_offline(dev) && !dev->offline_disabled) {
2879 error = device_create_file(dev, &dev_attr_online);
2880 if (error)
2881 goto err_remove_dev_groups;
2882 }
2883
2884 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2885 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2886 if (error)
2887 goto err_remove_dev_online;
2888 }
2889
2890 if (dev_removable_is_valid(dev)) {
2891 error = device_create_file(dev, &dev_attr_removable);
2892 if (error)
2893 goto err_remove_dev_waiting_for_supplier;
2894 }
2895
2896 if (dev_add_physical_location(dev)) {
2897 error = device_add_group(dev,
2898 &dev_attr_physical_location_group);
2899 if (error)
2900 goto err_remove_dev_removable;
2901 }
2902
2903 return 0;
2904
2905 err_remove_dev_removable:
2906 device_remove_file(dev, &dev_attr_removable);
2907 err_remove_dev_waiting_for_supplier:
2908 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2909 err_remove_dev_online:
2910 device_remove_file(dev, &dev_attr_online);
2911 err_remove_dev_groups:
2912 device_remove_groups(dev, dev->groups);
2913 err_remove_type_groups:
2914 if (type)
2915 device_remove_groups(dev, type->groups);
2916 err_remove_class_groups:
2917 if (class)
2918 device_remove_groups(dev, class->dev_groups);
2919
2920 return error;
2921 }
2922
device_remove_attrs(struct device * dev)2923 static void device_remove_attrs(struct device *dev)
2924 {
2925 const struct class *class = dev->class;
2926 const struct device_type *type = dev->type;
2927
2928 if (dev->physical_location) {
2929 device_remove_group(dev, &dev_attr_physical_location_group);
2930 kfree(dev->physical_location);
2931 }
2932
2933 device_remove_file(dev, &dev_attr_removable);
2934 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2935 device_remove_file(dev, &dev_attr_online);
2936 device_remove_groups(dev, dev->groups);
2937
2938 if (type)
2939 device_remove_groups(dev, type->groups);
2940
2941 if (class)
2942 device_remove_groups(dev, class->dev_groups);
2943 }
2944
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2945 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2946 char *buf)
2947 {
2948 return print_dev_t(buf, dev->devt);
2949 }
2950 static DEVICE_ATTR_RO(dev);
2951
2952 /* /sys/devices/ */
2953 struct kset *devices_kset;
2954
2955 /**
2956 * devices_kset_move_before - Move device in the devices_kset's list.
2957 * @deva: Device to move.
2958 * @devb: Device @deva should come before.
2959 */
devices_kset_move_before(struct device * deva,struct device * devb)2960 static void devices_kset_move_before(struct device *deva, struct device *devb)
2961 {
2962 if (!devices_kset)
2963 return;
2964 pr_debug("devices_kset: Moving %s before %s\n",
2965 dev_name(deva), dev_name(devb));
2966 spin_lock(&devices_kset->list_lock);
2967 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2968 spin_unlock(&devices_kset->list_lock);
2969 }
2970
2971 /**
2972 * devices_kset_move_after - Move device in the devices_kset's list.
2973 * @deva: Device to move
2974 * @devb: Device @deva should come after.
2975 */
devices_kset_move_after(struct device * deva,struct device * devb)2976 static void devices_kset_move_after(struct device *deva, struct device *devb)
2977 {
2978 if (!devices_kset)
2979 return;
2980 pr_debug("devices_kset: Moving %s after %s\n",
2981 dev_name(deva), dev_name(devb));
2982 spin_lock(&devices_kset->list_lock);
2983 list_move(&deva->kobj.entry, &devb->kobj.entry);
2984 spin_unlock(&devices_kset->list_lock);
2985 }
2986
2987 /**
2988 * devices_kset_move_last - move the device to the end of devices_kset's list.
2989 * @dev: device to move
2990 */
devices_kset_move_last(struct device * dev)2991 void devices_kset_move_last(struct device *dev)
2992 {
2993 if (!devices_kset)
2994 return;
2995 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2996 spin_lock(&devices_kset->list_lock);
2997 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2998 spin_unlock(&devices_kset->list_lock);
2999 }
3000
3001 /**
3002 * device_create_file - create sysfs attribute file for device.
3003 * @dev: device.
3004 * @attr: device attribute descriptor.
3005 */
device_create_file(struct device * dev,const struct device_attribute * attr)3006 int device_create_file(struct device *dev,
3007 const struct device_attribute *attr)
3008 {
3009 int error = 0;
3010
3011 if (dev) {
3012 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3013 "Attribute %s: write permission without 'store'\n",
3014 attr->attr.name);
3015 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3016 "Attribute %s: read permission without 'show'\n",
3017 attr->attr.name);
3018 error = sysfs_create_file(&dev->kobj, &attr->attr);
3019 }
3020
3021 return error;
3022 }
3023 EXPORT_SYMBOL_GPL(device_create_file);
3024
3025 /**
3026 * device_remove_file - remove sysfs attribute file.
3027 * @dev: device.
3028 * @attr: device attribute descriptor.
3029 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3030 void device_remove_file(struct device *dev,
3031 const struct device_attribute *attr)
3032 {
3033 if (dev)
3034 sysfs_remove_file(&dev->kobj, &attr->attr);
3035 }
3036 EXPORT_SYMBOL_GPL(device_remove_file);
3037
3038 /**
3039 * device_remove_file_self - remove sysfs attribute file from its own method.
3040 * @dev: device.
3041 * @attr: device attribute descriptor.
3042 *
3043 * See kernfs_remove_self() for details.
3044 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3045 bool device_remove_file_self(struct device *dev,
3046 const struct device_attribute *attr)
3047 {
3048 if (dev)
3049 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3050 else
3051 return false;
3052 }
3053 EXPORT_SYMBOL_GPL(device_remove_file_self);
3054
3055 /**
3056 * device_create_bin_file - create sysfs binary attribute file for device.
3057 * @dev: device.
3058 * @attr: device binary attribute descriptor.
3059 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3060 int device_create_bin_file(struct device *dev,
3061 const struct bin_attribute *attr)
3062 {
3063 int error = -EINVAL;
3064 if (dev)
3065 error = sysfs_create_bin_file(&dev->kobj, attr);
3066 return error;
3067 }
3068 EXPORT_SYMBOL_GPL(device_create_bin_file);
3069
3070 /**
3071 * device_remove_bin_file - remove sysfs binary attribute file
3072 * @dev: device.
3073 * @attr: device binary attribute descriptor.
3074 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3075 void device_remove_bin_file(struct device *dev,
3076 const struct bin_attribute *attr)
3077 {
3078 if (dev)
3079 sysfs_remove_bin_file(&dev->kobj, attr);
3080 }
3081 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3082
klist_children_get(struct klist_node * n)3083 static void klist_children_get(struct klist_node *n)
3084 {
3085 struct device_private *p = to_device_private_parent(n);
3086 struct device *dev = p->device;
3087
3088 get_device(dev);
3089 }
3090
klist_children_put(struct klist_node * n)3091 static void klist_children_put(struct klist_node *n)
3092 {
3093 struct device_private *p = to_device_private_parent(n);
3094 struct device *dev = p->device;
3095
3096 put_device(dev);
3097 }
3098
3099 /**
3100 * device_initialize - init device structure.
3101 * @dev: device.
3102 *
3103 * This prepares the device for use by other layers by initializing
3104 * its fields.
3105 * It is the first half of device_register(), if called by
3106 * that function, though it can also be called separately, so one
3107 * may use @dev's fields. In particular, get_device()/put_device()
3108 * may be used for reference counting of @dev after calling this
3109 * function.
3110 *
3111 * All fields in @dev must be initialized by the caller to 0, except
3112 * for those explicitly set to some other value. The simplest
3113 * approach is to use kzalloc() to allocate the structure containing
3114 * @dev.
3115 *
3116 * NOTE: Use put_device() to give up your reference instead of freeing
3117 * @dev directly once you have called this function.
3118 */
device_initialize(struct device * dev)3119 void device_initialize(struct device *dev)
3120 {
3121 dev->kobj.kset = devices_kset;
3122 kobject_init(&dev->kobj, &device_ktype);
3123 INIT_LIST_HEAD(&dev->dma_pools);
3124 mutex_init(&dev->mutex);
3125 lockdep_set_novalidate_class(&dev->mutex);
3126 spin_lock_init(&dev->devres_lock);
3127 INIT_LIST_HEAD(&dev->devres_head);
3128 device_pm_init(dev);
3129 set_dev_node(dev, NUMA_NO_NODE);
3130 INIT_LIST_HEAD(&dev->links.consumers);
3131 INIT_LIST_HEAD(&dev->links.suppliers);
3132 INIT_LIST_HEAD(&dev->links.defer_sync);
3133 dev->links.status = DL_DEV_NO_DRIVER;
3134 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3135 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3136 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3137 dev->dma_coherent = dma_default_coherent;
3138 #endif
3139 swiotlb_dev_init(dev);
3140 }
3141 EXPORT_SYMBOL_GPL(device_initialize);
3142
virtual_device_parent(struct device * dev)3143 struct kobject *virtual_device_parent(struct device *dev)
3144 {
3145 static struct kobject *virtual_dir = NULL;
3146
3147 if (!virtual_dir)
3148 virtual_dir = kobject_create_and_add("virtual",
3149 &devices_kset->kobj);
3150
3151 return virtual_dir;
3152 }
3153
3154 struct class_dir {
3155 struct kobject kobj;
3156 const struct class *class;
3157 };
3158
3159 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3160
class_dir_release(struct kobject * kobj)3161 static void class_dir_release(struct kobject *kobj)
3162 {
3163 struct class_dir *dir = to_class_dir(kobj);
3164 kfree(dir);
3165 }
3166
3167 static const
class_dir_child_ns_type(const struct kobject * kobj)3168 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3169 {
3170 const struct class_dir *dir = to_class_dir(kobj);
3171 return dir->class->ns_type;
3172 }
3173
3174 static const struct kobj_type class_dir_ktype = {
3175 .release = class_dir_release,
3176 .sysfs_ops = &kobj_sysfs_ops,
3177 .child_ns_type = class_dir_child_ns_type
3178 };
3179
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3180 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3181 struct kobject *parent_kobj)
3182 {
3183 struct class_dir *dir;
3184 int retval;
3185
3186 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3187 if (!dir)
3188 return ERR_PTR(-ENOMEM);
3189
3190 dir->class = sp->class;
3191 kobject_init(&dir->kobj, &class_dir_ktype);
3192
3193 dir->kobj.kset = &sp->glue_dirs;
3194
3195 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3196 if (retval < 0) {
3197 kobject_put(&dir->kobj);
3198 return ERR_PTR(retval);
3199 }
3200 return &dir->kobj;
3201 }
3202
3203 static DEFINE_MUTEX(gdp_mutex);
3204
get_device_parent(struct device * dev,struct device * parent)3205 static struct kobject *get_device_parent(struct device *dev,
3206 struct device *parent)
3207 {
3208 struct subsys_private *sp = class_to_subsys(dev->class);
3209 struct kobject *kobj = NULL;
3210
3211 if (sp) {
3212 struct kobject *parent_kobj;
3213 struct kobject *k;
3214
3215 /*
3216 * If we have no parent, we live in "virtual".
3217 * Class-devices with a non class-device as parent, live
3218 * in a "glue" directory to prevent namespace collisions.
3219 */
3220 if (parent == NULL)
3221 parent_kobj = virtual_device_parent(dev);
3222 else if (parent->class && !dev->class->ns_type) {
3223 subsys_put(sp);
3224 return &parent->kobj;
3225 } else {
3226 parent_kobj = &parent->kobj;
3227 }
3228
3229 mutex_lock(&gdp_mutex);
3230
3231 /* find our class-directory at the parent and reference it */
3232 spin_lock(&sp->glue_dirs.list_lock);
3233 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3234 if (k->parent == parent_kobj) {
3235 kobj = kobject_get(k);
3236 break;
3237 }
3238 spin_unlock(&sp->glue_dirs.list_lock);
3239 if (kobj) {
3240 mutex_unlock(&gdp_mutex);
3241 subsys_put(sp);
3242 return kobj;
3243 }
3244
3245 /* or create a new class-directory at the parent device */
3246 k = class_dir_create_and_add(sp, parent_kobj);
3247 /* do not emit an uevent for this simple "glue" directory */
3248 mutex_unlock(&gdp_mutex);
3249 subsys_put(sp);
3250 return k;
3251 }
3252
3253 /* subsystems can specify a default root directory for their devices */
3254 if (!parent && dev->bus) {
3255 struct device *dev_root = bus_get_dev_root(dev->bus);
3256
3257 if (dev_root) {
3258 kobj = &dev_root->kobj;
3259 put_device(dev_root);
3260 return kobj;
3261 }
3262 }
3263
3264 if (parent)
3265 return &parent->kobj;
3266 return NULL;
3267 }
3268
live_in_glue_dir(struct kobject * kobj,struct device * dev)3269 static inline bool live_in_glue_dir(struct kobject *kobj,
3270 struct device *dev)
3271 {
3272 struct subsys_private *sp;
3273 bool retval;
3274
3275 if (!kobj || !dev->class)
3276 return false;
3277
3278 sp = class_to_subsys(dev->class);
3279 if (!sp)
3280 return false;
3281
3282 if (kobj->kset == &sp->glue_dirs)
3283 retval = true;
3284 else
3285 retval = false;
3286
3287 subsys_put(sp);
3288 return retval;
3289 }
3290
get_glue_dir(struct device * dev)3291 static inline struct kobject *get_glue_dir(struct device *dev)
3292 {
3293 return dev->kobj.parent;
3294 }
3295
3296 /**
3297 * kobject_has_children - Returns whether a kobject has children.
3298 * @kobj: the object to test
3299 *
3300 * This will return whether a kobject has other kobjects as children.
3301 *
3302 * It does NOT account for the presence of attribute files, only sub
3303 * directories. It also assumes there is no concurrent addition or
3304 * removal of such children, and thus relies on external locking.
3305 */
kobject_has_children(struct kobject * kobj)3306 static inline bool kobject_has_children(struct kobject *kobj)
3307 {
3308 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3309
3310 return kobj->sd && kobj->sd->dir.subdirs;
3311 }
3312
3313 /*
3314 * make sure cleaning up dir as the last step, we need to make
3315 * sure .release handler of kobject is run with holding the
3316 * global lock
3317 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3318 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3319 {
3320 unsigned int ref;
3321
3322 /* see if we live in a "glue" directory */
3323 if (!live_in_glue_dir(glue_dir, dev))
3324 return;
3325
3326 mutex_lock(&gdp_mutex);
3327 /**
3328 * There is a race condition between removing glue directory
3329 * and adding a new device under the glue directory.
3330 *
3331 * CPU1: CPU2:
3332 *
3333 * device_add()
3334 * get_device_parent()
3335 * class_dir_create_and_add()
3336 * kobject_add_internal()
3337 * create_dir() // create glue_dir
3338 *
3339 * device_add()
3340 * get_device_parent()
3341 * kobject_get() // get glue_dir
3342 *
3343 * device_del()
3344 * cleanup_glue_dir()
3345 * kobject_del(glue_dir)
3346 *
3347 * kobject_add()
3348 * kobject_add_internal()
3349 * create_dir() // in glue_dir
3350 * sysfs_create_dir_ns()
3351 * kernfs_create_dir_ns(sd)
3352 *
3353 * sysfs_remove_dir() // glue_dir->sd=NULL
3354 * sysfs_put() // free glue_dir->sd
3355 *
3356 * // sd is freed
3357 * kernfs_new_node(sd)
3358 * kernfs_get(glue_dir)
3359 * kernfs_add_one()
3360 * kernfs_put()
3361 *
3362 * Before CPU1 remove last child device under glue dir, if CPU2 add
3363 * a new device under glue dir, the glue_dir kobject reference count
3364 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3365 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3366 * and sysfs_put(). This result in glue_dir->sd is freed.
3367 *
3368 * Then the CPU2 will see a stale "empty" but still potentially used
3369 * glue dir around in kernfs_new_node().
3370 *
3371 * In order to avoid this happening, we also should make sure that
3372 * kernfs_node for glue_dir is released in CPU1 only when refcount
3373 * for glue_dir kobj is 1.
3374 */
3375 ref = kref_read(&glue_dir->kref);
3376 if (!kobject_has_children(glue_dir) && !--ref)
3377 kobject_del(glue_dir);
3378 kobject_put(glue_dir);
3379 mutex_unlock(&gdp_mutex);
3380 }
3381
device_add_class_symlinks(struct device * dev)3382 static int device_add_class_symlinks(struct device *dev)
3383 {
3384 struct device_node *of_node = dev_of_node(dev);
3385 struct subsys_private *sp;
3386 int error;
3387
3388 if (of_node) {
3389 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3390 if (error)
3391 dev_warn(dev, "Error %d creating of_node link\n",error);
3392 /* An error here doesn't warrant bringing down the device */
3393 }
3394
3395 sp = class_to_subsys(dev->class);
3396 if (!sp)
3397 return 0;
3398
3399 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3400 if (error)
3401 goto out_devnode;
3402
3403 if (dev->parent && device_is_not_partition(dev)) {
3404 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3405 "device");
3406 if (error)
3407 goto out_subsys;
3408 }
3409
3410 /* link in the class directory pointing to the device */
3411 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3412 if (error)
3413 goto out_device;
3414 goto exit;
3415
3416 out_device:
3417 sysfs_remove_link(&dev->kobj, "device");
3418 out_subsys:
3419 sysfs_remove_link(&dev->kobj, "subsystem");
3420 out_devnode:
3421 sysfs_remove_link(&dev->kobj, "of_node");
3422 exit:
3423 subsys_put(sp);
3424 return error;
3425 }
3426
device_remove_class_symlinks(struct device * dev)3427 static void device_remove_class_symlinks(struct device *dev)
3428 {
3429 struct subsys_private *sp = class_to_subsys(dev->class);
3430
3431 if (dev_of_node(dev))
3432 sysfs_remove_link(&dev->kobj, "of_node");
3433
3434 if (!sp)
3435 return;
3436
3437 if (dev->parent && device_is_not_partition(dev))
3438 sysfs_remove_link(&dev->kobj, "device");
3439 sysfs_remove_link(&dev->kobj, "subsystem");
3440 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3441 subsys_put(sp);
3442 }
3443
3444 /**
3445 * dev_set_name - set a device name
3446 * @dev: device
3447 * @fmt: format string for the device's name
3448 */
dev_set_name(struct device * dev,const char * fmt,...)3449 int dev_set_name(struct device *dev, const char *fmt, ...)
3450 {
3451 va_list vargs;
3452 int err;
3453
3454 va_start(vargs, fmt);
3455 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3456 va_end(vargs);
3457 return err;
3458 }
3459 EXPORT_SYMBOL_GPL(dev_set_name);
3460
3461 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3462 static struct kobject *device_to_dev_kobj(struct device *dev)
3463 {
3464 if (is_blockdev(dev))
3465 return sysfs_dev_block_kobj;
3466 else
3467 return sysfs_dev_char_kobj;
3468 }
3469
device_create_sys_dev_entry(struct device * dev)3470 static int device_create_sys_dev_entry(struct device *dev)
3471 {
3472 struct kobject *kobj = device_to_dev_kobj(dev);
3473 int error = 0;
3474 char devt_str[15];
3475
3476 if (kobj) {
3477 format_dev_t(devt_str, dev->devt);
3478 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3479 }
3480
3481 return error;
3482 }
3483
device_remove_sys_dev_entry(struct device * dev)3484 static void device_remove_sys_dev_entry(struct device *dev)
3485 {
3486 struct kobject *kobj = device_to_dev_kobj(dev);
3487 char devt_str[15];
3488
3489 if (kobj) {
3490 format_dev_t(devt_str, dev->devt);
3491 sysfs_remove_link(kobj, devt_str);
3492 }
3493 }
3494
device_private_init(struct device * dev)3495 static int device_private_init(struct device *dev)
3496 {
3497 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3498 if (!dev->p)
3499 return -ENOMEM;
3500 dev->p->device = dev;
3501 klist_init(&dev->p->klist_children, klist_children_get,
3502 klist_children_put);
3503 INIT_LIST_HEAD(&dev->p->deferred_probe);
3504 return 0;
3505 }
3506
3507 /**
3508 * device_add - add device to device hierarchy.
3509 * @dev: device.
3510 *
3511 * This is part 2 of device_register(), though may be called
3512 * separately _iff_ device_initialize() has been called separately.
3513 *
3514 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3515 * to the global and sibling lists for the device, then
3516 * adds it to the other relevant subsystems of the driver model.
3517 *
3518 * Do not call this routine or device_register() more than once for
3519 * any device structure. The driver model core is not designed to work
3520 * with devices that get unregistered and then spring back to life.
3521 * (Among other things, it's very hard to guarantee that all references
3522 * to the previous incarnation of @dev have been dropped.) Allocate
3523 * and register a fresh new struct device instead.
3524 *
3525 * NOTE: _Never_ directly free @dev after calling this function, even
3526 * if it returned an error! Always use put_device() to give up your
3527 * reference instead.
3528 *
3529 * Rule of thumb is: if device_add() succeeds, you should call
3530 * device_del() when you want to get rid of it. If device_add() has
3531 * *not* succeeded, use *only* put_device() to drop the reference
3532 * count.
3533 */
device_add(struct device * dev)3534 int device_add(struct device *dev)
3535 {
3536 struct subsys_private *sp;
3537 struct device *parent;
3538 struct kobject *kobj;
3539 struct class_interface *class_intf;
3540 int error = -EINVAL;
3541 struct kobject *glue_dir = NULL;
3542
3543 dev = get_device(dev);
3544 if (!dev)
3545 goto done;
3546
3547 if (!dev->p) {
3548 error = device_private_init(dev);
3549 if (error)
3550 goto done;
3551 }
3552
3553 /*
3554 * for statically allocated devices, which should all be converted
3555 * some day, we need to initialize the name. We prevent reading back
3556 * the name, and force the use of dev_name()
3557 */
3558 if (dev->init_name) {
3559 error = dev_set_name(dev, "%s", dev->init_name);
3560 dev->init_name = NULL;
3561 }
3562
3563 if (dev_name(dev))
3564 error = 0;
3565 /* subsystems can specify simple device enumeration */
3566 else if (dev->bus && dev->bus->dev_name)
3567 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3568 else
3569 error = -EINVAL;
3570 if (error)
3571 goto name_error;
3572
3573 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3574
3575 parent = get_device(dev->parent);
3576 kobj = get_device_parent(dev, parent);
3577 if (IS_ERR(kobj)) {
3578 error = PTR_ERR(kobj);
3579 goto parent_error;
3580 }
3581 if (kobj)
3582 dev->kobj.parent = kobj;
3583
3584 /* use parent numa_node */
3585 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3586 set_dev_node(dev, dev_to_node(parent));
3587
3588 /* first, register with generic layer. */
3589 /* we require the name to be set before, and pass NULL */
3590 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3591 if (error) {
3592 glue_dir = kobj;
3593 goto Error;
3594 }
3595
3596 /* notify platform of device entry */
3597 device_platform_notify(dev);
3598
3599 error = device_create_file(dev, &dev_attr_uevent);
3600 if (error)
3601 goto attrError;
3602
3603 error = device_add_class_symlinks(dev);
3604 if (error)
3605 goto SymlinkError;
3606 error = device_add_attrs(dev);
3607 if (error)
3608 goto AttrsError;
3609 error = bus_add_device(dev);
3610 if (error)
3611 goto BusError;
3612 error = dpm_sysfs_add(dev);
3613 if (error)
3614 goto DPMError;
3615 device_pm_add(dev);
3616
3617 if (MAJOR(dev->devt)) {
3618 error = device_create_file(dev, &dev_attr_dev);
3619 if (error)
3620 goto DevAttrError;
3621
3622 error = device_create_sys_dev_entry(dev);
3623 if (error)
3624 goto SysEntryError;
3625
3626 devtmpfs_create_node(dev);
3627 }
3628
3629 /* Notify clients of device addition. This call must come
3630 * after dpm_sysfs_add() and before kobject_uevent().
3631 */
3632 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3633 kobject_uevent(&dev->kobj, KOBJ_ADD);
3634
3635 /*
3636 * Check if any of the other devices (consumers) have been waiting for
3637 * this device (supplier) to be added so that they can create a device
3638 * link to it.
3639 *
3640 * This needs to happen after device_pm_add() because device_link_add()
3641 * requires the supplier be registered before it's called.
3642 *
3643 * But this also needs to happen before bus_probe_device() to make sure
3644 * waiting consumers can link to it before the driver is bound to the
3645 * device and the driver sync_state callback is called for this device.
3646 */
3647 if (dev->fwnode && !dev->fwnode->dev) {
3648 dev->fwnode->dev = dev;
3649 fw_devlink_link_device(dev);
3650 }
3651
3652 bus_probe_device(dev);
3653
3654 /*
3655 * If all driver registration is done and a newly added device doesn't
3656 * match with any driver, don't block its consumers from probing in
3657 * case the consumer device is able to operate without this supplier.
3658 */
3659 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3660 fw_devlink_unblock_consumers(dev);
3661
3662 if (parent)
3663 klist_add_tail(&dev->p->knode_parent,
3664 &parent->p->klist_children);
3665
3666 sp = class_to_subsys(dev->class);
3667 if (sp) {
3668 mutex_lock(&sp->mutex);
3669 /* tie the class to the device */
3670 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3671
3672 /* notify any interfaces that the device is here */
3673 list_for_each_entry(class_intf, &sp->interfaces, node)
3674 if (class_intf->add_dev)
3675 class_intf->add_dev(dev);
3676 mutex_unlock(&sp->mutex);
3677 subsys_put(sp);
3678 }
3679 done:
3680 put_device(dev);
3681 return error;
3682 SysEntryError:
3683 if (MAJOR(dev->devt))
3684 device_remove_file(dev, &dev_attr_dev);
3685 DevAttrError:
3686 device_pm_remove(dev);
3687 dpm_sysfs_remove(dev);
3688 DPMError:
3689 dev->driver = NULL;
3690 bus_remove_device(dev);
3691 BusError:
3692 device_remove_attrs(dev);
3693 AttrsError:
3694 device_remove_class_symlinks(dev);
3695 SymlinkError:
3696 device_remove_file(dev, &dev_attr_uevent);
3697 attrError:
3698 device_platform_notify_remove(dev);
3699 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3700 glue_dir = get_glue_dir(dev);
3701 kobject_del(&dev->kobj);
3702 Error:
3703 cleanup_glue_dir(dev, glue_dir);
3704 parent_error:
3705 put_device(parent);
3706 name_error:
3707 kfree(dev->p);
3708 dev->p = NULL;
3709 goto done;
3710 }
3711 EXPORT_SYMBOL_GPL(device_add);
3712
3713 /**
3714 * device_register - register a device with the system.
3715 * @dev: pointer to the device structure
3716 *
3717 * This happens in two clean steps - initialize the device
3718 * and add it to the system. The two steps can be called
3719 * separately, but this is the easiest and most common.
3720 * I.e. you should only call the two helpers separately if
3721 * have a clearly defined need to use and refcount the device
3722 * before it is added to the hierarchy.
3723 *
3724 * For more information, see the kerneldoc for device_initialize()
3725 * and device_add().
3726 *
3727 * NOTE: _Never_ directly free @dev after calling this function, even
3728 * if it returned an error! Always use put_device() to give up the
3729 * reference initialized in this function instead.
3730 */
device_register(struct device * dev)3731 int device_register(struct device *dev)
3732 {
3733 device_initialize(dev);
3734 return device_add(dev);
3735 }
3736 EXPORT_SYMBOL_GPL(device_register);
3737
3738 /**
3739 * get_device - increment reference count for device.
3740 * @dev: device.
3741 *
3742 * This simply forwards the call to kobject_get(), though
3743 * we do take care to provide for the case that we get a NULL
3744 * pointer passed in.
3745 */
get_device(struct device * dev)3746 struct device *get_device(struct device *dev)
3747 {
3748 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3749 }
3750 EXPORT_SYMBOL_GPL(get_device);
3751
3752 /**
3753 * put_device - decrement reference count.
3754 * @dev: device in question.
3755 */
put_device(struct device * dev)3756 void put_device(struct device *dev)
3757 {
3758 /* might_sleep(); */
3759 if (dev)
3760 kobject_put(&dev->kobj);
3761 }
3762 EXPORT_SYMBOL_GPL(put_device);
3763
kill_device(struct device * dev)3764 bool kill_device(struct device *dev)
3765 {
3766 /*
3767 * Require the device lock and set the "dead" flag to guarantee that
3768 * the update behavior is consistent with the other bitfields near
3769 * it and that we cannot have an asynchronous probe routine trying
3770 * to run while we are tearing out the bus/class/sysfs from
3771 * underneath the device.
3772 */
3773 device_lock_assert(dev);
3774
3775 if (dev->p->dead)
3776 return false;
3777 dev->p->dead = true;
3778 return true;
3779 }
3780 EXPORT_SYMBOL_GPL(kill_device);
3781
3782 /**
3783 * device_del - delete device from system.
3784 * @dev: device.
3785 *
3786 * This is the first part of the device unregistration
3787 * sequence. This removes the device from the lists we control
3788 * from here, has it removed from the other driver model
3789 * subsystems it was added to in device_add(), and removes it
3790 * from the kobject hierarchy.
3791 *
3792 * NOTE: this should be called manually _iff_ device_add() was
3793 * also called manually.
3794 */
device_del(struct device * dev)3795 void device_del(struct device *dev)
3796 {
3797 struct subsys_private *sp;
3798 struct device *parent = dev->parent;
3799 struct kobject *glue_dir = NULL;
3800 struct class_interface *class_intf;
3801 unsigned int noio_flag;
3802
3803 device_lock(dev);
3804 kill_device(dev);
3805 device_unlock(dev);
3806
3807 if (dev->fwnode && dev->fwnode->dev == dev)
3808 dev->fwnode->dev = NULL;
3809
3810 /* Notify clients of device removal. This call must come
3811 * before dpm_sysfs_remove().
3812 */
3813 noio_flag = memalloc_noio_save();
3814 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3815
3816 dpm_sysfs_remove(dev);
3817 if (parent)
3818 klist_del(&dev->p->knode_parent);
3819 if (MAJOR(dev->devt)) {
3820 devtmpfs_delete_node(dev);
3821 device_remove_sys_dev_entry(dev);
3822 device_remove_file(dev, &dev_attr_dev);
3823 }
3824
3825 sp = class_to_subsys(dev->class);
3826 if (sp) {
3827 device_remove_class_symlinks(dev);
3828
3829 mutex_lock(&sp->mutex);
3830 /* notify any interfaces that the device is now gone */
3831 list_for_each_entry(class_intf, &sp->interfaces, node)
3832 if (class_intf->remove_dev)
3833 class_intf->remove_dev(dev);
3834 /* remove the device from the class list */
3835 klist_del(&dev->p->knode_class);
3836 mutex_unlock(&sp->mutex);
3837 subsys_put(sp);
3838 }
3839 device_remove_file(dev, &dev_attr_uevent);
3840 device_remove_attrs(dev);
3841 bus_remove_device(dev);
3842 device_pm_remove(dev);
3843 driver_deferred_probe_del(dev);
3844 device_platform_notify_remove(dev);
3845 device_links_purge(dev);
3846
3847 /*
3848 * If a device does not have a driver attached, we need to clean
3849 * up any managed resources. We do this in device_release(), but
3850 * it's never called (and we leak the device) if a managed
3851 * resource holds a reference to the device. So release all
3852 * managed resources here, like we do in driver_detach(). We
3853 * still need to do so again in device_release() in case someone
3854 * adds a new resource after this point, though.
3855 */
3856 devres_release_all(dev);
3857
3858 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3859 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3860 glue_dir = get_glue_dir(dev);
3861 kobject_del(&dev->kobj);
3862 cleanup_glue_dir(dev, glue_dir);
3863 memalloc_noio_restore(noio_flag);
3864 put_device(parent);
3865 }
3866 EXPORT_SYMBOL_GPL(device_del);
3867
3868 /**
3869 * device_unregister - unregister device from system.
3870 * @dev: device going away.
3871 *
3872 * We do this in two parts, like we do device_register(). First,
3873 * we remove it from all the subsystems with device_del(), then
3874 * we decrement the reference count via put_device(). If that
3875 * is the final reference count, the device will be cleaned up
3876 * via device_release() above. Otherwise, the structure will
3877 * stick around until the final reference to the device is dropped.
3878 */
device_unregister(struct device * dev)3879 void device_unregister(struct device *dev)
3880 {
3881 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3882 device_del(dev);
3883 put_device(dev);
3884 }
3885 EXPORT_SYMBOL_GPL(device_unregister);
3886
prev_device(struct klist_iter * i)3887 static struct device *prev_device(struct klist_iter *i)
3888 {
3889 struct klist_node *n = klist_prev(i);
3890 struct device *dev = NULL;
3891 struct device_private *p;
3892
3893 if (n) {
3894 p = to_device_private_parent(n);
3895 dev = p->device;
3896 }
3897 return dev;
3898 }
3899
next_device(struct klist_iter * i)3900 static struct device *next_device(struct klist_iter *i)
3901 {
3902 struct klist_node *n = klist_next(i);
3903 struct device *dev = NULL;
3904 struct device_private *p;
3905
3906 if (n) {
3907 p = to_device_private_parent(n);
3908 dev = p->device;
3909 }
3910 return dev;
3911 }
3912
3913 /**
3914 * device_get_devnode - path of device node file
3915 * @dev: device
3916 * @mode: returned file access mode
3917 * @uid: returned file owner
3918 * @gid: returned file group
3919 * @tmp: possibly allocated string
3920 *
3921 * Return the relative path of a possible device node.
3922 * Non-default names may need to allocate a memory to compose
3923 * a name. This memory is returned in tmp and needs to be
3924 * freed by the caller.
3925 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3926 const char *device_get_devnode(const struct device *dev,
3927 umode_t *mode, kuid_t *uid, kgid_t *gid,
3928 const char **tmp)
3929 {
3930 char *s;
3931
3932 *tmp = NULL;
3933
3934 /* the device type may provide a specific name */
3935 if (dev->type && dev->type->devnode)
3936 *tmp = dev->type->devnode(dev, mode, uid, gid);
3937 if (*tmp)
3938 return *tmp;
3939
3940 /* the class may provide a specific name */
3941 if (dev->class && dev->class->devnode)
3942 *tmp = dev->class->devnode(dev, mode);
3943 if (*tmp)
3944 return *tmp;
3945
3946 /* return name without allocation, tmp == NULL */
3947 if (strchr(dev_name(dev), '!') == NULL)
3948 return dev_name(dev);
3949
3950 /* replace '!' in the name with '/' */
3951 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3952 if (!s)
3953 return NULL;
3954 return *tmp = s;
3955 }
3956
3957 /**
3958 * device_for_each_child - device child iterator.
3959 * @parent: parent struct device.
3960 * @fn: function to be called for each device.
3961 * @data: data for the callback.
3962 *
3963 * Iterate over @parent's child devices, and call @fn for each,
3964 * passing it @data.
3965 *
3966 * We check the return of @fn each time. If it returns anything
3967 * other than 0, we break out and return that value.
3968 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3969 int device_for_each_child(struct device *parent, void *data,
3970 int (*fn)(struct device *dev, void *data))
3971 {
3972 struct klist_iter i;
3973 struct device *child;
3974 int error = 0;
3975
3976 if (!parent->p)
3977 return 0;
3978
3979 klist_iter_init(&parent->p->klist_children, &i);
3980 while (!error && (child = next_device(&i)))
3981 error = fn(child, data);
3982 klist_iter_exit(&i);
3983 return error;
3984 }
3985 EXPORT_SYMBOL_GPL(device_for_each_child);
3986
3987 /**
3988 * device_for_each_child_reverse - device child iterator in reversed order.
3989 * @parent: parent struct device.
3990 * @fn: function to be called for each device.
3991 * @data: data for the callback.
3992 *
3993 * Iterate over @parent's child devices, and call @fn for each,
3994 * passing it @data.
3995 *
3996 * We check the return of @fn each time. If it returns anything
3997 * other than 0, we break out and return that value.
3998 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3999 int device_for_each_child_reverse(struct device *parent, void *data,
4000 int (*fn)(struct device *dev, void *data))
4001 {
4002 struct klist_iter i;
4003 struct device *child;
4004 int error = 0;
4005
4006 if (!parent->p)
4007 return 0;
4008
4009 klist_iter_init(&parent->p->klist_children, &i);
4010 while ((child = prev_device(&i)) && !error)
4011 error = fn(child, data);
4012 klist_iter_exit(&i);
4013 return error;
4014 }
4015 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4016
4017 /**
4018 * device_find_child - device iterator for locating a particular device.
4019 * @parent: parent struct device
4020 * @match: Callback function to check device
4021 * @data: Data to pass to match function
4022 *
4023 * This is similar to the device_for_each_child() function above, but it
4024 * returns a reference to a device that is 'found' for later use, as
4025 * determined by the @match callback.
4026 *
4027 * The callback should return 0 if the device doesn't match and non-zero
4028 * if it does. If the callback returns non-zero and a reference to the
4029 * current device can be obtained, this function will return to the caller
4030 * and not iterate over any more devices.
4031 *
4032 * NOTE: you will need to drop the reference with put_device() after use.
4033 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))4034 struct device *device_find_child(struct device *parent, void *data,
4035 int (*match)(struct device *dev, void *data))
4036 {
4037 struct klist_iter i;
4038 struct device *child;
4039
4040 if (!parent)
4041 return NULL;
4042
4043 klist_iter_init(&parent->p->klist_children, &i);
4044 while ((child = next_device(&i)))
4045 if (match(child, data) && get_device(child))
4046 break;
4047 klist_iter_exit(&i);
4048 return child;
4049 }
4050 EXPORT_SYMBOL_GPL(device_find_child);
4051
4052 /**
4053 * device_find_child_by_name - device iterator for locating a child device.
4054 * @parent: parent struct device
4055 * @name: name of the child device
4056 *
4057 * This is similar to the device_find_child() function above, but it
4058 * returns a reference to a device that has the name @name.
4059 *
4060 * NOTE: you will need to drop the reference with put_device() after use.
4061 */
device_find_child_by_name(struct device * parent,const char * name)4062 struct device *device_find_child_by_name(struct device *parent,
4063 const char *name)
4064 {
4065 struct klist_iter i;
4066 struct device *child;
4067
4068 if (!parent)
4069 return NULL;
4070
4071 klist_iter_init(&parent->p->klist_children, &i);
4072 while ((child = next_device(&i)))
4073 if (sysfs_streq(dev_name(child), name) && get_device(child))
4074 break;
4075 klist_iter_exit(&i);
4076 return child;
4077 }
4078 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4079
match_any(struct device * dev,void * unused)4080 static int match_any(struct device *dev, void *unused)
4081 {
4082 return 1;
4083 }
4084
4085 /**
4086 * device_find_any_child - device iterator for locating a child device, if any.
4087 * @parent: parent struct device
4088 *
4089 * This is similar to the device_find_child() function above, but it
4090 * returns a reference to a child device, if any.
4091 *
4092 * NOTE: you will need to drop the reference with put_device() after use.
4093 */
device_find_any_child(struct device * parent)4094 struct device *device_find_any_child(struct device *parent)
4095 {
4096 return device_find_child(parent, NULL, match_any);
4097 }
4098 EXPORT_SYMBOL_GPL(device_find_any_child);
4099
devices_init(void)4100 int __init devices_init(void)
4101 {
4102 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4103 if (!devices_kset)
4104 return -ENOMEM;
4105 dev_kobj = kobject_create_and_add("dev", NULL);
4106 if (!dev_kobj)
4107 goto dev_kobj_err;
4108 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4109 if (!sysfs_dev_block_kobj)
4110 goto block_kobj_err;
4111 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4112 if (!sysfs_dev_char_kobj)
4113 goto char_kobj_err;
4114 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4115 if (!device_link_wq)
4116 goto wq_err;
4117
4118 return 0;
4119
4120 wq_err:
4121 kobject_put(sysfs_dev_char_kobj);
4122 char_kobj_err:
4123 kobject_put(sysfs_dev_block_kobj);
4124 block_kobj_err:
4125 kobject_put(dev_kobj);
4126 dev_kobj_err:
4127 kset_unregister(devices_kset);
4128 return -ENOMEM;
4129 }
4130
device_check_offline(struct device * dev,void * not_used)4131 static int device_check_offline(struct device *dev, void *not_used)
4132 {
4133 int ret;
4134
4135 ret = device_for_each_child(dev, NULL, device_check_offline);
4136 if (ret)
4137 return ret;
4138
4139 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4140 }
4141
4142 /**
4143 * device_offline - Prepare the device for hot-removal.
4144 * @dev: Device to be put offline.
4145 *
4146 * Execute the device bus type's .offline() callback, if present, to prepare
4147 * the device for a subsequent hot-removal. If that succeeds, the device must
4148 * not be used until either it is removed or its bus type's .online() callback
4149 * is executed.
4150 *
4151 * Call under device_hotplug_lock.
4152 */
device_offline(struct device * dev)4153 int device_offline(struct device *dev)
4154 {
4155 int ret;
4156
4157 if (dev->offline_disabled)
4158 return -EPERM;
4159
4160 ret = device_for_each_child(dev, NULL, device_check_offline);
4161 if (ret)
4162 return ret;
4163
4164 device_lock(dev);
4165 if (device_supports_offline(dev)) {
4166 if (dev->offline) {
4167 ret = 1;
4168 } else {
4169 ret = dev->bus->offline(dev);
4170 if (!ret) {
4171 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4172 dev->offline = true;
4173 }
4174 }
4175 }
4176 device_unlock(dev);
4177
4178 return ret;
4179 }
4180
4181 /**
4182 * device_online - Put the device back online after successful device_offline().
4183 * @dev: Device to be put back online.
4184 *
4185 * If device_offline() has been successfully executed for @dev, but the device
4186 * has not been removed subsequently, execute its bus type's .online() callback
4187 * to indicate that the device can be used again.
4188 *
4189 * Call under device_hotplug_lock.
4190 */
device_online(struct device * dev)4191 int device_online(struct device *dev)
4192 {
4193 int ret = 0;
4194
4195 device_lock(dev);
4196 if (device_supports_offline(dev)) {
4197 if (dev->offline) {
4198 ret = dev->bus->online(dev);
4199 if (!ret) {
4200 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4201 dev->offline = false;
4202 }
4203 } else {
4204 ret = 1;
4205 }
4206 }
4207 device_unlock(dev);
4208
4209 return ret;
4210 }
4211
4212 struct root_device {
4213 struct device dev;
4214 struct module *owner;
4215 };
4216
to_root_device(struct device * d)4217 static inline struct root_device *to_root_device(struct device *d)
4218 {
4219 return container_of(d, struct root_device, dev);
4220 }
4221
root_device_release(struct device * dev)4222 static void root_device_release(struct device *dev)
4223 {
4224 kfree(to_root_device(dev));
4225 }
4226
4227 /**
4228 * __root_device_register - allocate and register a root device
4229 * @name: root device name
4230 * @owner: owner module of the root device, usually THIS_MODULE
4231 *
4232 * This function allocates a root device and registers it
4233 * using device_register(). In order to free the returned
4234 * device, use root_device_unregister().
4235 *
4236 * Root devices are dummy devices which allow other devices
4237 * to be grouped under /sys/devices. Use this function to
4238 * allocate a root device and then use it as the parent of
4239 * any device which should appear under /sys/devices/{name}
4240 *
4241 * The /sys/devices/{name} directory will also contain a
4242 * 'module' symlink which points to the @owner directory
4243 * in sysfs.
4244 *
4245 * Returns &struct device pointer on success, or ERR_PTR() on error.
4246 *
4247 * Note: You probably want to use root_device_register().
4248 */
__root_device_register(const char * name,struct module * owner)4249 struct device *__root_device_register(const char *name, struct module *owner)
4250 {
4251 struct root_device *root;
4252 int err = -ENOMEM;
4253
4254 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4255 if (!root)
4256 return ERR_PTR(err);
4257
4258 err = dev_set_name(&root->dev, "%s", name);
4259 if (err) {
4260 kfree(root);
4261 return ERR_PTR(err);
4262 }
4263
4264 root->dev.release = root_device_release;
4265
4266 err = device_register(&root->dev);
4267 if (err) {
4268 put_device(&root->dev);
4269 return ERR_PTR(err);
4270 }
4271
4272 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4273 if (owner) {
4274 struct module_kobject *mk = &owner->mkobj;
4275
4276 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4277 if (err) {
4278 device_unregister(&root->dev);
4279 return ERR_PTR(err);
4280 }
4281 root->owner = owner;
4282 }
4283 #endif
4284
4285 return &root->dev;
4286 }
4287 EXPORT_SYMBOL_GPL(__root_device_register);
4288
4289 /**
4290 * root_device_unregister - unregister and free a root device
4291 * @dev: device going away
4292 *
4293 * This function unregisters and cleans up a device that was created by
4294 * root_device_register().
4295 */
root_device_unregister(struct device * dev)4296 void root_device_unregister(struct device *dev)
4297 {
4298 struct root_device *root = to_root_device(dev);
4299
4300 if (root->owner)
4301 sysfs_remove_link(&root->dev.kobj, "module");
4302
4303 device_unregister(dev);
4304 }
4305 EXPORT_SYMBOL_GPL(root_device_unregister);
4306
4307
device_create_release(struct device * dev)4308 static void device_create_release(struct device *dev)
4309 {
4310 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4311 kfree(dev);
4312 }
4313
4314 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4315 device_create_groups_vargs(const struct class *class, struct device *parent,
4316 dev_t devt, void *drvdata,
4317 const struct attribute_group **groups,
4318 const char *fmt, va_list args)
4319 {
4320 struct device *dev = NULL;
4321 int retval = -ENODEV;
4322
4323 if (IS_ERR_OR_NULL(class))
4324 goto error;
4325
4326 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4327 if (!dev) {
4328 retval = -ENOMEM;
4329 goto error;
4330 }
4331
4332 device_initialize(dev);
4333 dev->devt = devt;
4334 dev->class = class;
4335 dev->parent = parent;
4336 dev->groups = groups;
4337 dev->release = device_create_release;
4338 dev_set_drvdata(dev, drvdata);
4339
4340 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4341 if (retval)
4342 goto error;
4343
4344 retval = device_add(dev);
4345 if (retval)
4346 goto error;
4347
4348 return dev;
4349
4350 error:
4351 put_device(dev);
4352 return ERR_PTR(retval);
4353 }
4354
4355 /**
4356 * device_create - creates a device and registers it with sysfs
4357 * @class: pointer to the struct class that this device should be registered to
4358 * @parent: pointer to the parent struct device of this new device, if any
4359 * @devt: the dev_t for the char device to be added
4360 * @drvdata: the data to be added to the device for callbacks
4361 * @fmt: string for the device's name
4362 *
4363 * This function can be used by char device classes. A struct device
4364 * will be created in sysfs, registered to the specified class.
4365 *
4366 * A "dev" file will be created, showing the dev_t for the device, if
4367 * the dev_t is not 0,0.
4368 * If a pointer to a parent struct device is passed in, the newly created
4369 * struct device will be a child of that device in sysfs.
4370 * The pointer to the struct device will be returned from the call.
4371 * Any further sysfs files that might be required can be created using this
4372 * pointer.
4373 *
4374 * Returns &struct device pointer on success, or ERR_PTR() on error.
4375 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4376 struct device *device_create(const struct class *class, struct device *parent,
4377 dev_t devt, void *drvdata, const char *fmt, ...)
4378 {
4379 va_list vargs;
4380 struct device *dev;
4381
4382 va_start(vargs, fmt);
4383 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4384 fmt, vargs);
4385 va_end(vargs);
4386 return dev;
4387 }
4388 EXPORT_SYMBOL_GPL(device_create);
4389
4390 /**
4391 * device_create_with_groups - creates a device and registers it with sysfs
4392 * @class: pointer to the struct class that this device should be registered to
4393 * @parent: pointer to the parent struct device of this new device, if any
4394 * @devt: the dev_t for the char device to be added
4395 * @drvdata: the data to be added to the device for callbacks
4396 * @groups: NULL-terminated list of attribute groups to be created
4397 * @fmt: string for the device's name
4398 *
4399 * This function can be used by char device classes. A struct device
4400 * will be created in sysfs, registered to the specified class.
4401 * Additional attributes specified in the groups parameter will also
4402 * be created automatically.
4403 *
4404 * A "dev" file will be created, showing the dev_t for the device, if
4405 * the dev_t is not 0,0.
4406 * If a pointer to a parent struct device is passed in, the newly created
4407 * struct device will be a child of that device in sysfs.
4408 * The pointer to the struct device will be returned from the call.
4409 * Any further sysfs files that might be required can be created using this
4410 * pointer.
4411 *
4412 * Returns &struct device pointer on success, or ERR_PTR() on error.
4413 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4414 struct device *device_create_with_groups(const struct class *class,
4415 struct device *parent, dev_t devt,
4416 void *drvdata,
4417 const struct attribute_group **groups,
4418 const char *fmt, ...)
4419 {
4420 va_list vargs;
4421 struct device *dev;
4422
4423 va_start(vargs, fmt);
4424 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4425 fmt, vargs);
4426 va_end(vargs);
4427 return dev;
4428 }
4429 EXPORT_SYMBOL_GPL(device_create_with_groups);
4430
4431 /**
4432 * device_destroy - removes a device that was created with device_create()
4433 * @class: pointer to the struct class that this device was registered with
4434 * @devt: the dev_t of the device that was previously registered
4435 *
4436 * This call unregisters and cleans up a device that was created with a
4437 * call to device_create().
4438 */
device_destroy(const struct class * class,dev_t devt)4439 void device_destroy(const struct class *class, dev_t devt)
4440 {
4441 struct device *dev;
4442
4443 dev = class_find_device_by_devt(class, devt);
4444 if (dev) {
4445 put_device(dev);
4446 device_unregister(dev);
4447 }
4448 }
4449 EXPORT_SYMBOL_GPL(device_destroy);
4450
4451 /**
4452 * device_rename - renames a device
4453 * @dev: the pointer to the struct device to be renamed
4454 * @new_name: the new name of the device
4455 *
4456 * It is the responsibility of the caller to provide mutual
4457 * exclusion between two different calls of device_rename
4458 * on the same device to ensure that new_name is valid and
4459 * won't conflict with other devices.
4460 *
4461 * Note: given that some subsystems (networking and infiniband) use this
4462 * function, with no immediate plans for this to change, we cannot assume or
4463 * require that this function not be called at all.
4464 *
4465 * However, if you're writing new code, do not call this function. The following
4466 * text from Kay Sievers offers some insight:
4467 *
4468 * Renaming devices is racy at many levels, symlinks and other stuff are not
4469 * replaced atomically, and you get a "move" uevent, but it's not easy to
4470 * connect the event to the old and new device. Device nodes are not renamed at
4471 * all, there isn't even support for that in the kernel now.
4472 *
4473 * In the meantime, during renaming, your target name might be taken by another
4474 * driver, creating conflicts. Or the old name is taken directly after you
4475 * renamed it -- then you get events for the same DEVPATH, before you even see
4476 * the "move" event. It's just a mess, and nothing new should ever rely on
4477 * kernel device renaming. Besides that, it's not even implemented now for
4478 * other things than (driver-core wise very simple) network devices.
4479 *
4480 * Make up a "real" name in the driver before you register anything, or add
4481 * some other attributes for userspace to find the device, or use udev to add
4482 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4483 * don't even want to get into that and try to implement the missing pieces in
4484 * the core. We really have other pieces to fix in the driver core mess. :)
4485 */
device_rename(struct device * dev,const char * new_name)4486 int device_rename(struct device *dev, const char *new_name)
4487 {
4488 struct kobject *kobj = &dev->kobj;
4489 char *old_device_name = NULL;
4490 int error;
4491
4492 dev = get_device(dev);
4493 if (!dev)
4494 return -EINVAL;
4495
4496 dev_dbg(dev, "renaming to %s\n", new_name);
4497
4498 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4499 if (!old_device_name) {
4500 error = -ENOMEM;
4501 goto out;
4502 }
4503
4504 if (dev->class) {
4505 struct subsys_private *sp = class_to_subsys(dev->class);
4506
4507 if (!sp) {
4508 error = -EINVAL;
4509 goto out;
4510 }
4511
4512 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4513 new_name, kobject_namespace(kobj));
4514 subsys_put(sp);
4515 if (error)
4516 goto out;
4517 }
4518
4519 error = kobject_rename(kobj, new_name);
4520 if (error)
4521 goto out;
4522
4523 out:
4524 put_device(dev);
4525
4526 kfree(old_device_name);
4527
4528 return error;
4529 }
4530 EXPORT_SYMBOL_GPL(device_rename);
4531
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4532 static int device_move_class_links(struct device *dev,
4533 struct device *old_parent,
4534 struct device *new_parent)
4535 {
4536 int error = 0;
4537
4538 if (old_parent)
4539 sysfs_remove_link(&dev->kobj, "device");
4540 if (new_parent)
4541 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4542 "device");
4543 return error;
4544 }
4545
4546 /**
4547 * device_move - moves a device to a new parent
4548 * @dev: the pointer to the struct device to be moved
4549 * @new_parent: the new parent of the device (can be NULL)
4550 * @dpm_order: how to reorder the dpm_list
4551 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4552 int device_move(struct device *dev, struct device *new_parent,
4553 enum dpm_order dpm_order)
4554 {
4555 int error;
4556 struct device *old_parent;
4557 struct kobject *new_parent_kobj;
4558
4559 dev = get_device(dev);
4560 if (!dev)
4561 return -EINVAL;
4562
4563 device_pm_lock();
4564 new_parent = get_device(new_parent);
4565 new_parent_kobj = get_device_parent(dev, new_parent);
4566 if (IS_ERR(new_parent_kobj)) {
4567 error = PTR_ERR(new_parent_kobj);
4568 put_device(new_parent);
4569 goto out;
4570 }
4571
4572 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4573 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4574 error = kobject_move(&dev->kobj, new_parent_kobj);
4575 if (error) {
4576 cleanup_glue_dir(dev, new_parent_kobj);
4577 put_device(new_parent);
4578 goto out;
4579 }
4580 old_parent = dev->parent;
4581 dev->parent = new_parent;
4582 if (old_parent)
4583 klist_remove(&dev->p->knode_parent);
4584 if (new_parent) {
4585 klist_add_tail(&dev->p->knode_parent,
4586 &new_parent->p->klist_children);
4587 set_dev_node(dev, dev_to_node(new_parent));
4588 }
4589
4590 if (dev->class) {
4591 error = device_move_class_links(dev, old_parent, new_parent);
4592 if (error) {
4593 /* We ignore errors on cleanup since we're hosed anyway... */
4594 device_move_class_links(dev, new_parent, old_parent);
4595 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4596 if (new_parent)
4597 klist_remove(&dev->p->knode_parent);
4598 dev->parent = old_parent;
4599 if (old_parent) {
4600 klist_add_tail(&dev->p->knode_parent,
4601 &old_parent->p->klist_children);
4602 set_dev_node(dev, dev_to_node(old_parent));
4603 }
4604 }
4605 cleanup_glue_dir(dev, new_parent_kobj);
4606 put_device(new_parent);
4607 goto out;
4608 }
4609 }
4610 switch (dpm_order) {
4611 case DPM_ORDER_NONE:
4612 break;
4613 case DPM_ORDER_DEV_AFTER_PARENT:
4614 device_pm_move_after(dev, new_parent);
4615 devices_kset_move_after(dev, new_parent);
4616 break;
4617 case DPM_ORDER_PARENT_BEFORE_DEV:
4618 device_pm_move_before(new_parent, dev);
4619 devices_kset_move_before(new_parent, dev);
4620 break;
4621 case DPM_ORDER_DEV_LAST:
4622 device_pm_move_last(dev);
4623 devices_kset_move_last(dev);
4624 break;
4625 }
4626
4627 put_device(old_parent);
4628 out:
4629 device_pm_unlock();
4630 put_device(dev);
4631 return error;
4632 }
4633 EXPORT_SYMBOL_GPL(device_move);
4634
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4635 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4636 kgid_t kgid)
4637 {
4638 struct kobject *kobj = &dev->kobj;
4639 const struct class *class = dev->class;
4640 const struct device_type *type = dev->type;
4641 int error;
4642
4643 if (class) {
4644 /*
4645 * Change the device groups of the device class for @dev to
4646 * @kuid/@kgid.
4647 */
4648 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4649 kgid);
4650 if (error)
4651 return error;
4652 }
4653
4654 if (type) {
4655 /*
4656 * Change the device groups of the device type for @dev to
4657 * @kuid/@kgid.
4658 */
4659 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4660 kgid);
4661 if (error)
4662 return error;
4663 }
4664
4665 /* Change the device groups of @dev to @kuid/@kgid. */
4666 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4667 if (error)
4668 return error;
4669
4670 if (device_supports_offline(dev) && !dev->offline_disabled) {
4671 /* Change online device attributes of @dev to @kuid/@kgid. */
4672 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4673 kuid, kgid);
4674 if (error)
4675 return error;
4676 }
4677
4678 return 0;
4679 }
4680
4681 /**
4682 * device_change_owner - change the owner of an existing device.
4683 * @dev: device.
4684 * @kuid: new owner's kuid
4685 * @kgid: new owner's kgid
4686 *
4687 * This changes the owner of @dev and its corresponding sysfs entries to
4688 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4689 * core.
4690 *
4691 * Returns 0 on success or error code on failure.
4692 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4693 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4694 {
4695 int error;
4696 struct kobject *kobj = &dev->kobj;
4697 struct subsys_private *sp;
4698
4699 dev = get_device(dev);
4700 if (!dev)
4701 return -EINVAL;
4702
4703 /*
4704 * Change the kobject and the default attributes and groups of the
4705 * ktype associated with it to @kuid/@kgid.
4706 */
4707 error = sysfs_change_owner(kobj, kuid, kgid);
4708 if (error)
4709 goto out;
4710
4711 /*
4712 * Change the uevent file for @dev to the new owner. The uevent file
4713 * was created in a separate step when @dev got added and we mirror
4714 * that step here.
4715 */
4716 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4717 kgid);
4718 if (error)
4719 goto out;
4720
4721 /*
4722 * Change the device groups, the device groups associated with the
4723 * device class, and the groups associated with the device type of @dev
4724 * to @kuid/@kgid.
4725 */
4726 error = device_attrs_change_owner(dev, kuid, kgid);
4727 if (error)
4728 goto out;
4729
4730 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4731 if (error)
4732 goto out;
4733
4734 /*
4735 * Change the owner of the symlink located in the class directory of
4736 * the device class associated with @dev which points to the actual
4737 * directory entry for @dev to @kuid/@kgid. This ensures that the
4738 * symlink shows the same permissions as its target.
4739 */
4740 sp = class_to_subsys(dev->class);
4741 if (!sp) {
4742 error = -EINVAL;
4743 goto out;
4744 }
4745 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4746 subsys_put(sp);
4747
4748 out:
4749 put_device(dev);
4750 return error;
4751 }
4752 EXPORT_SYMBOL_GPL(device_change_owner);
4753
4754 /**
4755 * device_shutdown - call ->shutdown() on each device to shutdown.
4756 */
device_shutdown(void)4757 void device_shutdown(void)
4758 {
4759 struct device *dev, *parent;
4760
4761 wait_for_device_probe();
4762 device_block_probing();
4763
4764 cpufreq_suspend();
4765
4766 spin_lock(&devices_kset->list_lock);
4767 /*
4768 * Walk the devices list backward, shutting down each in turn.
4769 * Beware that device unplug events may also start pulling
4770 * devices offline, even as the system is shutting down.
4771 */
4772 while (!list_empty(&devices_kset->list)) {
4773 dev = list_entry(devices_kset->list.prev, struct device,
4774 kobj.entry);
4775
4776 /*
4777 * hold reference count of device's parent to
4778 * prevent it from being freed because parent's
4779 * lock is to be held
4780 */
4781 parent = get_device(dev->parent);
4782 get_device(dev);
4783 /*
4784 * Make sure the device is off the kset list, in the
4785 * event that dev->*->shutdown() doesn't remove it.
4786 */
4787 list_del_init(&dev->kobj.entry);
4788 spin_unlock(&devices_kset->list_lock);
4789
4790 /* hold lock to avoid race with probe/release */
4791 if (parent)
4792 device_lock(parent);
4793 device_lock(dev);
4794
4795 /* Don't allow any more runtime suspends */
4796 pm_runtime_get_noresume(dev);
4797 pm_runtime_barrier(dev);
4798
4799 if (dev->class && dev->class->shutdown_pre) {
4800 if (initcall_debug)
4801 dev_info(dev, "shutdown_pre\n");
4802 dev->class->shutdown_pre(dev);
4803 }
4804 if (dev->bus && dev->bus->shutdown) {
4805 if (initcall_debug)
4806 dev_info(dev, "shutdown\n");
4807 dev->bus->shutdown(dev);
4808 } else if (dev->driver && dev->driver->shutdown) {
4809 if (initcall_debug)
4810 dev_info(dev, "shutdown\n");
4811 dev->driver->shutdown(dev);
4812 }
4813
4814 device_unlock(dev);
4815 if (parent)
4816 device_unlock(parent);
4817
4818 put_device(dev);
4819 put_device(parent);
4820
4821 spin_lock(&devices_kset->list_lock);
4822 }
4823 spin_unlock(&devices_kset->list_lock);
4824 }
4825
4826 /*
4827 * Device logging functions
4828 */
4829
4830 #ifdef CONFIG_PRINTK
4831 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4832 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4833 {
4834 const char *subsys;
4835
4836 memset(dev_info, 0, sizeof(*dev_info));
4837
4838 if (dev->class)
4839 subsys = dev->class->name;
4840 else if (dev->bus)
4841 subsys = dev->bus->name;
4842 else
4843 return;
4844
4845 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4846
4847 /*
4848 * Add device identifier DEVICE=:
4849 * b12:8 block dev_t
4850 * c127:3 char dev_t
4851 * n8 netdev ifindex
4852 * +sound:card0 subsystem:devname
4853 */
4854 if (MAJOR(dev->devt)) {
4855 char c;
4856
4857 if (strcmp(subsys, "block") == 0)
4858 c = 'b';
4859 else
4860 c = 'c';
4861
4862 snprintf(dev_info->device, sizeof(dev_info->device),
4863 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4864 } else if (strcmp(subsys, "net") == 0) {
4865 struct net_device *net = to_net_dev(dev);
4866
4867 snprintf(dev_info->device, sizeof(dev_info->device),
4868 "n%u", net->ifindex);
4869 } else {
4870 snprintf(dev_info->device, sizeof(dev_info->device),
4871 "+%s:%s", subsys, dev_name(dev));
4872 }
4873 }
4874
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4875 int dev_vprintk_emit(int level, const struct device *dev,
4876 const char *fmt, va_list args)
4877 {
4878 struct dev_printk_info dev_info;
4879
4880 set_dev_info(dev, &dev_info);
4881
4882 return vprintk_emit(0, level, &dev_info, fmt, args);
4883 }
4884 EXPORT_SYMBOL(dev_vprintk_emit);
4885
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4886 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4887 {
4888 va_list args;
4889 int r;
4890
4891 va_start(args, fmt);
4892
4893 r = dev_vprintk_emit(level, dev, fmt, args);
4894
4895 va_end(args);
4896
4897 return r;
4898 }
4899 EXPORT_SYMBOL(dev_printk_emit);
4900
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4901 static void __dev_printk(const char *level, const struct device *dev,
4902 struct va_format *vaf)
4903 {
4904 if (dev)
4905 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4906 dev_driver_string(dev), dev_name(dev), vaf);
4907 else
4908 printk("%s(NULL device *): %pV", level, vaf);
4909 }
4910
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4911 void _dev_printk(const char *level, const struct device *dev,
4912 const char *fmt, ...)
4913 {
4914 struct va_format vaf;
4915 va_list args;
4916
4917 va_start(args, fmt);
4918
4919 vaf.fmt = fmt;
4920 vaf.va = &args;
4921
4922 __dev_printk(level, dev, &vaf);
4923
4924 va_end(args);
4925 }
4926 EXPORT_SYMBOL(_dev_printk);
4927
4928 #define define_dev_printk_level(func, kern_level) \
4929 void func(const struct device *dev, const char *fmt, ...) \
4930 { \
4931 struct va_format vaf; \
4932 va_list args; \
4933 \
4934 va_start(args, fmt); \
4935 \
4936 vaf.fmt = fmt; \
4937 vaf.va = &args; \
4938 \
4939 __dev_printk(kern_level, dev, &vaf); \
4940 \
4941 va_end(args); \
4942 } \
4943 EXPORT_SYMBOL(func);
4944
4945 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4946 define_dev_printk_level(_dev_alert, KERN_ALERT);
4947 define_dev_printk_level(_dev_crit, KERN_CRIT);
4948 define_dev_printk_level(_dev_err, KERN_ERR);
4949 define_dev_printk_level(_dev_warn, KERN_WARNING);
4950 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4951 define_dev_printk_level(_dev_info, KERN_INFO);
4952
4953 #endif
4954
4955 /**
4956 * dev_err_probe - probe error check and log helper
4957 * @dev: the pointer to the struct device
4958 * @err: error value to test
4959 * @fmt: printf-style format string
4960 * @...: arguments as specified in the format string
4961 *
4962 * This helper implements common pattern present in probe functions for error
4963 * checking: print debug or error message depending if the error value is
4964 * -EPROBE_DEFER and propagate error upwards.
4965 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4966 * checked later by reading devices_deferred debugfs attribute.
4967 * It replaces code sequence::
4968 *
4969 * if (err != -EPROBE_DEFER)
4970 * dev_err(dev, ...);
4971 * else
4972 * dev_dbg(dev, ...);
4973 * return err;
4974 *
4975 * with::
4976 *
4977 * return dev_err_probe(dev, err, ...);
4978 *
4979 * Note that it is deemed acceptable to use this function for error
4980 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4981 * The benefit compared to a normal dev_err() is the standardized format
4982 * of the error code and the fact that the error code is returned.
4983 *
4984 * Returns @err.
4985 *
4986 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4987 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4988 {
4989 struct va_format vaf;
4990 va_list args;
4991
4992 va_start(args, fmt);
4993 vaf.fmt = fmt;
4994 vaf.va = &args;
4995
4996 if (err != -EPROBE_DEFER) {
4997 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4998 } else {
4999 device_set_deferred_probe_reason(dev, &vaf);
5000 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5001 }
5002
5003 va_end(args);
5004
5005 return err;
5006 }
5007 EXPORT_SYMBOL_GPL(dev_err_probe);
5008
fwnode_is_primary(struct fwnode_handle * fwnode)5009 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5010 {
5011 return fwnode && !IS_ERR(fwnode->secondary);
5012 }
5013
5014 /**
5015 * set_primary_fwnode - Change the primary firmware node of a given device.
5016 * @dev: Device to handle.
5017 * @fwnode: New primary firmware node of the device.
5018 *
5019 * Set the device's firmware node pointer to @fwnode, but if a secondary
5020 * firmware node of the device is present, preserve it.
5021 *
5022 * Valid fwnode cases are:
5023 * - primary --> secondary --> -ENODEV
5024 * - primary --> NULL
5025 * - secondary --> -ENODEV
5026 * - NULL
5027 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5028 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5029 {
5030 struct device *parent = dev->parent;
5031 struct fwnode_handle *fn = dev->fwnode;
5032
5033 if (fwnode) {
5034 if (fwnode_is_primary(fn))
5035 fn = fn->secondary;
5036
5037 if (fn) {
5038 WARN_ON(fwnode->secondary);
5039 fwnode->secondary = fn;
5040 }
5041 dev->fwnode = fwnode;
5042 } else {
5043 if (fwnode_is_primary(fn)) {
5044 dev->fwnode = fn->secondary;
5045
5046 /* Skip nullifying fn->secondary if the primary is shared */
5047 if (parent && fn == parent->fwnode)
5048 return;
5049
5050 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5051 fn->secondary = NULL;
5052 } else {
5053 dev->fwnode = NULL;
5054 }
5055 }
5056 }
5057 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5058
5059 /**
5060 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5061 * @dev: Device to handle.
5062 * @fwnode: New secondary firmware node of the device.
5063 *
5064 * If a primary firmware node of the device is present, set its secondary
5065 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5066 * @fwnode.
5067 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5068 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5069 {
5070 if (fwnode)
5071 fwnode->secondary = ERR_PTR(-ENODEV);
5072
5073 if (fwnode_is_primary(dev->fwnode))
5074 dev->fwnode->secondary = fwnode;
5075 else
5076 dev->fwnode = fwnode;
5077 }
5078 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5079
5080 /**
5081 * device_set_of_node_from_dev - reuse device-tree node of another device
5082 * @dev: device whose device-tree node is being set
5083 * @dev2: device whose device-tree node is being reused
5084 *
5085 * Takes another reference to the new device-tree node after first dropping
5086 * any reference held to the old node.
5087 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5088 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5089 {
5090 of_node_put(dev->of_node);
5091 dev->of_node = of_node_get(dev2->of_node);
5092 dev->of_node_reused = true;
5093 }
5094 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5095
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5096 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5097 {
5098 dev->fwnode = fwnode;
5099 dev->of_node = to_of_node(fwnode);
5100 }
5101 EXPORT_SYMBOL_GPL(device_set_node);
5102
device_match_name(struct device * dev,const void * name)5103 int device_match_name(struct device *dev, const void *name)
5104 {
5105 return sysfs_streq(dev_name(dev), name);
5106 }
5107 EXPORT_SYMBOL_GPL(device_match_name);
5108
device_match_of_node(struct device * dev,const void * np)5109 int device_match_of_node(struct device *dev, const void *np)
5110 {
5111 return dev->of_node == np;
5112 }
5113 EXPORT_SYMBOL_GPL(device_match_of_node);
5114
device_match_fwnode(struct device * dev,const void * fwnode)5115 int device_match_fwnode(struct device *dev, const void *fwnode)
5116 {
5117 return dev_fwnode(dev) == fwnode;
5118 }
5119 EXPORT_SYMBOL_GPL(device_match_fwnode);
5120
device_match_devt(struct device * dev,const void * pdevt)5121 int device_match_devt(struct device *dev, const void *pdevt)
5122 {
5123 return dev->devt == *(dev_t *)pdevt;
5124 }
5125 EXPORT_SYMBOL_GPL(device_match_devt);
5126
device_match_acpi_dev(struct device * dev,const void * adev)5127 int device_match_acpi_dev(struct device *dev, const void *adev)
5128 {
5129 return ACPI_COMPANION(dev) == adev;
5130 }
5131 EXPORT_SYMBOL(device_match_acpi_dev);
5132
device_match_acpi_handle(struct device * dev,const void * handle)5133 int device_match_acpi_handle(struct device *dev, const void *handle)
5134 {
5135 return ACPI_HANDLE(dev) == handle;
5136 }
5137 EXPORT_SYMBOL(device_match_acpi_handle);
5138
device_match_any(struct device * dev,const void * unused)5139 int device_match_any(struct device *dev, const void *unused)
5140 {
5141 return 1;
5142 }
5143 EXPORT_SYMBOL_GPL(device_match_any);
5144