1 /*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/string_helpers.h>
33 #include <linux/dynamic_debug.h>
34
35 #include <drm/display/drm_dp_helper.h>
36 #include <drm/display/drm_dp_mst_helper.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_print.h>
39 #include <drm/drm_vblank.h>
40 #include <drm/drm_panel.h>
41
42 #include "drm_dp_helper_internal.h"
43
44 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
45 "DRM_UT_CORE",
46 "DRM_UT_DRIVER",
47 "DRM_UT_KMS",
48 "DRM_UT_PRIME",
49 "DRM_UT_ATOMIC",
50 "DRM_UT_VBL",
51 "DRM_UT_STATE",
52 "DRM_UT_LEASE",
53 "DRM_UT_DP",
54 "DRM_UT_DRMRES");
55
56 struct dp_aux_backlight {
57 struct backlight_device *base;
58 struct drm_dp_aux *aux;
59 struct drm_edp_backlight_info info;
60 bool enabled;
61 };
62
63 /**
64 * DOC: dp helpers
65 *
66 * These functions contain some common logic and helpers at various abstraction
67 * levels to deal with Display Port sink devices and related things like DP aux
68 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
69 * blocks, ...
70 */
71
72 /* Helpers for DP link training */
dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE],int r)73 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
74 {
75 return link_status[r - DP_LANE0_1_STATUS];
76 }
77
dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)78 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
79 int lane)
80 {
81 int i = DP_LANE0_1_STATUS + (lane >> 1);
82 int s = (lane & 1) * 4;
83 u8 l = dp_link_status(link_status, i);
84
85 return (l >> s) & 0xf;
86 }
87
drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)88 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
89 int lane_count)
90 {
91 u8 lane_align;
92 u8 lane_status;
93 int lane;
94
95 lane_align = dp_link_status(link_status,
96 DP_LANE_ALIGN_STATUS_UPDATED);
97 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
98 return false;
99 for (lane = 0; lane < lane_count; lane++) {
100 lane_status = dp_get_lane_status(link_status, lane);
101 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
102 return false;
103 }
104 return true;
105 }
106 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
107
drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)108 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
109 int lane_count)
110 {
111 int lane;
112 u8 lane_status;
113
114 for (lane = 0; lane < lane_count; lane++) {
115 lane_status = dp_get_lane_status(link_status, lane);
116 if ((lane_status & DP_LANE_CR_DONE) == 0)
117 return false;
118 }
119 return true;
120 }
121 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
122
drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)123 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
124 int lane)
125 {
126 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
127 int s = ((lane & 1) ?
128 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
129 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
130 u8 l = dp_link_status(link_status, i);
131
132 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
133 }
134 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
135
drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)136 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
137 int lane)
138 {
139 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
140 int s = ((lane & 1) ?
141 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
142 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
143 u8 l = dp_link_status(link_status, i);
144
145 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
146 }
147 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
148
149 /* DP 2.0 128b/132b */
drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)150 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
151 int lane)
152 {
153 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
154 int s = ((lane & 1) ?
155 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
156 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
157 u8 l = dp_link_status(link_status, i);
158
159 return (l >> s) & 0xf;
160 }
161 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
162
163 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)164 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
165 int lane_count)
166 {
167 u8 lane_align, lane_status;
168 int lane;
169
170 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
171 if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
172 return false;
173
174 for (lane = 0; lane < lane_count; lane++) {
175 lane_status = dp_get_lane_status(link_status, lane);
176 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
177 return false;
178 }
179 return true;
180 }
181 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
182
183 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)184 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
185 int lane_count)
186 {
187 u8 lane_status;
188 int lane;
189
190 for (lane = 0; lane < lane_count; lane++) {
191 lane_status = dp_get_lane_status(link_status, lane);
192 if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
193 return false;
194 }
195 return true;
196 }
197 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
198
199 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])200 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
201 {
202 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
203
204 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
205 }
206 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
207
208 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])209 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
210 {
211 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
212
213 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
214 }
215 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
216
217 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])218 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
219 {
220 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
221
222 return status & DP_128B132B_LT_FAILED;
223 }
224 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
225
__8b10b_clock_recovery_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)226 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
227 {
228 if (rd_interval > 4)
229 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
230 aux->name, rd_interval);
231
232 if (rd_interval == 0)
233 return 100;
234
235 return rd_interval * 4 * USEC_PER_MSEC;
236 }
237
__8b10b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)238 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
239 {
240 if (rd_interval > 4)
241 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
242 aux->name, rd_interval);
243
244 if (rd_interval == 0)
245 return 400;
246
247 return rd_interval * 4 * USEC_PER_MSEC;
248 }
249
__128b132b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)250 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
251 {
252 switch (rd_interval) {
253 default:
254 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
255 aux->name, rd_interval);
256 fallthrough;
257 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
258 return 400;
259 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
260 return 4000;
261 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
262 return 8000;
263 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
264 return 12000;
265 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
266 return 16000;
267 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
268 return 32000;
269 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
270 return 64000;
271 }
272 }
273
274 /*
275 * The link training delays are different for:
276 *
277 * - Clock recovery vs. channel equalization
278 * - DPRX vs. LTTPR
279 * - 128b/132b vs. 8b/10b
280 * - DPCD rev 1.3 vs. later
281 *
282 * Get the correct delay in us, reading DPCD if necessary.
283 */
__read_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr,bool cr)284 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
285 enum drm_dp_phy dp_phy, bool uhbr, bool cr)
286 {
287 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
288 unsigned int offset;
289 u8 rd_interval, mask;
290
291 if (dp_phy == DP_PHY_DPRX) {
292 if (uhbr) {
293 if (cr)
294 return 100;
295
296 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
297 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
298 parse = __128b132b_channel_eq_delay_us;
299 } else {
300 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
301 return 100;
302
303 offset = DP_TRAINING_AUX_RD_INTERVAL;
304 mask = DP_TRAINING_AUX_RD_MASK;
305 if (cr)
306 parse = __8b10b_clock_recovery_delay_us;
307 else
308 parse = __8b10b_channel_eq_delay_us;
309 }
310 } else {
311 if (uhbr) {
312 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
313 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
314 parse = __128b132b_channel_eq_delay_us;
315 } else {
316 if (cr)
317 return 100;
318
319 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
320 mask = DP_TRAINING_AUX_RD_MASK;
321 parse = __8b10b_channel_eq_delay_us;
322 }
323 }
324
325 if (offset < DP_RECEIVER_CAP_SIZE) {
326 rd_interval = dpcd[offset];
327 } else {
328 if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
329 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
330 aux->name);
331 /* arbitrary default delay */
332 return 400;
333 }
334 }
335
336 return parse(aux, rd_interval & mask);
337 }
338
drm_dp_read_clock_recovery_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)339 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
340 enum drm_dp_phy dp_phy, bool uhbr)
341 {
342 return __read_delay(aux, dpcd, dp_phy, uhbr, true);
343 }
344 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
345
drm_dp_read_channel_eq_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)346 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
347 enum drm_dp_phy dp_phy, bool uhbr)
348 {
349 return __read_delay(aux, dpcd, dp_phy, uhbr, false);
350 }
351 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
352
353 /* Per DP 2.0 Errata */
drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux * aux)354 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
355 {
356 int unit;
357 u8 val;
358
359 if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
360 drm_err(aux->drm_dev, "%s: failed rd interval read\n",
361 aux->name);
362 /* default to max */
363 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
364 }
365
366 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
367 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
368
369 return (val + 1) * unit * 1000;
370 }
371 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
372
drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])373 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
374 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
375 {
376 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
377 DP_TRAINING_AUX_RD_MASK;
378 int delay_us;
379
380 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
381 delay_us = 100;
382 else
383 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
384
385 usleep_range(delay_us, delay_us * 2);
386 }
387 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
388
__drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,u8 rd_interval)389 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
390 u8 rd_interval)
391 {
392 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
393
394 usleep_range(delay_us, delay_us * 2);
395 }
396
drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])397 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
398 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
399 {
400 __drm_dp_link_train_channel_eq_delay(aux,
401 dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
402 DP_TRAINING_AUX_RD_MASK);
403 }
404 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
405
406 /**
407 * drm_dp_phy_name() - Get the name of the given DP PHY
408 * @dp_phy: The DP PHY identifier
409 *
410 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
411 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
412 * non-NULL and valid.
413 *
414 * Returns: Name of the DP PHY.
415 */
drm_dp_phy_name(enum drm_dp_phy dp_phy)416 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
417 {
418 static const char * const phy_names[] = {
419 [DP_PHY_DPRX] = "DPRX",
420 [DP_PHY_LTTPR1] = "LTTPR 1",
421 [DP_PHY_LTTPR2] = "LTTPR 2",
422 [DP_PHY_LTTPR3] = "LTTPR 3",
423 [DP_PHY_LTTPR4] = "LTTPR 4",
424 [DP_PHY_LTTPR5] = "LTTPR 5",
425 [DP_PHY_LTTPR6] = "LTTPR 6",
426 [DP_PHY_LTTPR7] = "LTTPR 7",
427 [DP_PHY_LTTPR8] = "LTTPR 8",
428 };
429
430 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
431 WARN_ON(!phy_names[dp_phy]))
432 return "<INVALID DP PHY>";
433
434 return phy_names[dp_phy];
435 }
436 EXPORT_SYMBOL(drm_dp_phy_name);
437
drm_dp_lttpr_link_train_clock_recovery_delay(void)438 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
439 {
440 usleep_range(100, 200);
441 }
442 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
443
dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE],int r)444 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
445 {
446 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
447 }
448
drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])449 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
450 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
451 {
452 u8 interval = dp_lttpr_phy_cap(phy_cap,
453 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
454 DP_TRAINING_AUX_RD_MASK;
455
456 __drm_dp_link_train_channel_eq_delay(aux, interval);
457 }
458 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
459
drm_dp_link_rate_to_bw_code(int link_rate)460 u8 drm_dp_link_rate_to_bw_code(int link_rate)
461 {
462 switch (link_rate) {
463 case 1000000:
464 return DP_LINK_BW_10;
465 case 1350000:
466 return DP_LINK_BW_13_5;
467 case 2000000:
468 return DP_LINK_BW_20;
469 default:
470 /* Spec says link_bw = link_rate / 0.27Gbps */
471 return link_rate / 27000;
472 }
473 }
474 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
475
drm_dp_bw_code_to_link_rate(u8 link_bw)476 int drm_dp_bw_code_to_link_rate(u8 link_bw)
477 {
478 switch (link_bw) {
479 case DP_LINK_BW_10:
480 return 1000000;
481 case DP_LINK_BW_13_5:
482 return 1350000;
483 case DP_LINK_BW_20:
484 return 2000000;
485 default:
486 /* Spec says link_rate = link_bw * 0.27Gbps */
487 return link_bw * 27000;
488 }
489 }
490 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
491
492 #define AUX_RETRY_INTERVAL 500 /* us */
493
494 static inline void
drm_dp_dump_access(const struct drm_dp_aux * aux,u8 request,uint offset,void * buffer,int ret)495 drm_dp_dump_access(const struct drm_dp_aux *aux,
496 u8 request, uint offset, void *buffer, int ret)
497 {
498 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
499
500 if (ret > 0)
501 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
502 aux->name, offset, arrow, ret, min(ret, 20), buffer);
503 else
504 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
505 aux->name, offset, arrow, ret);
506 }
507
508 /**
509 * DOC: dp helpers
510 *
511 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
512 * independent access to AUX functionality. Drivers can take advantage of
513 * this by filling in the fields of the drm_dp_aux structure.
514 *
515 * Transactions are described using a hardware-independent drm_dp_aux_msg
516 * structure, which is passed into a driver's .transfer() implementation.
517 * Both native and I2C-over-AUX transactions are supported.
518 */
519
drm_dp_dpcd_access(struct drm_dp_aux * aux,u8 request,unsigned int offset,void * buffer,size_t size)520 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
521 unsigned int offset, void *buffer, size_t size)
522 {
523 struct drm_dp_aux_msg msg;
524 unsigned int retry, native_reply;
525 int err = 0, ret = 0;
526
527 memset(&msg, 0, sizeof(msg));
528 msg.address = offset;
529 msg.request = request;
530 msg.buffer = buffer;
531 msg.size = size;
532
533 mutex_lock(&aux->hw_mutex);
534
535 /*
536 * If the device attached to the aux bus is powered down then there's
537 * no reason to attempt a transfer. Error out immediately.
538 */
539 if (aux->powered_down) {
540 ret = -EBUSY;
541 goto unlock;
542 }
543
544 /*
545 * The specification doesn't give any recommendation on how often to
546 * retry native transactions. We used to retry 7 times like for
547 * aux i2c transactions but real world devices this wasn't
548 * sufficient, bump to 32 which makes Dell 4k monitors happier.
549 */
550 for (retry = 0; retry < 32; retry++) {
551 if (ret != 0 && ret != -ETIMEDOUT) {
552 usleep_range(AUX_RETRY_INTERVAL,
553 AUX_RETRY_INTERVAL + 100);
554 }
555
556 ret = aux->transfer(aux, &msg);
557 if (ret >= 0) {
558 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
559 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
560 if (ret == size)
561 goto unlock;
562
563 ret = -EPROTO;
564 } else
565 ret = -EIO;
566 }
567
568 /*
569 * We want the error we return to be the error we received on
570 * the first transaction, since we may get a different error the
571 * next time we retry
572 */
573 if (!err)
574 err = ret;
575 }
576
577 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
578 aux->name, err);
579 ret = err;
580
581 unlock:
582 mutex_unlock(&aux->hw_mutex);
583 return ret;
584 }
585
586 /**
587 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
588 * @aux: DisplayPort AUX channel (SST)
589 * @offset: address of the register to probe
590 *
591 * Probe the provided DPCD address by reading 1 byte from it. The function can
592 * be used to trigger some side-effect the read access has, like waking up the
593 * sink, without the need for the read-out value.
594 *
595 * Returns 0 if the read access suceeded, or a negative error code on failure.
596 */
drm_dp_dpcd_probe(struct drm_dp_aux * aux,unsigned int offset)597 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
598 {
599 u8 buffer;
600 int ret;
601
602 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
603 WARN_ON(ret == 0);
604
605 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
606
607 return ret < 0 ? ret : 0;
608 }
609 EXPORT_SYMBOL(drm_dp_dpcd_probe);
610
611 /**
612 * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
613 * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
614 * and the function will be a no-op.
615 * @powered: true if powered; false if not
616 *
617 * If the endpoint device on the DP AUX bus is known to be powered down
618 * then this function can be called to make future transfers fail immediately
619 * instead of needing to time out.
620 *
621 * If this function is never called then a device defaults to being powered.
622 */
drm_dp_dpcd_set_powered(struct drm_dp_aux * aux,bool powered)623 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
624 {
625 if (!aux)
626 return;
627
628 mutex_lock(&aux->hw_mutex);
629 aux->powered_down = !powered;
630 mutex_unlock(&aux->hw_mutex);
631 }
632 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
633
634 /**
635 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
636 * @aux: DisplayPort AUX channel (SST or MST)
637 * @offset: address of the (first) register to read
638 * @buffer: buffer to store the register values
639 * @size: number of bytes in @buffer
640 *
641 * Returns the number of bytes transferred on success, or a negative error
642 * code on failure. -EIO is returned if the request was NAKed by the sink or
643 * if the retry count was exceeded. If not all bytes were transferred, this
644 * function returns -EPROTO. Errors from the underlying AUX channel transfer
645 * function, with the exception of -EBUSY (which causes the transaction to
646 * be retried), are propagated to the caller.
647 */
drm_dp_dpcd_read(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)648 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
649 void *buffer, size_t size)
650 {
651 int ret;
652
653 /*
654 * HP ZR24w corrupts the first DPCD access after entering power save
655 * mode. Eg. on a read, the entire buffer will be filled with the same
656 * byte. Do a throw away read to avoid corrupting anything we care
657 * about. Afterwards things will work correctly until the monitor
658 * gets woken up and subsequently re-enters power save mode.
659 *
660 * The user pressing any button on the monitor is enough to wake it
661 * up, so there is no particularly good place to do the workaround.
662 * We just have to do it before any DPCD access and hope that the
663 * monitor doesn't power down exactly after the throw away read.
664 */
665 if (!aux->is_remote) {
666 ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
667 if (ret < 0)
668 return ret;
669 }
670
671 if (aux->is_remote)
672 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
673 else
674 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
675 buffer, size);
676
677 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
678 return ret;
679 }
680 EXPORT_SYMBOL(drm_dp_dpcd_read);
681
682 /**
683 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
684 * @aux: DisplayPort AUX channel (SST or MST)
685 * @offset: address of the (first) register to write
686 * @buffer: buffer containing the values to write
687 * @size: number of bytes in @buffer
688 *
689 * Returns the number of bytes transferred on success, or a negative error
690 * code on failure. -EIO is returned if the request was NAKed by the sink or
691 * if the retry count was exceeded. If not all bytes were transferred, this
692 * function returns -EPROTO. Errors from the underlying AUX channel transfer
693 * function, with the exception of -EBUSY (which causes the transaction to
694 * be retried), are propagated to the caller.
695 */
drm_dp_dpcd_write(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)696 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
697 void *buffer, size_t size)
698 {
699 int ret;
700
701 if (aux->is_remote)
702 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
703 else
704 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
705 buffer, size);
706
707 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
708 return ret;
709 }
710 EXPORT_SYMBOL(drm_dp_dpcd_write);
711
712 /**
713 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
714 * @aux: DisplayPort AUX channel
715 * @status: buffer to store the link status in (must be at least 6 bytes)
716 *
717 * Returns the number of bytes transferred on success or a negative error
718 * code on failure.
719 */
drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux,u8 status[DP_LINK_STATUS_SIZE])720 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
721 u8 status[DP_LINK_STATUS_SIZE])
722 {
723 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
724 DP_LINK_STATUS_SIZE);
725 }
726 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
727
728 /**
729 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
730 * @aux: DisplayPort AUX channel
731 * @dp_phy: the DP PHY to get the link status for
732 * @link_status: buffer to return the status in
733 *
734 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
735 * layout of the returned @link_status matches the DPCD register layout of the
736 * DPRX PHY link status.
737 *
738 * Returns 0 if the information was read successfully or a negative error code
739 * on failure.
740 */
drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux * aux,enum drm_dp_phy dp_phy,u8 link_status[DP_LINK_STATUS_SIZE])741 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
742 enum drm_dp_phy dp_phy,
743 u8 link_status[DP_LINK_STATUS_SIZE])
744 {
745 int ret;
746
747 if (dp_phy == DP_PHY_DPRX) {
748 ret = drm_dp_dpcd_read(aux,
749 DP_LANE0_1_STATUS,
750 link_status,
751 DP_LINK_STATUS_SIZE);
752
753 if (ret < 0)
754 return ret;
755
756 WARN_ON(ret != DP_LINK_STATUS_SIZE);
757
758 return 0;
759 }
760
761 ret = drm_dp_dpcd_read(aux,
762 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
763 link_status,
764 DP_LINK_STATUS_SIZE - 1);
765
766 if (ret < 0)
767 return ret;
768
769 WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
770
771 /* Convert the LTTPR to the sink PHY link status layout */
772 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
773 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
774 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
775 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
776
777 return 0;
778 }
779 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
780
is_edid_digital_input_dp(const struct edid * edid)781 static bool is_edid_digital_input_dp(const struct edid *edid)
782 {
783 return edid && edid->revision >= 4 &&
784 edid->input & DRM_EDID_INPUT_DIGITAL &&
785 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
786 }
787
788 /**
789 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
790 * @dpcd: DisplayPort configuration data
791 * @port_cap: port capabilities
792 * @type: port type to be checked. Can be:
793 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
794 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
795 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
796 *
797 * Caveat: Only works with DPCD 1.1+ port caps.
798 *
799 * Returns: whether the downstream facing port matches the type.
800 */
drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 type)801 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
802 const u8 port_cap[4], u8 type)
803 {
804 return drm_dp_is_branch(dpcd) &&
805 dpcd[DP_DPCD_REV] >= 0x11 &&
806 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
807 }
808 EXPORT_SYMBOL(drm_dp_downstream_is_type);
809
810 /**
811 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
812 * @dpcd: DisplayPort configuration data
813 * @port_cap: port capabilities
814 * @edid: EDID
815 *
816 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
817 */
drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)818 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
819 const u8 port_cap[4],
820 const struct edid *edid)
821 {
822 if (dpcd[DP_DPCD_REV] < 0x11) {
823 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
824 case DP_DWN_STRM_PORT_TYPE_TMDS:
825 return true;
826 default:
827 return false;
828 }
829 }
830
831 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
832 case DP_DS_PORT_TYPE_DP_DUALMODE:
833 if (is_edid_digital_input_dp(edid))
834 return false;
835 fallthrough;
836 case DP_DS_PORT_TYPE_DVI:
837 case DP_DS_PORT_TYPE_HDMI:
838 return true;
839 default:
840 return false;
841 }
842 }
843 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
844
845 /**
846 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
847 * @aux: DisplayPort AUX channel
848 * @real_edid_checksum: real edid checksum for the last block
849 *
850 * Returns:
851 * True on success
852 */
drm_dp_send_real_edid_checksum(struct drm_dp_aux * aux,u8 real_edid_checksum)853 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
854 u8 real_edid_checksum)
855 {
856 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
857
858 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
859 &auto_test_req, 1) < 1) {
860 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
861 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
862 return false;
863 }
864 auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
865
866 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
867 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
868 aux->name, DP_TEST_REQUEST);
869 return false;
870 }
871 link_edid_read &= DP_TEST_LINK_EDID_READ;
872
873 if (!auto_test_req || !link_edid_read) {
874 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
875 aux->name);
876 return false;
877 }
878
879 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
880 &auto_test_req, 1) < 1) {
881 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
882 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
883 return false;
884 }
885
886 /* send back checksum for the last edid extension block data */
887 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
888 &real_edid_checksum, 1) < 1) {
889 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
890 aux->name, DP_TEST_EDID_CHECKSUM);
891 return false;
892 }
893
894 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
895 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
896 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
897 aux->name, DP_TEST_RESPONSE);
898 return false;
899 }
900
901 return true;
902 }
903 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
904
drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])905 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
906 {
907 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
908
909 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
910 port_count = 4;
911
912 return port_count;
913 }
914
drm_dp_read_extended_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])915 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
916 u8 dpcd[DP_RECEIVER_CAP_SIZE])
917 {
918 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
919 int ret;
920
921 /*
922 * Prior to DP1.3 the bit represented by
923 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
924 * If it is set DP_DPCD_REV at 0000h could be at a value less than
925 * the true capability of the panel. The only way to check is to
926 * then compare 0000h and 2200h.
927 */
928 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
929 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
930 return 0;
931
932 ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
933 sizeof(dpcd_ext));
934 if (ret < 0)
935 return ret;
936 if (ret != sizeof(dpcd_ext))
937 return -EIO;
938
939 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
940 drm_dbg_kms(aux->drm_dev,
941 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
942 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
943 return 0;
944 }
945
946 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
947 return 0;
948
949 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
950
951 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
952
953 return 0;
954 }
955
956 /**
957 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
958 * available
959 * @aux: DisplayPort AUX channel
960 * @dpcd: Buffer to store the resulting DPCD in
961 *
962 * Attempts to read the base DPCD caps for @aux. Additionally, this function
963 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
964 * present.
965 *
966 * Returns: %0 if the DPCD was read successfully, negative error code
967 * otherwise.
968 */
drm_dp_read_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])969 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
970 u8 dpcd[DP_RECEIVER_CAP_SIZE])
971 {
972 int ret;
973
974 ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
975 if (ret < 0)
976 return ret;
977 if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
978 return -EIO;
979
980 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
981 if (ret < 0)
982 return ret;
983
984 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
985
986 return ret;
987 }
988 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
989
990 /**
991 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
992 * @aux: DisplayPort AUX channel
993 * @dpcd: A cached copy of the port's DPCD
994 * @downstream_ports: buffer to store the downstream port info in
995 *
996 * See also:
997 * drm_dp_downstream_max_clock()
998 * drm_dp_downstream_max_bpc()
999 *
1000 * Returns: 0 if either the downstream port info was read successfully or
1001 * there was no downstream info to read, or a negative error code otherwise.
1002 */
drm_dp_read_downstream_info(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])1003 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1004 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1005 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1006 {
1007 int ret;
1008 u8 len;
1009
1010 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1011
1012 /* No downstream info to read */
1013 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1014 return 0;
1015
1016 /* Some branches advertise having 0 downstream ports, despite also advertising they have a
1017 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1018 * some branches do it we need to handle it regardless.
1019 */
1020 len = drm_dp_downstream_port_count(dpcd);
1021 if (!len)
1022 return 0;
1023
1024 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1025 len *= 4;
1026
1027 ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1028 if (ret < 0)
1029 return ret;
1030 if (ret != len)
1031 return -EIO;
1032
1033 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1034
1035 return 0;
1036 }
1037 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1038
1039 /**
1040 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1041 * @dpcd: DisplayPort configuration data
1042 * @port_cap: port capabilities
1043 *
1044 * Returns: Downstream facing port max dot clock in kHz on success,
1045 * or 0 if max clock not defined
1046 */
drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1047 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1048 const u8 port_cap[4])
1049 {
1050 if (!drm_dp_is_branch(dpcd))
1051 return 0;
1052
1053 if (dpcd[DP_DPCD_REV] < 0x11)
1054 return 0;
1055
1056 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1057 case DP_DS_PORT_TYPE_VGA:
1058 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1059 return 0;
1060 return port_cap[1] * 8000;
1061 default:
1062 return 0;
1063 }
1064 }
1065 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1066
1067 /**
1068 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1069 * @dpcd: DisplayPort configuration data
1070 * @port_cap: port capabilities
1071 * @edid: EDID
1072 *
1073 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1074 * or 0 if max TMDS clock not defined
1075 */
drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)1076 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1077 const u8 port_cap[4],
1078 const struct edid *edid)
1079 {
1080 if (!drm_dp_is_branch(dpcd))
1081 return 0;
1082
1083 if (dpcd[DP_DPCD_REV] < 0x11) {
1084 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1085 case DP_DWN_STRM_PORT_TYPE_TMDS:
1086 return 165000;
1087 default:
1088 return 0;
1089 }
1090 }
1091
1092 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1093 case DP_DS_PORT_TYPE_DP_DUALMODE:
1094 if (is_edid_digital_input_dp(edid))
1095 return 0;
1096 /*
1097 * It's left up to the driver to check the
1098 * DP dual mode adapter's max TMDS clock.
1099 *
1100 * Unfortunately it looks like branch devices
1101 * may not fordward that the DP dual mode i2c
1102 * access so we just usually get i2c nak :(
1103 */
1104 fallthrough;
1105 case DP_DS_PORT_TYPE_HDMI:
1106 /*
1107 * We should perhaps assume 165 MHz when detailed cap
1108 * info is not available. But looks like many typical
1109 * branch devices fall into that category and so we'd
1110 * probably end up with users complaining that they can't
1111 * get high resolution modes with their favorite dongle.
1112 *
1113 * So let's limit to 300 MHz instead since DPCD 1.4
1114 * HDMI 2.0 DFPs are required to have the detailed cap
1115 * info. So it's more likely we're dealing with a HDMI 1.4
1116 * compatible* device here.
1117 */
1118 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1119 return 300000;
1120 return port_cap[1] * 2500;
1121 case DP_DS_PORT_TYPE_DVI:
1122 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1123 return 165000;
1124 /* FIXME what to do about DVI dual link? */
1125 return port_cap[1] * 2500;
1126 default:
1127 return 0;
1128 }
1129 }
1130 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1131
1132 /**
1133 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1134 * @dpcd: DisplayPort configuration data
1135 * @port_cap: port capabilities
1136 * @edid: EDID
1137 *
1138 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1139 * or 0 if max TMDS clock not defined
1140 */
drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)1141 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1142 const u8 port_cap[4],
1143 const struct edid *edid)
1144 {
1145 if (!drm_dp_is_branch(dpcd))
1146 return 0;
1147
1148 if (dpcd[DP_DPCD_REV] < 0x11) {
1149 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1150 case DP_DWN_STRM_PORT_TYPE_TMDS:
1151 return 25000;
1152 default:
1153 return 0;
1154 }
1155 }
1156
1157 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1158 case DP_DS_PORT_TYPE_DP_DUALMODE:
1159 if (is_edid_digital_input_dp(edid))
1160 return 0;
1161 fallthrough;
1162 case DP_DS_PORT_TYPE_DVI:
1163 case DP_DS_PORT_TYPE_HDMI:
1164 /*
1165 * Unclear whether the protocol converter could
1166 * utilize pixel replication. Assume it won't.
1167 */
1168 return 25000;
1169 default:
1170 return 0;
1171 }
1172 }
1173 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1174
1175 /**
1176 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1177 * bits per component
1178 * @dpcd: DisplayPort configuration data
1179 * @port_cap: downstream facing port capabilities
1180 * @edid: EDID
1181 *
1182 * Returns: Max bpc on success or 0 if max bpc not defined
1183 */
drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)1184 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1185 const u8 port_cap[4],
1186 const struct edid *edid)
1187 {
1188 if (!drm_dp_is_branch(dpcd))
1189 return 0;
1190
1191 if (dpcd[DP_DPCD_REV] < 0x11) {
1192 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1193 case DP_DWN_STRM_PORT_TYPE_DP:
1194 return 0;
1195 default:
1196 return 8;
1197 }
1198 }
1199
1200 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1201 case DP_DS_PORT_TYPE_DP:
1202 return 0;
1203 case DP_DS_PORT_TYPE_DP_DUALMODE:
1204 if (is_edid_digital_input_dp(edid))
1205 return 0;
1206 fallthrough;
1207 case DP_DS_PORT_TYPE_HDMI:
1208 case DP_DS_PORT_TYPE_DVI:
1209 case DP_DS_PORT_TYPE_VGA:
1210 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1211 return 8;
1212
1213 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1214 case DP_DS_8BPC:
1215 return 8;
1216 case DP_DS_10BPC:
1217 return 10;
1218 case DP_DS_12BPC:
1219 return 12;
1220 case DP_DS_16BPC:
1221 return 16;
1222 default:
1223 return 8;
1224 }
1225 break;
1226 default:
1227 return 8;
1228 }
1229 }
1230 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1231
1232 /**
1233 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1234 * YCbCr 4:2:0 pass-through capability
1235 * @dpcd: DisplayPort configuration data
1236 * @port_cap: downstream facing port capabilities
1237 *
1238 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1239 */
drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1240 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1241 const u8 port_cap[4])
1242 {
1243 if (!drm_dp_is_branch(dpcd))
1244 return false;
1245
1246 if (dpcd[DP_DPCD_REV] < 0x13)
1247 return false;
1248
1249 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1250 case DP_DS_PORT_TYPE_DP:
1251 return true;
1252 case DP_DS_PORT_TYPE_HDMI:
1253 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1254 return false;
1255
1256 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1257 default:
1258 return false;
1259 }
1260 }
1261 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1262
1263 /**
1264 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1265 * YCbCr 4:4:4->4:2:0 conversion capability
1266 * @dpcd: DisplayPort configuration data
1267 * @port_cap: downstream facing port capabilities
1268 *
1269 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1270 */
drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1271 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1272 const u8 port_cap[4])
1273 {
1274 if (!drm_dp_is_branch(dpcd))
1275 return false;
1276
1277 if (dpcd[DP_DPCD_REV] < 0x13)
1278 return false;
1279
1280 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1281 case DP_DS_PORT_TYPE_HDMI:
1282 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1283 return false;
1284
1285 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1286 default:
1287 return false;
1288 }
1289 }
1290 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1291
1292 /**
1293 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1294 * RGB->YCbCr conversion capability
1295 * @dpcd: DisplayPort configuration data
1296 * @port_cap: downstream facing port capabilities
1297 * @color_spc: Colorspace for which conversion cap is sought
1298 *
1299 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1300 * colorspace.
1301 */
drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 color_spc)1302 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1303 const u8 port_cap[4],
1304 u8 color_spc)
1305 {
1306 if (!drm_dp_is_branch(dpcd))
1307 return false;
1308
1309 if (dpcd[DP_DPCD_REV] < 0x13)
1310 return false;
1311
1312 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1313 case DP_DS_PORT_TYPE_HDMI:
1314 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1315 return false;
1316
1317 return port_cap[3] & color_spc;
1318 default:
1319 return false;
1320 }
1321 }
1322 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1323
1324 /**
1325 * drm_dp_downstream_mode() - return a mode for downstream facing port
1326 * @dev: DRM device
1327 * @dpcd: DisplayPort configuration data
1328 * @port_cap: port capabilities
1329 *
1330 * Provides a suitable mode for downstream facing ports without EDID.
1331 *
1332 * Returns: A new drm_display_mode on success or NULL on failure
1333 */
1334 struct drm_display_mode *
drm_dp_downstream_mode(struct drm_device * dev,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1335 drm_dp_downstream_mode(struct drm_device *dev,
1336 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1337 const u8 port_cap[4])
1338
1339 {
1340 u8 vic;
1341
1342 if (!drm_dp_is_branch(dpcd))
1343 return NULL;
1344
1345 if (dpcd[DP_DPCD_REV] < 0x11)
1346 return NULL;
1347
1348 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1349 case DP_DS_PORT_TYPE_NON_EDID:
1350 switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1351 case DP_DS_NON_EDID_720x480i_60:
1352 vic = 6;
1353 break;
1354 case DP_DS_NON_EDID_720x480i_50:
1355 vic = 21;
1356 break;
1357 case DP_DS_NON_EDID_1920x1080i_60:
1358 vic = 5;
1359 break;
1360 case DP_DS_NON_EDID_1920x1080i_50:
1361 vic = 20;
1362 break;
1363 case DP_DS_NON_EDID_1280x720_60:
1364 vic = 4;
1365 break;
1366 case DP_DS_NON_EDID_1280x720_50:
1367 vic = 19;
1368 break;
1369 default:
1370 return NULL;
1371 }
1372 return drm_display_mode_from_cea_vic(dev, vic);
1373 default:
1374 return NULL;
1375 }
1376 }
1377 EXPORT_SYMBOL(drm_dp_downstream_mode);
1378
1379 /**
1380 * drm_dp_downstream_id() - identify branch device
1381 * @aux: DisplayPort AUX channel
1382 * @id: DisplayPort branch device id
1383 *
1384 * Returns branch device id on success or NULL on failure
1385 */
drm_dp_downstream_id(struct drm_dp_aux * aux,char id[6])1386 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1387 {
1388 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1389 }
1390 EXPORT_SYMBOL(drm_dp_downstream_id);
1391
1392 /**
1393 * drm_dp_downstream_debug() - debug DP branch devices
1394 * @m: pointer for debugfs file
1395 * @dpcd: DisplayPort configuration data
1396 * @port_cap: port capabilities
1397 * @edid: EDID
1398 * @aux: DisplayPort AUX channel
1399 *
1400 */
drm_dp_downstream_debug(struct seq_file * m,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid,struct drm_dp_aux * aux)1401 void drm_dp_downstream_debug(struct seq_file *m,
1402 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1403 const u8 port_cap[4],
1404 const struct edid *edid,
1405 struct drm_dp_aux *aux)
1406 {
1407 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1408 DP_DETAILED_CAP_INFO_AVAILABLE;
1409 int clk;
1410 int bpc;
1411 char id[7];
1412 int len;
1413 uint8_t rev[2];
1414 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1415 bool branch_device = drm_dp_is_branch(dpcd);
1416
1417 seq_printf(m, "\tDP branch device present: %s\n",
1418 str_yes_no(branch_device));
1419
1420 if (!branch_device)
1421 return;
1422
1423 switch (type) {
1424 case DP_DS_PORT_TYPE_DP:
1425 seq_puts(m, "\t\tType: DisplayPort\n");
1426 break;
1427 case DP_DS_PORT_TYPE_VGA:
1428 seq_puts(m, "\t\tType: VGA\n");
1429 break;
1430 case DP_DS_PORT_TYPE_DVI:
1431 seq_puts(m, "\t\tType: DVI\n");
1432 break;
1433 case DP_DS_PORT_TYPE_HDMI:
1434 seq_puts(m, "\t\tType: HDMI\n");
1435 break;
1436 case DP_DS_PORT_TYPE_NON_EDID:
1437 seq_puts(m, "\t\tType: others without EDID support\n");
1438 break;
1439 case DP_DS_PORT_TYPE_DP_DUALMODE:
1440 seq_puts(m, "\t\tType: DP++\n");
1441 break;
1442 case DP_DS_PORT_TYPE_WIRELESS:
1443 seq_puts(m, "\t\tType: Wireless\n");
1444 break;
1445 default:
1446 seq_puts(m, "\t\tType: N/A\n");
1447 }
1448
1449 memset(id, 0, sizeof(id));
1450 drm_dp_downstream_id(aux, id);
1451 seq_printf(m, "\t\tID: %s\n", id);
1452
1453 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1454 if (len > 0)
1455 seq_printf(m, "\t\tHW: %d.%d\n",
1456 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1457
1458 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1459 if (len > 0)
1460 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1461
1462 if (detailed_cap_info) {
1463 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1464 if (clk > 0)
1465 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1466
1467 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1468 if (clk > 0)
1469 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1470
1471 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1472 if (clk > 0)
1473 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1474
1475 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1476
1477 if (bpc > 0)
1478 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1479 }
1480 }
1481 EXPORT_SYMBOL(drm_dp_downstream_debug);
1482
1483 /**
1484 * drm_dp_subconnector_type() - get DP branch device type
1485 * @dpcd: DisplayPort configuration data
1486 * @port_cap: port capabilities
1487 */
1488 enum drm_mode_subconnector
drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1489 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1490 const u8 port_cap[4])
1491 {
1492 int type;
1493 if (!drm_dp_is_branch(dpcd))
1494 return DRM_MODE_SUBCONNECTOR_Native;
1495 /* DP 1.0 approach */
1496 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1497 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1498 DP_DWN_STRM_PORT_TYPE_MASK;
1499
1500 switch (type) {
1501 case DP_DWN_STRM_PORT_TYPE_TMDS:
1502 /* Can be HDMI or DVI-D, DVI-D is a safer option */
1503 return DRM_MODE_SUBCONNECTOR_DVID;
1504 case DP_DWN_STRM_PORT_TYPE_ANALOG:
1505 /* Can be VGA or DVI-A, VGA is more popular */
1506 return DRM_MODE_SUBCONNECTOR_VGA;
1507 case DP_DWN_STRM_PORT_TYPE_DP:
1508 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1509 case DP_DWN_STRM_PORT_TYPE_OTHER:
1510 default:
1511 return DRM_MODE_SUBCONNECTOR_Unknown;
1512 }
1513 }
1514 type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1515
1516 switch (type) {
1517 case DP_DS_PORT_TYPE_DP:
1518 case DP_DS_PORT_TYPE_DP_DUALMODE:
1519 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1520 case DP_DS_PORT_TYPE_VGA:
1521 return DRM_MODE_SUBCONNECTOR_VGA;
1522 case DP_DS_PORT_TYPE_DVI:
1523 return DRM_MODE_SUBCONNECTOR_DVID;
1524 case DP_DS_PORT_TYPE_HDMI:
1525 return DRM_MODE_SUBCONNECTOR_HDMIA;
1526 case DP_DS_PORT_TYPE_WIRELESS:
1527 return DRM_MODE_SUBCONNECTOR_Wireless;
1528 case DP_DS_PORT_TYPE_NON_EDID:
1529 default:
1530 return DRM_MODE_SUBCONNECTOR_Unknown;
1531 }
1532 }
1533 EXPORT_SYMBOL(drm_dp_subconnector_type);
1534
1535 /**
1536 * drm_dp_set_subconnector_property - set subconnector for DP connector
1537 * @connector: connector to set property on
1538 * @status: connector status
1539 * @dpcd: DisplayPort configuration data
1540 * @port_cap: port capabilities
1541 *
1542 * Called by a driver on every detect event.
1543 */
drm_dp_set_subconnector_property(struct drm_connector * connector,enum drm_connector_status status,const u8 * dpcd,const u8 port_cap[4])1544 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1545 enum drm_connector_status status,
1546 const u8 *dpcd,
1547 const u8 port_cap[4])
1548 {
1549 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1550
1551 if (status == connector_status_connected)
1552 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1553 drm_object_property_set_value(&connector->base,
1554 connector->dev->mode_config.dp_subconnector_property,
1555 subconnector);
1556 }
1557 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1558
1559 /**
1560 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1561 * count
1562 * @connector: The DRM connector to check
1563 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1564 * @desc: A cached copy of the connector's DP descriptor
1565 *
1566 * See also: drm_dp_read_sink_count()
1567 *
1568 * Returns: %True if the (e)DP connector has a valid sink count that should
1569 * be probed, %false otherwise.
1570 */
drm_dp_read_sink_count_cap(struct drm_connector * connector,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const struct drm_dp_desc * desc)1571 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1572 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1573 const struct drm_dp_desc *desc)
1574 {
1575 /* Some eDP panels don't set a valid value for the sink count */
1576 return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1577 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1578 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1579 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1580 }
1581 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1582
1583 /**
1584 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1585 * @aux: The DP AUX channel to use
1586 *
1587 * See also: drm_dp_read_sink_count_cap()
1588 *
1589 * Returns: The current sink count reported by @aux, or a negative error code
1590 * otherwise.
1591 */
drm_dp_read_sink_count(struct drm_dp_aux * aux)1592 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1593 {
1594 u8 count;
1595 int ret;
1596
1597 ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1598 if (ret < 0)
1599 return ret;
1600 if (ret != 1)
1601 return -EIO;
1602
1603 return DP_GET_SINK_COUNT(count);
1604 }
1605 EXPORT_SYMBOL(drm_dp_read_sink_count);
1606
1607 /*
1608 * I2C-over-AUX implementation
1609 */
1610
drm_dp_i2c_functionality(struct i2c_adapter * adapter)1611 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1612 {
1613 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1614 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1615 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1616 I2C_FUNC_10BIT_ADDR;
1617 }
1618
drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg * msg)1619 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1620 {
1621 /*
1622 * In case of i2c defer or short i2c ack reply to a write,
1623 * we need to switch to WRITE_STATUS_UPDATE to drain the
1624 * rest of the message
1625 */
1626 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1627 msg->request &= DP_AUX_I2C_MOT;
1628 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1629 }
1630 }
1631
1632 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1633 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1634 #define AUX_STOP_LEN 4
1635 #define AUX_CMD_LEN 4
1636 #define AUX_ADDRESS_LEN 20
1637 #define AUX_REPLY_PAD_LEN 4
1638 #define AUX_LENGTH_LEN 8
1639
1640 /*
1641 * Calculate the duration of the AUX request/reply in usec. Gives the
1642 * "best" case estimate, ie. successful while as short as possible.
1643 */
drm_dp_aux_req_duration(const struct drm_dp_aux_msg * msg)1644 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1645 {
1646 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1647 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1648
1649 if ((msg->request & DP_AUX_I2C_READ) == 0)
1650 len += msg->size * 8;
1651
1652 return len;
1653 }
1654
drm_dp_aux_reply_duration(const struct drm_dp_aux_msg * msg)1655 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1656 {
1657 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1658 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1659
1660 /*
1661 * For read we expect what was asked. For writes there will
1662 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1663 */
1664 if (msg->request & DP_AUX_I2C_READ)
1665 len += msg->size * 8;
1666
1667 return len;
1668 }
1669
1670 #define I2C_START_LEN 1
1671 #define I2C_STOP_LEN 1
1672 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1673 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1674
1675 /*
1676 * Calculate the length of the i2c transfer in usec, assuming
1677 * the i2c bus speed is as specified. Gives the "worst"
1678 * case estimate, ie. successful while as long as possible.
1679 * Doesn't account the "MOT" bit, and instead assumes each
1680 * message includes a START, ADDRESS and STOP. Neither does it
1681 * account for additional random variables such as clock stretching.
1682 */
drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1683 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1684 int i2c_speed_khz)
1685 {
1686 /* AUX bitrate is 1MHz, i2c bitrate as specified */
1687 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1688 msg->size * I2C_DATA_LEN +
1689 I2C_STOP_LEN) * 1000, i2c_speed_khz);
1690 }
1691
1692 /*
1693 * Determine how many retries should be attempted to successfully transfer
1694 * the specified message, based on the estimated durations of the
1695 * i2c and AUX transfers.
1696 */
drm_dp_i2c_retry_count(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1697 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1698 int i2c_speed_khz)
1699 {
1700 int aux_time_us = drm_dp_aux_req_duration(msg) +
1701 drm_dp_aux_reply_duration(msg);
1702 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1703
1704 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1705 }
1706
1707 /*
1708 * FIXME currently assumes 10 kHz as some real world devices seem
1709 * to require it. We should query/set the speed via DPCD if supported.
1710 */
1711 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1712 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1713 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1714 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1715
1716 /*
1717 * Transfer a single I2C-over-AUX message and handle various error conditions,
1718 * retrying the transaction as appropriate. It is assumed that the
1719 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1720 * reply field.
1721 *
1722 * Returns bytes transferred on success, or a negative error code on failure.
1723 */
drm_dp_i2c_do_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1724 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1725 {
1726 unsigned int retry, defer_i2c;
1727 int ret;
1728 /*
1729 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1730 * is required to retry at least seven times upon receiving AUX_DEFER
1731 * before giving up the AUX transaction.
1732 *
1733 * We also try to account for the i2c bus speed.
1734 */
1735 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1736
1737 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1738 ret = aux->transfer(aux, msg);
1739 if (ret < 0) {
1740 if (ret == -EBUSY)
1741 continue;
1742
1743 /*
1744 * While timeouts can be errors, they're usually normal
1745 * behavior (for instance, when a driver tries to
1746 * communicate with a non-existent DisplayPort device).
1747 * Avoid spamming the kernel log with timeout errors.
1748 */
1749 if (ret == -ETIMEDOUT)
1750 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1751 aux->name);
1752 else
1753 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1754 aux->name, ret);
1755 return ret;
1756 }
1757
1758
1759 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1760 case DP_AUX_NATIVE_REPLY_ACK:
1761 /*
1762 * For I2C-over-AUX transactions this isn't enough, we
1763 * need to check for the I2C ACK reply.
1764 */
1765 break;
1766
1767 case DP_AUX_NATIVE_REPLY_NACK:
1768 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1769 aux->name, ret, msg->size);
1770 return -EREMOTEIO;
1771
1772 case DP_AUX_NATIVE_REPLY_DEFER:
1773 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1774 /*
1775 * We could check for I2C bit rate capabilities and if
1776 * available adjust this interval. We could also be
1777 * more careful with DP-to-legacy adapters where a
1778 * long legacy cable may force very low I2C bit rates.
1779 *
1780 * For now just defer for long enough to hopefully be
1781 * safe for all use-cases.
1782 */
1783 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1784 continue;
1785
1786 default:
1787 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1788 aux->name, msg->reply);
1789 return -EREMOTEIO;
1790 }
1791
1792 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1793 case DP_AUX_I2C_REPLY_ACK:
1794 /*
1795 * Both native ACK and I2C ACK replies received. We
1796 * can assume the transfer was successful.
1797 */
1798 if (ret != msg->size)
1799 drm_dp_i2c_msg_write_status_update(msg);
1800 return ret;
1801
1802 case DP_AUX_I2C_REPLY_NACK:
1803 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1804 aux->name, ret, msg->size);
1805 aux->i2c_nack_count++;
1806 return -EREMOTEIO;
1807
1808 case DP_AUX_I2C_REPLY_DEFER:
1809 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1810 /* DP Compliance Test 4.2.2.5 Requirement:
1811 * Must have at least 7 retries for I2C defers on the
1812 * transaction to pass this test
1813 */
1814 aux->i2c_defer_count++;
1815 if (defer_i2c < 7)
1816 defer_i2c++;
1817 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1818 drm_dp_i2c_msg_write_status_update(msg);
1819
1820 continue;
1821
1822 default:
1823 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1824 aux->name, msg->reply);
1825 return -EREMOTEIO;
1826 }
1827 }
1828
1829 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1830 return -EREMOTEIO;
1831 }
1832
drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg * msg,const struct i2c_msg * i2c_msg)1833 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1834 const struct i2c_msg *i2c_msg)
1835 {
1836 msg->request = (i2c_msg->flags & I2C_M_RD) ?
1837 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1838 if (!(i2c_msg->flags & I2C_M_STOP))
1839 msg->request |= DP_AUX_I2C_MOT;
1840 }
1841
1842 /*
1843 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1844 *
1845 * Returns an error code on failure, or a recommended transfer size on success.
1846 */
drm_dp_i2c_drain_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * orig_msg)1847 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1848 {
1849 int err, ret = orig_msg->size;
1850 struct drm_dp_aux_msg msg = *orig_msg;
1851
1852 while (msg.size > 0) {
1853 err = drm_dp_i2c_do_msg(aux, &msg);
1854 if (err <= 0)
1855 return err == 0 ? -EPROTO : err;
1856
1857 if (err < msg.size && err < ret) {
1858 drm_dbg_kms(aux->drm_dev,
1859 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1860 aux->name, msg.size, err);
1861 ret = err;
1862 }
1863
1864 msg.size -= err;
1865 msg.buffer += err;
1866 }
1867
1868 return ret;
1869 }
1870
1871 /*
1872 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1873 * packets to be as large as possible. If not, the I2C transactions never
1874 * succeed. Hence the default is maximum.
1875 */
1876 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1877 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1878 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1879 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1880
drm_dp_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)1881 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1882 int num)
1883 {
1884 struct drm_dp_aux *aux = adapter->algo_data;
1885 unsigned int i, j;
1886 unsigned transfer_size;
1887 struct drm_dp_aux_msg msg;
1888 int err = 0;
1889
1890 if (aux->powered_down)
1891 return -EBUSY;
1892
1893 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1894
1895 memset(&msg, 0, sizeof(msg));
1896
1897 for (i = 0; i < num; i++) {
1898 msg.address = msgs[i].addr;
1899 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1900 /* Send a bare address packet to start the transaction.
1901 * Zero sized messages specify an address only (bare
1902 * address) transaction.
1903 */
1904 msg.buffer = NULL;
1905 msg.size = 0;
1906 err = drm_dp_i2c_do_msg(aux, &msg);
1907
1908 /*
1909 * Reset msg.request in case in case it got
1910 * changed into a WRITE_STATUS_UPDATE.
1911 */
1912 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1913
1914 if (err < 0)
1915 break;
1916 /* We want each transaction to be as large as possible, but
1917 * we'll go to smaller sizes if the hardware gives us a
1918 * short reply.
1919 */
1920 transfer_size = dp_aux_i2c_transfer_size;
1921 for (j = 0; j < msgs[i].len; j += msg.size) {
1922 msg.buffer = msgs[i].buf + j;
1923 msg.size = min(transfer_size, msgs[i].len - j);
1924
1925 err = drm_dp_i2c_drain_msg(aux, &msg);
1926
1927 /*
1928 * Reset msg.request in case in case it got
1929 * changed into a WRITE_STATUS_UPDATE.
1930 */
1931 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1932
1933 if (err < 0)
1934 break;
1935 transfer_size = err;
1936 }
1937 if (err < 0)
1938 break;
1939 }
1940 if (err >= 0)
1941 err = num;
1942 /* Send a bare address packet to close out the transaction.
1943 * Zero sized messages specify an address only (bare
1944 * address) transaction.
1945 */
1946 msg.request &= ~DP_AUX_I2C_MOT;
1947 msg.buffer = NULL;
1948 msg.size = 0;
1949 (void)drm_dp_i2c_do_msg(aux, &msg);
1950
1951 return err;
1952 }
1953
1954 static const struct i2c_algorithm drm_dp_i2c_algo = {
1955 .functionality = drm_dp_i2c_functionality,
1956 .master_xfer = drm_dp_i2c_xfer,
1957 };
1958
i2c_to_aux(struct i2c_adapter * i2c)1959 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1960 {
1961 return container_of(i2c, struct drm_dp_aux, ddc);
1962 }
1963
lock_bus(struct i2c_adapter * i2c,unsigned int flags)1964 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1965 {
1966 mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1967 }
1968
trylock_bus(struct i2c_adapter * i2c,unsigned int flags)1969 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1970 {
1971 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1972 }
1973
unlock_bus(struct i2c_adapter * i2c,unsigned int flags)1974 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1975 {
1976 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1977 }
1978
1979 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1980 .lock_bus = lock_bus,
1981 .trylock_bus = trylock_bus,
1982 .unlock_bus = unlock_bus,
1983 };
1984
drm_dp_aux_get_crc(struct drm_dp_aux * aux,u8 * crc)1985 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1986 {
1987 u8 buf, count;
1988 int ret;
1989
1990 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1991 if (ret < 0)
1992 return ret;
1993
1994 WARN_ON(!(buf & DP_TEST_SINK_START));
1995
1996 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1997 if (ret < 0)
1998 return ret;
1999
2000 count = buf & DP_TEST_COUNT_MASK;
2001 if (count == aux->crc_count)
2002 return -EAGAIN; /* No CRC yet */
2003
2004 aux->crc_count = count;
2005
2006 /*
2007 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2008 * per component (RGB or CrYCb).
2009 */
2010 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2011 if (ret < 0)
2012 return ret;
2013
2014 return 0;
2015 }
2016
drm_dp_aux_crc_work(struct work_struct * work)2017 static void drm_dp_aux_crc_work(struct work_struct *work)
2018 {
2019 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2020 crc_work);
2021 struct drm_crtc *crtc;
2022 u8 crc_bytes[6];
2023 uint32_t crcs[3];
2024 int ret;
2025
2026 if (WARN_ON(!aux->crtc))
2027 return;
2028
2029 crtc = aux->crtc;
2030 while (crtc->crc.opened) {
2031 drm_crtc_wait_one_vblank(crtc);
2032 if (!crtc->crc.opened)
2033 break;
2034
2035 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2036 if (ret == -EAGAIN) {
2037 usleep_range(1000, 2000);
2038 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2039 }
2040
2041 if (ret == -EAGAIN) {
2042 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2043 aux->name, ret);
2044 continue;
2045 } else if (ret) {
2046 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2047 continue;
2048 }
2049
2050 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2051 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2052 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2053 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2054 }
2055 }
2056
2057 /**
2058 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2059 * @aux: DisplayPort AUX channel
2060 *
2061 * Used for remote aux channel in general. Merely initialize the crc work
2062 * struct.
2063 */
drm_dp_remote_aux_init(struct drm_dp_aux * aux)2064 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2065 {
2066 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2067 }
2068 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2069
2070 /**
2071 * drm_dp_aux_init() - minimally initialise an aux channel
2072 * @aux: DisplayPort AUX channel
2073 *
2074 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2075 * the outside world, call drm_dp_aux_init() first. For drivers which are
2076 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2077 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2078 * has been registered to allow userspace access to the auxiliary DP channel.
2079 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2080 * early as possible so that the &drm_device that corresponds to the AUX adapter
2081 * may be mentioned in debugging output from the DRM DP helpers.
2082 *
2083 * For devices which use a separate platform device for their AUX adapters, this
2084 * may be called as early as required by the driver.
2085 *
2086 */
drm_dp_aux_init(struct drm_dp_aux * aux)2087 void drm_dp_aux_init(struct drm_dp_aux *aux)
2088 {
2089 mutex_init(&aux->hw_mutex);
2090 mutex_init(&aux->cec.lock);
2091 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2092
2093 aux->ddc.algo = &drm_dp_i2c_algo;
2094 aux->ddc.algo_data = aux;
2095 aux->ddc.retries = 3;
2096
2097 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2098 }
2099 EXPORT_SYMBOL(drm_dp_aux_init);
2100
2101 /**
2102 * drm_dp_aux_register() - initialise and register aux channel
2103 * @aux: DisplayPort AUX channel
2104 *
2105 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2106 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2107 * initialized. For devices which are grandparents of their AUX channels,
2108 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2109 * corresponds to @aux. For these devices, it's advised to call
2110 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2111 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2112 * Functions which don't follow this will likely Oops when
2113 * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2114 *
2115 * For devices where the AUX channel is a device that exists independently of
2116 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2117 * recommended to call drm_dp_aux_register() after a &drm_device has been
2118 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2119 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2120 * with the AUX channel (e.g. on bridge detach).
2121 *
2122 * Drivers which need to use the aux channel before either of the two points
2123 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2124 * channel before registration.
2125 *
2126 * Returns 0 on success or a negative error code on failure.
2127 */
drm_dp_aux_register(struct drm_dp_aux * aux)2128 int drm_dp_aux_register(struct drm_dp_aux *aux)
2129 {
2130 int ret;
2131
2132 WARN_ON_ONCE(!aux->drm_dev);
2133
2134 if (!aux->ddc.algo)
2135 drm_dp_aux_init(aux);
2136
2137 aux->ddc.class = I2C_CLASS_DDC;
2138 aux->ddc.owner = THIS_MODULE;
2139 aux->ddc.dev.parent = aux->dev;
2140
2141 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2142 sizeof(aux->ddc.name));
2143
2144 ret = drm_dp_aux_register_devnode(aux);
2145 if (ret)
2146 return ret;
2147
2148 ret = i2c_add_adapter(&aux->ddc);
2149 if (ret) {
2150 drm_dp_aux_unregister_devnode(aux);
2151 return ret;
2152 }
2153
2154 return 0;
2155 }
2156 EXPORT_SYMBOL(drm_dp_aux_register);
2157
2158 /**
2159 * drm_dp_aux_unregister() - unregister an AUX adapter
2160 * @aux: DisplayPort AUX channel
2161 */
drm_dp_aux_unregister(struct drm_dp_aux * aux)2162 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2163 {
2164 drm_dp_aux_unregister_devnode(aux);
2165 i2c_del_adapter(&aux->ddc);
2166 }
2167 EXPORT_SYMBOL(drm_dp_aux_unregister);
2168
2169 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2170
2171 /**
2172 * drm_dp_psr_setup_time() - PSR setup in time usec
2173 * @psr_cap: PSR capabilities from DPCD
2174 *
2175 * Returns:
2176 * PSR setup time for the panel in microseconds, negative
2177 * error code on failure.
2178 */
drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])2179 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2180 {
2181 static const u16 psr_setup_time_us[] = {
2182 PSR_SETUP_TIME(330),
2183 PSR_SETUP_TIME(275),
2184 PSR_SETUP_TIME(220),
2185 PSR_SETUP_TIME(165),
2186 PSR_SETUP_TIME(110),
2187 PSR_SETUP_TIME(55),
2188 PSR_SETUP_TIME(0),
2189 };
2190 int i;
2191
2192 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2193 if (i >= ARRAY_SIZE(psr_setup_time_us))
2194 return -EINVAL;
2195
2196 return psr_setup_time_us[i];
2197 }
2198 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2199
2200 #undef PSR_SETUP_TIME
2201
2202 /**
2203 * drm_dp_start_crc() - start capture of frame CRCs
2204 * @aux: DisplayPort AUX channel
2205 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2206 *
2207 * Returns 0 on success or a negative error code on failure.
2208 */
drm_dp_start_crc(struct drm_dp_aux * aux,struct drm_crtc * crtc)2209 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2210 {
2211 u8 buf;
2212 int ret;
2213
2214 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2215 if (ret < 0)
2216 return ret;
2217
2218 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2219 if (ret < 0)
2220 return ret;
2221
2222 aux->crc_count = 0;
2223 aux->crtc = crtc;
2224 schedule_work(&aux->crc_work);
2225
2226 return 0;
2227 }
2228 EXPORT_SYMBOL(drm_dp_start_crc);
2229
2230 /**
2231 * drm_dp_stop_crc() - stop capture of frame CRCs
2232 * @aux: DisplayPort AUX channel
2233 *
2234 * Returns 0 on success or a negative error code on failure.
2235 */
drm_dp_stop_crc(struct drm_dp_aux * aux)2236 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2237 {
2238 u8 buf;
2239 int ret;
2240
2241 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2242 if (ret < 0)
2243 return ret;
2244
2245 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2246 if (ret < 0)
2247 return ret;
2248
2249 flush_work(&aux->crc_work);
2250 aux->crtc = NULL;
2251
2252 return 0;
2253 }
2254 EXPORT_SYMBOL(drm_dp_stop_crc);
2255
2256 struct dpcd_quirk {
2257 u8 oui[3];
2258 u8 device_id[6];
2259 bool is_branch;
2260 u32 quirks;
2261 };
2262
2263 #define OUI(first, second, third) { (first), (second), (third) }
2264 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2265 { (first), (second), (third), (fourth), (fifth), (sixth) }
2266
2267 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2268
2269 static const struct dpcd_quirk dpcd_quirk_list[] = {
2270 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2271 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2272 /* LG LP140WF6-SPM1 eDP panel */
2273 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2274 /* Apple panels need some additional handling to support PSR */
2275 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2276 /* CH7511 seems to leave SINK_COUNT zeroed */
2277 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2278 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2279 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2280 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2281 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2282 };
2283
2284 #undef OUI
2285
2286 /*
2287 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2288 * ident. The quirk data is shared but it's up to the drivers to act on the
2289 * data.
2290 *
2291 * For now, only the OUI (first three bytes) is used, but this may be extended
2292 * to device identification string and hardware/firmware revisions later.
2293 */
2294 static u32
drm_dp_get_quirks(const struct drm_dp_dpcd_ident * ident,bool is_branch)2295 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2296 {
2297 const struct dpcd_quirk *quirk;
2298 u32 quirks = 0;
2299 int i;
2300 u8 any_device[] = DEVICE_ID_ANY;
2301
2302 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2303 quirk = &dpcd_quirk_list[i];
2304
2305 if (quirk->is_branch != is_branch)
2306 continue;
2307
2308 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2309 continue;
2310
2311 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2312 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2313 continue;
2314
2315 quirks |= quirk->quirks;
2316 }
2317
2318 return quirks;
2319 }
2320
2321 #undef DEVICE_ID_ANY
2322 #undef DEVICE_ID
2323
2324 /**
2325 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2326 * @aux: DisplayPort AUX channel
2327 * @desc: Device descriptor to fill from DPCD
2328 * @is_branch: true for branch devices, false for sink devices
2329 *
2330 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2331 * identification.
2332 *
2333 * Returns 0 on success or a negative error code on failure.
2334 */
drm_dp_read_desc(struct drm_dp_aux * aux,struct drm_dp_desc * desc,bool is_branch)2335 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2336 bool is_branch)
2337 {
2338 struct drm_dp_dpcd_ident *ident = &desc->ident;
2339 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2340 int ret, dev_id_len;
2341
2342 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2343 if (ret < 0)
2344 return ret;
2345
2346 desc->quirks = drm_dp_get_quirks(ident, is_branch);
2347
2348 dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2349
2350 drm_dbg_kms(aux->drm_dev,
2351 "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2352 aux->name, is_branch ? "branch" : "sink",
2353 (int)sizeof(ident->oui), ident->oui, dev_id_len,
2354 ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2355 ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2356
2357 return 0;
2358 }
2359 EXPORT_SYMBOL(drm_dp_read_desc);
2360
2361 /**
2362 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2363 * supported by the DSC sink.
2364 * @dsc_dpcd: DSC capabilities from DPCD
2365 * @is_edp: true if its eDP, false for DP
2366 *
2367 * Read the slice capabilities DPCD register from DSC sink to get
2368 * the maximum slice count supported. This is used to populate
2369 * the DSC parameters in the &struct drm_dsc_config by the driver.
2370 * Driver creates an infoframe using these parameters to populate
2371 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2372 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2373 *
2374 * Returns:
2375 * Maximum slice count supported by DSC sink or 0 its invalid
2376 */
drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],bool is_edp)2377 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2378 bool is_edp)
2379 {
2380 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2381
2382 if (is_edp) {
2383 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2384 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2385 return 4;
2386 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2387 return 2;
2388 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2389 return 1;
2390 } else {
2391 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2392 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2393
2394 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2395 return 24;
2396 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2397 return 20;
2398 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2399 return 16;
2400 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2401 return 12;
2402 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2403 return 10;
2404 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2405 return 8;
2406 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2407 return 6;
2408 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2409 return 4;
2410 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2411 return 2;
2412 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2413 return 1;
2414 }
2415
2416 return 0;
2417 }
2418 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2419
2420 /**
2421 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2422 * @dsc_dpcd: DSC capabilities from DPCD
2423 *
2424 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2425 * number of bits of precision within the decoder line buffer supported by
2426 * the DSC sink. This is used to populate the DSC parameters in the
2427 * &struct drm_dsc_config by the driver.
2428 * Driver creates an infoframe using these parameters to populate
2429 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2430 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2431 *
2432 * Returns:
2433 * Line buffer depth supported by DSC panel or 0 its invalid
2434 */
drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2435 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2436 {
2437 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2438
2439 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2440 case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2441 return 9;
2442 case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2443 return 10;
2444 case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2445 return 11;
2446 case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2447 return 12;
2448 case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2449 return 13;
2450 case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2451 return 14;
2452 case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2453 return 15;
2454 case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2455 return 16;
2456 case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2457 return 8;
2458 }
2459
2460 return 0;
2461 }
2462 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2463
2464 /**
2465 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2466 * values supported by the DSC sink.
2467 * @dsc_dpcd: DSC capabilities from DPCD
2468 * @dsc_bpc: An array to be filled by this helper with supported
2469 * input bpcs.
2470 *
2471 * Read the DSC DPCD from the sink device to parse the supported bits per
2472 * component values. This is used to populate the DSC parameters
2473 * in the &struct drm_dsc_config by the driver.
2474 * Driver creates an infoframe using these parameters to populate
2475 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2476 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2477 *
2478 * Returns:
2479 * Number of input BPC values parsed from the DPCD
2480 */
drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],u8 dsc_bpc[3])2481 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2482 u8 dsc_bpc[3])
2483 {
2484 int num_bpc = 0;
2485 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2486
2487 if (color_depth & DP_DSC_12_BPC)
2488 dsc_bpc[num_bpc++] = 12;
2489 if (color_depth & DP_DSC_10_BPC)
2490 dsc_bpc[num_bpc++] = 10;
2491 if (color_depth & DP_DSC_8_BPC)
2492 dsc_bpc[num_bpc++] = 8;
2493
2494 return num_bpc;
2495 }
2496 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2497
drm_dp_read_lttpr_regs(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],int address,u8 * buf,int buf_size)2498 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2499 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2500 u8 *buf, int buf_size)
2501 {
2502 /*
2503 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2504 * corrupted values when reading from the 0xF0000- range with a block
2505 * size bigger than 1.
2506 */
2507 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2508 int offset;
2509 int ret;
2510
2511 for (offset = 0; offset < buf_size; offset += block_size) {
2512 ret = drm_dp_dpcd_read(aux,
2513 address + offset,
2514 &buf[offset], block_size);
2515 if (ret < 0)
2516 return ret;
2517
2518 WARN_ON(ret != block_size);
2519 }
2520
2521 return 0;
2522 }
2523
2524 /**
2525 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2526 * @aux: DisplayPort AUX channel
2527 * @dpcd: DisplayPort configuration data
2528 * @caps: buffer to return the capability info in
2529 *
2530 * Read capabilities common to all LTTPRs.
2531 *
2532 * Returns 0 on success or a negative error code on failure.
2533 */
drm_dp_read_lttpr_common_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2534 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2535 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2536 u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2537 {
2538 return drm_dp_read_lttpr_regs(aux, dpcd,
2539 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2540 caps, DP_LTTPR_COMMON_CAP_SIZE);
2541 }
2542 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2543
2544 /**
2545 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2546 * @aux: DisplayPort AUX channel
2547 * @dpcd: DisplayPort configuration data
2548 * @dp_phy: LTTPR PHY to read the capabilities for
2549 * @caps: buffer to return the capability info in
2550 *
2551 * Read the capabilities for the given LTTPR PHY.
2552 *
2553 * Returns 0 on success or a negative error code on failure.
2554 */
drm_dp_read_lttpr_phy_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,u8 caps[DP_LTTPR_PHY_CAP_SIZE])2555 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2556 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2557 enum drm_dp_phy dp_phy,
2558 u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2559 {
2560 return drm_dp_read_lttpr_regs(aux, dpcd,
2561 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2562 caps, DP_LTTPR_PHY_CAP_SIZE);
2563 }
2564 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2565
dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE],int r)2566 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2567 {
2568 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2569 }
2570
2571 /**
2572 * drm_dp_lttpr_count - get the number of detected LTTPRs
2573 * @caps: LTTPR common capabilities
2574 *
2575 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2576 *
2577 * Returns:
2578 * -ERANGE if more than supported number (8) of LTTPRs are detected
2579 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2580 * otherwise the number of detected LTTPRs
2581 */
drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2582 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2583 {
2584 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2585
2586 switch (hweight8(count)) {
2587 case 0:
2588 return 0;
2589 case 1:
2590 return 8 - ilog2(count);
2591 case 8:
2592 return -ERANGE;
2593 default:
2594 return -EINVAL;
2595 }
2596 }
2597 EXPORT_SYMBOL(drm_dp_lttpr_count);
2598
2599 /**
2600 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2601 * @caps: LTTPR common capabilities
2602 *
2603 * Returns the maximum link rate supported by all detected LTTPRs.
2604 */
drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2605 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2606 {
2607 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2608
2609 return drm_dp_bw_code_to_link_rate(rate);
2610 }
2611 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2612
2613 /**
2614 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2615 * @caps: LTTPR common capabilities
2616 *
2617 * Returns the maximum lane count supported by all detected LTTPRs.
2618 */
drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2619 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2620 {
2621 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2622
2623 return max_lanes & DP_MAX_LANE_COUNT_MASK;
2624 }
2625 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2626
2627 /**
2628 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2629 * @caps: LTTPR PHY capabilities
2630 *
2631 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2632 * voltage swing level 3.
2633 */
2634 bool
drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])2635 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2636 {
2637 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2638
2639 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2640 }
2641 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2642
2643 /**
2644 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2645 * @caps: LTTPR PHY capabilities
2646 *
2647 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2648 * pre-emphasis level 3.
2649 */
2650 bool
drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])2651 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2652 {
2653 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2654
2655 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2656 }
2657 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2658
2659 /**
2660 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2661 * @aux: DisplayPort AUX channel
2662 * @data: DP phy compliance test parameters.
2663 *
2664 * Returns 0 on success or a negative error code on failure.
2665 */
drm_dp_get_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data)2666 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2667 struct drm_dp_phy_test_params *data)
2668 {
2669 int err;
2670 u8 rate, lanes;
2671
2672 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2673 if (err < 0)
2674 return err;
2675 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2676
2677 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2678 if (err < 0)
2679 return err;
2680 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2681
2682 if (lanes & DP_ENHANCED_FRAME_CAP)
2683 data->enhanced_frame_cap = true;
2684
2685 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2686 if (err < 0)
2687 return err;
2688
2689 switch (data->phy_pattern) {
2690 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2691 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2692 &data->custom80, sizeof(data->custom80));
2693 if (err < 0)
2694 return err;
2695
2696 break;
2697 case DP_PHY_TEST_PATTERN_CP2520:
2698 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2699 &data->hbr2_reset,
2700 sizeof(data->hbr2_reset));
2701 if (err < 0)
2702 return err;
2703 }
2704
2705 return 0;
2706 }
2707 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2708
2709 /**
2710 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2711 * @aux: DisplayPort AUX channel
2712 * @data: DP phy compliance test parameters.
2713 * @dp_rev: DP revision to use for compliance testing
2714 *
2715 * Returns 0 on success or a negative error code on failure.
2716 */
drm_dp_set_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data,u8 dp_rev)2717 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2718 struct drm_dp_phy_test_params *data, u8 dp_rev)
2719 {
2720 int err, i;
2721 u8 test_pattern;
2722
2723 test_pattern = data->phy_pattern;
2724 if (dp_rev < 0x12) {
2725 test_pattern = (test_pattern << 2) &
2726 DP_LINK_QUAL_PATTERN_11_MASK;
2727 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2728 test_pattern);
2729 if (err < 0)
2730 return err;
2731 } else {
2732 for (i = 0; i < data->num_lanes; i++) {
2733 err = drm_dp_dpcd_writeb(aux,
2734 DP_LINK_QUAL_LANE0_SET + i,
2735 test_pattern);
2736 if (err < 0)
2737 return err;
2738 }
2739 }
2740
2741 return 0;
2742 }
2743 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2744
dp_pixelformat_get_name(enum dp_pixelformat pixelformat)2745 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2746 {
2747 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2748 return "Invalid";
2749
2750 switch (pixelformat) {
2751 case DP_PIXELFORMAT_RGB:
2752 return "RGB";
2753 case DP_PIXELFORMAT_YUV444:
2754 return "YUV444";
2755 case DP_PIXELFORMAT_YUV422:
2756 return "YUV422";
2757 case DP_PIXELFORMAT_YUV420:
2758 return "YUV420";
2759 case DP_PIXELFORMAT_Y_ONLY:
2760 return "Y_ONLY";
2761 case DP_PIXELFORMAT_RAW:
2762 return "RAW";
2763 default:
2764 return "Reserved";
2765 }
2766 }
2767
dp_colorimetry_get_name(enum dp_pixelformat pixelformat,enum dp_colorimetry colorimetry)2768 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2769 enum dp_colorimetry colorimetry)
2770 {
2771 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2772 return "Invalid";
2773
2774 switch (colorimetry) {
2775 case DP_COLORIMETRY_DEFAULT:
2776 switch (pixelformat) {
2777 case DP_PIXELFORMAT_RGB:
2778 return "sRGB";
2779 case DP_PIXELFORMAT_YUV444:
2780 case DP_PIXELFORMAT_YUV422:
2781 case DP_PIXELFORMAT_YUV420:
2782 return "BT.601";
2783 case DP_PIXELFORMAT_Y_ONLY:
2784 return "DICOM PS3.14";
2785 case DP_PIXELFORMAT_RAW:
2786 return "Custom Color Profile";
2787 default:
2788 return "Reserved";
2789 }
2790 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2791 switch (pixelformat) {
2792 case DP_PIXELFORMAT_RGB:
2793 return "Wide Fixed";
2794 case DP_PIXELFORMAT_YUV444:
2795 case DP_PIXELFORMAT_YUV422:
2796 case DP_PIXELFORMAT_YUV420:
2797 return "BT.709";
2798 default:
2799 return "Reserved";
2800 }
2801 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2802 switch (pixelformat) {
2803 case DP_PIXELFORMAT_RGB:
2804 return "Wide Float";
2805 case DP_PIXELFORMAT_YUV444:
2806 case DP_PIXELFORMAT_YUV422:
2807 case DP_PIXELFORMAT_YUV420:
2808 return "xvYCC 601";
2809 default:
2810 return "Reserved";
2811 }
2812 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2813 switch (pixelformat) {
2814 case DP_PIXELFORMAT_RGB:
2815 return "OpRGB";
2816 case DP_PIXELFORMAT_YUV444:
2817 case DP_PIXELFORMAT_YUV422:
2818 case DP_PIXELFORMAT_YUV420:
2819 return "xvYCC 709";
2820 default:
2821 return "Reserved";
2822 }
2823 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2824 switch (pixelformat) {
2825 case DP_PIXELFORMAT_RGB:
2826 return "DCI-P3";
2827 case DP_PIXELFORMAT_YUV444:
2828 case DP_PIXELFORMAT_YUV422:
2829 case DP_PIXELFORMAT_YUV420:
2830 return "sYCC 601";
2831 default:
2832 return "Reserved";
2833 }
2834 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2835 switch (pixelformat) {
2836 case DP_PIXELFORMAT_RGB:
2837 return "Custom Profile";
2838 case DP_PIXELFORMAT_YUV444:
2839 case DP_PIXELFORMAT_YUV422:
2840 case DP_PIXELFORMAT_YUV420:
2841 return "OpYCC 601";
2842 default:
2843 return "Reserved";
2844 }
2845 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2846 switch (pixelformat) {
2847 case DP_PIXELFORMAT_RGB:
2848 return "BT.2020 RGB";
2849 case DP_PIXELFORMAT_YUV444:
2850 case DP_PIXELFORMAT_YUV422:
2851 case DP_PIXELFORMAT_YUV420:
2852 return "BT.2020 CYCC";
2853 default:
2854 return "Reserved";
2855 }
2856 case DP_COLORIMETRY_BT2020_YCC:
2857 switch (pixelformat) {
2858 case DP_PIXELFORMAT_YUV444:
2859 case DP_PIXELFORMAT_YUV422:
2860 case DP_PIXELFORMAT_YUV420:
2861 return "BT.2020 YCC";
2862 default:
2863 return "Reserved";
2864 }
2865 default:
2866 return "Invalid";
2867 }
2868 }
2869
dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)2870 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2871 {
2872 switch (dynamic_range) {
2873 case DP_DYNAMIC_RANGE_VESA:
2874 return "VESA range";
2875 case DP_DYNAMIC_RANGE_CTA:
2876 return "CTA range";
2877 default:
2878 return "Invalid";
2879 }
2880 }
2881
dp_content_type_get_name(enum dp_content_type content_type)2882 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2883 {
2884 switch (content_type) {
2885 case DP_CONTENT_TYPE_NOT_DEFINED:
2886 return "Not defined";
2887 case DP_CONTENT_TYPE_GRAPHICS:
2888 return "Graphics";
2889 case DP_CONTENT_TYPE_PHOTO:
2890 return "Photo";
2891 case DP_CONTENT_TYPE_VIDEO:
2892 return "Video";
2893 case DP_CONTENT_TYPE_GAME:
2894 return "Game";
2895 default:
2896 return "Reserved";
2897 }
2898 }
2899
drm_dp_vsc_sdp_log(const char * level,struct device * dev,const struct drm_dp_vsc_sdp * vsc)2900 void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2901 const struct drm_dp_vsc_sdp *vsc)
2902 {
2903 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2904 DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2905 vsc->revision, vsc->length);
2906 DP_SDP_LOG(" pixelformat: %s\n",
2907 dp_pixelformat_get_name(vsc->pixelformat));
2908 DP_SDP_LOG(" colorimetry: %s\n",
2909 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2910 DP_SDP_LOG(" bpc: %u\n", vsc->bpc);
2911 DP_SDP_LOG(" dynamic range: %s\n",
2912 dp_dynamic_range_get_name(vsc->dynamic_range));
2913 DP_SDP_LOG(" content type: %s\n",
2914 dp_content_type_get_name(vsc->content_type));
2915 #undef DP_SDP_LOG
2916 }
2917 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2918
2919 /**
2920 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2921 * @dpcd: DisplayPort configuration data
2922 * @port_cap: port capabilities
2923 *
2924 * Returns maximum frl bandwidth supported by PCON in GBPS,
2925 * returns 0 if not supported.
2926 */
drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])2927 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2928 const u8 port_cap[4])
2929 {
2930 int bw;
2931 u8 buf;
2932
2933 buf = port_cap[2];
2934 bw = buf & DP_PCON_MAX_FRL_BW;
2935
2936 switch (bw) {
2937 case DP_PCON_MAX_9GBPS:
2938 return 9;
2939 case DP_PCON_MAX_18GBPS:
2940 return 18;
2941 case DP_PCON_MAX_24GBPS:
2942 return 24;
2943 case DP_PCON_MAX_32GBPS:
2944 return 32;
2945 case DP_PCON_MAX_40GBPS:
2946 return 40;
2947 case DP_PCON_MAX_48GBPS:
2948 return 48;
2949 case DP_PCON_MAX_0GBPS:
2950 default:
2951 return 0;
2952 }
2953
2954 return 0;
2955 }
2956 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2957
2958 /**
2959 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2960 * @aux: DisplayPort AUX channel
2961 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2962 *
2963 * Returns 0 if success, else returns negative error code.
2964 */
drm_dp_pcon_frl_prepare(struct drm_dp_aux * aux,bool enable_frl_ready_hpd)2965 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2966 {
2967 int ret;
2968 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2969 DP_PCON_ENABLE_LINK_FRL_MODE;
2970
2971 if (enable_frl_ready_hpd)
2972 buf |= DP_PCON_ENABLE_HPD_READY;
2973
2974 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2975
2976 return ret;
2977 }
2978 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2979
2980 /**
2981 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2982 * @aux: DisplayPort AUX channel
2983 *
2984 * Returns true if success, else returns false.
2985 */
drm_dp_pcon_is_frl_ready(struct drm_dp_aux * aux)2986 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2987 {
2988 int ret;
2989 u8 buf;
2990
2991 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2992 if (ret < 0)
2993 return false;
2994
2995 if (buf & DP_PCON_FRL_READY)
2996 return true;
2997
2998 return false;
2999 }
3000 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3001
3002 /**
3003 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3004 * @aux: DisplayPort AUX channel
3005 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3006 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3007 * In Concurrent Mode, the FRL link bring up can be done along with
3008 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3009 * the DP Link training.
3010 *
3011 * Returns 0 if success, else returns negative error code.
3012 */
3013
drm_dp_pcon_frl_configure_1(struct drm_dp_aux * aux,int max_frl_gbps,u8 frl_mode)3014 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3015 u8 frl_mode)
3016 {
3017 int ret;
3018 u8 buf;
3019
3020 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3021 if (ret < 0)
3022 return ret;
3023
3024 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3025 buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3026 else
3027 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3028
3029 switch (max_frl_gbps) {
3030 case 9:
3031 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
3032 break;
3033 case 18:
3034 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
3035 break;
3036 case 24:
3037 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
3038 break;
3039 case 32:
3040 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
3041 break;
3042 case 40:
3043 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
3044 break;
3045 case 48:
3046 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
3047 break;
3048 case 0:
3049 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
3050 break;
3051 default:
3052 return -EINVAL;
3053 }
3054
3055 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3056 if (ret < 0)
3057 return ret;
3058
3059 return 0;
3060 }
3061 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3062
3063 /**
3064 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3065 * @aux: DisplayPort AUX channel
3066 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3067 * @frl_type : FRL training type, can be Extended, or Normal.
3068 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3069 * starting from min, and stops when link training is successful. In Extended
3070 * FRL training, all frl bw selected in the mask are trained by the PCON.
3071 *
3072 * Returns 0 if success, else returns negative error code.
3073 */
drm_dp_pcon_frl_configure_2(struct drm_dp_aux * aux,int max_frl_mask,u8 frl_type)3074 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3075 u8 frl_type)
3076 {
3077 int ret;
3078 u8 buf = max_frl_mask;
3079
3080 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3081 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3082 else
3083 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3084
3085 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3086 if (ret < 0)
3087 return ret;
3088
3089 return 0;
3090 }
3091 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3092
3093 /**
3094 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3095 * @aux: DisplayPort AUX channel
3096 *
3097 * Returns 0 if success, else returns negative error code.
3098 */
drm_dp_pcon_reset_frl_config(struct drm_dp_aux * aux)3099 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3100 {
3101 int ret;
3102
3103 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3104 if (ret < 0)
3105 return ret;
3106
3107 return 0;
3108 }
3109 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3110
3111 /**
3112 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3113 * @aux: DisplayPort AUX channel
3114 *
3115 * Returns 0 if success, else returns negative error code.
3116 */
drm_dp_pcon_frl_enable(struct drm_dp_aux * aux)3117 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3118 {
3119 int ret;
3120 u8 buf = 0;
3121
3122 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3123 if (ret < 0)
3124 return ret;
3125 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3126 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3127 aux->name);
3128 return -EINVAL;
3129 }
3130 buf |= DP_PCON_ENABLE_HDMI_LINK;
3131 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3132 if (ret < 0)
3133 return ret;
3134
3135 return 0;
3136 }
3137 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3138
3139 /**
3140 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3141 * @aux: DisplayPort AUX channel
3142 *
3143 * Returns true if link is active else returns false.
3144 */
drm_dp_pcon_hdmi_link_active(struct drm_dp_aux * aux)3145 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3146 {
3147 u8 buf;
3148 int ret;
3149
3150 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3151 if (ret < 0)
3152 return false;
3153
3154 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3155 }
3156 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3157
3158 /**
3159 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3160 * @aux: DisplayPort AUX channel
3161 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3162 * Valid only if the MODE returned is FRL. For Normal Link training mode
3163 * only 1 of the bits will be set, but in case of Extended mode, more than
3164 * one bits can be set.
3165 *
3166 * Returns the link mode : TMDS or FRL on success, else returns negative error
3167 * code.
3168 */
drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux * aux,u8 * frl_trained_mask)3169 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3170 {
3171 u8 buf;
3172 int mode;
3173 int ret;
3174
3175 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3176 if (ret < 0)
3177 return ret;
3178
3179 mode = buf & DP_PCON_HDMI_LINK_MODE;
3180
3181 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3182 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3183
3184 return mode;
3185 }
3186 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3187
3188 /**
3189 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3190 * during link failure between PCON and HDMI sink
3191 * @aux: DisplayPort AUX channel
3192 * @connector: DRM connector
3193 * code.
3194 **/
3195
drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux * aux,struct drm_connector * connector)3196 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3197 struct drm_connector *connector)
3198 {
3199 u8 buf, error_count;
3200 int i, num_error;
3201 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3202
3203 for (i = 0; i < hdmi->max_lanes; i++) {
3204 if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3205 return;
3206
3207 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3208 switch (error_count) {
3209 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3210 num_error = 100;
3211 break;
3212 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3213 num_error = 10;
3214 break;
3215 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3216 num_error = 3;
3217 break;
3218 default:
3219 num_error = 0;
3220 }
3221
3222 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3223 aux->name, num_error, i);
3224 }
3225 }
3226 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3227
3228 /*
3229 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3230 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3231 *
3232 * Returns true is PCON encoder is DSC 1.2 else returns false.
3233 */
drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3234 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3235 {
3236 u8 buf;
3237 u8 major_v, minor_v;
3238
3239 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3240 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3241 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3242
3243 if (major_v == 1 && minor_v == 2)
3244 return true;
3245
3246 return false;
3247 }
3248 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3249
3250 /*
3251 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3252 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3253 *
3254 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3255 */
drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3256 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3257 {
3258 u8 slice_cap1, slice_cap2;
3259
3260 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3261 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3262
3263 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3264 return 24;
3265 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3266 return 20;
3267 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3268 return 16;
3269 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3270 return 12;
3271 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3272 return 10;
3273 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3274 return 8;
3275 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3276 return 6;
3277 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3278 return 4;
3279 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3280 return 2;
3281 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3282 return 1;
3283
3284 return 0;
3285 }
3286 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3287
3288 /*
3289 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3290 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3291 *
3292 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3293 */
drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3294 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3295 {
3296 u8 buf;
3297
3298 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3299
3300 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3301 }
3302 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3303
3304 /*
3305 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3306 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3307 *
3308 * Returns the bpp precision supported by the PCON encoder.
3309 */
drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3310 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3311 {
3312 u8 buf;
3313
3314 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3315
3316 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3317 case DP_PCON_DSC_ONE_16TH_BPP:
3318 return 16;
3319 case DP_PCON_DSC_ONE_8TH_BPP:
3320 return 8;
3321 case DP_PCON_DSC_ONE_4TH_BPP:
3322 return 4;
3323 case DP_PCON_DSC_ONE_HALF_BPP:
3324 return 2;
3325 case DP_PCON_DSC_ONE_BPP:
3326 return 1;
3327 }
3328
3329 return 0;
3330 }
3331 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3332
3333 static
drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux * aux,u8 pps_buf_config)3334 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3335 {
3336 u8 buf;
3337 int ret;
3338
3339 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3340 if (ret < 0)
3341 return ret;
3342
3343 buf |= DP_PCON_ENABLE_DSC_ENCODER;
3344
3345 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3346 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3347 buf |= pps_buf_config << 2;
3348 }
3349
3350 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3351 if (ret < 0)
3352 return ret;
3353
3354 return 0;
3355 }
3356
3357 /**
3358 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3359 * for DSC1.2 between PCON & HDMI2.1 sink
3360 * @aux: DisplayPort AUX channel
3361 *
3362 * Returns 0 on success, else returns negative error code.
3363 */
drm_dp_pcon_pps_default(struct drm_dp_aux * aux)3364 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3365 {
3366 int ret;
3367
3368 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3369 if (ret < 0)
3370 return ret;
3371
3372 return 0;
3373 }
3374 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3375
3376 /**
3377 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3378 * HDMI sink
3379 * @aux: DisplayPort AUX channel
3380 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3381 *
3382 * Returns 0 on success, else returns negative error code.
3383 */
drm_dp_pcon_pps_override_buf(struct drm_dp_aux * aux,u8 pps_buf[128])3384 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3385 {
3386 int ret;
3387
3388 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3389 if (ret < 0)
3390 return ret;
3391
3392 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3393 if (ret < 0)
3394 return ret;
3395
3396 return 0;
3397 }
3398 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3399
3400 /*
3401 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3402 * override registers
3403 * @aux: DisplayPort AUX channel
3404 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3405 * bits_per_pixel.
3406 *
3407 * Returns 0 on success, else returns negative error code.
3408 */
drm_dp_pcon_pps_override_param(struct drm_dp_aux * aux,u8 pps_param[6])3409 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3410 {
3411 int ret;
3412
3413 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3414 if (ret < 0)
3415 return ret;
3416 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3417 if (ret < 0)
3418 return ret;
3419 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3420 if (ret < 0)
3421 return ret;
3422
3423 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3424 if (ret < 0)
3425 return ret;
3426
3427 return 0;
3428 }
3429 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3430
3431 /*
3432 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3433 * @aux: displayPort AUX channel
3434 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3435 *
3436 * Returns 0 on success, else returns negative error code.
3437 */
drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux * aux,u8 color_spc)3438 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3439 {
3440 int ret;
3441 u8 buf;
3442
3443 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3444 if (ret < 0)
3445 return ret;
3446
3447 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3448 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3449 else
3450 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3451
3452 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3453 if (ret < 0)
3454 return ret;
3455
3456 return 0;
3457 }
3458 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3459
3460 /**
3461 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3462 * @aux: The DP AUX channel to use
3463 * @bl: Backlight capability info from drm_edp_backlight_init()
3464 * @level: The brightness level to set
3465 *
3466 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3467 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3468 *
3469 * Returns: %0 on success, negative error code on failure
3470 */
drm_edp_backlight_set_level(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,u16 level)3471 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3472 u16 level)
3473 {
3474 int ret;
3475 u8 buf[2] = { 0 };
3476
3477 /* The panel uses the PWM for controlling brightness levels */
3478 if (!bl->aux_set)
3479 return 0;
3480
3481 if (bl->lsb_reg_used) {
3482 buf[0] = (level & 0xff00) >> 8;
3483 buf[1] = (level & 0x00ff);
3484 } else {
3485 buf[0] = level;
3486 }
3487
3488 ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3489 if (ret != sizeof(buf)) {
3490 drm_err(aux->drm_dev,
3491 "%s: Failed to write aux backlight level: %d\n",
3492 aux->name, ret);
3493 return ret < 0 ? ret : -EIO;
3494 }
3495
3496 return 0;
3497 }
3498 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3499
3500 static int
drm_edp_backlight_set_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,bool enable)3501 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3502 bool enable)
3503 {
3504 int ret;
3505 u8 buf;
3506
3507 /* This panel uses the EDP_BL_PWR GPIO for enablement */
3508 if (!bl->aux_enable)
3509 return 0;
3510
3511 ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3512 if (ret != 1) {
3513 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3514 aux->name, ret);
3515 return ret < 0 ? ret : -EIO;
3516 }
3517 if (enable)
3518 buf |= DP_EDP_BACKLIGHT_ENABLE;
3519 else
3520 buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3521
3522 ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3523 if (ret != 1) {
3524 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3525 aux->name, ret);
3526 return ret < 0 ? ret : -EIO;
3527 }
3528
3529 return 0;
3530 }
3531
3532 /**
3533 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3534 * @aux: The DP AUX channel to use
3535 * @bl: Backlight capability info from drm_edp_backlight_init()
3536 * @level: The initial backlight level to set via AUX, if there is one
3537 *
3538 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3539 * restoring any important backlight state such as the given backlight level, the brightness byte
3540 * count, backlight frequency, etc.
3541 *
3542 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3543 * that the driver handle enabling/disabling the panel through implementation-specific means using
3544 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3545 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3546 * the EDP_BL_PWR GPIO.
3547 *
3548 * Returns: %0 on success, negative error code on failure.
3549 */
drm_edp_backlight_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,const u16 level)3550 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3551 const u16 level)
3552 {
3553 int ret;
3554 u8 dpcd_buf;
3555
3556 if (bl->aux_set)
3557 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3558 else
3559 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3560
3561 if (bl->pwmgen_bit_count) {
3562 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3563 if (ret != 1)
3564 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3565 aux->name, ret);
3566 }
3567
3568 if (bl->pwm_freq_pre_divider) {
3569 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3570 if (ret != 1)
3571 drm_dbg_kms(aux->drm_dev,
3572 "%s: Failed to write aux backlight frequency: %d\n",
3573 aux->name, ret);
3574 else
3575 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3576 }
3577
3578 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3579 if (ret != 1) {
3580 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3581 aux->name, ret);
3582 return ret < 0 ? ret : -EIO;
3583 }
3584
3585 ret = drm_edp_backlight_set_level(aux, bl, level);
3586 if (ret < 0)
3587 return ret;
3588 ret = drm_edp_backlight_set_enable(aux, bl, true);
3589 if (ret < 0)
3590 return ret;
3591
3592 return 0;
3593 }
3594 EXPORT_SYMBOL(drm_edp_backlight_enable);
3595
3596 /**
3597 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3598 * @aux: The DP AUX channel to use
3599 * @bl: Backlight capability info from drm_edp_backlight_init()
3600 *
3601 * This function handles disabling DPCD backlight controls on a panel over AUX.
3602 *
3603 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3604 * that the driver handle enabling/disabling the panel through implementation-specific means using
3605 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3606 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3607 * the EDP_BL_PWR GPIO.
3608 *
3609 * Returns: %0 on success or no-op, negative error code on failure.
3610 */
drm_edp_backlight_disable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl)3611 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3612 {
3613 int ret;
3614
3615 ret = drm_edp_backlight_set_enable(aux, bl, false);
3616 if (ret < 0)
3617 return ret;
3618
3619 return 0;
3620 }
3621 EXPORT_SYMBOL(drm_edp_backlight_disable);
3622
3623 static inline int
drm_edp_backlight_probe_max(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])3624 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3625 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3626 {
3627 int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3628 int ret;
3629 u8 pn, pn_min, pn_max;
3630
3631 if (!bl->aux_set)
3632 return 0;
3633
3634 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3635 if (ret != 1) {
3636 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3637 aux->name, ret);
3638 return -ENODEV;
3639 }
3640
3641 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3642 bl->max = (1 << pn) - 1;
3643 if (!driver_pwm_freq_hz)
3644 return 0;
3645
3646 /*
3647 * Set PWM Frequency divider to match desired frequency provided by the driver.
3648 * The PWM Frequency is calculated as 27Mhz / (F x P).
3649 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3650 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3651 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3652 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3653 */
3654
3655 /* Find desired value of (F x P)
3656 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3657 * applied automatically. So no need to check that.
3658 */
3659 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3660
3661 /* Use highest possible value of Pn for more granularity of brightness adjustment while
3662 * satisfying the conditions below.
3663 * - Pn is in the range of Pn_min and Pn_max
3664 * - F is in the range of 1 and 255
3665 * - FxP is within 25% of desired value.
3666 * Note: 25% is arbitrary value and may need some tweak.
3667 */
3668 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3669 if (ret != 1) {
3670 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3671 aux->name, ret);
3672 return 0;
3673 }
3674 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3675 if (ret != 1) {
3676 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3677 aux->name, ret);
3678 return 0;
3679 }
3680 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3681 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3682
3683 /* Ensure frequency is within 25% of desired value */
3684 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3685 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3686 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3687 drm_dbg_kms(aux->drm_dev,
3688 "%s: Driver defined backlight frequency (%d) out of range\n",
3689 aux->name, driver_pwm_freq_hz);
3690 return 0;
3691 }
3692
3693 for (pn = pn_max; pn >= pn_min; pn--) {
3694 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3695 fxp_actual = f << pn;
3696 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3697 break;
3698 }
3699
3700 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3701 if (ret != 1) {
3702 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3703 aux->name, ret);
3704 return 0;
3705 }
3706 bl->pwmgen_bit_count = pn;
3707 bl->max = (1 << pn) - 1;
3708
3709 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3710 bl->pwm_freq_pre_divider = f;
3711 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3712 aux->name, driver_pwm_freq_hz);
3713 }
3714
3715 return 0;
3716 }
3717
3718 static inline int
drm_edp_backlight_probe_state(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u8 * current_mode)3719 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3720 u8 *current_mode)
3721 {
3722 int ret;
3723 u8 buf[2];
3724 u8 mode_reg;
3725
3726 ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3727 if (ret != 1) {
3728 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3729 aux->name, ret);
3730 return ret < 0 ? ret : -EIO;
3731 }
3732
3733 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3734 if (!bl->aux_set)
3735 return 0;
3736
3737 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3738 int size = 1 + bl->lsb_reg_used;
3739
3740 ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3741 if (ret != size) {
3742 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3743 aux->name, ret);
3744 return ret < 0 ? ret : -EIO;
3745 }
3746
3747 if (bl->lsb_reg_used)
3748 return (buf[0] << 8) | buf[1];
3749 else
3750 return buf[0];
3751 }
3752
3753 /*
3754 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3755 * the driver should assume max brightness
3756 */
3757 return bl->max;
3758 }
3759
3760 /**
3761 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3762 * interface.
3763 * @aux: The DP aux device to use for probing
3764 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3765 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3766 * @edp_dpcd: A cached copy of the eDP DPCD
3767 * @current_level: Where to store the probed brightness level, if any
3768 * @current_mode: Where to store the currently set backlight control mode
3769 *
3770 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3771 * along with also probing the current and maximum supported brightness levels.
3772 *
3773 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3774 * default frequency from the panel is used.
3775 *
3776 * Returns: %0 on success, negative error code on failure.
3777 */
3778 int
drm_edp_backlight_init(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],u16 * current_level,u8 * current_mode)3779 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3780 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3781 u16 *current_level, u8 *current_mode)
3782 {
3783 int ret;
3784
3785 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3786 bl->aux_enable = true;
3787 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3788 bl->aux_set = true;
3789 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3790 bl->lsb_reg_used = true;
3791
3792 /* Sanity check caps */
3793 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3794 drm_dbg_kms(aux->drm_dev,
3795 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3796 aux->name);
3797 return -EINVAL;
3798 }
3799
3800 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3801 if (ret < 0)
3802 return ret;
3803
3804 ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3805 if (ret < 0)
3806 return ret;
3807 *current_level = ret;
3808
3809 drm_dbg_kms(aux->drm_dev,
3810 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3811 aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3812 if (bl->aux_set) {
3813 drm_dbg_kms(aux->drm_dev,
3814 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3815 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3816 bl->lsb_reg_used);
3817 }
3818
3819 return 0;
3820 }
3821 EXPORT_SYMBOL(drm_edp_backlight_init);
3822
3823 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3824 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3825
dp_aux_backlight_update_status(struct backlight_device * bd)3826 static int dp_aux_backlight_update_status(struct backlight_device *bd)
3827 {
3828 struct dp_aux_backlight *bl = bl_get_data(bd);
3829 u16 brightness = backlight_get_brightness(bd);
3830 int ret = 0;
3831
3832 if (!backlight_is_blank(bd)) {
3833 if (!bl->enabled) {
3834 drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3835 bl->enabled = true;
3836 return 0;
3837 }
3838 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3839 } else {
3840 if (bl->enabled) {
3841 drm_edp_backlight_disable(bl->aux, &bl->info);
3842 bl->enabled = false;
3843 }
3844 }
3845
3846 return ret;
3847 }
3848
3849 static const struct backlight_ops dp_aux_bl_ops = {
3850 .update_status = dp_aux_backlight_update_status,
3851 };
3852
3853 /**
3854 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3855 * @panel: DRM panel
3856 * @aux: The DP AUX channel to use
3857 *
3858 * Use this function to create and handle backlight if your panel
3859 * supports backlight control over DP AUX channel using DPCD
3860 * registers as per VESA's standard backlight control interface.
3861 *
3862 * When the panel is enabled backlight will be enabled after a
3863 * successful call to &drm_panel_funcs.enable()
3864 *
3865 * When the panel is disabled backlight will be disabled before the
3866 * call to &drm_panel_funcs.disable().
3867 *
3868 * A typical implementation for a panel driver supporting backlight
3869 * control over DP AUX will call this function at probe time.
3870 * Backlight will then be handled transparently without requiring
3871 * any intervention from the driver.
3872 *
3873 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3874 *
3875 * Return: 0 on success or a negative error code on failure.
3876 */
drm_panel_dp_aux_backlight(struct drm_panel * panel,struct drm_dp_aux * aux)3877 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3878 {
3879 struct dp_aux_backlight *bl;
3880 struct backlight_properties props = { 0 };
3881 u16 current_level;
3882 u8 current_mode;
3883 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3884 int ret;
3885
3886 if (!panel || !panel->dev || !aux)
3887 return -EINVAL;
3888
3889 ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3890 EDP_DISPLAY_CTL_CAP_SIZE);
3891 if (ret < 0)
3892 return ret;
3893
3894 if (!drm_edp_backlight_supported(edp_dpcd)) {
3895 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3896 return 0;
3897 }
3898
3899 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3900 if (!bl)
3901 return -ENOMEM;
3902
3903 bl->aux = aux;
3904
3905 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3906 ¤t_level, ¤t_mode);
3907 if (ret < 0)
3908 return ret;
3909
3910 props.type = BACKLIGHT_RAW;
3911 props.brightness = current_level;
3912 props.max_brightness = bl->info.max;
3913
3914 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3915 panel->dev, bl,
3916 &dp_aux_bl_ops, &props);
3917 if (IS_ERR(bl->base))
3918 return PTR_ERR(bl->base);
3919
3920 backlight_disable(bl->base);
3921
3922 panel->backlight = bl->base;
3923
3924 return 0;
3925 }
3926 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3927
3928 #endif
3929