1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/preempt.h>
13 #include <linux/highmem.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 #include <linux/string.h>
19 #include <linux/of.h>
20
21 #include "spi-dw.h"
22
23 #ifdef CONFIG_DEBUG_FS
24 #include <linux/debugfs.h>
25 #endif
26
27 /* Slave spi_device related */
28 struct dw_spi_chip_data {
29 u32 cr0;
30 u32 rx_sample_dly; /* RX sample delay */
31 };
32
33 #ifdef CONFIG_DEBUG_FS
34
35 #define DW_SPI_DBGFS_REG(_name, _off) \
36 { \
37 .name = _name, \
38 .offset = _off, \
39 }
40
41 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
42 DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
43 DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
44 DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
45 DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
46 DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
47 DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
48 DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
49 DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
50 DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
51 DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
52 DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
53 DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
54 DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
55 DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
56 DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
57 DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
58 };
59
dw_spi_debugfs_init(struct dw_spi * dws)60 static void dw_spi_debugfs_init(struct dw_spi *dws)
61 {
62 char name[32];
63
64 snprintf(name, 32, "dw_spi%d", dws->host->bus_num);
65 dws->debugfs = debugfs_create_dir(name, NULL);
66
67 dws->regset.regs = dw_spi_dbgfs_regs;
68 dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
69 dws->regset.base = dws->regs;
70 debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
71 }
72
dw_spi_debugfs_remove(struct dw_spi * dws)73 static void dw_spi_debugfs_remove(struct dw_spi *dws)
74 {
75 debugfs_remove_recursive(dws->debugfs);
76 }
77
78 #else
dw_spi_debugfs_init(struct dw_spi * dws)79 static inline void dw_spi_debugfs_init(struct dw_spi *dws)
80 {
81 }
82
dw_spi_debugfs_remove(struct dw_spi * dws)83 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
84 {
85 }
86 #endif /* CONFIG_DEBUG_FS */
87
dw_spi_set_cs(struct spi_device * spi,bool enable)88 void dw_spi_set_cs(struct spi_device *spi, bool enable)
89 {
90 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
91 bool cs_high = !!(spi->mode & SPI_CS_HIGH);
92
93 /*
94 * DW SPI controller demands any native CS being set in order to
95 * proceed with data transfer. So in order to activate the SPI
96 * communications we must set a corresponding bit in the Slave
97 * Enable register no matter whether the SPI core is configured to
98 * support active-high or active-low CS level.
99 */
100 if (cs_high == enable)
101 dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
102 else
103 dw_writel(dws, DW_SPI_SER, 0);
104 }
105 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);
106
107 /* Return the max entries we can fill into tx fifo */
dw_spi_tx_max(struct dw_spi * dws)108 static inline u32 dw_spi_tx_max(struct dw_spi *dws)
109 {
110 u32 tx_room, rxtx_gap;
111
112 tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
113
114 /*
115 * Another concern is about the tx/rx mismatch, we
116 * though to use (dws->fifo_len - rxflr - txflr) as
117 * one maximum value for tx, but it doesn't cover the
118 * data which is out of tx/rx fifo and inside the
119 * shift registers. So a control from sw point of
120 * view is taken.
121 */
122 rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
123
124 return min3((u32)dws->tx_len, tx_room, rxtx_gap);
125 }
126
127 /* Return the max entries we should read out of rx fifo */
dw_spi_rx_max(struct dw_spi * dws)128 static inline u32 dw_spi_rx_max(struct dw_spi *dws)
129 {
130 return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
131 }
132
dw_writer(struct dw_spi * dws)133 static void dw_writer(struct dw_spi *dws)
134 {
135 u32 max = dw_spi_tx_max(dws);
136 u32 txw = 0;
137
138 while (max--) {
139 if (dws->tx) {
140 if (dws->n_bytes == 1)
141 txw = *(u8 *)(dws->tx);
142 else if (dws->n_bytes == 2)
143 txw = *(u16 *)(dws->tx);
144 else
145 txw = *(u32 *)(dws->tx);
146
147 dws->tx += dws->n_bytes;
148 }
149 dw_write_io_reg(dws, DW_SPI_DR, txw);
150 --dws->tx_len;
151 }
152 }
153
dw_reader(struct dw_spi * dws)154 static void dw_reader(struct dw_spi *dws)
155 {
156 u32 max = dw_spi_rx_max(dws);
157 u32 rxw;
158
159 while (max--) {
160 rxw = dw_read_io_reg(dws, DW_SPI_DR);
161 if (dws->rx) {
162 if (dws->n_bytes == 1)
163 *(u8 *)(dws->rx) = rxw;
164 else if (dws->n_bytes == 2)
165 *(u16 *)(dws->rx) = rxw;
166 else
167 *(u32 *)(dws->rx) = rxw;
168
169 dws->rx += dws->n_bytes;
170 }
171 --dws->rx_len;
172 }
173 }
174
dw_spi_check_status(struct dw_spi * dws,bool raw)175 int dw_spi_check_status(struct dw_spi *dws, bool raw)
176 {
177 u32 irq_status;
178 int ret = 0;
179
180 if (raw)
181 irq_status = dw_readl(dws, DW_SPI_RISR);
182 else
183 irq_status = dw_readl(dws, DW_SPI_ISR);
184
185 if (irq_status & DW_SPI_INT_RXOI) {
186 dev_err(&dws->host->dev, "RX FIFO overflow detected\n");
187 ret = -EIO;
188 }
189
190 if (irq_status & DW_SPI_INT_RXUI) {
191 dev_err(&dws->host->dev, "RX FIFO underflow detected\n");
192 ret = -EIO;
193 }
194
195 if (irq_status & DW_SPI_INT_TXOI) {
196 dev_err(&dws->host->dev, "TX FIFO overflow detected\n");
197 ret = -EIO;
198 }
199
200 /* Generically handle the erroneous situation */
201 if (ret) {
202 dw_spi_reset_chip(dws);
203 if (dws->host->cur_msg)
204 dws->host->cur_msg->status = ret;
205 }
206
207 return ret;
208 }
209 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);
210
dw_spi_transfer_handler(struct dw_spi * dws)211 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
212 {
213 u16 irq_status = dw_readl(dws, DW_SPI_ISR);
214
215 if (dw_spi_check_status(dws, false)) {
216 spi_finalize_current_transfer(dws->host);
217 return IRQ_HANDLED;
218 }
219
220 /*
221 * Read data from the Rx FIFO every time we've got a chance executing
222 * this method. If there is nothing left to receive, terminate the
223 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
224 * final stage of the transfer. By doing so we'll get the next IRQ
225 * right when the leftover incoming data is received.
226 */
227 dw_reader(dws);
228 if (!dws->rx_len) {
229 dw_spi_mask_intr(dws, 0xff);
230 spi_finalize_current_transfer(dws->host);
231 } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
232 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
233 }
234
235 /*
236 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
237 * disabled after the data transmission is finished so not to
238 * have the TXE IRQ flood at the final stage of the transfer.
239 */
240 if (irq_status & DW_SPI_INT_TXEI) {
241 dw_writer(dws);
242 if (!dws->tx_len)
243 dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
244 }
245
246 return IRQ_HANDLED;
247 }
248
dw_spi_irq(int irq,void * dev_id)249 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
250 {
251 struct spi_controller *host = dev_id;
252 struct dw_spi *dws = spi_controller_get_devdata(host);
253 u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
254
255 if (!irq_status)
256 return IRQ_NONE;
257
258 if (!host->cur_msg) {
259 dw_spi_mask_intr(dws, 0xff);
260 return IRQ_HANDLED;
261 }
262
263 return dws->transfer_handler(dws);
264 }
265
dw_spi_prepare_cr0(struct dw_spi * dws,struct spi_device * spi)266 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
267 {
268 u32 cr0 = 0;
269
270 if (dw_spi_ip_is(dws, PSSI)) {
271 /* CTRLR0[ 5: 4] Frame Format */
272 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
273
274 /*
275 * SPI mode (SCPOL|SCPH)
276 * CTRLR0[ 6] Serial Clock Phase
277 * CTRLR0[ 7] Serial Clock Polarity
278 */
279 if (spi->mode & SPI_CPOL)
280 cr0 |= DW_PSSI_CTRLR0_SCPOL;
281 if (spi->mode & SPI_CPHA)
282 cr0 |= DW_PSSI_CTRLR0_SCPHA;
283
284 /* CTRLR0[11] Shift Register Loop */
285 if (spi->mode & SPI_LOOP)
286 cr0 |= DW_PSSI_CTRLR0_SRL;
287 } else {
288 /* CTRLR0[ 7: 6] Frame Format */
289 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
290
291 /*
292 * SPI mode (SCPOL|SCPH)
293 * CTRLR0[ 8] Serial Clock Phase
294 * CTRLR0[ 9] Serial Clock Polarity
295 */
296 if (spi->mode & SPI_CPOL)
297 cr0 |= DW_HSSI_CTRLR0_SCPOL;
298 if (spi->mode & SPI_CPHA)
299 cr0 |= DW_HSSI_CTRLR0_SCPHA;
300
301 /* CTRLR0[13] Shift Register Loop */
302 if (spi->mode & SPI_LOOP)
303 cr0 |= DW_HSSI_CTRLR0_SRL;
304
305 /* CTRLR0[31] MST */
306 if (dw_spi_ver_is_ge(dws, HSSI, 102A))
307 cr0 |= DW_HSSI_CTRLR0_MST;
308 }
309
310 return cr0;
311 }
312
dw_spi_update_config(struct dw_spi * dws,struct spi_device * spi,struct dw_spi_cfg * cfg)313 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
314 struct dw_spi_cfg *cfg)
315 {
316 struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
317 u32 cr0 = chip->cr0;
318 u32 speed_hz;
319 u16 clk_div;
320
321 /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
322 cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
323
324 if (dw_spi_ip_is(dws, PSSI))
325 /* CTRLR0[ 9:8] Transfer Mode */
326 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
327 else
328 /* CTRLR0[11:10] Transfer Mode */
329 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
330
331 dw_writel(dws, DW_SPI_CTRLR0, cr0);
332
333 if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
334 cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
335 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
336
337 /* Note DW APB SSI clock divider doesn't support odd numbers */
338 clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
339 speed_hz = dws->max_freq / clk_div;
340
341 if (dws->current_freq != speed_hz) {
342 dw_spi_set_clk(dws, clk_div);
343 dws->current_freq = speed_hz;
344 }
345
346 /* Update RX sample delay if required */
347 if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
348 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
349 dws->cur_rx_sample_dly = chip->rx_sample_dly;
350 }
351 }
352 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);
353
dw_spi_irq_setup(struct dw_spi * dws)354 static void dw_spi_irq_setup(struct dw_spi *dws)
355 {
356 u16 level;
357 u8 imask;
358
359 /*
360 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
361 * will be adjusted at the final stage of the IRQ-based SPI transfer
362 * execution so not to lose the leftover of the incoming data.
363 */
364 level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
365 dw_writel(dws, DW_SPI_TXFTLR, level);
366 dw_writel(dws, DW_SPI_RXFTLR, level - 1);
367
368 dws->transfer_handler = dw_spi_transfer_handler;
369
370 imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
371 DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
372 dw_spi_umask_intr(dws, imask);
373 }
374
375 /*
376 * The iterative procedure of the poll-based transfer is simple: write as much
377 * as possible to the Tx FIFO, wait until the pending to receive data is ready
378 * to be read, read it from the Rx FIFO and check whether the performed
379 * procedure has been successful.
380 *
381 * Note this method the same way as the IRQ-based transfer won't work well for
382 * the SPI devices connected to the controller with native CS due to the
383 * automatic CS assertion/de-assertion.
384 */
dw_spi_poll_transfer(struct dw_spi * dws,struct spi_transfer * transfer)385 static int dw_spi_poll_transfer(struct dw_spi *dws,
386 struct spi_transfer *transfer)
387 {
388 struct spi_delay delay;
389 u16 nbits;
390 int ret;
391
392 delay.unit = SPI_DELAY_UNIT_SCK;
393 nbits = dws->n_bytes * BITS_PER_BYTE;
394
395 do {
396 dw_writer(dws);
397
398 delay.value = nbits * (dws->rx_len - dws->tx_len);
399 spi_delay_exec(&delay, transfer);
400
401 dw_reader(dws);
402
403 ret = dw_spi_check_status(dws, true);
404 if (ret)
405 return ret;
406 } while (dws->rx_len);
407
408 return 0;
409 }
410
dw_spi_transfer_one(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * transfer)411 static int dw_spi_transfer_one(struct spi_controller *host,
412 struct spi_device *spi,
413 struct spi_transfer *transfer)
414 {
415 struct dw_spi *dws = spi_controller_get_devdata(host);
416 struct dw_spi_cfg cfg = {
417 .tmode = DW_SPI_CTRLR0_TMOD_TR,
418 .dfs = transfer->bits_per_word,
419 .freq = transfer->speed_hz,
420 };
421 int ret;
422
423 dws->dma_mapped = 0;
424 dws->n_bytes =
425 roundup_pow_of_two(DIV_ROUND_UP(transfer->bits_per_word,
426 BITS_PER_BYTE));
427
428 dws->tx = (void *)transfer->tx_buf;
429 dws->tx_len = transfer->len / dws->n_bytes;
430 dws->rx = transfer->rx_buf;
431 dws->rx_len = dws->tx_len;
432
433 /* Ensure the data above is visible for all CPUs */
434 smp_mb();
435
436 dw_spi_enable_chip(dws, 0);
437
438 dw_spi_update_config(dws, spi, &cfg);
439
440 transfer->effective_speed_hz = dws->current_freq;
441
442 /* Check if current transfer is a DMA transaction */
443 if (host->can_dma && host->can_dma(host, spi, transfer))
444 dws->dma_mapped = host->cur_msg_mapped;
445
446 /* For poll mode just disable all interrupts */
447 dw_spi_mask_intr(dws, 0xff);
448
449 if (dws->dma_mapped) {
450 ret = dws->dma_ops->dma_setup(dws, transfer);
451 if (ret)
452 return ret;
453 }
454
455 dw_spi_enable_chip(dws, 1);
456
457 if (dws->dma_mapped)
458 return dws->dma_ops->dma_transfer(dws, transfer);
459 else if (dws->irq == IRQ_NOTCONNECTED)
460 return dw_spi_poll_transfer(dws, transfer);
461
462 dw_spi_irq_setup(dws);
463
464 return 1;
465 }
466
dw_spi_handle_err(struct spi_controller * host,struct spi_message * msg)467 static void dw_spi_handle_err(struct spi_controller *host,
468 struct spi_message *msg)
469 {
470 struct dw_spi *dws = spi_controller_get_devdata(host);
471
472 if (dws->dma_mapped)
473 dws->dma_ops->dma_stop(dws);
474
475 dw_spi_reset_chip(dws);
476 }
477
dw_spi_adjust_mem_op_size(struct spi_mem * mem,struct spi_mem_op * op)478 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
479 {
480 if (op->data.dir == SPI_MEM_DATA_IN)
481 op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
482
483 return 0;
484 }
485
dw_spi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)486 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
487 const struct spi_mem_op *op)
488 {
489 if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
490 op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
491 return false;
492
493 return spi_mem_default_supports_op(mem, op);
494 }
495
dw_spi_init_mem_buf(struct dw_spi * dws,const struct spi_mem_op * op)496 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
497 {
498 unsigned int i, j, len;
499 u8 *out;
500
501 /*
502 * Calculate the total length of the EEPROM command transfer and
503 * either use the pre-allocated buffer or create a temporary one.
504 */
505 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
506 if (op->data.dir == SPI_MEM_DATA_OUT)
507 len += op->data.nbytes;
508
509 if (len <= DW_SPI_BUF_SIZE) {
510 out = dws->buf;
511 } else {
512 out = kzalloc(len, GFP_KERNEL);
513 if (!out)
514 return -ENOMEM;
515 }
516
517 /*
518 * Collect the operation code, address and dummy bytes into the single
519 * buffer. If it's a transfer with data to be sent, also copy it into the
520 * single buffer in order to speed the data transmission up.
521 */
522 for (i = 0; i < op->cmd.nbytes; ++i)
523 out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
524 for (j = 0; j < op->addr.nbytes; ++i, ++j)
525 out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
526 for (j = 0; j < op->dummy.nbytes; ++i, ++j)
527 out[i] = 0x0;
528
529 if (op->data.dir == SPI_MEM_DATA_OUT)
530 memcpy(&out[i], op->data.buf.out, op->data.nbytes);
531
532 dws->n_bytes = 1;
533 dws->tx = out;
534 dws->tx_len = len;
535 if (op->data.dir == SPI_MEM_DATA_IN) {
536 dws->rx = op->data.buf.in;
537 dws->rx_len = op->data.nbytes;
538 } else {
539 dws->rx = NULL;
540 dws->rx_len = 0;
541 }
542
543 return 0;
544 }
545
dw_spi_free_mem_buf(struct dw_spi * dws)546 static void dw_spi_free_mem_buf(struct dw_spi *dws)
547 {
548 if (dws->tx != dws->buf)
549 kfree(dws->tx);
550 }
551
dw_spi_write_then_read(struct dw_spi * dws,struct spi_device * spi)552 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
553 {
554 u32 room, entries, sts;
555 unsigned int len;
556 u8 *buf;
557
558 /*
559 * At initial stage we just pre-fill the Tx FIFO in with no rush,
560 * since native CS hasn't been enabled yet and the automatic data
561 * transmission won't start til we do that.
562 */
563 len = min(dws->fifo_len, dws->tx_len);
564 buf = dws->tx;
565 while (len--)
566 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
567
568 /*
569 * After setting any bit in the SER register the transmission will
570 * start automatically. We have to keep up with that procedure
571 * otherwise the CS de-assertion will happen whereupon the memory
572 * operation will be pre-terminated.
573 */
574 len = dws->tx_len - ((void *)buf - dws->tx);
575 dw_spi_set_cs(spi, false);
576 while (len) {
577 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
578 if (!entries) {
579 dev_err(&dws->host->dev, "CS de-assertion on Tx\n");
580 return -EIO;
581 }
582 room = min(dws->fifo_len - entries, len);
583 for (; room; --room, --len)
584 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
585 }
586
587 /*
588 * Data fetching will start automatically if the EEPROM-read mode is
589 * activated. We have to keep up with the incoming data pace to
590 * prevent the Rx FIFO overflow causing the inbound data loss.
591 */
592 len = dws->rx_len;
593 buf = dws->rx;
594 while (len) {
595 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
596 if (!entries) {
597 sts = readl_relaxed(dws->regs + DW_SPI_RISR);
598 if (sts & DW_SPI_INT_RXOI) {
599 dev_err(&dws->host->dev, "FIFO overflow on Rx\n");
600 return -EIO;
601 }
602 continue;
603 }
604 entries = min(entries, len);
605 for (; entries; --entries, --len)
606 *buf++ = dw_read_io_reg(dws, DW_SPI_DR);
607 }
608
609 return 0;
610 }
611
dw_spi_ctlr_busy(struct dw_spi * dws)612 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
613 {
614 return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
615 }
616
dw_spi_wait_mem_op_done(struct dw_spi * dws)617 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
618 {
619 int retry = DW_SPI_WAIT_RETRIES;
620 struct spi_delay delay;
621 unsigned long ns, us;
622 u32 nents;
623
624 nents = dw_readl(dws, DW_SPI_TXFLR);
625 ns = NSEC_PER_SEC / dws->current_freq * nents;
626 ns *= dws->n_bytes * BITS_PER_BYTE;
627 if (ns <= NSEC_PER_USEC) {
628 delay.unit = SPI_DELAY_UNIT_NSECS;
629 delay.value = ns;
630 } else {
631 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
632 delay.unit = SPI_DELAY_UNIT_USECS;
633 delay.value = clamp_val(us, 0, USHRT_MAX);
634 }
635
636 while (dw_spi_ctlr_busy(dws) && retry--)
637 spi_delay_exec(&delay, NULL);
638
639 if (retry < 0) {
640 dev_err(&dws->host->dev, "Mem op hanged up\n");
641 return -EIO;
642 }
643
644 return 0;
645 }
646
dw_spi_stop_mem_op(struct dw_spi * dws,struct spi_device * spi)647 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
648 {
649 dw_spi_enable_chip(dws, 0);
650 dw_spi_set_cs(spi, true);
651 dw_spi_enable_chip(dws, 1);
652 }
653
654 /*
655 * The SPI memory operation implementation below is the best choice for the
656 * devices, which are selected by the native chip-select lane. It's
657 * specifically developed to workaround the problem with automatic chip-select
658 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
659 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
660 * unavailable.
661 */
dw_spi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)662 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
663 {
664 struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
665 struct dw_spi_cfg cfg;
666 unsigned long flags;
667 int ret;
668
669 /*
670 * Collect the outbound data into a single buffer to speed the
671 * transmission up at least on the initial stage.
672 */
673 ret = dw_spi_init_mem_buf(dws, op);
674 if (ret)
675 return ret;
676
677 /*
678 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
679 * operation. Transmit-only mode is suitable for the rest of them.
680 */
681 cfg.dfs = 8;
682 cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
683 if (op->data.dir == SPI_MEM_DATA_IN) {
684 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
685 cfg.ndf = op->data.nbytes;
686 } else {
687 cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
688 }
689
690 dw_spi_enable_chip(dws, 0);
691
692 dw_spi_update_config(dws, mem->spi, &cfg);
693
694 dw_spi_mask_intr(dws, 0xff);
695
696 dw_spi_enable_chip(dws, 1);
697
698 /*
699 * DW APB SSI controller has very nasty peculiarities. First originally
700 * (without any vendor-specific modifications) it doesn't provide a
701 * direct way to set and clear the native chip-select signal. Instead
702 * the controller asserts the CS lane if Tx FIFO isn't empty and a
703 * transmission is going on, and automatically de-asserts it back to
704 * the high level if the Tx FIFO doesn't have anything to be pushed
705 * out. Due to that a multi-tasking or heavy IRQs activity might be
706 * fatal, since the transfer procedure preemption may cause the Tx FIFO
707 * getting empty and sudden CS de-assertion, which in the middle of the
708 * transfer will most likely cause the data loss. Secondly the
709 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
710 * data being automatically pulled in into the Rx FIFO. So if the
711 * driver software is late in fetching the data from the FIFO before
712 * it's overflown, new incoming data will be lost. In order to make
713 * sure the executed memory operations are CS-atomic and to prevent the
714 * Rx FIFO overflow we have to disable the local interrupts so to block
715 * any preemption during the subsequent IO operations.
716 *
717 * Note. At some circumstances disabling IRQs may not help to prevent
718 * the problems described above. The CS de-assertion and Rx FIFO
719 * overflow may still happen due to the relatively slow system bus or
720 * CPU not working fast enough, so the write-then-read algo implemented
721 * here just won't keep up with the SPI bus data transfer. Such
722 * situation is highly platform specific and is supposed to be fixed by
723 * manually restricting the SPI bus frequency using the
724 * dws->max_mem_freq parameter.
725 */
726 local_irq_save(flags);
727 preempt_disable();
728
729 ret = dw_spi_write_then_read(dws, mem->spi);
730
731 local_irq_restore(flags);
732 preempt_enable();
733
734 /*
735 * Wait for the operation being finished and check the controller
736 * status only if there hasn't been any run-time error detected. In the
737 * former case it's just pointless. In the later one to prevent an
738 * additional error message printing since any hw error flag being set
739 * would be due to an error detected on the data transfer.
740 */
741 if (!ret) {
742 ret = dw_spi_wait_mem_op_done(dws);
743 if (!ret)
744 ret = dw_spi_check_status(dws, true);
745 }
746
747 dw_spi_stop_mem_op(dws, mem->spi);
748
749 dw_spi_free_mem_buf(dws);
750
751 return ret;
752 }
753
754 /*
755 * Initialize the default memory operations if a glue layer hasn't specified
756 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
757 * controller doesn't have an embedded dirmap interface. Note the memory
758 * operations implemented in this driver is the best choice only for the DW APB
759 * SSI controller with standard native CS functionality. If a hardware vendor
760 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
761 * be safer to use the normal SPI-messages-based transfers implementation.
762 */
dw_spi_init_mem_ops(struct dw_spi * dws)763 static void dw_spi_init_mem_ops(struct dw_spi *dws)
764 {
765 if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
766 !dws->set_cs) {
767 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
768 dws->mem_ops.supports_op = dw_spi_supports_mem_op;
769 dws->mem_ops.exec_op = dw_spi_exec_mem_op;
770 if (!dws->max_mem_freq)
771 dws->max_mem_freq = dws->max_freq;
772 }
773 }
774
775 /* This may be called twice for each spi dev */
dw_spi_setup(struct spi_device * spi)776 static int dw_spi_setup(struct spi_device *spi)
777 {
778 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
779 struct dw_spi_chip_data *chip;
780
781 /* Only alloc on first setup */
782 chip = spi_get_ctldata(spi);
783 if (!chip) {
784 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
785 u32 rx_sample_dly_ns;
786
787 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
788 if (!chip)
789 return -ENOMEM;
790 spi_set_ctldata(spi, chip);
791 /* Get specific / default rx-sample-delay */
792 if (device_property_read_u32(&spi->dev,
793 "rx-sample-delay-ns",
794 &rx_sample_dly_ns) != 0)
795 /* Use default controller value */
796 rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
797 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
798 NSEC_PER_SEC /
799 dws->max_freq);
800 }
801
802 /*
803 * Update CR0 data each time the setup callback is invoked since
804 * the device parameters could have been changed, for instance, by
805 * the MMC SPI driver or something else.
806 */
807 chip->cr0 = dw_spi_prepare_cr0(dws, spi);
808
809 return 0;
810 }
811
dw_spi_cleanup(struct spi_device * spi)812 static void dw_spi_cleanup(struct spi_device *spi)
813 {
814 struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
815
816 kfree(chip);
817 spi_set_ctldata(spi, NULL);
818 }
819
820 /* Restart the controller, disable all interrupts, clean rx fifo */
dw_spi_hw_init(struct device * dev,struct dw_spi * dws)821 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
822 {
823 dw_spi_reset_chip(dws);
824
825 /*
826 * Retrieve the Synopsys component version if it hasn't been specified
827 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
828 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
829 */
830 if (!dws->ver) {
831 dws->ver = dw_readl(dws, DW_SPI_VERSION);
832
833 dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
834 dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
835 DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
836 DW_SPI_GET_BYTE(dws->ver, 1));
837 }
838
839 /*
840 * Try to detect the FIFO depth if not set by interface driver,
841 * the depth could be from 2 to 256 from HW spec
842 */
843 if (!dws->fifo_len) {
844 u32 fifo;
845
846 for (fifo = 1; fifo < 256; fifo++) {
847 dw_writel(dws, DW_SPI_TXFTLR, fifo);
848 if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
849 break;
850 }
851 dw_writel(dws, DW_SPI_TXFTLR, 0);
852
853 dws->fifo_len = (fifo == 1) ? 0 : fifo;
854 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
855 }
856
857 /*
858 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
859 * writability. Note DWC SSI controller also has the extended DFS, but
860 * with zero offset.
861 */
862 if (dw_spi_ip_is(dws, PSSI)) {
863 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
864
865 dw_spi_enable_chip(dws, 0);
866 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
867 cr0 = dw_readl(dws, DW_SPI_CTRLR0);
868 dw_writel(dws, DW_SPI_CTRLR0, tmp);
869 dw_spi_enable_chip(dws, 1);
870
871 if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
872 dws->caps |= DW_SPI_CAP_DFS32;
873 dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
874 dev_dbg(dev, "Detected 32-bits max data frame size\n");
875 }
876 } else {
877 dws->caps |= DW_SPI_CAP_DFS32;
878 }
879
880 /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
881 if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
882 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
883 }
884
dw_spi_add_host(struct device * dev,struct dw_spi * dws)885 int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
886 {
887 struct spi_controller *host;
888 int ret;
889
890 if (!dws)
891 return -EINVAL;
892
893 host = spi_alloc_host(dev, 0);
894 if (!host)
895 return -ENOMEM;
896
897 device_set_node(&host->dev, dev_fwnode(dev));
898
899 dws->host = host;
900 dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
901
902 spi_controller_set_devdata(host, dws);
903
904 /* Basic HW init */
905 dw_spi_hw_init(dev, dws);
906
907 ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
908 host);
909 if (ret < 0 && ret != -ENOTCONN) {
910 dev_err(dev, "can not get IRQ\n");
911 goto err_free_host;
912 }
913
914 dw_spi_init_mem_ops(dws);
915
916 host->use_gpio_descriptors = true;
917 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
918 if (dws->caps & DW_SPI_CAP_DFS32)
919 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
920 else
921 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
922 host->bus_num = dws->bus_num;
923 host->num_chipselect = dws->num_cs;
924 host->setup = dw_spi_setup;
925 host->cleanup = dw_spi_cleanup;
926 if (dws->set_cs)
927 host->set_cs = dws->set_cs;
928 else
929 host->set_cs = dw_spi_set_cs;
930 host->transfer_one = dw_spi_transfer_one;
931 host->handle_err = dw_spi_handle_err;
932 if (dws->mem_ops.exec_op)
933 host->mem_ops = &dws->mem_ops;
934 host->max_speed_hz = dws->max_freq;
935 host->flags = SPI_CONTROLLER_GPIO_SS;
936 host->auto_runtime_pm = true;
937
938 /* Get default rx sample delay */
939 device_property_read_u32(dev, "rx-sample-delay-ns",
940 &dws->def_rx_sample_dly_ns);
941
942 if (dws->dma_ops && dws->dma_ops->dma_init) {
943 ret = dws->dma_ops->dma_init(dev, dws);
944 if (ret == -EPROBE_DEFER) {
945 goto err_free_irq;
946 } else if (ret) {
947 dev_warn(dev, "DMA init failed\n");
948 } else {
949 host->can_dma = dws->dma_ops->can_dma;
950 host->flags |= SPI_CONTROLLER_MUST_TX;
951 }
952 }
953
954 ret = spi_register_controller(host);
955 if (ret) {
956 dev_err_probe(dev, ret, "problem registering spi host\n");
957 goto err_dma_exit;
958 }
959
960 dw_spi_debugfs_init(dws);
961 return 0;
962
963 err_dma_exit:
964 if (dws->dma_ops && dws->dma_ops->dma_exit)
965 dws->dma_ops->dma_exit(dws);
966 dw_spi_enable_chip(dws, 0);
967 err_free_irq:
968 free_irq(dws->irq, host);
969 err_free_host:
970 spi_controller_put(host);
971 return ret;
972 }
973 EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);
974
dw_spi_remove_host(struct dw_spi * dws)975 void dw_spi_remove_host(struct dw_spi *dws)
976 {
977 dw_spi_debugfs_remove(dws);
978
979 spi_unregister_controller(dws->host);
980
981 if (dws->dma_ops && dws->dma_ops->dma_exit)
982 dws->dma_ops->dma_exit(dws);
983
984 dw_spi_shutdown_chip(dws);
985
986 free_irq(dws->irq, dws->host);
987 }
988 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);
989
dw_spi_suspend_host(struct dw_spi * dws)990 int dw_spi_suspend_host(struct dw_spi *dws)
991 {
992 int ret;
993
994 ret = spi_controller_suspend(dws->host);
995 if (ret)
996 return ret;
997
998 dw_spi_shutdown_chip(dws);
999 return 0;
1000 }
1001 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);
1002
dw_spi_resume_host(struct dw_spi * dws)1003 int dw_spi_resume_host(struct dw_spi *dws)
1004 {
1005 dw_spi_hw_init(&dws->host->dev, dws);
1006 return spi_controller_resume(dws->host);
1007 }
1008 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);
1009
1010 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
1011 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1012 MODULE_LICENSE("GPL v2");
1013