• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  prepare to run common code
4  *
5  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #define DISABLE_BRANCH_PROFILING
9 
10 /* cpu_feature_enabled() cannot be used this early */
11 #define USE_EARLY_PGTABLE_L5
12 
13 #include <linux/init.h>
14 #include <linux/linkage.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/percpu.h>
19 #include <linux/start_kernel.h>
20 #include <linux/io.h>
21 #include <linux/memblock.h>
22 #include <linux/cc_platform.h>
23 #include <linux/pgtable.h>
24 
25 #include <asm/processor.h>
26 #include <asm/proto.h>
27 #include <asm/smp.h>
28 #include <asm/setup.h>
29 #include <asm/desc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/sections.h>
32 #include <asm/kdebug.h>
33 #include <asm/e820/api.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/bootparam_utils.h>
36 #include <asm/microcode.h>
37 #include <asm/kasan.h>
38 #include <asm/fixmap.h>
39 #include <asm/realmode.h>
40 #include <asm/extable.h>
41 #include <asm/trapnr.h>
42 #include <asm/sev.h>
43 #include <asm/tdx.h>
44 #include <asm/init.h>
45 
46 /*
47  * Manage page tables very early on.
48  */
49 extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
50 static unsigned int __initdata next_early_pgt;
51 pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
52 
53 #ifdef CONFIG_X86_5LEVEL
54 unsigned int __pgtable_l5_enabled __ro_after_init;
55 unsigned int pgdir_shift __ro_after_init = 39;
56 EXPORT_SYMBOL(pgdir_shift);
57 unsigned int ptrs_per_p4d __ro_after_init = 1;
58 EXPORT_SYMBOL(ptrs_per_p4d);
59 #endif
60 
61 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
62 unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4;
63 EXPORT_SYMBOL(page_offset_base);
64 unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4;
65 EXPORT_SYMBOL(vmalloc_base);
66 unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4;
67 EXPORT_SYMBOL(vmemmap_base);
68 #endif
69 
70 /*
71  * GDT used on the boot CPU before switching to virtual addresses.
72  */
73 static struct desc_struct startup_gdt[GDT_ENTRIES] = {
74 	[GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
75 	[GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
76 	[GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
77 };
78 
79 /*
80  * Address needs to be set at runtime because it references the startup_gdt
81  * while the kernel still uses a direct mapping.
82  */
83 static struct desc_ptr startup_gdt_descr = {
84 	.size = sizeof(startup_gdt)-1,
85 	.address = 0,
86 };
87 
fixup_pointer(void * ptr,unsigned long physaddr)88 static void __head *fixup_pointer(void *ptr, unsigned long physaddr)
89 {
90 	return ptr - (void *)_text + (void *)physaddr;
91 }
92 
fixup_long(void * ptr,unsigned long physaddr)93 static unsigned long __head *fixup_long(void *ptr, unsigned long physaddr)
94 {
95 	return fixup_pointer(ptr, physaddr);
96 }
97 
98 #ifdef CONFIG_X86_5LEVEL
fixup_int(void * ptr,unsigned long physaddr)99 static unsigned int __head *fixup_int(void *ptr, unsigned long physaddr)
100 {
101 	return fixup_pointer(ptr, physaddr);
102 }
103 
check_la57_support(unsigned long physaddr)104 static bool __head check_la57_support(unsigned long physaddr)
105 {
106 	/*
107 	 * 5-level paging is detected and enabled at kernel decompression
108 	 * stage. Only check if it has been enabled there.
109 	 */
110 	if (!(native_read_cr4() & X86_CR4_LA57))
111 		return false;
112 
113 	*fixup_int(&__pgtable_l5_enabled, physaddr) = 1;
114 	*fixup_int(&pgdir_shift, physaddr) = 48;
115 	*fixup_int(&ptrs_per_p4d, physaddr) = 512;
116 	*fixup_long(&page_offset_base, physaddr) = __PAGE_OFFSET_BASE_L5;
117 	*fixup_long(&vmalloc_base, physaddr) = __VMALLOC_BASE_L5;
118 	*fixup_long(&vmemmap_base, physaddr) = __VMEMMAP_BASE_L5;
119 
120 	return true;
121 }
122 #else
check_la57_support(unsigned long physaddr)123 static bool __head check_la57_support(unsigned long physaddr)
124 {
125 	return false;
126 }
127 #endif
128 
sme_postprocess_startup(struct boot_params * bp,pmdval_t * pmd)129 static unsigned long __head sme_postprocess_startup(struct boot_params *bp, pmdval_t *pmd)
130 {
131 	unsigned long vaddr, vaddr_end;
132 	int i;
133 
134 	/* Encrypt the kernel and related (if SME is active) */
135 	sme_encrypt_kernel(bp);
136 
137 	/*
138 	 * Clear the memory encryption mask from the .bss..decrypted section.
139 	 * The bss section will be memset to zero later in the initialization so
140 	 * there is no need to zero it after changing the memory encryption
141 	 * attribute.
142 	 */
143 	if (sme_get_me_mask()) {
144 		vaddr = (unsigned long)__start_bss_decrypted;
145 		vaddr_end = (unsigned long)__end_bss_decrypted;
146 
147 		for (; vaddr < vaddr_end; vaddr += PMD_SIZE) {
148 			/*
149 			 * On SNP, transition the page to shared in the RMP table so that
150 			 * it is consistent with the page table attribute change.
151 			 *
152 			 * __start_bss_decrypted has a virtual address in the high range
153 			 * mapping (kernel .text). PVALIDATE, by way of
154 			 * early_snp_set_memory_shared(), requires a valid virtual
155 			 * address but the kernel is currently running off of the identity
156 			 * mapping so use __pa() to get a *currently* valid virtual address.
157 			 */
158 			early_snp_set_memory_shared(__pa(vaddr), __pa(vaddr), PTRS_PER_PMD);
159 
160 			i = pmd_index(vaddr);
161 			pmd[i] -= sme_get_me_mask();
162 		}
163 	}
164 
165 	/*
166 	 * Return the SME encryption mask (if SME is active) to be used as a
167 	 * modifier for the initial pgdir entry programmed into CR3.
168 	 */
169 	return sme_get_me_mask();
170 }
171 
172 /* Code in __startup_64() can be relocated during execution, but the compiler
173  * doesn't have to generate PC-relative relocations when accessing globals from
174  * that function. Clang actually does not generate them, which leads to
175  * boot-time crashes. To work around this problem, every global pointer must
176  * be adjusted using fixup_pointer().
177  */
__startup_64(unsigned long physaddr,struct boot_params * bp)178 unsigned long __head __startup_64(unsigned long physaddr,
179 				  struct boot_params *bp)
180 {
181 	unsigned long load_delta, *p;
182 	unsigned long pgtable_flags;
183 	pgdval_t *pgd;
184 	p4dval_t *p4d;
185 	pudval_t *pud;
186 	pmdval_t *pmd, pmd_entry;
187 	pteval_t *mask_ptr;
188 	bool la57;
189 	int i;
190 	unsigned int *next_pgt_ptr;
191 
192 	la57 = check_la57_support(physaddr);
193 
194 	/* Is the address too large? */
195 	if (physaddr >> MAX_PHYSMEM_BITS)
196 		for (;;);
197 
198 	/*
199 	 * Compute the delta between the address I am compiled to run at
200 	 * and the address I am actually running at.
201 	 */
202 	load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map);
203 
204 	/* Is the address not 2M aligned? */
205 	if (load_delta & ~PMD_MASK)
206 		for (;;);
207 
208 	/* Include the SME encryption mask in the fixup value */
209 	load_delta += sme_get_me_mask();
210 
211 	/* Fixup the physical addresses in the page table */
212 
213 	pgd = fixup_pointer(&early_top_pgt, physaddr);
214 	p = pgd + pgd_index(__START_KERNEL_map);
215 	if (la57)
216 		*p = (unsigned long)level4_kernel_pgt;
217 	else
218 		*p = (unsigned long)level3_kernel_pgt;
219 	*p += _PAGE_TABLE_NOENC - __START_KERNEL_map + load_delta;
220 
221 	if (la57) {
222 		p4d = fixup_pointer(&level4_kernel_pgt, physaddr);
223 		p4d[511] += load_delta;
224 	}
225 
226 	pud = fixup_pointer(&level3_kernel_pgt, physaddr);
227 	pud[510] += load_delta;
228 	pud[511] += load_delta;
229 
230 	pmd = fixup_pointer(level2_fixmap_pgt, physaddr);
231 	for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--)
232 		pmd[i] += load_delta;
233 
234 	/*
235 	 * Set up the identity mapping for the switchover.  These
236 	 * entries should *NOT* have the global bit set!  This also
237 	 * creates a bunch of nonsense entries but that is fine --
238 	 * it avoids problems around wraparound.
239 	 */
240 
241 	next_pgt_ptr = fixup_pointer(&next_early_pgt, physaddr);
242 	pud = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
243 	pmd = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
244 
245 	pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
246 
247 	if (la57) {
248 		p4d = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++],
249 				    physaddr);
250 
251 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
252 		pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
253 		pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
254 
255 		i = physaddr >> P4D_SHIFT;
256 		p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
257 		p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
258 	} else {
259 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
260 		pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
261 		pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
262 	}
263 
264 	i = physaddr >> PUD_SHIFT;
265 	pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
266 	pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
267 
268 	pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
269 	/* Filter out unsupported __PAGE_KERNEL_* bits: */
270 	mask_ptr = fixup_pointer(&__supported_pte_mask, physaddr);
271 	pmd_entry &= *mask_ptr;
272 	pmd_entry += sme_get_me_mask();
273 	pmd_entry +=  physaddr;
274 
275 	for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) {
276 		int idx = i + (physaddr >> PMD_SHIFT);
277 
278 		pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE;
279 	}
280 
281 	/*
282 	 * Fixup the kernel text+data virtual addresses. Note that
283 	 * we might write invalid pmds, when the kernel is relocated
284 	 * cleanup_highmap() fixes this up along with the mappings
285 	 * beyond _end.
286 	 *
287 	 * Only the region occupied by the kernel image has so far
288 	 * been checked against the table of usable memory regions
289 	 * provided by the firmware, so invalidate pages outside that
290 	 * region. A page table entry that maps to a reserved area of
291 	 * memory would allow processor speculation into that area,
292 	 * and on some hardware (particularly the UV platform) even
293 	 * speculative access to some reserved areas is caught as an
294 	 * error, causing the BIOS to halt the system.
295 	 */
296 
297 	pmd = fixup_pointer(level2_kernel_pgt, physaddr);
298 
299 	/* invalidate pages before the kernel image */
300 	for (i = 0; i < pmd_index((unsigned long)_text); i++)
301 		pmd[i] &= ~_PAGE_PRESENT;
302 
303 	/* fixup pages that are part of the kernel image */
304 	for (; i <= pmd_index((unsigned long)_end); i++)
305 		if (pmd[i] & _PAGE_PRESENT)
306 			pmd[i] += load_delta;
307 
308 	/* invalidate pages after the kernel image */
309 	for (; i < PTRS_PER_PMD; i++)
310 		pmd[i] &= ~_PAGE_PRESENT;
311 
312 	/*
313 	 * Fixup phys_base - remove the memory encryption mask to obtain
314 	 * the true physical address.
315 	 */
316 	*fixup_long(&phys_base, physaddr) += load_delta - sme_get_me_mask();
317 
318 	return sme_postprocess_startup(bp, pmd);
319 }
320 
321 /* Wipe all early page tables except for the kernel symbol map */
reset_early_page_tables(void)322 static void __init reset_early_page_tables(void)
323 {
324 	memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
325 	next_early_pgt = 0;
326 	write_cr3(__sme_pa_nodebug(early_top_pgt));
327 }
328 
329 /* Create a new PMD entry */
__early_make_pgtable(unsigned long address,pmdval_t pmd)330 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
331 {
332 	unsigned long physaddr = address - __PAGE_OFFSET;
333 	pgdval_t pgd, *pgd_p;
334 	p4dval_t p4d, *p4d_p;
335 	pudval_t pud, *pud_p;
336 	pmdval_t *pmd_p;
337 
338 	/* Invalid address or early pgt is done ?  */
339 	if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
340 		return false;
341 
342 again:
343 	pgd_p = &early_top_pgt[pgd_index(address)].pgd;
344 	pgd = *pgd_p;
345 
346 	/*
347 	 * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
348 	 * critical -- __PAGE_OFFSET would point us back into the dynamic
349 	 * range and we might end up looping forever...
350 	 */
351 	if (!pgtable_l5_enabled())
352 		p4d_p = pgd_p;
353 	else if (pgd)
354 		p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
355 	else {
356 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
357 			reset_early_page_tables();
358 			goto again;
359 		}
360 
361 		p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
362 		memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
363 		*pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
364 	}
365 	p4d_p += p4d_index(address);
366 	p4d = *p4d_p;
367 
368 	if (p4d)
369 		pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
370 	else {
371 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
372 			reset_early_page_tables();
373 			goto again;
374 		}
375 
376 		pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
377 		memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
378 		*p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
379 	}
380 	pud_p += pud_index(address);
381 	pud = *pud_p;
382 
383 	if (pud)
384 		pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
385 	else {
386 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
387 			reset_early_page_tables();
388 			goto again;
389 		}
390 
391 		pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
392 		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
393 		*pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
394 	}
395 	pmd_p[pmd_index(address)] = pmd;
396 
397 	return true;
398 }
399 
early_make_pgtable(unsigned long address)400 static bool __init early_make_pgtable(unsigned long address)
401 {
402 	unsigned long physaddr = address - __PAGE_OFFSET;
403 	pmdval_t pmd;
404 
405 	pmd = (physaddr & PMD_MASK) + early_pmd_flags;
406 
407 	return __early_make_pgtable(address, pmd);
408 }
409 
do_early_exception(struct pt_regs * regs,int trapnr)410 void __init do_early_exception(struct pt_regs *regs, int trapnr)
411 {
412 	if (trapnr == X86_TRAP_PF &&
413 	    early_make_pgtable(native_read_cr2()))
414 		return;
415 
416 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) &&
417 	    trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs))
418 		return;
419 
420 	if (trapnr == X86_TRAP_VE && tdx_early_handle_ve(regs))
421 		return;
422 
423 	early_fixup_exception(regs, trapnr);
424 }
425 
426 /* Don't add a printk in there. printk relies on the PDA which is not initialized
427    yet. */
clear_bss(void)428 void __init clear_bss(void)
429 {
430 	memset(__bss_start, 0,
431 	       (unsigned long) __bss_stop - (unsigned long) __bss_start);
432 	memset(__brk_base, 0,
433 	       (unsigned long) __brk_limit - (unsigned long) __brk_base);
434 }
435 
get_cmd_line_ptr(void)436 static unsigned long get_cmd_line_ptr(void)
437 {
438 	unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
439 
440 	cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
441 
442 	return cmd_line_ptr;
443 }
444 
copy_bootdata(char * real_mode_data)445 static void __init copy_bootdata(char *real_mode_data)
446 {
447 	char * command_line;
448 	unsigned long cmd_line_ptr;
449 
450 	/*
451 	 * If SME is active, this will create decrypted mappings of the
452 	 * boot data in advance of the copy operations.
453 	 */
454 	sme_map_bootdata(real_mode_data);
455 
456 	memcpy(&boot_params, real_mode_data, sizeof(boot_params));
457 	sanitize_boot_params(&boot_params);
458 	cmd_line_ptr = get_cmd_line_ptr();
459 	if (cmd_line_ptr) {
460 		command_line = __va(cmd_line_ptr);
461 		memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
462 	}
463 
464 	/*
465 	 * The old boot data is no longer needed and won't be reserved,
466 	 * freeing up that memory for use by the system. If SME is active,
467 	 * we need to remove the mappings that were created so that the
468 	 * memory doesn't remain mapped as decrypted.
469 	 */
470 	sme_unmap_bootdata(real_mode_data);
471 }
472 
x86_64_start_kernel(char * real_mode_data)473 asmlinkage __visible void __init __noreturn x86_64_start_kernel(char * real_mode_data)
474 {
475 	/*
476 	 * Build-time sanity checks on the kernel image and module
477 	 * area mappings. (these are purely build-time and produce no code)
478 	 */
479 	BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
480 	BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
481 	BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
482 	BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
483 	BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
484 	BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
485 	MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
486 				(__START_KERNEL & PGDIR_MASK)));
487 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
488 
489 	cr4_init_shadow();
490 
491 	/* Kill off the identity-map trampoline */
492 	reset_early_page_tables();
493 
494 	clear_bss();
495 
496 	/*
497 	 * This needs to happen *before* kasan_early_init() because latter maps stuff
498 	 * into that page.
499 	 */
500 	clear_page(init_top_pgt);
501 
502 	/*
503 	 * SME support may update early_pmd_flags to include the memory
504 	 * encryption mask, so it needs to be called before anything
505 	 * that may generate a page fault.
506 	 */
507 	sme_early_init();
508 
509 	kasan_early_init();
510 
511 	/*
512 	 * Flush global TLB entries which could be left over from the trampoline page
513 	 * table.
514 	 *
515 	 * This needs to happen *after* kasan_early_init() as KASAN-enabled .configs
516 	 * instrument native_write_cr4() so KASAN must be initialized for that
517 	 * instrumentation to work.
518 	 */
519 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
520 
521 	idt_setup_early_handler();
522 
523 	/* Needed before cc_platform_has() can be used for TDX */
524 	tdx_early_init();
525 
526 	copy_bootdata(__va(real_mode_data));
527 
528 	/*
529 	 * Load microcode early on BSP.
530 	 */
531 	load_ucode_bsp();
532 
533 	/* set init_top_pgt kernel high mapping*/
534 	init_top_pgt[511] = early_top_pgt[511];
535 
536 	x86_64_start_reservations(real_mode_data);
537 }
538 
x86_64_start_reservations(char * real_mode_data)539 void __init __noreturn x86_64_start_reservations(char *real_mode_data)
540 {
541 	/* version is always not zero if it is copied */
542 	if (!boot_params.hdr.version)
543 		copy_bootdata(__va(real_mode_data));
544 
545 	x86_early_init_platform_quirks();
546 
547 	switch (boot_params.hdr.hardware_subarch) {
548 	case X86_SUBARCH_INTEL_MID:
549 		x86_intel_mid_early_setup();
550 		break;
551 	default:
552 		break;
553 	}
554 
555 	start_kernel();
556 }
557 
558 /*
559  * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is
560  * used until the idt_table takes over. On the boot CPU this happens in
561  * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases
562  * this happens in the functions called from head_64.S.
563  *
564  * The idt_table can't be used that early because all the code modifying it is
565  * in idt.c and can be instrumented by tracing or KASAN, which both don't work
566  * during early CPU bringup. Also the idt_table has the runtime vectors
567  * configured which require certain CPU state to be setup already (like TSS),
568  * which also hasn't happened yet in early CPU bringup.
569  */
570 static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data;
571 
572 static struct desc_ptr bringup_idt_descr = {
573 	.size		= (NUM_EXCEPTION_VECTORS * sizeof(gate_desc)) - 1,
574 	.address	= 0, /* Set at runtime */
575 };
576 
set_bringup_idt_handler(gate_desc * idt,int n,void * handler)577 static void set_bringup_idt_handler(gate_desc *idt, int n, void *handler)
578 {
579 #ifdef CONFIG_AMD_MEM_ENCRYPT
580 	struct idt_data data;
581 	gate_desc desc;
582 
583 	init_idt_data(&data, n, handler);
584 	idt_init_desc(&desc, &data);
585 	native_write_idt_entry(idt, n, &desc);
586 #endif
587 }
588 
589 /* This runs while still in the direct mapping */
startup_64_load_idt(unsigned long physbase)590 static void startup_64_load_idt(unsigned long physbase)
591 {
592 	struct desc_ptr *desc = fixup_pointer(&bringup_idt_descr, physbase);
593 	gate_desc *idt = fixup_pointer(bringup_idt_table, physbase);
594 
595 
596 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
597 		void *handler;
598 
599 		/* VMM Communication Exception */
600 		handler = fixup_pointer(vc_no_ghcb, physbase);
601 		set_bringup_idt_handler(idt, X86_TRAP_VC, handler);
602 	}
603 
604 	desc->address = (unsigned long)idt;
605 	native_load_idt(desc);
606 }
607 
608 /* This is used when running on kernel addresses */
early_setup_idt(void)609 void early_setup_idt(void)
610 {
611 	/* VMM Communication Exception */
612 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
613 		setup_ghcb();
614 		set_bringup_idt_handler(bringup_idt_table, X86_TRAP_VC, vc_boot_ghcb);
615 	}
616 
617 	bringup_idt_descr.address = (unsigned long)bringup_idt_table;
618 	native_load_idt(&bringup_idt_descr);
619 }
620 
621 /*
622  * Setup boot CPU state needed before kernel switches to virtual addresses.
623  */
startup_64_setup_env(unsigned long physbase)624 void __head startup_64_setup_env(unsigned long physbase)
625 {
626 	/* Load GDT */
627 	startup_gdt_descr.address = (unsigned long)fixup_pointer(startup_gdt, physbase);
628 	native_load_gdt(&startup_gdt_descr);
629 
630 	/* New GDT is live - reload data segment registers */
631 	asm volatile("movl %%eax, %%ds\n"
632 		     "movl %%eax, %%ss\n"
633 		     "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory");
634 
635 	startup_64_load_idt(physbase);
636 }
637