1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 *
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 * to full commit.
73 *
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
83 *
84 * - Create a new file A and remove existing file B
85 * - fsync()
86 * - Append contents to file A
87 * - Truncate file A
88 * - fsync()
89 *
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
93 *
94 * Replay code should thus check for all the valid tails in the FC area.
95 *
96 * Fast Commit Replay Idempotence
97 * ------------------------------
98 *
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
103 *
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
108 *
109 * - Link dirent b to inode 10
110 * - Unlink dirent a
111 * - Inode <10> with valid refcount
112 *
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
115 *
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
118 *
119 * rm A; mv B A; read A
120 * (x) (y) (z)
121 *
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
130 *
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
133 *
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 * (w) (x) (y) (z)
136 *
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
144 *
145 * TODOs
146 * -----
147 *
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
157 * commits.
158 *
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
164 *
165 * 2) Handle more ineligible cases.
166 */
167
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 BUFFER_TRACE(bh, "");
174 if (uptodate) {
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
178 } else {
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
182 }
183
184 unlock_buffer(bh);
185 }
186
ext4_fc_reset_inode(struct inode * inode)187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 struct ext4_inode_info *ei = EXT4_I(inode);
190
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
193 }
194
ext4_fc_init_inode(struct inode * inode)195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 struct ext4_inode_info *ei = EXT4_I(inode);
198
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
205 }
206
207 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
213
214 #if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
219 #else
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
224 #endif
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 schedule();
229 finish_wait(wq, &wait.wq_entry);
230 }
231
ext4_fc_disabled(struct super_block * sb)232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237
238 /*
239 * Inform Ext4's fast about start of an inode update
240 *
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
244 */
ext4_fc_start_update(struct inode * inode)245 void ext4_fc_start_update(struct inode *inode)
246 {
247 struct ext4_inode_info *ei = EXT4_I(inode);
248
249 if (ext4_fc_disabled(inode->i_sb))
250 return;
251
252 restart:
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
255 goto out;
256
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
259 goto restart;
260 }
261 out:
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265
266 /*
267 * Stop inode update and wake up waiting fast commits if any.
268 */
ext4_fc_stop_update(struct inode * inode)269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 struct ext4_inode_info *ei = EXT4_I(inode);
272
273 if (ext4_fc_disabled(inode->i_sb))
274 return;
275
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
278 }
279
280 /*
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
283 */
ext4_fc_del(struct inode * inode)284 void ext4_fc_del(struct inode *inode)
285 {
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
289
290 if (ext4_fc_disabled(inode->i_sb))
291 return;
292
293 restart:
294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 return;
298 }
299
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
302 goto restart;
303 }
304
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
307
308 /*
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
311 */
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
314 return;
315 }
316
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
321
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
324
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(fc_dentry->fcd_name.name);
328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329
330 return;
331 }
332
333 /*
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
337 */
ext4_fc_mark_ineligible(struct super_block * sb,int reason,handle_t * handle)338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
341 tid_t tid;
342
343 if (ext4_fc_disabled(sb))
344 return;
345
346 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
347 if (handle && !IS_ERR(handle))
348 tid = handle->h_transaction->t_tid;
349 else {
350 read_lock(&sbi->s_journal->j_state_lock);
351 tid = sbi->s_journal->j_running_transaction ?
352 sbi->s_journal->j_running_transaction->t_tid : 0;
353 read_unlock(&sbi->s_journal->j_state_lock);
354 }
355 spin_lock(&sbi->s_fc_lock);
356 if (sbi->s_fc_ineligible_tid < tid)
357 sbi->s_fc_ineligible_tid = tid;
358 spin_unlock(&sbi->s_fc_lock);
359 WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
361 }
362
363 /*
364 * Generic fast commit tracking function. If this is the first time this we are
365 * called after a full commit, we initialize fast commit fields and then call
366 * __fc_track_fn() with update = 0. If we have already been called after a full
367 * commit, we pass update = 1. Based on that, the track function can determine
368 * if it needs to track a field for the first time or if it needs to just
369 * update the previously tracked value.
370 *
371 * If enqueue is set, this function enqueues the inode in fast commit list.
372 */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(struct inode *,void *,bool),void * args,int enqueue)373 static int ext4_fc_track_template(
374 handle_t *handle, struct inode *inode,
375 int (*__fc_track_fn)(struct inode *, void *, bool),
376 void *args, int enqueue)
377 {
378 bool update = false;
379 struct ext4_inode_info *ei = EXT4_I(inode);
380 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
381 tid_t tid = 0;
382 int ret;
383
384 tid = handle->h_transaction->t_tid;
385 mutex_lock(&ei->i_fc_lock);
386 if (tid == ei->i_sync_tid) {
387 update = true;
388 } else {
389 ext4_fc_reset_inode(inode);
390 ei->i_sync_tid = tid;
391 }
392 ret = __fc_track_fn(inode, args, update);
393 mutex_unlock(&ei->i_fc_lock);
394
395 if (!enqueue)
396 return ret;
397
398 spin_lock(&sbi->s_fc_lock);
399 if (list_empty(&EXT4_I(inode)->i_fc_list))
400 list_add_tail(&EXT4_I(inode)->i_fc_list,
401 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 &sbi->s_fc_q[FC_Q_STAGING] :
404 &sbi->s_fc_q[FC_Q_MAIN]);
405 spin_unlock(&sbi->s_fc_lock);
406
407 return ret;
408 }
409
410 struct __track_dentry_update_args {
411 struct dentry *dentry;
412 int op;
413 };
414
415 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(struct inode * inode,void * arg,bool update)416 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
417 {
418 struct ext4_fc_dentry_update *node;
419 struct ext4_inode_info *ei = EXT4_I(inode);
420 struct __track_dentry_update_args *dentry_update =
421 (struct __track_dentry_update_args *)arg;
422 struct dentry *dentry = dentry_update->dentry;
423 struct inode *dir = dentry->d_parent->d_inode;
424 struct super_block *sb = inode->i_sb;
425 struct ext4_sb_info *sbi = EXT4_SB(sb);
426
427 mutex_unlock(&ei->i_fc_lock);
428
429 if (IS_ENCRYPTED(dir)) {
430 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
431 NULL);
432 mutex_lock(&ei->i_fc_lock);
433 return -EOPNOTSUPP;
434 }
435
436 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
437 if (!node) {
438 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
439 mutex_lock(&ei->i_fc_lock);
440 return -ENOMEM;
441 }
442
443 node->fcd_op = dentry_update->op;
444 node->fcd_parent = dir->i_ino;
445 node->fcd_ino = inode->i_ino;
446 if (dentry->d_name.len > DNAME_INLINE_LEN) {
447 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
448 if (!node->fcd_name.name) {
449 kmem_cache_free(ext4_fc_dentry_cachep, node);
450 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
451 mutex_lock(&ei->i_fc_lock);
452 return -ENOMEM;
453 }
454 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
455 dentry->d_name.len);
456 } else {
457 memcpy(node->fcd_iname, dentry->d_name.name,
458 dentry->d_name.len);
459 node->fcd_name.name = node->fcd_iname;
460 }
461 node->fcd_name.len = dentry->d_name.len;
462 INIT_LIST_HEAD(&node->fcd_dilist);
463 spin_lock(&sbi->s_fc_lock);
464 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
465 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
466 list_add_tail(&node->fcd_list,
467 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
468 else
469 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
470
471 /*
472 * This helps us keep a track of all fc_dentry updates which is part of
473 * this ext4 inode. So in case the inode is getting unlinked, before
474 * even we get a chance to fsync, we could remove all fc_dentry
475 * references while evicting the inode in ext4_fc_del().
476 * Also with this, we don't need to loop over all the inodes in
477 * sbi->s_fc_q to get the corresponding inode in
478 * ext4_fc_commit_dentry_updates().
479 */
480 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
481 WARN_ON(!list_empty(&ei->i_fc_dilist));
482 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
483 }
484 spin_unlock(&sbi->s_fc_lock);
485 mutex_lock(&ei->i_fc_lock);
486
487 return 0;
488 }
489
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)490 void __ext4_fc_track_unlink(handle_t *handle,
491 struct inode *inode, struct dentry *dentry)
492 {
493 struct __track_dentry_update_args args;
494 int ret;
495
496 args.dentry = dentry;
497 args.op = EXT4_FC_TAG_UNLINK;
498
499 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
500 (void *)&args, 0);
501 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
502 }
503
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)504 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
505 {
506 struct inode *inode = d_inode(dentry);
507
508 if (ext4_fc_disabled(inode->i_sb))
509 return;
510
511 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
512 return;
513
514 __ext4_fc_track_unlink(handle, inode, dentry);
515 }
516
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)517 void __ext4_fc_track_link(handle_t *handle,
518 struct inode *inode, struct dentry *dentry)
519 {
520 struct __track_dentry_update_args args;
521 int ret;
522
523 args.dentry = dentry;
524 args.op = EXT4_FC_TAG_LINK;
525
526 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
527 (void *)&args, 0);
528 trace_ext4_fc_track_link(handle, inode, dentry, ret);
529 }
530
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)531 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
532 {
533 struct inode *inode = d_inode(dentry);
534
535 if (ext4_fc_disabled(inode->i_sb))
536 return;
537
538 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
539 return;
540
541 __ext4_fc_track_link(handle, inode, dentry);
542 }
543
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)544 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
545 struct dentry *dentry)
546 {
547 struct __track_dentry_update_args args;
548 int ret;
549
550 args.dentry = dentry;
551 args.op = EXT4_FC_TAG_CREAT;
552
553 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
554 (void *)&args, 0);
555 trace_ext4_fc_track_create(handle, inode, dentry, ret);
556 }
557
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)558 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
559 {
560 struct inode *inode = d_inode(dentry);
561
562 if (ext4_fc_disabled(inode->i_sb))
563 return;
564
565 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
566 return;
567
568 __ext4_fc_track_create(handle, inode, dentry);
569 }
570
571 /* __track_fn for inode tracking */
__track_inode(struct inode * inode,void * arg,bool update)572 static int __track_inode(struct inode *inode, void *arg, bool update)
573 {
574 if (update)
575 return -EEXIST;
576
577 EXT4_I(inode)->i_fc_lblk_len = 0;
578
579 return 0;
580 }
581
ext4_fc_track_inode(handle_t * handle,struct inode * inode)582 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
583 {
584 int ret;
585
586 if (S_ISDIR(inode->i_mode))
587 return;
588
589 if (ext4_fc_disabled(inode->i_sb))
590 return;
591
592 if (ext4_should_journal_data(inode)) {
593 ext4_fc_mark_ineligible(inode->i_sb,
594 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
595 return;
596 }
597
598 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
599 return;
600
601 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
602 trace_ext4_fc_track_inode(handle, inode, ret);
603 }
604
605 struct __track_range_args {
606 ext4_lblk_t start, end;
607 };
608
609 /* __track_fn for tracking data updates */
__track_range(struct inode * inode,void * arg,bool update)610 static int __track_range(struct inode *inode, void *arg, bool update)
611 {
612 struct ext4_inode_info *ei = EXT4_I(inode);
613 ext4_lblk_t oldstart;
614 struct __track_range_args *__arg =
615 (struct __track_range_args *)arg;
616
617 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
618 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
619 return -ECANCELED;
620 }
621
622 oldstart = ei->i_fc_lblk_start;
623
624 if (update && ei->i_fc_lblk_len > 0) {
625 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
626 ei->i_fc_lblk_len =
627 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
628 ei->i_fc_lblk_start + 1;
629 } else {
630 ei->i_fc_lblk_start = __arg->start;
631 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
632 }
633
634 return 0;
635 }
636
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)637 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
638 ext4_lblk_t end)
639 {
640 struct __track_range_args args;
641 int ret;
642
643 if (S_ISDIR(inode->i_mode))
644 return;
645
646 if (ext4_fc_disabled(inode->i_sb))
647 return;
648
649 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
650 return;
651
652 if (ext4_has_inline_data(inode)) {
653 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
654 handle);
655 return;
656 }
657
658 args.start = start;
659 args.end = end;
660
661 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
662
663 trace_ext4_fc_track_range(handle, inode, start, end, ret);
664 }
665
ext4_fc_submit_bh(struct super_block * sb,bool is_tail)666 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
667 {
668 blk_opf_t write_flags = REQ_SYNC;
669 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
670
671 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
672 if (test_opt(sb, BARRIER) && is_tail)
673 write_flags |= REQ_FUA | REQ_PREFLUSH;
674 lock_buffer(bh);
675 set_buffer_dirty(bh);
676 set_buffer_uptodate(bh);
677 bh->b_end_io = ext4_end_buffer_io_sync;
678 submit_bh(REQ_OP_WRITE | write_flags, bh);
679 EXT4_SB(sb)->s_fc_bh = NULL;
680 }
681
682 /* Ext4 commit path routines */
683
684 /*
685 * Allocate len bytes on a fast commit buffer.
686 *
687 * During the commit time this function is used to manage fast commit
688 * block space. We don't split a fast commit log onto different
689 * blocks. So this function makes sure that if there's not enough space
690 * on the current block, the remaining space in the current block is
691 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
692 * new block is from jbd2 and CRC is updated to reflect the padding
693 * we added.
694 */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)695 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
696 {
697 struct ext4_fc_tl tl;
698 struct ext4_sb_info *sbi = EXT4_SB(sb);
699 struct buffer_head *bh;
700 int bsize = sbi->s_journal->j_blocksize;
701 int ret, off = sbi->s_fc_bytes % bsize;
702 int remaining;
703 u8 *dst;
704
705 /*
706 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
707 * cannot fulfill the request.
708 */
709 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
710 return NULL;
711
712 if (!sbi->s_fc_bh) {
713 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
714 if (ret)
715 return NULL;
716 sbi->s_fc_bh = bh;
717 }
718 dst = sbi->s_fc_bh->b_data + off;
719
720 /*
721 * Allocate the bytes in the current block if we can do so while still
722 * leaving enough space for a PAD tlv.
723 */
724 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
725 if (len <= remaining) {
726 sbi->s_fc_bytes += len;
727 return dst;
728 }
729
730 /*
731 * Else, terminate the current block with a PAD tlv, then allocate a new
732 * block and allocate the bytes at the start of that new block.
733 */
734
735 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
736 tl.fc_len = cpu_to_le16(remaining);
737 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
738 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
739 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
740
741 ext4_fc_submit_bh(sb, false);
742
743 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
744 if (ret)
745 return NULL;
746 sbi->s_fc_bh = bh;
747 sbi->s_fc_bytes += bsize - off + len;
748 return sbi->s_fc_bh->b_data;
749 }
750
751 /*
752 * Complete a fast commit by writing tail tag.
753 *
754 * Writing tail tag marks the end of a fast commit. In order to guarantee
755 * atomicity, after writing tail tag, even if there's space remaining
756 * in the block, next commit shouldn't use it. That's why tail tag
757 * has the length as that of the remaining space on the block.
758 */
ext4_fc_write_tail(struct super_block * sb,u32 crc)759 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
760 {
761 struct ext4_sb_info *sbi = EXT4_SB(sb);
762 struct ext4_fc_tl tl;
763 struct ext4_fc_tail tail;
764 int off, bsize = sbi->s_journal->j_blocksize;
765 u8 *dst;
766
767 /*
768 * ext4_fc_reserve_space takes care of allocating an extra block if
769 * there's no enough space on this block for accommodating this tail.
770 */
771 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
772 if (!dst)
773 return -ENOSPC;
774
775 off = sbi->s_fc_bytes % bsize;
776
777 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
778 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
779 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
780
781 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
782 dst += EXT4_FC_TAG_BASE_LEN;
783 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
784 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
785 dst += sizeof(tail.fc_tid);
786 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
787 dst - (u8 *)sbi->s_fc_bh->b_data);
788 tail.fc_crc = cpu_to_le32(crc);
789 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
790 dst += sizeof(tail.fc_crc);
791 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
792
793 ext4_fc_submit_bh(sb, true);
794
795 return 0;
796 }
797
798 /*
799 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
800 * Returns false if there's not enough space.
801 */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)802 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
803 u32 *crc)
804 {
805 struct ext4_fc_tl tl;
806 u8 *dst;
807
808 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
809 if (!dst)
810 return false;
811
812 tl.fc_tag = cpu_to_le16(tag);
813 tl.fc_len = cpu_to_le16(len);
814
815 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
816 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
817
818 return true;
819 }
820
821 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u32 * crc,struct ext4_fc_dentry_update * fc_dentry)822 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
823 struct ext4_fc_dentry_update *fc_dentry)
824 {
825 struct ext4_fc_dentry_info fcd;
826 struct ext4_fc_tl tl;
827 int dlen = fc_dentry->fcd_name.len;
828 u8 *dst = ext4_fc_reserve_space(sb,
829 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
830
831 if (!dst)
832 return false;
833
834 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
835 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
836 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
837 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
838 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
839 dst += EXT4_FC_TAG_BASE_LEN;
840 memcpy(dst, &fcd, sizeof(fcd));
841 dst += sizeof(fcd);
842 memcpy(dst, fc_dentry->fcd_name.name, dlen);
843
844 return true;
845 }
846
847 /*
848 * Writes inode in the fast commit space under TLV with tag @tag.
849 * Returns 0 on success, error on failure.
850 */
ext4_fc_write_inode(struct inode * inode,u32 * crc)851 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
852 {
853 struct ext4_inode_info *ei = EXT4_I(inode);
854 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
855 int ret;
856 struct ext4_iloc iloc;
857 struct ext4_fc_inode fc_inode;
858 struct ext4_fc_tl tl;
859 u8 *dst;
860
861 ret = ext4_get_inode_loc(inode, &iloc);
862 if (ret)
863 return ret;
864
865 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
866 inode_len = EXT4_INODE_SIZE(inode->i_sb);
867 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
868 inode_len += ei->i_extra_isize;
869
870 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
871 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
872 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
873
874 ret = -ECANCELED;
875 dst = ext4_fc_reserve_space(inode->i_sb,
876 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
877 if (!dst)
878 goto err;
879
880 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
881 dst += EXT4_FC_TAG_BASE_LEN;
882 memcpy(dst, &fc_inode, sizeof(fc_inode));
883 dst += sizeof(fc_inode);
884 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
885 ret = 0;
886 err:
887 brelse(iloc.bh);
888 return ret;
889 }
890
891 /*
892 * Writes updated data ranges for the inode in question. Updates CRC.
893 * Returns 0 on success, error otherwise.
894 */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)895 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
896 {
897 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
898 struct ext4_inode_info *ei = EXT4_I(inode);
899 struct ext4_map_blocks map;
900 struct ext4_fc_add_range fc_ext;
901 struct ext4_fc_del_range lrange;
902 struct ext4_extent *ex;
903 int ret;
904
905 mutex_lock(&ei->i_fc_lock);
906 if (ei->i_fc_lblk_len == 0) {
907 mutex_unlock(&ei->i_fc_lock);
908 return 0;
909 }
910 old_blk_size = ei->i_fc_lblk_start;
911 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
912 ei->i_fc_lblk_len = 0;
913 mutex_unlock(&ei->i_fc_lock);
914
915 cur_lblk_off = old_blk_size;
916 ext4_debug("will try writing %d to %d for inode %ld\n",
917 cur_lblk_off, new_blk_size, inode->i_ino);
918
919 while (cur_lblk_off <= new_blk_size) {
920 map.m_lblk = cur_lblk_off;
921 map.m_len = new_blk_size - cur_lblk_off + 1;
922 ret = ext4_map_blocks(NULL, inode, &map, 0);
923 if (ret < 0)
924 return -ECANCELED;
925
926 if (map.m_len == 0) {
927 cur_lblk_off++;
928 continue;
929 }
930
931 if (ret == 0) {
932 lrange.fc_ino = cpu_to_le32(inode->i_ino);
933 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
934 lrange.fc_len = cpu_to_le32(map.m_len);
935 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
936 sizeof(lrange), (u8 *)&lrange, crc))
937 return -ENOSPC;
938 } else {
939 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
940 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
941
942 /* Limit the number of blocks in one extent */
943 map.m_len = min(max, map.m_len);
944
945 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
946 ex = (struct ext4_extent *)&fc_ext.fc_ex;
947 ex->ee_block = cpu_to_le32(map.m_lblk);
948 ex->ee_len = cpu_to_le16(map.m_len);
949 ext4_ext_store_pblock(ex, map.m_pblk);
950 if (map.m_flags & EXT4_MAP_UNWRITTEN)
951 ext4_ext_mark_unwritten(ex);
952 else
953 ext4_ext_mark_initialized(ex);
954 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
955 sizeof(fc_ext), (u8 *)&fc_ext, crc))
956 return -ENOSPC;
957 }
958
959 cur_lblk_off += map.m_len;
960 }
961
962 return 0;
963 }
964
965
966 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)967 static int ext4_fc_submit_inode_data_all(journal_t *journal)
968 {
969 struct super_block *sb = journal->j_private;
970 struct ext4_sb_info *sbi = EXT4_SB(sb);
971 struct ext4_inode_info *ei;
972 int ret = 0;
973
974 spin_lock(&sbi->s_fc_lock);
975 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
976 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
977 while (atomic_read(&ei->i_fc_updates)) {
978 DEFINE_WAIT(wait);
979
980 prepare_to_wait(&ei->i_fc_wait, &wait,
981 TASK_UNINTERRUPTIBLE);
982 if (atomic_read(&ei->i_fc_updates)) {
983 spin_unlock(&sbi->s_fc_lock);
984 schedule();
985 spin_lock(&sbi->s_fc_lock);
986 }
987 finish_wait(&ei->i_fc_wait, &wait);
988 }
989 spin_unlock(&sbi->s_fc_lock);
990 ret = jbd2_submit_inode_data(journal, ei->jinode);
991 if (ret)
992 return ret;
993 spin_lock(&sbi->s_fc_lock);
994 }
995 spin_unlock(&sbi->s_fc_lock);
996
997 return ret;
998 }
999
1000 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)1001 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1002 {
1003 struct super_block *sb = journal->j_private;
1004 struct ext4_sb_info *sbi = EXT4_SB(sb);
1005 struct ext4_inode_info *pos, *n;
1006 int ret = 0;
1007
1008 spin_lock(&sbi->s_fc_lock);
1009 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1010 if (!ext4_test_inode_state(&pos->vfs_inode,
1011 EXT4_STATE_FC_COMMITTING))
1012 continue;
1013 spin_unlock(&sbi->s_fc_lock);
1014
1015 ret = jbd2_wait_inode_data(journal, pos->jinode);
1016 if (ret)
1017 return ret;
1018 spin_lock(&sbi->s_fc_lock);
1019 }
1020 spin_unlock(&sbi->s_fc_lock);
1021
1022 return 0;
1023 }
1024
1025 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)1026 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1027 __acquires(&sbi->s_fc_lock)
1028 __releases(&sbi->s_fc_lock)
1029 {
1030 struct super_block *sb = journal->j_private;
1031 struct ext4_sb_info *sbi = EXT4_SB(sb);
1032 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1033 struct inode *inode;
1034 struct ext4_inode_info *ei;
1035 int ret;
1036
1037 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1038 return 0;
1039 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1040 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1041 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1042 spin_unlock(&sbi->s_fc_lock);
1043 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1044 ret = -ENOSPC;
1045 goto lock_and_exit;
1046 }
1047 spin_lock(&sbi->s_fc_lock);
1048 continue;
1049 }
1050 /*
1051 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1052 * corresponding inode pointer
1053 */
1054 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1055 ei = list_first_entry(&fc_dentry->fcd_dilist,
1056 struct ext4_inode_info, i_fc_dilist);
1057 inode = &ei->vfs_inode;
1058 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1059
1060 spin_unlock(&sbi->s_fc_lock);
1061
1062 /*
1063 * We first write the inode and then the create dirent. This
1064 * allows the recovery code to create an unnamed inode first
1065 * and then link it to a directory entry. This allows us
1066 * to use namei.c routines almost as is and simplifies
1067 * the recovery code.
1068 */
1069 ret = ext4_fc_write_inode(inode, crc);
1070 if (ret)
1071 goto lock_and_exit;
1072
1073 ret = ext4_fc_write_inode_data(inode, crc);
1074 if (ret)
1075 goto lock_and_exit;
1076
1077 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1078 ret = -ENOSPC;
1079 goto lock_and_exit;
1080 }
1081
1082 spin_lock(&sbi->s_fc_lock);
1083 }
1084 return 0;
1085 lock_and_exit:
1086 spin_lock(&sbi->s_fc_lock);
1087 return ret;
1088 }
1089
ext4_fc_perform_commit(journal_t * journal)1090 static int ext4_fc_perform_commit(journal_t *journal)
1091 {
1092 struct super_block *sb = journal->j_private;
1093 struct ext4_sb_info *sbi = EXT4_SB(sb);
1094 struct ext4_inode_info *iter;
1095 struct ext4_fc_head head;
1096 struct inode *inode;
1097 struct blk_plug plug;
1098 int ret = 0;
1099 u32 crc = 0;
1100
1101 ret = ext4_fc_submit_inode_data_all(journal);
1102 if (ret)
1103 return ret;
1104
1105 ret = ext4_fc_wait_inode_data_all(journal);
1106 if (ret)
1107 return ret;
1108
1109 /*
1110 * If file system device is different from journal device, issue a cache
1111 * flush before we start writing fast commit blocks.
1112 */
1113 if (journal->j_fs_dev != journal->j_dev)
1114 blkdev_issue_flush(journal->j_fs_dev);
1115
1116 blk_start_plug(&plug);
1117 if (sbi->s_fc_bytes == 0) {
1118 /*
1119 * Add a head tag only if this is the first fast commit
1120 * in this TID.
1121 */
1122 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1123 head.fc_tid = cpu_to_le32(
1124 sbi->s_journal->j_running_transaction->t_tid);
1125 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1126 (u8 *)&head, &crc)) {
1127 ret = -ENOSPC;
1128 goto out;
1129 }
1130 }
1131
1132 spin_lock(&sbi->s_fc_lock);
1133 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1134 if (ret) {
1135 spin_unlock(&sbi->s_fc_lock);
1136 goto out;
1137 }
1138
1139 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1140 inode = &iter->vfs_inode;
1141 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1142 continue;
1143
1144 spin_unlock(&sbi->s_fc_lock);
1145 ret = ext4_fc_write_inode_data(inode, &crc);
1146 if (ret)
1147 goto out;
1148 ret = ext4_fc_write_inode(inode, &crc);
1149 if (ret)
1150 goto out;
1151 spin_lock(&sbi->s_fc_lock);
1152 }
1153 spin_unlock(&sbi->s_fc_lock);
1154
1155 ret = ext4_fc_write_tail(sb, crc);
1156
1157 out:
1158 blk_finish_plug(&plug);
1159 return ret;
1160 }
1161
ext4_fc_update_stats(struct super_block * sb,int status,u64 commit_time,int nblks,tid_t commit_tid)1162 static void ext4_fc_update_stats(struct super_block *sb, int status,
1163 u64 commit_time, int nblks, tid_t commit_tid)
1164 {
1165 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1166
1167 ext4_debug("Fast commit ended with status = %d for tid %u",
1168 status, commit_tid);
1169 if (status == EXT4_FC_STATUS_OK) {
1170 stats->fc_num_commits++;
1171 stats->fc_numblks += nblks;
1172 if (likely(stats->s_fc_avg_commit_time))
1173 stats->s_fc_avg_commit_time =
1174 (commit_time +
1175 stats->s_fc_avg_commit_time * 3) / 4;
1176 else
1177 stats->s_fc_avg_commit_time = commit_time;
1178 } else if (status == EXT4_FC_STATUS_FAILED ||
1179 status == EXT4_FC_STATUS_INELIGIBLE) {
1180 if (status == EXT4_FC_STATUS_FAILED)
1181 stats->fc_failed_commits++;
1182 stats->fc_ineligible_commits++;
1183 } else {
1184 stats->fc_skipped_commits++;
1185 }
1186 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1187 }
1188
1189 /*
1190 * The main commit entry point. Performs a fast commit for transaction
1191 * commit_tid if needed. If it's not possible to perform a fast commit
1192 * due to various reasons, we fall back to full commit. Returns 0
1193 * on success, error otherwise.
1194 */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1195 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1196 {
1197 struct super_block *sb = journal->j_private;
1198 struct ext4_sb_info *sbi = EXT4_SB(sb);
1199 int nblks = 0, ret, bsize = journal->j_blocksize;
1200 int subtid = atomic_read(&sbi->s_fc_subtid);
1201 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1202 ktime_t start_time, commit_time;
1203
1204 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1205 return jbd2_complete_transaction(journal, commit_tid);
1206
1207 trace_ext4_fc_commit_start(sb, commit_tid);
1208
1209 start_time = ktime_get();
1210
1211 restart_fc:
1212 ret = jbd2_fc_begin_commit(journal, commit_tid);
1213 if (ret == -EALREADY) {
1214 /* There was an ongoing commit, check if we need to restart */
1215 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1216 commit_tid > journal->j_commit_sequence)
1217 goto restart_fc;
1218 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1219 commit_tid);
1220 return 0;
1221 } else if (ret) {
1222 /*
1223 * Commit couldn't start. Just update stats and perform a
1224 * full commit.
1225 */
1226 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1227 commit_tid);
1228 return jbd2_complete_transaction(journal, commit_tid);
1229 }
1230
1231 /*
1232 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1233 * if we are fast commit ineligible.
1234 */
1235 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1236 status = EXT4_FC_STATUS_INELIGIBLE;
1237 goto fallback;
1238 }
1239
1240 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1241 ret = ext4_fc_perform_commit(journal);
1242 if (ret < 0) {
1243 status = EXT4_FC_STATUS_FAILED;
1244 goto fallback;
1245 }
1246 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1247 ret = jbd2_fc_wait_bufs(journal, nblks);
1248 if (ret < 0) {
1249 status = EXT4_FC_STATUS_FAILED;
1250 goto fallback;
1251 }
1252 atomic_inc(&sbi->s_fc_subtid);
1253 ret = jbd2_fc_end_commit(journal);
1254 /*
1255 * weight the commit time higher than the average time so we
1256 * don't react too strongly to vast changes in the commit time
1257 */
1258 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1259 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1260 return ret;
1261
1262 fallback:
1263 ret = jbd2_fc_end_commit_fallback(journal);
1264 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1265 return ret;
1266 }
1267
1268 /*
1269 * Fast commit cleanup routine. This is called after every fast commit and
1270 * full commit. full is true if we are called after a full commit.
1271 */
ext4_fc_cleanup(journal_t * journal,int full,tid_t tid)1272 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1273 {
1274 struct super_block *sb = journal->j_private;
1275 struct ext4_sb_info *sbi = EXT4_SB(sb);
1276 struct ext4_inode_info *iter, *iter_n;
1277 struct ext4_fc_dentry_update *fc_dentry;
1278
1279 if (full && sbi->s_fc_bh)
1280 sbi->s_fc_bh = NULL;
1281
1282 trace_ext4_fc_cleanup(journal, full, tid);
1283 jbd2_fc_release_bufs(journal);
1284
1285 spin_lock(&sbi->s_fc_lock);
1286 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1287 i_fc_list) {
1288 list_del_init(&iter->i_fc_list);
1289 ext4_clear_inode_state(&iter->vfs_inode,
1290 EXT4_STATE_FC_COMMITTING);
1291 if (iter->i_sync_tid <= tid)
1292 ext4_fc_reset_inode(&iter->vfs_inode);
1293 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1294 smp_mb();
1295 #if (BITS_PER_LONG < 64)
1296 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1297 #else
1298 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1299 #endif
1300 }
1301
1302 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1303 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1304 struct ext4_fc_dentry_update,
1305 fcd_list);
1306 list_del_init(&fc_dentry->fcd_list);
1307 list_del_init(&fc_dentry->fcd_dilist);
1308 spin_unlock(&sbi->s_fc_lock);
1309
1310 if (fc_dentry->fcd_name.name &&
1311 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1312 kfree(fc_dentry->fcd_name.name);
1313 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1314 spin_lock(&sbi->s_fc_lock);
1315 }
1316
1317 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1318 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1319 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1320 &sbi->s_fc_q[FC_Q_MAIN]);
1321
1322 if (tid >= sbi->s_fc_ineligible_tid) {
1323 sbi->s_fc_ineligible_tid = 0;
1324 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1325 }
1326
1327 if (full)
1328 sbi->s_fc_bytes = 0;
1329 spin_unlock(&sbi->s_fc_lock);
1330 trace_ext4_fc_stats(sb);
1331 }
1332
1333 /* Ext4 Replay Path Routines */
1334
1335 /* Helper struct for dentry replay routines */
1336 struct dentry_info_args {
1337 int parent_ino, dname_len, ino, inode_len;
1338 char *dname;
1339 };
1340
1341 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1342 struct ext4_fc_tl_mem {
1343 u16 fc_tag;
1344 u16 fc_len;
1345 };
1346
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl_mem * tl,u8 * val)1347 static inline void tl_to_darg(struct dentry_info_args *darg,
1348 struct ext4_fc_tl_mem *tl, u8 *val)
1349 {
1350 struct ext4_fc_dentry_info fcd;
1351
1352 memcpy(&fcd, val, sizeof(fcd));
1353
1354 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1355 darg->ino = le32_to_cpu(fcd.fc_ino);
1356 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1357 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1358 }
1359
ext4_fc_get_tl(struct ext4_fc_tl_mem * tl,u8 * val)1360 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1361 {
1362 struct ext4_fc_tl tl_disk;
1363
1364 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1365 tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1366 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1367 }
1368
1369 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1370 static int ext4_fc_replay_unlink(struct super_block *sb,
1371 struct ext4_fc_tl_mem *tl, u8 *val)
1372 {
1373 struct inode *inode, *old_parent;
1374 struct qstr entry;
1375 struct dentry_info_args darg;
1376 int ret = 0;
1377
1378 tl_to_darg(&darg, tl, val);
1379
1380 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1381 darg.parent_ino, darg.dname_len);
1382
1383 entry.name = darg.dname;
1384 entry.len = darg.dname_len;
1385 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1386
1387 if (IS_ERR(inode)) {
1388 ext4_debug("Inode %d not found", darg.ino);
1389 return 0;
1390 }
1391
1392 old_parent = ext4_iget(sb, darg.parent_ino,
1393 EXT4_IGET_NORMAL);
1394 if (IS_ERR(old_parent)) {
1395 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1396 iput(inode);
1397 return 0;
1398 }
1399
1400 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1401 /* -ENOENT ok coz it might not exist anymore. */
1402 if (ret == -ENOENT)
1403 ret = 0;
1404 iput(old_parent);
1405 iput(inode);
1406 return ret;
1407 }
1408
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1409 static int ext4_fc_replay_link_internal(struct super_block *sb,
1410 struct dentry_info_args *darg,
1411 struct inode *inode)
1412 {
1413 struct inode *dir = NULL;
1414 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1415 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1416 int ret = 0;
1417
1418 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1419 if (IS_ERR(dir)) {
1420 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1421 dir = NULL;
1422 goto out;
1423 }
1424
1425 dentry_dir = d_obtain_alias(dir);
1426 if (IS_ERR(dentry_dir)) {
1427 ext4_debug("Failed to obtain dentry");
1428 dentry_dir = NULL;
1429 goto out;
1430 }
1431
1432 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1433 if (!dentry_inode) {
1434 ext4_debug("Inode dentry not created.");
1435 ret = -ENOMEM;
1436 goto out;
1437 }
1438
1439 ret = __ext4_link(dir, inode, dentry_inode);
1440 /*
1441 * It's possible that link already existed since data blocks
1442 * for the dir in question got persisted before we crashed OR
1443 * we replayed this tag and crashed before the entire replay
1444 * could complete.
1445 */
1446 if (ret && ret != -EEXIST) {
1447 ext4_debug("Failed to link\n");
1448 goto out;
1449 }
1450
1451 ret = 0;
1452 out:
1453 if (dentry_dir) {
1454 d_drop(dentry_dir);
1455 dput(dentry_dir);
1456 } else if (dir) {
1457 iput(dir);
1458 }
1459 if (dentry_inode) {
1460 d_drop(dentry_inode);
1461 dput(dentry_inode);
1462 }
1463
1464 return ret;
1465 }
1466
1467 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1468 static int ext4_fc_replay_link(struct super_block *sb,
1469 struct ext4_fc_tl_mem *tl, u8 *val)
1470 {
1471 struct inode *inode;
1472 struct dentry_info_args darg;
1473 int ret = 0;
1474
1475 tl_to_darg(&darg, tl, val);
1476 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1477 darg.parent_ino, darg.dname_len);
1478
1479 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1480 if (IS_ERR(inode)) {
1481 ext4_debug("Inode not found.");
1482 return 0;
1483 }
1484
1485 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1486 iput(inode);
1487 return ret;
1488 }
1489
1490 /*
1491 * Record all the modified inodes during replay. We use this later to setup
1492 * block bitmaps correctly.
1493 */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1494 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1495 {
1496 struct ext4_fc_replay_state *state;
1497 int i;
1498
1499 state = &EXT4_SB(sb)->s_fc_replay_state;
1500 for (i = 0; i < state->fc_modified_inodes_used; i++)
1501 if (state->fc_modified_inodes[i] == ino)
1502 return 0;
1503 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1504 int *fc_modified_inodes;
1505
1506 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1507 sizeof(int) * (state->fc_modified_inodes_size +
1508 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1509 GFP_KERNEL);
1510 if (!fc_modified_inodes)
1511 return -ENOMEM;
1512 state->fc_modified_inodes = fc_modified_inodes;
1513 state->fc_modified_inodes_size +=
1514 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1515 }
1516 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1517 return 0;
1518 }
1519
1520 /*
1521 * Inode replay function
1522 */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1523 static int ext4_fc_replay_inode(struct super_block *sb,
1524 struct ext4_fc_tl_mem *tl, u8 *val)
1525 {
1526 struct ext4_fc_inode fc_inode;
1527 struct ext4_inode *raw_inode;
1528 struct ext4_inode *raw_fc_inode;
1529 struct inode *inode = NULL;
1530 struct ext4_iloc iloc;
1531 int inode_len, ino, ret, tag = tl->fc_tag;
1532 struct ext4_extent_header *eh;
1533 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1534
1535 memcpy(&fc_inode, val, sizeof(fc_inode));
1536
1537 ino = le32_to_cpu(fc_inode.fc_ino);
1538 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1539
1540 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1541 if (!IS_ERR(inode)) {
1542 ext4_ext_clear_bb(inode);
1543 iput(inode);
1544 }
1545 inode = NULL;
1546
1547 ret = ext4_fc_record_modified_inode(sb, ino);
1548 if (ret)
1549 goto out;
1550
1551 raw_fc_inode = (struct ext4_inode *)
1552 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1553 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1554 if (ret)
1555 goto out;
1556
1557 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1558 raw_inode = ext4_raw_inode(&iloc);
1559
1560 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1561 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1562 inode_len - off_gen);
1563 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1564 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1565 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1566 memset(eh, 0, sizeof(*eh));
1567 eh->eh_magic = EXT4_EXT_MAGIC;
1568 eh->eh_max = cpu_to_le16(
1569 (sizeof(raw_inode->i_block) -
1570 sizeof(struct ext4_extent_header))
1571 / sizeof(struct ext4_extent));
1572 }
1573 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1574 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1575 sizeof(raw_inode->i_block));
1576 }
1577
1578 /* Immediately update the inode on disk. */
1579 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1580 if (ret)
1581 goto out;
1582 ret = sync_dirty_buffer(iloc.bh);
1583 if (ret)
1584 goto out;
1585 ret = ext4_mark_inode_used(sb, ino);
1586 if (ret)
1587 goto out;
1588
1589 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1590 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1591 if (IS_ERR(inode)) {
1592 ext4_debug("Inode not found.");
1593 return -EFSCORRUPTED;
1594 }
1595
1596 /*
1597 * Our allocator could have made different decisions than before
1598 * crashing. This should be fixed but until then, we calculate
1599 * the number of blocks the inode.
1600 */
1601 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1602 ext4_ext_replay_set_iblocks(inode);
1603
1604 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1605 ext4_reset_inode_seed(inode);
1606
1607 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1608 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1609 sync_dirty_buffer(iloc.bh);
1610 brelse(iloc.bh);
1611 out:
1612 iput(inode);
1613 if (!ret)
1614 blkdev_issue_flush(sb->s_bdev);
1615
1616 return 0;
1617 }
1618
1619 /*
1620 * Dentry create replay function.
1621 *
1622 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1623 * inode for which we are trying to create a dentry here, should already have
1624 * been replayed before we start here.
1625 */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1626 static int ext4_fc_replay_create(struct super_block *sb,
1627 struct ext4_fc_tl_mem *tl, u8 *val)
1628 {
1629 int ret = 0;
1630 struct inode *inode = NULL;
1631 struct inode *dir = NULL;
1632 struct dentry_info_args darg;
1633
1634 tl_to_darg(&darg, tl, val);
1635
1636 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1637 darg.parent_ino, darg.dname_len);
1638
1639 /* This takes care of update group descriptor and other metadata */
1640 ret = ext4_mark_inode_used(sb, darg.ino);
1641 if (ret)
1642 goto out;
1643
1644 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1645 if (IS_ERR(inode)) {
1646 ext4_debug("inode %d not found.", darg.ino);
1647 inode = NULL;
1648 ret = -EINVAL;
1649 goto out;
1650 }
1651
1652 if (S_ISDIR(inode->i_mode)) {
1653 /*
1654 * If we are creating a directory, we need to make sure that the
1655 * dot and dot dot dirents are setup properly.
1656 */
1657 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1658 if (IS_ERR(dir)) {
1659 ext4_debug("Dir %d not found.", darg.ino);
1660 goto out;
1661 }
1662 ret = ext4_init_new_dir(NULL, dir, inode);
1663 iput(dir);
1664 if (ret) {
1665 ret = 0;
1666 goto out;
1667 }
1668 }
1669 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1670 if (ret)
1671 goto out;
1672 set_nlink(inode, 1);
1673 ext4_mark_inode_dirty(NULL, inode);
1674 out:
1675 iput(inode);
1676 return ret;
1677 }
1678
1679 /*
1680 * Record physical disk regions which are in use as per fast commit area,
1681 * and used by inodes during replay phase. Our simple replay phase
1682 * allocator excludes these regions from allocation.
1683 */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1684 int ext4_fc_record_regions(struct super_block *sb, int ino,
1685 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1686 {
1687 struct ext4_fc_replay_state *state;
1688 struct ext4_fc_alloc_region *region;
1689
1690 state = &EXT4_SB(sb)->s_fc_replay_state;
1691 /*
1692 * during replay phase, the fc_regions_valid may not same as
1693 * fc_regions_used, update it when do new additions.
1694 */
1695 if (replay && state->fc_regions_used != state->fc_regions_valid)
1696 state->fc_regions_used = state->fc_regions_valid;
1697 if (state->fc_regions_used == state->fc_regions_size) {
1698 struct ext4_fc_alloc_region *fc_regions;
1699
1700 fc_regions = krealloc(state->fc_regions,
1701 sizeof(struct ext4_fc_alloc_region) *
1702 (state->fc_regions_size +
1703 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1704 GFP_KERNEL);
1705 if (!fc_regions)
1706 return -ENOMEM;
1707 state->fc_regions_size +=
1708 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1709 state->fc_regions = fc_regions;
1710 }
1711 region = &state->fc_regions[state->fc_regions_used++];
1712 region->ino = ino;
1713 region->lblk = lblk;
1714 region->pblk = pblk;
1715 region->len = len;
1716
1717 if (replay)
1718 state->fc_regions_valid++;
1719
1720 return 0;
1721 }
1722
1723 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1724 static int ext4_fc_replay_add_range(struct super_block *sb,
1725 struct ext4_fc_tl_mem *tl, u8 *val)
1726 {
1727 struct ext4_fc_add_range fc_add_ex;
1728 struct ext4_extent newex, *ex;
1729 struct inode *inode;
1730 ext4_lblk_t start, cur;
1731 int remaining, len;
1732 ext4_fsblk_t start_pblk;
1733 struct ext4_map_blocks map;
1734 struct ext4_ext_path *path = NULL;
1735 int ret;
1736
1737 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1738 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1739
1740 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1741 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1742 ext4_ext_get_actual_len(ex));
1743
1744 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1745 if (IS_ERR(inode)) {
1746 ext4_debug("Inode not found.");
1747 return 0;
1748 }
1749
1750 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1751 if (ret)
1752 goto out;
1753
1754 start = le32_to_cpu(ex->ee_block);
1755 start_pblk = ext4_ext_pblock(ex);
1756 len = ext4_ext_get_actual_len(ex);
1757
1758 cur = start;
1759 remaining = len;
1760 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1761 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1762 inode->i_ino);
1763
1764 while (remaining > 0) {
1765 map.m_lblk = cur;
1766 map.m_len = remaining;
1767 map.m_pblk = 0;
1768 ret = ext4_map_blocks(NULL, inode, &map, 0);
1769
1770 if (ret < 0)
1771 goto out;
1772
1773 if (ret == 0) {
1774 /* Range is not mapped */
1775 path = ext4_find_extent(inode, cur, NULL, 0);
1776 if (IS_ERR(path))
1777 goto out;
1778 memset(&newex, 0, sizeof(newex));
1779 newex.ee_block = cpu_to_le32(cur);
1780 ext4_ext_store_pblock(
1781 &newex, start_pblk + cur - start);
1782 newex.ee_len = cpu_to_le16(map.m_len);
1783 if (ext4_ext_is_unwritten(ex))
1784 ext4_ext_mark_unwritten(&newex);
1785 down_write(&EXT4_I(inode)->i_data_sem);
1786 ret = ext4_ext_insert_extent(
1787 NULL, inode, &path, &newex, 0);
1788 up_write((&EXT4_I(inode)->i_data_sem));
1789 ext4_free_ext_path(path);
1790 if (ret)
1791 goto out;
1792 goto next;
1793 }
1794
1795 if (start_pblk + cur - start != map.m_pblk) {
1796 /*
1797 * Logical to physical mapping changed. This can happen
1798 * if this range was removed and then reallocated to
1799 * map to new physical blocks during a fast commit.
1800 */
1801 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1802 ext4_ext_is_unwritten(ex),
1803 start_pblk + cur - start);
1804 if (ret)
1805 goto out;
1806 /*
1807 * Mark the old blocks as free since they aren't used
1808 * anymore. We maintain an array of all the modified
1809 * inodes. In case these blocks are still used at either
1810 * a different logical range in the same inode or in
1811 * some different inode, we will mark them as allocated
1812 * at the end of the FC replay using our array of
1813 * modified inodes.
1814 */
1815 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1816 goto next;
1817 }
1818
1819 /* Range is mapped and needs a state change */
1820 ext4_debug("Converting from %ld to %d %lld",
1821 map.m_flags & EXT4_MAP_UNWRITTEN,
1822 ext4_ext_is_unwritten(ex), map.m_pblk);
1823 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1824 ext4_ext_is_unwritten(ex), map.m_pblk);
1825 if (ret)
1826 goto out;
1827 /*
1828 * We may have split the extent tree while toggling the state.
1829 * Try to shrink the extent tree now.
1830 */
1831 ext4_ext_replay_shrink_inode(inode, start + len);
1832 next:
1833 cur += map.m_len;
1834 remaining -= map.m_len;
1835 }
1836 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1837 sb->s_blocksize_bits);
1838 out:
1839 iput(inode);
1840 return 0;
1841 }
1842
1843 /* Replay DEL_RANGE tag */
1844 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1845 ext4_fc_replay_del_range(struct super_block *sb,
1846 struct ext4_fc_tl_mem *tl, u8 *val)
1847 {
1848 struct inode *inode;
1849 struct ext4_fc_del_range lrange;
1850 struct ext4_map_blocks map;
1851 ext4_lblk_t cur, remaining;
1852 int ret;
1853
1854 memcpy(&lrange, val, sizeof(lrange));
1855 cur = le32_to_cpu(lrange.fc_lblk);
1856 remaining = le32_to_cpu(lrange.fc_len);
1857
1858 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1859 le32_to_cpu(lrange.fc_ino), cur, remaining);
1860
1861 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1862 if (IS_ERR(inode)) {
1863 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1864 return 0;
1865 }
1866
1867 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1868 if (ret)
1869 goto out;
1870
1871 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1872 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1873 le32_to_cpu(lrange.fc_len));
1874 while (remaining > 0) {
1875 map.m_lblk = cur;
1876 map.m_len = remaining;
1877
1878 ret = ext4_map_blocks(NULL, inode, &map, 0);
1879 if (ret < 0)
1880 goto out;
1881 if (ret > 0) {
1882 remaining -= ret;
1883 cur += ret;
1884 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1885 } else {
1886 remaining -= map.m_len;
1887 cur += map.m_len;
1888 }
1889 }
1890
1891 down_write(&EXT4_I(inode)->i_data_sem);
1892 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1893 le32_to_cpu(lrange.fc_lblk) +
1894 le32_to_cpu(lrange.fc_len) - 1);
1895 up_write(&EXT4_I(inode)->i_data_sem);
1896 if (ret)
1897 goto out;
1898 ext4_ext_replay_shrink_inode(inode,
1899 i_size_read(inode) >> sb->s_blocksize_bits);
1900 ext4_mark_inode_dirty(NULL, inode);
1901 out:
1902 iput(inode);
1903 return 0;
1904 }
1905
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1906 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1907 {
1908 struct ext4_fc_replay_state *state;
1909 struct inode *inode;
1910 struct ext4_ext_path *path = NULL;
1911 struct ext4_map_blocks map;
1912 int i, ret, j;
1913 ext4_lblk_t cur, end;
1914
1915 state = &EXT4_SB(sb)->s_fc_replay_state;
1916 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1917 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1918 EXT4_IGET_NORMAL);
1919 if (IS_ERR(inode)) {
1920 ext4_debug("Inode %d not found.",
1921 state->fc_modified_inodes[i]);
1922 continue;
1923 }
1924 cur = 0;
1925 end = EXT_MAX_BLOCKS;
1926 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1927 iput(inode);
1928 continue;
1929 }
1930 while (cur < end) {
1931 map.m_lblk = cur;
1932 map.m_len = end - cur;
1933
1934 ret = ext4_map_blocks(NULL, inode, &map, 0);
1935 if (ret < 0)
1936 break;
1937
1938 if (ret > 0) {
1939 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1940 if (!IS_ERR(path)) {
1941 for (j = 0; j < path->p_depth; j++)
1942 ext4_mb_mark_bb(inode->i_sb,
1943 path[j].p_block, 1, 1);
1944 ext4_free_ext_path(path);
1945 }
1946 cur += ret;
1947 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1948 map.m_len, 1);
1949 } else {
1950 cur = cur + (map.m_len ? map.m_len : 1);
1951 }
1952 }
1953 iput(inode);
1954 }
1955 }
1956
1957 /*
1958 * Check if block is in excluded regions for block allocation. The simple
1959 * allocator that runs during replay phase is calls this function to see
1960 * if it is okay to use a block.
1961 */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1962 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1963 {
1964 int i;
1965 struct ext4_fc_replay_state *state;
1966
1967 state = &EXT4_SB(sb)->s_fc_replay_state;
1968 for (i = 0; i < state->fc_regions_valid; i++) {
1969 if (state->fc_regions[i].ino == 0 ||
1970 state->fc_regions[i].len == 0)
1971 continue;
1972 if (in_range(blk, state->fc_regions[i].pblk,
1973 state->fc_regions[i].len))
1974 return true;
1975 }
1976 return false;
1977 }
1978
1979 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)1980 void ext4_fc_replay_cleanup(struct super_block *sb)
1981 {
1982 struct ext4_sb_info *sbi = EXT4_SB(sb);
1983
1984 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1985 kfree(sbi->s_fc_replay_state.fc_regions);
1986 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1987 }
1988
ext4_fc_value_len_isvalid(struct ext4_sb_info * sbi,int tag,int len)1989 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1990 int tag, int len)
1991 {
1992 switch (tag) {
1993 case EXT4_FC_TAG_ADD_RANGE:
1994 return len == sizeof(struct ext4_fc_add_range);
1995 case EXT4_FC_TAG_DEL_RANGE:
1996 return len == sizeof(struct ext4_fc_del_range);
1997 case EXT4_FC_TAG_CREAT:
1998 case EXT4_FC_TAG_LINK:
1999 case EXT4_FC_TAG_UNLINK:
2000 len -= sizeof(struct ext4_fc_dentry_info);
2001 return len >= 1 && len <= EXT4_NAME_LEN;
2002 case EXT4_FC_TAG_INODE:
2003 len -= sizeof(struct ext4_fc_inode);
2004 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2005 len <= sbi->s_inode_size;
2006 case EXT4_FC_TAG_PAD:
2007 return true; /* padding can have any length */
2008 case EXT4_FC_TAG_TAIL:
2009 return len >= sizeof(struct ext4_fc_tail);
2010 case EXT4_FC_TAG_HEAD:
2011 return len == sizeof(struct ext4_fc_head);
2012 }
2013 return false;
2014 }
2015
2016 /*
2017 * Recovery Scan phase handler
2018 *
2019 * This function is called during the scan phase and is responsible
2020 * for doing following things:
2021 * - Make sure the fast commit area has valid tags for replay
2022 * - Count number of tags that need to be replayed by the replay handler
2023 * - Verify CRC
2024 * - Create a list of excluded blocks for allocation during replay phase
2025 *
2026 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2027 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2028 * to indicate that scan has finished and JBD2 can now start replay phase.
2029 * It returns a negative error to indicate that there was an error. At the end
2030 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2031 * to indicate the number of tags that need to replayed during the replay phase.
2032 */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)2033 static int ext4_fc_replay_scan(journal_t *journal,
2034 struct buffer_head *bh, int off,
2035 tid_t expected_tid)
2036 {
2037 struct super_block *sb = journal->j_private;
2038 struct ext4_sb_info *sbi = EXT4_SB(sb);
2039 struct ext4_fc_replay_state *state;
2040 int ret = JBD2_FC_REPLAY_CONTINUE;
2041 struct ext4_fc_add_range ext;
2042 struct ext4_fc_tl_mem tl;
2043 struct ext4_fc_tail tail;
2044 __u8 *start, *end, *cur, *val;
2045 struct ext4_fc_head head;
2046 struct ext4_extent *ex;
2047
2048 state = &sbi->s_fc_replay_state;
2049
2050 start = (u8 *)bh->b_data;
2051 end = start + journal->j_blocksize;
2052
2053 if (state->fc_replay_expected_off == 0) {
2054 state->fc_cur_tag = 0;
2055 state->fc_replay_num_tags = 0;
2056 state->fc_crc = 0;
2057 state->fc_regions = NULL;
2058 state->fc_regions_valid = state->fc_regions_used =
2059 state->fc_regions_size = 0;
2060 /* Check if we can stop early */
2061 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2062 != EXT4_FC_TAG_HEAD)
2063 return 0;
2064 }
2065
2066 if (off != state->fc_replay_expected_off) {
2067 ret = -EFSCORRUPTED;
2068 goto out_err;
2069 }
2070
2071 state->fc_replay_expected_off++;
2072 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2073 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2074 ext4_fc_get_tl(&tl, cur);
2075 val = cur + EXT4_FC_TAG_BASE_LEN;
2076 if (tl.fc_len > end - val ||
2077 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2078 ret = state->fc_replay_num_tags ?
2079 JBD2_FC_REPLAY_STOP : -ECANCELED;
2080 goto out_err;
2081 }
2082 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2083 tag2str(tl.fc_tag), bh->b_blocknr);
2084 switch (tl.fc_tag) {
2085 case EXT4_FC_TAG_ADD_RANGE:
2086 memcpy(&ext, val, sizeof(ext));
2087 ex = (struct ext4_extent *)&ext.fc_ex;
2088 ret = ext4_fc_record_regions(sb,
2089 le32_to_cpu(ext.fc_ino),
2090 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2091 ext4_ext_get_actual_len(ex), 0);
2092 if (ret < 0)
2093 break;
2094 ret = JBD2_FC_REPLAY_CONTINUE;
2095 fallthrough;
2096 case EXT4_FC_TAG_DEL_RANGE:
2097 case EXT4_FC_TAG_LINK:
2098 case EXT4_FC_TAG_UNLINK:
2099 case EXT4_FC_TAG_CREAT:
2100 case EXT4_FC_TAG_INODE:
2101 case EXT4_FC_TAG_PAD:
2102 state->fc_cur_tag++;
2103 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2104 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2105 break;
2106 case EXT4_FC_TAG_TAIL:
2107 state->fc_cur_tag++;
2108 memcpy(&tail, val, sizeof(tail));
2109 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2110 EXT4_FC_TAG_BASE_LEN +
2111 offsetof(struct ext4_fc_tail,
2112 fc_crc));
2113 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2114 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2115 state->fc_replay_num_tags = state->fc_cur_tag;
2116 state->fc_regions_valid =
2117 state->fc_regions_used;
2118 } else {
2119 ret = state->fc_replay_num_tags ?
2120 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2121 }
2122 state->fc_crc = 0;
2123 break;
2124 case EXT4_FC_TAG_HEAD:
2125 memcpy(&head, val, sizeof(head));
2126 if (le32_to_cpu(head.fc_features) &
2127 ~EXT4_FC_SUPPORTED_FEATURES) {
2128 ret = -EOPNOTSUPP;
2129 break;
2130 }
2131 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2132 ret = JBD2_FC_REPLAY_STOP;
2133 break;
2134 }
2135 state->fc_cur_tag++;
2136 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2137 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2138 break;
2139 default:
2140 ret = state->fc_replay_num_tags ?
2141 JBD2_FC_REPLAY_STOP : -ECANCELED;
2142 }
2143 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2144 break;
2145 }
2146
2147 out_err:
2148 trace_ext4_fc_replay_scan(sb, ret, off);
2149 return ret;
2150 }
2151
2152 /*
2153 * Main recovery path entry point.
2154 * The meaning of return codes is similar as above.
2155 */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2156 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2157 enum passtype pass, int off, tid_t expected_tid)
2158 {
2159 struct super_block *sb = journal->j_private;
2160 struct ext4_sb_info *sbi = EXT4_SB(sb);
2161 struct ext4_fc_tl_mem tl;
2162 __u8 *start, *end, *cur, *val;
2163 int ret = JBD2_FC_REPLAY_CONTINUE;
2164 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2165 struct ext4_fc_tail tail;
2166
2167 if (pass == PASS_SCAN) {
2168 state->fc_current_pass = PASS_SCAN;
2169 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2170 }
2171
2172 if (state->fc_current_pass != pass) {
2173 state->fc_current_pass = pass;
2174 sbi->s_mount_state |= EXT4_FC_REPLAY;
2175 }
2176 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2177 ext4_debug("Replay stops\n");
2178 ext4_fc_set_bitmaps_and_counters(sb);
2179 return 0;
2180 }
2181
2182 #ifdef CONFIG_EXT4_DEBUG
2183 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2184 pr_warn("Dropping fc block %d because max_replay set\n", off);
2185 return JBD2_FC_REPLAY_STOP;
2186 }
2187 #endif
2188
2189 start = (u8 *)bh->b_data;
2190 end = start + journal->j_blocksize;
2191
2192 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2193 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2194 ext4_fc_get_tl(&tl, cur);
2195 val = cur + EXT4_FC_TAG_BASE_LEN;
2196
2197 if (state->fc_replay_num_tags == 0) {
2198 ret = JBD2_FC_REPLAY_STOP;
2199 ext4_fc_set_bitmaps_and_counters(sb);
2200 break;
2201 }
2202
2203 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2204 state->fc_replay_num_tags--;
2205 switch (tl.fc_tag) {
2206 case EXT4_FC_TAG_LINK:
2207 ret = ext4_fc_replay_link(sb, &tl, val);
2208 break;
2209 case EXT4_FC_TAG_UNLINK:
2210 ret = ext4_fc_replay_unlink(sb, &tl, val);
2211 break;
2212 case EXT4_FC_TAG_ADD_RANGE:
2213 ret = ext4_fc_replay_add_range(sb, &tl, val);
2214 break;
2215 case EXT4_FC_TAG_CREAT:
2216 ret = ext4_fc_replay_create(sb, &tl, val);
2217 break;
2218 case EXT4_FC_TAG_DEL_RANGE:
2219 ret = ext4_fc_replay_del_range(sb, &tl, val);
2220 break;
2221 case EXT4_FC_TAG_INODE:
2222 ret = ext4_fc_replay_inode(sb, &tl, val);
2223 break;
2224 case EXT4_FC_TAG_PAD:
2225 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2226 tl.fc_len, 0);
2227 break;
2228 case EXT4_FC_TAG_TAIL:
2229 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2230 0, tl.fc_len, 0);
2231 memcpy(&tail, val, sizeof(tail));
2232 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2233 break;
2234 case EXT4_FC_TAG_HEAD:
2235 break;
2236 default:
2237 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2238 ret = -ECANCELED;
2239 break;
2240 }
2241 if (ret < 0)
2242 break;
2243 ret = JBD2_FC_REPLAY_CONTINUE;
2244 }
2245 return ret;
2246 }
2247
ext4_fc_init(struct super_block * sb,journal_t * journal)2248 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2249 {
2250 /*
2251 * We set replay callback even if fast commit disabled because we may
2252 * could still have fast commit blocks that need to be replayed even if
2253 * fast commit has now been turned off.
2254 */
2255 journal->j_fc_replay_callback = ext4_fc_replay;
2256 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2257 return;
2258 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2259 }
2260
2261 static const char * const fc_ineligible_reasons[] = {
2262 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2263 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2264 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2265 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2266 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2267 [EXT4_FC_REASON_RESIZE] = "Resize",
2268 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2269 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2270 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2271 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2272 };
2273
ext4_fc_info_show(struct seq_file * seq,void * v)2274 int ext4_fc_info_show(struct seq_file *seq, void *v)
2275 {
2276 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2277 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2278 int i;
2279
2280 if (v != SEQ_START_TOKEN)
2281 return 0;
2282
2283 seq_printf(seq,
2284 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2285 stats->fc_num_commits, stats->fc_ineligible_commits,
2286 stats->fc_numblks,
2287 div_u64(stats->s_fc_avg_commit_time, 1000));
2288 seq_puts(seq, "Ineligible reasons:\n");
2289 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2290 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2291 stats->fc_ineligible_reason_count[i]);
2292
2293 return 0;
2294 }
2295
ext4_fc_init_dentry_cache(void)2296 int __init ext4_fc_init_dentry_cache(void)
2297 {
2298 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2299 SLAB_RECLAIM_ACCOUNT);
2300
2301 if (ext4_fc_dentry_cachep == NULL)
2302 return -ENOMEM;
2303
2304 return 0;
2305 }
2306
ext4_fc_destroy_dentry_cache(void)2307 void ext4_fc_destroy_dentry_cache(void)
2308 {
2309 kmem_cache_destroy(ext4_fc_dentry_cachep);
2310 }
2311