1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 #include <linux/iomap.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "iostat.h"
30 #include <trace/events/f2fs.h>
31 #include <trace/hooks/blk.h>
32
33 #define NUM_PREALLOC_POST_READ_CTXS 128
34
35 static struct kmem_cache *bio_post_read_ctx_cache;
36 static struct kmem_cache *bio_entry_slab;
37 static mempool_t *bio_post_read_ctx_pool;
38 static struct bio_set f2fs_bioset;
39
40 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
41
f2fs_init_bioset(void)42 int __init f2fs_init_bioset(void)
43 {
44 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
45 0, BIOSET_NEED_BVECS);
46 }
47
f2fs_destroy_bioset(void)48 void f2fs_destroy_bioset(void)
49 {
50 bioset_exit(&f2fs_bioset);
51 }
52
f2fs_is_cp_guaranteed(struct page * page)53 bool f2fs_is_cp_guaranteed(struct page *page)
54 {
55 struct address_space *mapping = page->mapping;
56 struct inode *inode;
57 struct f2fs_sb_info *sbi;
58
59 if (!mapping)
60 return false;
61
62 inode = mapping->host;
63 sbi = F2FS_I_SB(inode);
64
65 if (inode->i_ino == F2FS_META_INO(sbi) ||
66 inode->i_ino == F2FS_NODE_INO(sbi) ||
67 S_ISDIR(inode->i_mode))
68 return true;
69
70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 page_private_gcing(page))
72 return true;
73 return false;
74 }
75
__read_io_type(struct page * page)76 static enum count_type __read_io_type(struct page *page)
77 {
78 struct address_space *mapping = page_file_mapping(page);
79
80 if (mapping) {
81 struct inode *inode = mapping->host;
82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83
84 if (inode->i_ino == F2FS_META_INO(sbi))
85 return F2FS_RD_META;
86
87 if (inode->i_ino == F2FS_NODE_INO(sbi))
88 return F2FS_RD_NODE;
89 }
90 return F2FS_RD_DATA;
91 }
92
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96 STEP_DECRYPT = BIT(0),
97 #else
98 STEP_DECRYPT = 0, /* compile out the decryption-related code */
99 #endif
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101 STEP_DECOMPRESS = BIT(1),
102 #else
103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
104 #endif
105 #ifdef CONFIG_FS_VERITY
106 STEP_VERITY = BIT(2),
107 #else
108 STEP_VERITY = 0, /* compile out the verity-related code */
109 #endif
110 };
111
112 struct bio_post_read_ctx {
113 struct bio *bio;
114 struct f2fs_sb_info *sbi;
115 struct work_struct work;
116 unsigned int enabled_steps;
117 /*
118 * decompression_attempted keeps track of whether
119 * f2fs_end_read_compressed_page() has been called on the pages in the
120 * bio that belong to a compressed cluster yet.
121 */
122 bool decompression_attempted;
123 block_t fs_blkaddr;
124 };
125
126 /*
127 * Update and unlock a bio's pages, and free the bio.
128 *
129 * This marks pages up-to-date only if there was no error in the bio (I/O error,
130 * decryption error, or verity error), as indicated by bio->bi_status.
131 *
132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133 * aren't marked up-to-date here, as decompression is done on a per-compression-
134 * cluster basis rather than a per-bio basis. Instead, we only must do two
135 * things for each compressed page here: call f2fs_end_read_compressed_page()
136 * with failed=true if an error occurred before it would have normally gotten
137 * called (i.e., I/O error or decryption error, but *not* verity error), and
138 * release the bio's reference to the decompress_io_ctx of the page's cluster.
139 */
f2fs_finish_read_bio(struct bio * bio,bool in_task)140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141 {
142 struct bio_vec *bv;
143 struct bvec_iter_all iter_all;
144 struct bio_post_read_ctx *ctx = bio->bi_private;
145
146 bio_for_each_segment_all(bv, bio, iter_all) {
147 struct page *page = bv->bv_page;
148
149 if (f2fs_is_compressed_page(page)) {
150 if (ctx && !ctx->decompression_attempted)
151 f2fs_end_read_compressed_page(page, true, 0,
152 in_task);
153 f2fs_put_page_dic(page, in_task);
154 continue;
155 }
156
157 if (bio->bi_status)
158 ClearPageUptodate(page);
159 else
160 SetPageUptodate(page);
161 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162 unlock_page(page);
163 }
164
165 if (ctx)
166 mempool_free(ctx, bio_post_read_ctx_pool);
167 bio_put(bio);
168 }
169
f2fs_verify_bio(struct work_struct * work)170 static void f2fs_verify_bio(struct work_struct *work)
171 {
172 struct bio_post_read_ctx *ctx =
173 container_of(work, struct bio_post_read_ctx, work);
174 struct bio *bio = ctx->bio;
175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176
177 /*
178 * fsverity_verify_bio() may call readahead() again, and while verity
179 * will be disabled for this, decryption and/or decompression may still
180 * be needed, resulting in another bio_post_read_ctx being allocated.
181 * So to prevent deadlocks we need to release the current ctx to the
182 * mempool first. This assumes that verity is the last post-read step.
183 */
184 mempool_free(ctx, bio_post_read_ctx_pool);
185 bio->bi_private = NULL;
186
187 /*
188 * Verify the bio's pages with fs-verity. Exclude compressed pages,
189 * as those were handled separately by f2fs_end_read_compressed_page().
190 */
191 if (may_have_compressed_pages) {
192 struct bio_vec *bv;
193 struct bvec_iter_all iter_all;
194
195 bio_for_each_segment_all(bv, bio, iter_all) {
196 struct page *page = bv->bv_page;
197
198 if (!f2fs_is_compressed_page(page) &&
199 !fsverity_verify_page(page)) {
200 bio->bi_status = BLK_STS_IOERR;
201 break;
202 }
203 }
204 } else {
205 fsverity_verify_bio(bio);
206 }
207
208 f2fs_finish_read_bio(bio, true);
209 }
210
211 /*
212 * If the bio's data needs to be verified with fs-verity, then enqueue the
213 * verity work for the bio. Otherwise finish the bio now.
214 *
215 * Note that to avoid deadlocks, the verity work can't be done on the
216 * decryption/decompression workqueue. This is because verifying the data pages
217 * can involve reading verity metadata pages from the file, and these verity
218 * metadata pages may be encrypted and/or compressed.
219 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221 {
222 struct bio_post_read_ctx *ctx = bio->bi_private;
223
224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 INIT_WORK(&ctx->work, f2fs_verify_bio);
226 fsverity_enqueue_verify_work(&ctx->work);
227 } else {
228 f2fs_finish_read_bio(bio, in_task);
229 }
230 }
231
232 /*
233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234 * remaining page was read by @ctx->bio.
235 *
236 * Note that a bio may span clusters (even a mix of compressed and uncompressed
237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
238 * that the bio includes at least one compressed page. The actual decompression
239 * is done on a per-cluster basis, not a per-bio basis.
240 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242 bool in_task)
243 {
244 struct bio_vec *bv;
245 struct bvec_iter_all iter_all;
246 bool all_compressed = true;
247 block_t blkaddr = ctx->fs_blkaddr;
248
249 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 struct page *page = bv->bv_page;
251
252 if (f2fs_is_compressed_page(page))
253 f2fs_end_read_compressed_page(page, false, blkaddr,
254 in_task);
255 else
256 all_compressed = false;
257
258 blkaddr++;
259 }
260
261 ctx->decompression_attempted = true;
262
263 /*
264 * Optimization: if all the bio's pages are compressed, then scheduling
265 * the per-bio verity work is unnecessary, as verity will be fully
266 * handled at the compression cluster level.
267 */
268 if (all_compressed)
269 ctx->enabled_steps &= ~STEP_VERITY;
270 }
271
f2fs_post_read_work(struct work_struct * work)272 static void f2fs_post_read_work(struct work_struct *work)
273 {
274 struct bio_post_read_ctx *ctx =
275 container_of(work, struct bio_post_read_ctx, work);
276 struct bio *bio = ctx->bio;
277
278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 f2fs_finish_read_bio(bio, true);
280 return;
281 }
282
283 if (ctx->enabled_steps & STEP_DECOMPRESS)
284 f2fs_handle_step_decompress(ctx, true);
285
286 f2fs_verify_and_finish_bio(bio, true);
287 }
288
f2fs_read_end_io(struct bio * bio)289 static void f2fs_read_end_io(struct bio *bio)
290 {
291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 struct bio_post_read_ctx *ctx;
293 bool intask = in_task();
294
295 iostat_update_and_unbind_ctx(bio);
296 ctx = bio->bi_private;
297
298 if (time_to_inject(sbi, FAULT_READ_IO))
299 bio->bi_status = BLK_STS_IOERR;
300
301 if (bio->bi_status) {
302 f2fs_finish_read_bio(bio, intask);
303 return;
304 }
305
306 if (ctx) {
307 unsigned int enabled_steps = ctx->enabled_steps &
308 (STEP_DECRYPT | STEP_DECOMPRESS);
309
310 /*
311 * If we have only decompression step between decompression and
312 * decrypt, we don't need post processing for this.
313 */
314 if (enabled_steps == STEP_DECOMPRESS &&
315 !f2fs_low_mem_mode(sbi)) {
316 f2fs_handle_step_decompress(ctx, intask);
317 } else if (enabled_steps) {
318 INIT_WORK(&ctx->work, f2fs_post_read_work);
319 queue_work(ctx->sbi->post_read_wq, &ctx->work);
320 return;
321 }
322 }
323
324 f2fs_verify_and_finish_bio(bio, intask);
325 }
326
f2fs_write_end_io(struct bio * bio)327 static void f2fs_write_end_io(struct bio *bio)
328 {
329 struct f2fs_sb_info *sbi;
330 struct bio_vec *bvec;
331 struct bvec_iter_all iter_all;
332
333 iostat_update_and_unbind_ctx(bio);
334 sbi = bio->bi_private;
335
336 if (time_to_inject(sbi, FAULT_WRITE_IO))
337 bio->bi_status = BLK_STS_IOERR;
338
339 bio_for_each_segment_all(bvec, bio, iter_all) {
340 struct page *page = bvec->bv_page;
341 enum count_type type = WB_DATA_TYPE(page, false);
342
343 fscrypt_finalize_bounce_page(&page);
344
345 #ifdef CONFIG_F2FS_FS_COMPRESSION
346 if (f2fs_is_compressed_page(page)) {
347 f2fs_compress_write_end_io(bio, page);
348 continue;
349 }
350 #endif
351
352 if (unlikely(bio->bi_status)) {
353 mapping_set_error(page->mapping, -EIO);
354 if (type == F2FS_WB_CP_DATA)
355 f2fs_stop_checkpoint(sbi, true,
356 STOP_CP_REASON_WRITE_FAIL);
357 }
358
359 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
360 page->index != nid_of_node(page));
361
362 dec_page_count(sbi, type);
363 if (f2fs_in_warm_node_list(sbi, page))
364 f2fs_del_fsync_node_entry(sbi, page);
365 clear_page_private_gcing(page);
366 end_page_writeback(page);
367 }
368 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
369 wq_has_sleeper(&sbi->cp_wait))
370 wake_up(&sbi->cp_wait);
371
372 bio_put(bio);
373 }
374
375 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)376 static void f2fs_zone_write_end_io(struct bio *bio)
377 {
378 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
379
380 bio->bi_private = io->bi_private;
381 complete(&io->zone_wait);
382 f2fs_write_end_io(bio);
383 }
384 #endif
385
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)386 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
387 block_t blk_addr, sector_t *sector)
388 {
389 struct block_device *bdev = sbi->sb->s_bdev;
390 int i;
391
392 if (f2fs_is_multi_device(sbi)) {
393 for (i = 0; i < sbi->s_ndevs; i++) {
394 if (FDEV(i).start_blk <= blk_addr &&
395 FDEV(i).end_blk >= blk_addr) {
396 blk_addr -= FDEV(i).start_blk;
397 bdev = FDEV(i).bdev;
398 break;
399 }
400 }
401 }
402
403 if (sector)
404 *sector = SECTOR_FROM_BLOCK(blk_addr);
405 return bdev;
406 }
407
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)408 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
409 {
410 int i;
411
412 if (!f2fs_is_multi_device(sbi))
413 return 0;
414
415 for (i = 0; i < sbi->s_ndevs; i++)
416 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
417 return i;
418 return 0;
419 }
420
f2fs_io_flags(struct f2fs_io_info * fio)421 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
422 {
423 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
424 unsigned int fua_flag, meta_flag, io_flag;
425 blk_opf_t op_flags = 0;
426
427 if (fio->op != REQ_OP_WRITE)
428 return 0;
429 if (fio->type == DATA)
430 io_flag = fio->sbi->data_io_flag;
431 else if (fio->type == NODE)
432 io_flag = fio->sbi->node_io_flag;
433 else
434 return 0;
435
436 fua_flag = io_flag & temp_mask;
437 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
438
439 /*
440 * data/node io flag bits per temp:
441 * REQ_META | REQ_FUA |
442 * 5 | 4 | 3 | 2 | 1 | 0 |
443 * Cold | Warm | Hot | Cold | Warm | Hot |
444 */
445 if (BIT(fio->temp) & meta_flag)
446 op_flags |= REQ_META;
447 if (BIT(fio->temp) & fua_flag)
448 op_flags |= REQ_FUA;
449 return op_flags;
450 }
451
__bio_alloc(struct f2fs_io_info * fio,int npages)452 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
453 {
454 struct f2fs_sb_info *sbi = fio->sbi;
455 struct block_device *bdev;
456 sector_t sector;
457 struct bio *bio;
458
459 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
460 bio = bio_alloc_bioset(bdev, npages,
461 fio->op | fio->op_flags | f2fs_io_flags(fio),
462 GFP_NOIO, &f2fs_bioset);
463 bio->bi_iter.bi_sector = sector;
464 if (is_read_io(fio->op)) {
465 bio->bi_end_io = f2fs_read_end_io;
466 bio->bi_private = NULL;
467 } else {
468 bio->bi_end_io = f2fs_write_end_io;
469 bio->bi_private = sbi;
470 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
471 fio->type, fio->temp);
472 }
473 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
474
475 if (fio->io_wbc)
476 wbc_init_bio(fio->io_wbc, bio);
477
478 return bio;
479 }
480
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)481 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
482 pgoff_t first_idx,
483 const struct f2fs_io_info *fio,
484 gfp_t gfp_mask)
485 {
486 /*
487 * The f2fs garbage collector sets ->encrypted_page when it wants to
488 * read/write raw data without encryption.
489 */
490 if (!fio || !fio->encrypted_page)
491 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
492 else if (fscrypt_inode_should_skip_dm_default_key(inode))
493 bio_set_skip_dm_default_key(bio);
494 }
495
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)496 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
497 pgoff_t next_idx,
498 const struct f2fs_io_info *fio)
499 {
500 /*
501 * The f2fs garbage collector sets ->encrypted_page when it wants to
502 * read/write raw data without encryption.
503 */
504 if (fio && fio->encrypted_page)
505 return !bio_has_crypt_ctx(bio) &&
506 (bio_should_skip_dm_default_key(bio) ==
507 fscrypt_inode_should_skip_dm_default_key(inode));
508
509 return fscrypt_mergeable_bio(bio, inode, next_idx);
510 }
511
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)512 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
513 enum page_type type)
514 {
515 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
516 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
517
518 iostat_update_submit_ctx(bio, type);
519 submit_bio(bio);
520 }
521
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)522 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
523 enum page_type type)
524 {
525 WARN_ON_ONCE(is_read_io(bio_op(bio)));
526
527 if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
528 blk_finish_plug(current->plug);
529
530 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
531 iostat_update_submit_ctx(bio, type);
532 submit_bio(bio);
533 }
534
__submit_merged_bio(struct f2fs_bio_info * io)535 static void __submit_merged_bio(struct f2fs_bio_info *io)
536 {
537 struct f2fs_io_info *fio = &io->fio;
538
539 if (!io->bio)
540 return;
541
542 if (is_read_io(fio->op)) {
543 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
544 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
545 } else {
546 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
547 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
548 }
549 io->bio = NULL;
550 }
551
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)552 static bool __has_merged_page(struct bio *bio, struct inode *inode,
553 struct page *page, nid_t ino)
554 {
555 struct bio_vec *bvec;
556 struct bvec_iter_all iter_all;
557
558 if (!bio)
559 return false;
560
561 if (!inode && !page && !ino)
562 return true;
563
564 bio_for_each_segment_all(bvec, bio, iter_all) {
565 struct page *target = bvec->bv_page;
566
567 if (fscrypt_is_bounce_page(target)) {
568 target = fscrypt_pagecache_page(target);
569 if (IS_ERR(target))
570 continue;
571 }
572 if (f2fs_is_compressed_page(target)) {
573 target = f2fs_compress_control_page(target);
574 if (IS_ERR(target))
575 continue;
576 }
577
578 if (inode && inode == target->mapping->host)
579 return true;
580 if (page && page == target)
581 return true;
582 if (ino && ino == ino_of_node(target))
583 return true;
584 }
585
586 return false;
587 }
588
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)589 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
590 {
591 int i;
592
593 for (i = 0; i < NR_PAGE_TYPE; i++) {
594 int n = (i == META) ? 1 : NR_TEMP_TYPE;
595 int j;
596
597 sbi->write_io[i] = f2fs_kmalloc(sbi,
598 array_size(n, sizeof(struct f2fs_bio_info)),
599 GFP_KERNEL);
600 if (!sbi->write_io[i])
601 return -ENOMEM;
602
603 for (j = HOT; j < n; j++) {
604 struct f2fs_bio_info *io = &sbi->write_io[i][j];
605
606 init_f2fs_rwsem(&io->io_rwsem);
607 io->sbi = sbi;
608 io->bio = NULL;
609 io->last_block_in_bio = 0;
610 spin_lock_init(&io->io_lock);
611 INIT_LIST_HEAD(&io->io_list);
612 INIT_LIST_HEAD(&io->bio_list);
613 init_f2fs_rwsem(&io->bio_list_lock);
614 #ifdef CONFIG_BLK_DEV_ZONED
615 init_completion(&io->zone_wait);
616 io->zone_pending_bio = NULL;
617 io->bi_private = NULL;
618 #endif
619 }
620 }
621
622 return 0;
623 }
624
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)625 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
626 enum page_type type, enum temp_type temp)
627 {
628 enum page_type btype = PAGE_TYPE_OF_BIO(type);
629 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
630
631 f2fs_down_write(&io->io_rwsem);
632
633 if (!io->bio)
634 goto unlock_out;
635
636 /* change META to META_FLUSH in the checkpoint procedure */
637 if (type >= META_FLUSH) {
638 io->fio.type = META_FLUSH;
639 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
640 if (!test_opt(sbi, NOBARRIER))
641 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
642 }
643 __submit_merged_bio(io);
644 unlock_out:
645 f2fs_up_write(&io->io_rwsem);
646 }
647
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)648 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
649 struct inode *inode, struct page *page,
650 nid_t ino, enum page_type type, bool force)
651 {
652 enum temp_type temp;
653 bool ret = true;
654
655 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
656 if (!force) {
657 enum page_type btype = PAGE_TYPE_OF_BIO(type);
658 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
659
660 f2fs_down_read(&io->io_rwsem);
661 ret = __has_merged_page(io->bio, inode, page, ino);
662 f2fs_up_read(&io->io_rwsem);
663 }
664 if (ret)
665 __f2fs_submit_merged_write(sbi, type, temp);
666
667 /* TODO: use HOT temp only for meta pages now. */
668 if (type >= META)
669 break;
670 }
671 }
672
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)673 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
674 {
675 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
676 }
677
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)678 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
679 struct inode *inode, struct page *page,
680 nid_t ino, enum page_type type)
681 {
682 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
683 }
684
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)685 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
686 {
687 f2fs_submit_merged_write(sbi, DATA);
688 f2fs_submit_merged_write(sbi, NODE);
689 f2fs_submit_merged_write(sbi, META);
690 }
691
692 /*
693 * Fill the locked page with data located in the block address.
694 * A caller needs to unlock the page on failure.
695 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)696 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
697 {
698 struct bio *bio;
699 struct page *page = fio->encrypted_page ?
700 fio->encrypted_page : fio->page;
701
702 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
703 fio->is_por ? META_POR : (__is_meta_io(fio) ?
704 META_GENERIC : DATA_GENERIC_ENHANCE)))
705 return -EFSCORRUPTED;
706
707 trace_f2fs_submit_page_bio(page, fio);
708
709 /* Allocate a new bio */
710 bio = __bio_alloc(fio, 1);
711
712 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
713 fio->page->index, fio, GFP_NOIO);
714
715 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
716 bio_put(bio);
717 return -EFAULT;
718 }
719
720 if (fio->io_wbc && !is_read_io(fio->op))
721 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
722
723 inc_page_count(fio->sbi, is_read_io(fio->op) ?
724 __read_io_type(page) : WB_DATA_TYPE(fio->page, false));
725
726 if (is_read_io(bio_op(bio)))
727 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
728 else
729 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
730 return 0;
731 }
732
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)733 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
734 block_t last_blkaddr, block_t cur_blkaddr)
735 {
736 if (unlikely(sbi->max_io_bytes &&
737 bio->bi_iter.bi_size >= sbi->max_io_bytes))
738 return false;
739 if (last_blkaddr + 1 != cur_blkaddr)
740 return false;
741 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
742 }
743
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)744 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
745 struct f2fs_io_info *fio)
746 {
747 if (io->fio.op != fio->op)
748 return false;
749 return io->fio.op_flags == fio->op_flags;
750 }
751
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)752 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
753 struct f2fs_bio_info *io,
754 struct f2fs_io_info *fio,
755 block_t last_blkaddr,
756 block_t cur_blkaddr)
757 {
758 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
759 return false;
760 return io_type_is_mergeable(io, fio);
761 }
762
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)763 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
764 struct page *page, enum temp_type temp)
765 {
766 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
767 struct bio_entry *be;
768
769 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
770 be->bio = bio;
771 bio_get(bio);
772
773 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
774 f2fs_bug_on(sbi, 1);
775
776 f2fs_down_write(&io->bio_list_lock);
777 list_add_tail(&be->list, &io->bio_list);
778 f2fs_up_write(&io->bio_list_lock);
779 }
780
del_bio_entry(struct bio_entry * be)781 static void del_bio_entry(struct bio_entry *be)
782 {
783 list_del(&be->list);
784 kmem_cache_free(bio_entry_slab, be);
785 }
786
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)787 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
788 struct page *page)
789 {
790 struct f2fs_sb_info *sbi = fio->sbi;
791 enum temp_type temp;
792 bool found = false;
793 int ret = -EAGAIN;
794
795 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
796 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
797 struct list_head *head = &io->bio_list;
798 struct bio_entry *be;
799
800 f2fs_down_write(&io->bio_list_lock);
801 list_for_each_entry(be, head, list) {
802 if (be->bio != *bio)
803 continue;
804
805 found = true;
806
807 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
808 *fio->last_block,
809 fio->new_blkaddr));
810 if (f2fs_crypt_mergeable_bio(*bio,
811 fio->page->mapping->host,
812 fio->page->index, fio) &&
813 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
814 PAGE_SIZE) {
815 ret = 0;
816 break;
817 }
818
819 /* page can't be merged into bio; submit the bio */
820 del_bio_entry(be);
821 f2fs_submit_write_bio(sbi, *bio, DATA);
822 break;
823 }
824 f2fs_up_write(&io->bio_list_lock);
825 }
826
827 if (ret) {
828 bio_put(*bio);
829 *bio = NULL;
830 }
831
832 return ret;
833 }
834
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)835 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
836 struct bio **bio, struct page *page)
837 {
838 enum temp_type temp;
839 bool found = false;
840 struct bio *target = bio ? *bio : NULL;
841
842 f2fs_bug_on(sbi, !target && !page);
843
844 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
845 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
846 struct list_head *head = &io->bio_list;
847 struct bio_entry *be;
848
849 if (list_empty(head))
850 continue;
851
852 f2fs_down_read(&io->bio_list_lock);
853 list_for_each_entry(be, head, list) {
854 if (target)
855 found = (target == be->bio);
856 else
857 found = __has_merged_page(be->bio, NULL,
858 page, 0);
859 if (found)
860 break;
861 }
862 f2fs_up_read(&io->bio_list_lock);
863
864 if (!found)
865 continue;
866
867 found = false;
868
869 f2fs_down_write(&io->bio_list_lock);
870 list_for_each_entry(be, head, list) {
871 if (target)
872 found = (target == be->bio);
873 else
874 found = __has_merged_page(be->bio, NULL,
875 page, 0);
876 if (found) {
877 target = be->bio;
878 del_bio_entry(be);
879 break;
880 }
881 }
882 f2fs_up_write(&io->bio_list_lock);
883 }
884
885 if (found)
886 f2fs_submit_write_bio(sbi, target, DATA);
887 if (bio && *bio) {
888 bio_put(*bio);
889 *bio = NULL;
890 }
891 }
892
f2fs_merge_page_bio(struct f2fs_io_info * fio)893 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
894 {
895 struct bio *bio = *fio->bio;
896 struct page *page = fio->encrypted_page ?
897 fio->encrypted_page : fio->page;
898
899 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
900 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
901 return -EFSCORRUPTED;
902
903 trace_f2fs_submit_page_bio(page, fio);
904
905 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
906 fio->new_blkaddr))
907 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
908 alloc_new:
909 if (!bio) {
910 bio = __bio_alloc(fio, BIO_MAX_VECS);
911 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
912 fio->page->index, fio, GFP_NOIO);
913
914 add_bio_entry(fio->sbi, bio, page, fio->temp);
915 } else {
916 if (add_ipu_page(fio, &bio, page))
917 goto alloc_new;
918 }
919
920 if (fio->io_wbc)
921 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
922
923 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
924
925 *fio->last_block = fio->new_blkaddr;
926 *fio->bio = bio;
927
928 return 0;
929 }
930
931 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)932 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
933 {
934 struct block_device *bdev = sbi->sb->s_bdev;
935 int devi = 0;
936
937 if (f2fs_is_multi_device(sbi)) {
938 devi = f2fs_target_device_index(sbi, blkaddr);
939 if (blkaddr < FDEV(devi).start_blk ||
940 blkaddr > FDEV(devi).end_blk) {
941 f2fs_err(sbi, "Invalid block %x", blkaddr);
942 return false;
943 }
944 blkaddr -= FDEV(devi).start_blk;
945 bdev = FDEV(devi).bdev;
946 }
947 return bdev_zoned_model(bdev) == BLK_ZONED_HM &&
948 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
949 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
950 }
951 #endif
952
f2fs_submit_page_write(struct f2fs_io_info * fio)953 void f2fs_submit_page_write(struct f2fs_io_info *fio)
954 {
955 struct f2fs_sb_info *sbi = fio->sbi;
956 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
957 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
958 struct page *bio_page;
959 enum count_type type;
960
961 f2fs_bug_on(sbi, is_read_io(fio->op));
962
963 f2fs_down_write(&io->io_rwsem);
964 next:
965 #ifdef CONFIG_BLK_DEV_ZONED
966 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
967 wait_for_completion_io(&io->zone_wait);
968 bio_put(io->zone_pending_bio);
969 io->zone_pending_bio = NULL;
970 io->bi_private = NULL;
971 }
972 #endif
973
974 if (fio->in_list) {
975 spin_lock(&io->io_lock);
976 if (list_empty(&io->io_list)) {
977 spin_unlock(&io->io_lock);
978 goto out;
979 }
980 fio = list_first_entry(&io->io_list,
981 struct f2fs_io_info, list);
982 list_del(&fio->list);
983 spin_unlock(&io->io_lock);
984 }
985
986 verify_fio_blkaddr(fio);
987
988 if (fio->encrypted_page)
989 bio_page = fio->encrypted_page;
990 else if (fio->compressed_page)
991 bio_page = fio->compressed_page;
992 else
993 bio_page = fio->page;
994
995 /* set submitted = true as a return value */
996 fio->submitted = 1;
997
998 type = WB_DATA_TYPE(bio_page, fio->compressed_page);
999 inc_page_count(sbi, type);
1000
1001 if (io->bio &&
1002 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1003 fio->new_blkaddr) ||
1004 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1005 bio_page->index, fio)))
1006 __submit_merged_bio(io);
1007 alloc_new:
1008 if (io->bio == NULL) {
1009 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1010 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1011 bio_page->index, fio, GFP_NOIO);
1012 io->fio = *fio;
1013 }
1014
1015 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1016 __submit_merged_bio(io);
1017 goto alloc_new;
1018 }
1019
1020 if (fio->io_wbc)
1021 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1022
1023 io->last_block_in_bio = fio->new_blkaddr;
1024
1025 trace_f2fs_submit_page_write(fio->page, fio);
1026 #ifdef CONFIG_BLK_DEV_ZONED
1027 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1028 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1029 bio_get(io->bio);
1030 reinit_completion(&io->zone_wait);
1031 io->bi_private = io->bio->bi_private;
1032 io->bio->bi_private = io;
1033 io->bio->bi_end_io = f2fs_zone_write_end_io;
1034 io->zone_pending_bio = io->bio;
1035 __submit_merged_bio(io);
1036 }
1037 #endif
1038 if (fio->in_list)
1039 goto next;
1040 out:
1041 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1042 !f2fs_is_checkpoint_ready(sbi))
1043 __submit_merged_bio(io);
1044 f2fs_up_write(&io->io_rwsem);
1045 }
1046
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1047 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1048 unsigned nr_pages, blk_opf_t op_flag,
1049 pgoff_t first_idx, bool for_write)
1050 {
1051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1052 struct bio *bio;
1053 struct bio_post_read_ctx *ctx = NULL;
1054 unsigned int post_read_steps = 0;
1055 sector_t sector;
1056 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1057
1058 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1059 REQ_OP_READ | op_flag,
1060 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1061 if (!bio)
1062 return ERR_PTR(-ENOMEM);
1063 bio->bi_iter.bi_sector = sector;
1064 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1065 bio->bi_end_io = f2fs_read_end_io;
1066
1067 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1068 post_read_steps |= STEP_DECRYPT;
1069
1070 if (f2fs_need_verity(inode, first_idx))
1071 post_read_steps |= STEP_VERITY;
1072
1073 /*
1074 * STEP_DECOMPRESS is handled specially, since a compressed file might
1075 * contain both compressed and uncompressed clusters. We'll allocate a
1076 * bio_post_read_ctx if the file is compressed, but the caller is
1077 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1078 */
1079
1080 if (post_read_steps || f2fs_compressed_file(inode)) {
1081 /* Due to the mempool, this never fails. */
1082 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1083 ctx->bio = bio;
1084 ctx->sbi = sbi;
1085 ctx->enabled_steps = post_read_steps;
1086 ctx->fs_blkaddr = blkaddr;
1087 ctx->decompression_attempted = false;
1088 bio->bi_private = ctx;
1089 }
1090 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1091
1092 return bio;
1093 }
1094
1095 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,blk_opf_t op_flags,bool for_write)1096 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1097 block_t blkaddr, blk_opf_t op_flags,
1098 bool for_write)
1099 {
1100 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1101 struct bio *bio;
1102
1103 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1104 page->index, for_write);
1105 if (IS_ERR(bio))
1106 return PTR_ERR(bio);
1107
1108 /* wait for GCed page writeback via META_MAPPING */
1109 f2fs_wait_on_block_writeback(inode, blkaddr);
1110
1111 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1112 iostat_update_and_unbind_ctx(bio);
1113 if (bio->bi_private)
1114 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1115 bio_put(bio);
1116 return -EFAULT;
1117 }
1118 inc_page_count(sbi, F2FS_RD_DATA);
1119 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1120 f2fs_submit_read_bio(sbi, bio, DATA);
1121 return 0;
1122 }
1123
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1124 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1125 {
1126 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1127
1128 dn->data_blkaddr = blkaddr;
1129 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1130 }
1131
1132 /*
1133 * Lock ordering for the change of data block address:
1134 * ->data_page
1135 * ->node_page
1136 * update block addresses in the node page
1137 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1138 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1139 {
1140 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1141 __set_data_blkaddr(dn, blkaddr);
1142 if (set_page_dirty(dn->node_page))
1143 dn->node_changed = true;
1144 }
1145
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1146 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1147 {
1148 f2fs_set_data_blkaddr(dn, blkaddr);
1149 f2fs_update_read_extent_cache(dn);
1150 }
1151
1152 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1153 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1154 {
1155 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1156 int err;
1157
1158 if (!count)
1159 return 0;
1160
1161 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1162 return -EPERM;
1163 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1164 if (unlikely(err))
1165 return err;
1166
1167 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1168 dn->ofs_in_node, count);
1169
1170 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1171
1172 for (; count > 0; dn->ofs_in_node++) {
1173 block_t blkaddr = f2fs_data_blkaddr(dn);
1174
1175 if (blkaddr == NULL_ADDR) {
1176 __set_data_blkaddr(dn, NEW_ADDR);
1177 count--;
1178 }
1179 }
1180
1181 if (set_page_dirty(dn->node_page))
1182 dn->node_changed = true;
1183 return 0;
1184 }
1185
1186 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1187 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1188 {
1189 unsigned int ofs_in_node = dn->ofs_in_node;
1190 int ret;
1191
1192 ret = f2fs_reserve_new_blocks(dn, 1);
1193 dn->ofs_in_node = ofs_in_node;
1194 return ret;
1195 }
1196
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1197 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1198 {
1199 bool need_put = dn->inode_page ? false : true;
1200 int err;
1201
1202 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1203 if (err)
1204 return err;
1205
1206 if (dn->data_blkaddr == NULL_ADDR)
1207 err = f2fs_reserve_new_block(dn);
1208 if (err || need_put)
1209 f2fs_put_dnode(dn);
1210 return err;
1211 }
1212
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1213 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1214 blk_opf_t op_flags, bool for_write,
1215 pgoff_t *next_pgofs)
1216 {
1217 struct address_space *mapping = inode->i_mapping;
1218 struct dnode_of_data dn;
1219 struct page *page;
1220 int err;
1221
1222 page = f2fs_grab_cache_page(mapping, index, for_write);
1223 if (!page)
1224 return ERR_PTR(-ENOMEM);
1225
1226 if (f2fs_lookup_read_extent_cache_block(inode, index,
1227 &dn.data_blkaddr)) {
1228 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1229 DATA_GENERIC_ENHANCE_READ)) {
1230 err = -EFSCORRUPTED;
1231 goto put_err;
1232 }
1233 goto got_it;
1234 }
1235
1236 set_new_dnode(&dn, inode, NULL, NULL, 0);
1237 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1238 if (err) {
1239 if (err == -ENOENT && next_pgofs)
1240 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1241 goto put_err;
1242 }
1243 f2fs_put_dnode(&dn);
1244
1245 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1246 err = -ENOENT;
1247 if (next_pgofs)
1248 *next_pgofs = index + 1;
1249 goto put_err;
1250 }
1251 if (dn.data_blkaddr != NEW_ADDR &&
1252 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1253 dn.data_blkaddr,
1254 DATA_GENERIC_ENHANCE)) {
1255 err = -EFSCORRUPTED;
1256 goto put_err;
1257 }
1258 got_it:
1259 if (PageUptodate(page)) {
1260 unlock_page(page);
1261 return page;
1262 }
1263
1264 /*
1265 * A new dentry page is allocated but not able to be written, since its
1266 * new inode page couldn't be allocated due to -ENOSPC.
1267 * In such the case, its blkaddr can be remained as NEW_ADDR.
1268 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1269 * f2fs_init_inode_metadata.
1270 */
1271 if (dn.data_blkaddr == NEW_ADDR) {
1272 zero_user_segment(page, 0, PAGE_SIZE);
1273 if (!PageUptodate(page))
1274 SetPageUptodate(page);
1275 unlock_page(page);
1276 return page;
1277 }
1278
1279 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1280 op_flags, for_write);
1281 if (err)
1282 goto put_err;
1283 return page;
1284
1285 put_err:
1286 f2fs_put_page(page, 1);
1287 return ERR_PTR(err);
1288 }
1289
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1290 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1291 pgoff_t *next_pgofs)
1292 {
1293 struct address_space *mapping = inode->i_mapping;
1294 struct page *page;
1295
1296 page = find_get_page(mapping, index);
1297 if (page && PageUptodate(page))
1298 return page;
1299 f2fs_put_page(page, 0);
1300
1301 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1302 if (IS_ERR(page))
1303 return page;
1304
1305 if (PageUptodate(page))
1306 return page;
1307
1308 wait_on_page_locked(page);
1309 if (unlikely(!PageUptodate(page))) {
1310 f2fs_put_page(page, 0);
1311 return ERR_PTR(-EIO);
1312 }
1313 return page;
1314 }
1315
1316 /*
1317 * If it tries to access a hole, return an error.
1318 * Because, the callers, functions in dir.c and GC, should be able to know
1319 * whether this page exists or not.
1320 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1321 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1322 bool for_write)
1323 {
1324 struct address_space *mapping = inode->i_mapping;
1325 struct page *page;
1326
1327 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1328 if (IS_ERR(page))
1329 return page;
1330
1331 /* wait for read completion */
1332 lock_page(page);
1333 if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1334 f2fs_put_page(page, 1);
1335 return ERR_PTR(-EIO);
1336 }
1337 return page;
1338 }
1339
1340 /*
1341 * Caller ensures that this data page is never allocated.
1342 * A new zero-filled data page is allocated in the page cache.
1343 *
1344 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1345 * f2fs_unlock_op().
1346 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1347 * ipage should be released by this function.
1348 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1349 struct page *f2fs_get_new_data_page(struct inode *inode,
1350 struct page *ipage, pgoff_t index, bool new_i_size)
1351 {
1352 struct address_space *mapping = inode->i_mapping;
1353 struct page *page;
1354 struct dnode_of_data dn;
1355 int err;
1356
1357 page = f2fs_grab_cache_page(mapping, index, true);
1358 if (!page) {
1359 /*
1360 * before exiting, we should make sure ipage will be released
1361 * if any error occur.
1362 */
1363 f2fs_put_page(ipage, 1);
1364 return ERR_PTR(-ENOMEM);
1365 }
1366
1367 set_new_dnode(&dn, inode, ipage, NULL, 0);
1368 err = f2fs_reserve_block(&dn, index);
1369 if (err) {
1370 f2fs_put_page(page, 1);
1371 return ERR_PTR(err);
1372 }
1373 if (!ipage)
1374 f2fs_put_dnode(&dn);
1375
1376 if (PageUptodate(page))
1377 goto got_it;
1378
1379 if (dn.data_blkaddr == NEW_ADDR) {
1380 zero_user_segment(page, 0, PAGE_SIZE);
1381 if (!PageUptodate(page))
1382 SetPageUptodate(page);
1383 } else {
1384 f2fs_put_page(page, 1);
1385
1386 /* if ipage exists, blkaddr should be NEW_ADDR */
1387 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1388 page = f2fs_get_lock_data_page(inode, index, true);
1389 if (IS_ERR(page))
1390 return page;
1391 }
1392 got_it:
1393 if (new_i_size && i_size_read(inode) <
1394 ((loff_t)(index + 1) << PAGE_SHIFT))
1395 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1396 return page;
1397 }
1398
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1399 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1400 {
1401 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1402 struct f2fs_summary sum;
1403 struct node_info ni;
1404 block_t old_blkaddr;
1405 blkcnt_t count = 1;
1406 int err;
1407
1408 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1409 return -EPERM;
1410
1411 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1412 if (err)
1413 return err;
1414
1415 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1416 if (dn->data_blkaddr == NULL_ADDR) {
1417 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1418 if (unlikely(err))
1419 return err;
1420 }
1421
1422 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1423 old_blkaddr = dn->data_blkaddr;
1424 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1425 &dn->data_blkaddr, &sum, seg_type, NULL);
1426 if (err)
1427 return err;
1428
1429 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1430 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1431
1432 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1433 return 0;
1434 }
1435
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1436 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1437 {
1438 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1439 f2fs_down_read(&sbi->node_change);
1440 else
1441 f2fs_lock_op(sbi);
1442 }
1443
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1444 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1445 {
1446 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1447 f2fs_up_read(&sbi->node_change);
1448 else
1449 f2fs_unlock_op(sbi);
1450 }
1451
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1452 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1453 {
1454 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1455 int err = 0;
1456
1457 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1458 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1459 &dn->data_blkaddr))
1460 err = f2fs_reserve_block(dn, index);
1461 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1462
1463 return err;
1464 }
1465
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1466 static int f2fs_map_no_dnode(struct inode *inode,
1467 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1468 pgoff_t pgoff)
1469 {
1470 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1471
1472 /*
1473 * There is one exceptional case that read_node_page() may return
1474 * -ENOENT due to filesystem has been shutdown or cp_error, return
1475 * -EIO in that case.
1476 */
1477 if (map->m_may_create &&
1478 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1479 return -EIO;
1480
1481 if (map->m_next_pgofs)
1482 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1483 if (map->m_next_extent)
1484 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1485 return 0;
1486 }
1487
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1488 static bool f2fs_map_blocks_cached(struct inode *inode,
1489 struct f2fs_map_blocks *map, int flag)
1490 {
1491 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1492 unsigned int maxblocks = map->m_len;
1493 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1494 struct extent_info ei = {};
1495
1496 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1497 return false;
1498
1499 map->m_pblk = ei.blk + pgoff - ei.fofs;
1500 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1501 map->m_flags = F2FS_MAP_MAPPED;
1502 if (map->m_next_extent)
1503 *map->m_next_extent = pgoff + map->m_len;
1504
1505 /* for hardware encryption, but to avoid potential issue in future */
1506 if (flag == F2FS_GET_BLOCK_DIO)
1507 f2fs_wait_on_block_writeback_range(inode,
1508 map->m_pblk, map->m_len);
1509
1510 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1511 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1512 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1513
1514 map->m_bdev = dev->bdev;
1515 map->m_pblk -= dev->start_blk;
1516 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1517 } else {
1518 map->m_bdev = inode->i_sb->s_bdev;
1519 }
1520 return true;
1521 }
1522
map_is_mergeable(struct f2fs_sb_info * sbi,struct f2fs_map_blocks * map,block_t blkaddr,int flag,int bidx,int ofs)1523 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1524 struct f2fs_map_blocks *map,
1525 block_t blkaddr, int flag, int bidx,
1526 int ofs)
1527 {
1528 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1529 return false;
1530 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1531 return true;
1532 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1533 return true;
1534 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1535 return true;
1536 if (flag == F2FS_GET_BLOCK_DIO &&
1537 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1538 return true;
1539 return false;
1540 }
1541
1542 /*
1543 * f2fs_map_blocks() tries to find or build mapping relationship which
1544 * maps continuous logical blocks to physical blocks, and return such
1545 * info via f2fs_map_blocks structure.
1546 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1547 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1548 {
1549 unsigned int maxblocks = map->m_len;
1550 struct dnode_of_data dn;
1551 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1552 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1553 pgoff_t pgofs, end_offset, end;
1554 int err = 0, ofs = 1;
1555 unsigned int ofs_in_node, last_ofs_in_node;
1556 blkcnt_t prealloc;
1557 block_t blkaddr;
1558 unsigned int start_pgofs;
1559 int bidx = 0;
1560 bool is_hole;
1561
1562 if (!maxblocks)
1563 return 0;
1564
1565 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1566 goto out;
1567
1568 map->m_bdev = inode->i_sb->s_bdev;
1569 map->m_multidev_dio =
1570 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1571
1572 map->m_len = 0;
1573 map->m_flags = 0;
1574
1575 /* it only supports block size == page size */
1576 pgofs = (pgoff_t)map->m_lblk;
1577 end = pgofs + maxblocks;
1578
1579 next_dnode:
1580 if (map->m_may_create)
1581 f2fs_map_lock(sbi, flag);
1582
1583 /* When reading holes, we need its node page */
1584 set_new_dnode(&dn, inode, NULL, NULL, 0);
1585 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1586 if (err) {
1587 if (flag == F2FS_GET_BLOCK_BMAP)
1588 map->m_pblk = 0;
1589 if (err == -ENOENT)
1590 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1591 goto unlock_out;
1592 }
1593
1594 start_pgofs = pgofs;
1595 prealloc = 0;
1596 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1597 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1598
1599 next_block:
1600 blkaddr = f2fs_data_blkaddr(&dn);
1601 is_hole = !__is_valid_data_blkaddr(blkaddr);
1602 if (!is_hole &&
1603 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1604 err = -EFSCORRUPTED;
1605 goto sync_out;
1606 }
1607
1608 /* use out-place-update for direct IO under LFS mode */
1609 if (map->m_may_create && (is_hole ||
1610 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1611 !f2fs_is_pinned_file(inode)))) {
1612 if (unlikely(f2fs_cp_error(sbi))) {
1613 err = -EIO;
1614 goto sync_out;
1615 }
1616
1617 switch (flag) {
1618 case F2FS_GET_BLOCK_PRE_AIO:
1619 if (blkaddr == NULL_ADDR) {
1620 prealloc++;
1621 last_ofs_in_node = dn.ofs_in_node;
1622 }
1623 break;
1624 case F2FS_GET_BLOCK_PRE_DIO:
1625 case F2FS_GET_BLOCK_DIO:
1626 err = __allocate_data_block(&dn, map->m_seg_type);
1627 if (err)
1628 goto sync_out;
1629 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1630 file_need_truncate(inode);
1631 set_inode_flag(inode, FI_APPEND_WRITE);
1632 break;
1633 default:
1634 WARN_ON_ONCE(1);
1635 err = -EIO;
1636 goto sync_out;
1637 }
1638
1639 blkaddr = dn.data_blkaddr;
1640 if (is_hole)
1641 map->m_flags |= F2FS_MAP_NEW;
1642 } else if (is_hole) {
1643 if (f2fs_compressed_file(inode) &&
1644 f2fs_sanity_check_cluster(&dn)) {
1645 err = -EFSCORRUPTED;
1646 f2fs_handle_error(sbi,
1647 ERROR_CORRUPTED_CLUSTER);
1648 goto sync_out;
1649 }
1650
1651 switch (flag) {
1652 case F2FS_GET_BLOCK_PRECACHE:
1653 goto sync_out;
1654 case F2FS_GET_BLOCK_BMAP:
1655 map->m_pblk = 0;
1656 goto sync_out;
1657 case F2FS_GET_BLOCK_FIEMAP:
1658 if (blkaddr == NULL_ADDR) {
1659 if (map->m_next_pgofs)
1660 *map->m_next_pgofs = pgofs + 1;
1661 goto sync_out;
1662 }
1663 break;
1664 case F2FS_GET_BLOCK_DIO:
1665 if (map->m_next_pgofs)
1666 *map->m_next_pgofs = pgofs + 1;
1667 break;
1668 default:
1669 /* for defragment case */
1670 if (map->m_next_pgofs)
1671 *map->m_next_pgofs = pgofs + 1;
1672 goto sync_out;
1673 }
1674 }
1675
1676 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1677 goto skip;
1678
1679 if (map->m_multidev_dio)
1680 bidx = f2fs_target_device_index(sbi, blkaddr);
1681
1682 if (map->m_len == 0) {
1683 /* reserved delalloc block should be mapped for fiemap. */
1684 if (blkaddr == NEW_ADDR)
1685 map->m_flags |= F2FS_MAP_DELALLOC;
1686 if (flag != F2FS_GET_BLOCK_DIO || !is_hole)
1687 map->m_flags |= F2FS_MAP_MAPPED;
1688
1689 map->m_pblk = blkaddr;
1690 map->m_len = 1;
1691
1692 if (map->m_multidev_dio)
1693 map->m_bdev = FDEV(bidx).bdev;
1694 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1695 ofs++;
1696 map->m_len++;
1697 } else {
1698 goto sync_out;
1699 }
1700
1701 skip:
1702 dn.ofs_in_node++;
1703 pgofs++;
1704
1705 /* preallocate blocks in batch for one dnode page */
1706 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1707 (pgofs == end || dn.ofs_in_node == end_offset)) {
1708
1709 dn.ofs_in_node = ofs_in_node;
1710 err = f2fs_reserve_new_blocks(&dn, prealloc);
1711 if (err)
1712 goto sync_out;
1713
1714 map->m_len += dn.ofs_in_node - ofs_in_node;
1715 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1716 err = -ENOSPC;
1717 goto sync_out;
1718 }
1719 dn.ofs_in_node = end_offset;
1720 }
1721
1722 if (pgofs >= end)
1723 goto sync_out;
1724 else if (dn.ofs_in_node < end_offset)
1725 goto next_block;
1726
1727 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1728 if (map->m_flags & F2FS_MAP_MAPPED) {
1729 unsigned int ofs = start_pgofs - map->m_lblk;
1730
1731 f2fs_update_read_extent_cache_range(&dn,
1732 start_pgofs, map->m_pblk + ofs,
1733 map->m_len - ofs);
1734 }
1735 }
1736
1737 f2fs_put_dnode(&dn);
1738
1739 if (map->m_may_create) {
1740 f2fs_map_unlock(sbi, flag);
1741 f2fs_balance_fs(sbi, dn.node_changed);
1742 }
1743 goto next_dnode;
1744
1745 sync_out:
1746
1747 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1748 /*
1749 * for hardware encryption, but to avoid potential issue
1750 * in future
1751 */
1752 f2fs_wait_on_block_writeback_range(inode,
1753 map->m_pblk, map->m_len);
1754
1755 if (map->m_multidev_dio) {
1756 block_t blk_addr = map->m_pblk;
1757
1758 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1759
1760 map->m_bdev = FDEV(bidx).bdev;
1761 map->m_pblk -= FDEV(bidx).start_blk;
1762
1763 if (map->m_may_create)
1764 f2fs_update_device_state(sbi, inode->i_ino,
1765 blk_addr, map->m_len);
1766
1767 f2fs_bug_on(sbi, blk_addr + map->m_len >
1768 FDEV(bidx).end_blk + 1);
1769 }
1770 }
1771
1772 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1773 if (map->m_flags & F2FS_MAP_MAPPED) {
1774 unsigned int ofs = start_pgofs - map->m_lblk;
1775
1776 f2fs_update_read_extent_cache_range(&dn,
1777 start_pgofs, map->m_pblk + ofs,
1778 map->m_len - ofs);
1779 }
1780 if (map->m_next_extent)
1781 *map->m_next_extent = pgofs + 1;
1782 }
1783 f2fs_put_dnode(&dn);
1784 unlock_out:
1785 if (map->m_may_create) {
1786 f2fs_map_unlock(sbi, flag);
1787 f2fs_balance_fs(sbi, dn.node_changed);
1788 }
1789 out:
1790 trace_f2fs_map_blocks(inode, map, flag, err);
1791 return err;
1792 }
1793
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1794 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1795 {
1796 struct f2fs_map_blocks map;
1797 block_t last_lblk;
1798 int err;
1799
1800 if (pos + len > i_size_read(inode))
1801 return false;
1802
1803 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1804 map.m_next_pgofs = NULL;
1805 map.m_next_extent = NULL;
1806 map.m_seg_type = NO_CHECK_TYPE;
1807 map.m_may_create = false;
1808 last_lblk = F2FS_BLK_ALIGN(pos + len);
1809
1810 while (map.m_lblk < last_lblk) {
1811 map.m_len = last_lblk - map.m_lblk;
1812 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1813 if (err || map.m_len == 0)
1814 return false;
1815 map.m_lblk += map.m_len;
1816 }
1817 return true;
1818 }
1819
bytes_to_blks(struct inode * inode,u64 bytes)1820 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1821 {
1822 return (bytes >> inode->i_blkbits);
1823 }
1824
blks_to_bytes(struct inode * inode,u64 blks)1825 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1826 {
1827 return (blks << inode->i_blkbits);
1828 }
1829
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1830 static int f2fs_xattr_fiemap(struct inode *inode,
1831 struct fiemap_extent_info *fieinfo)
1832 {
1833 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1834 struct page *page;
1835 struct node_info ni;
1836 __u64 phys = 0, len;
1837 __u32 flags;
1838 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1839 int err = 0;
1840
1841 if (f2fs_has_inline_xattr(inode)) {
1842 int offset;
1843
1844 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1845 inode->i_ino, false);
1846 if (!page)
1847 return -ENOMEM;
1848
1849 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1850 if (err) {
1851 f2fs_put_page(page, 1);
1852 return err;
1853 }
1854
1855 phys = blks_to_bytes(inode, ni.blk_addr);
1856 offset = offsetof(struct f2fs_inode, i_addr) +
1857 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1858 get_inline_xattr_addrs(inode));
1859
1860 phys += offset;
1861 len = inline_xattr_size(inode);
1862
1863 f2fs_put_page(page, 1);
1864
1865 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1866
1867 if (!xnid)
1868 flags |= FIEMAP_EXTENT_LAST;
1869
1870 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1871 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1872 if (err)
1873 return err;
1874 }
1875
1876 if (xnid) {
1877 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1878 if (!page)
1879 return -ENOMEM;
1880
1881 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1882 if (err) {
1883 f2fs_put_page(page, 1);
1884 return err;
1885 }
1886
1887 phys = blks_to_bytes(inode, ni.blk_addr);
1888 len = inode->i_sb->s_blocksize;
1889
1890 f2fs_put_page(page, 1);
1891
1892 flags = FIEMAP_EXTENT_LAST;
1893 }
1894
1895 if (phys) {
1896 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1897 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1898 }
1899
1900 return (err < 0 ? err : 0);
1901 }
1902
max_inode_blocks(struct inode * inode)1903 static loff_t max_inode_blocks(struct inode *inode)
1904 {
1905 loff_t result = ADDRS_PER_INODE(inode);
1906 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1907
1908 /* two direct node blocks */
1909 result += (leaf_count * 2);
1910
1911 /* two indirect node blocks */
1912 leaf_count *= NIDS_PER_BLOCK;
1913 result += (leaf_count * 2);
1914
1915 /* one double indirect node block */
1916 leaf_count *= NIDS_PER_BLOCK;
1917 result += leaf_count;
1918
1919 return result;
1920 }
1921
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1922 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1923 u64 start, u64 len)
1924 {
1925 struct f2fs_map_blocks map;
1926 sector_t start_blk, last_blk;
1927 pgoff_t next_pgofs;
1928 u64 logical = 0, phys = 0, size = 0;
1929 u32 flags = 0;
1930 int ret = 0;
1931 bool compr_cluster = false, compr_appended;
1932 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1933 unsigned int count_in_cluster = 0;
1934 loff_t maxbytes;
1935
1936 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1937 ret = f2fs_precache_extents(inode);
1938 if (ret)
1939 return ret;
1940 }
1941
1942 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1943 if (ret)
1944 return ret;
1945
1946 inode_lock_shared(inode);
1947
1948 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1949 if (start > maxbytes) {
1950 ret = -EFBIG;
1951 goto out;
1952 }
1953
1954 if (len > maxbytes || (maxbytes - len) < start)
1955 len = maxbytes - start;
1956
1957 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1958 ret = f2fs_xattr_fiemap(inode, fieinfo);
1959 goto out;
1960 }
1961
1962 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1963 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1964 if (ret != -EAGAIN)
1965 goto out;
1966 }
1967
1968 if (bytes_to_blks(inode, len) == 0)
1969 len = blks_to_bytes(inode, 1);
1970
1971 start_blk = bytes_to_blks(inode, start);
1972 last_blk = bytes_to_blks(inode, start + len - 1);
1973
1974 next:
1975 memset(&map, 0, sizeof(map));
1976 map.m_lblk = start_blk;
1977 map.m_len = bytes_to_blks(inode, len);
1978 map.m_next_pgofs = &next_pgofs;
1979 map.m_seg_type = NO_CHECK_TYPE;
1980
1981 if (compr_cluster) {
1982 map.m_lblk += 1;
1983 map.m_len = cluster_size - count_in_cluster;
1984 }
1985
1986 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1987 if (ret)
1988 goto out;
1989
1990 /* HOLE */
1991 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1992 start_blk = next_pgofs;
1993
1994 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1995 max_inode_blocks(inode)))
1996 goto prep_next;
1997
1998 flags |= FIEMAP_EXTENT_LAST;
1999 }
2000
2001 compr_appended = false;
2002 /* In a case of compressed cluster, append this to the last extent */
2003 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2004 !(map.m_flags & F2FS_MAP_FLAGS))) {
2005 compr_appended = true;
2006 goto skip_fill;
2007 }
2008
2009 if (size) {
2010 flags |= FIEMAP_EXTENT_MERGED;
2011 if (IS_ENCRYPTED(inode))
2012 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2013
2014 ret = fiemap_fill_next_extent(fieinfo, logical,
2015 phys, size, flags);
2016 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2017 if (ret)
2018 goto out;
2019 size = 0;
2020 }
2021
2022 if (start_blk > last_blk)
2023 goto out;
2024
2025 skip_fill:
2026 if (map.m_pblk == COMPRESS_ADDR) {
2027 compr_cluster = true;
2028 count_in_cluster = 1;
2029 } else if (compr_appended) {
2030 unsigned int appended_blks = cluster_size -
2031 count_in_cluster + 1;
2032 size += blks_to_bytes(inode, appended_blks);
2033 start_blk += appended_blks;
2034 compr_cluster = false;
2035 } else {
2036 logical = blks_to_bytes(inode, start_blk);
2037 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2038 blks_to_bytes(inode, map.m_pblk) : 0;
2039 size = blks_to_bytes(inode, map.m_len);
2040 flags = 0;
2041
2042 if (compr_cluster) {
2043 flags = FIEMAP_EXTENT_ENCODED;
2044 count_in_cluster += map.m_len;
2045 if (count_in_cluster == cluster_size) {
2046 compr_cluster = false;
2047 size += blks_to_bytes(inode, 1);
2048 }
2049 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2050 flags = FIEMAP_EXTENT_UNWRITTEN;
2051 }
2052
2053 start_blk += bytes_to_blks(inode, size);
2054 }
2055
2056 prep_next:
2057 cond_resched();
2058 if (fatal_signal_pending(current))
2059 ret = -EINTR;
2060 else
2061 goto next;
2062 out:
2063 if (ret == 1)
2064 ret = 0;
2065
2066 inode_unlock_shared(inode);
2067 return ret;
2068 }
2069
f2fs_readpage_limit(struct inode * inode)2070 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2071 {
2072 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2073 return inode->i_sb->s_maxbytes;
2074
2075 return i_size_read(inode);
2076 }
2077
f2fs_ra_op_flags(struct readahead_control * rac)2078 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2079 {
2080 blk_opf_t op_flag = rac ? REQ_RAHEAD : 0;
2081
2082 trace_android_vh_f2fs_ra_op_flags(&op_flag, rac);
2083 return op_flag;
2084 }
2085
f2fs_read_single_page(struct inode * inode,struct folio * folio,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,struct readahead_control * rac)2086 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2087 unsigned nr_pages,
2088 struct f2fs_map_blocks *map,
2089 struct bio **bio_ret,
2090 sector_t *last_block_in_bio,
2091 struct readahead_control *rac)
2092 {
2093 struct bio *bio = *bio_ret;
2094 const unsigned blocksize = blks_to_bytes(inode, 1);
2095 sector_t block_in_file;
2096 sector_t last_block;
2097 sector_t last_block_in_file;
2098 sector_t block_nr;
2099 pgoff_t index = folio_index(folio);
2100 int ret = 0;
2101
2102 block_in_file = (sector_t)index;
2103 last_block = block_in_file + nr_pages;
2104 last_block_in_file = bytes_to_blks(inode,
2105 f2fs_readpage_limit(inode) + blocksize - 1);
2106 if (last_block > last_block_in_file)
2107 last_block = last_block_in_file;
2108
2109 /* just zeroing out page which is beyond EOF */
2110 if (block_in_file >= last_block)
2111 goto zero_out;
2112 /*
2113 * Map blocks using the previous result first.
2114 */
2115 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2116 block_in_file > map->m_lblk &&
2117 block_in_file < (map->m_lblk + map->m_len))
2118 goto got_it;
2119
2120 /*
2121 * Then do more f2fs_map_blocks() calls until we are
2122 * done with this page.
2123 */
2124 map->m_lblk = block_in_file;
2125 map->m_len = last_block - block_in_file;
2126
2127 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2128 if (ret)
2129 goto out;
2130 got_it:
2131 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2132 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2133 folio_set_mappedtodisk(folio);
2134
2135 if (!folio_test_uptodate(folio) && (!folio_test_swapcache(folio) &&
2136 !cleancache_get_page(&folio->page))) {
2137 folio_mark_uptodate(folio);
2138 goto confused;
2139 }
2140
2141 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2142 DATA_GENERIC_ENHANCE_READ)) {
2143 ret = -EFSCORRUPTED;
2144 goto out;
2145 }
2146 } else {
2147 zero_out:
2148 folio_zero_segment(folio, 0, folio_size(folio));
2149 if (f2fs_need_verity(inode, index) &&
2150 !fsverity_verify_folio(folio)) {
2151 ret = -EIO;
2152 goto out;
2153 }
2154 if (!folio_test_uptodate(folio))
2155 folio_mark_uptodate(folio);
2156 folio_unlock(folio);
2157 goto out;
2158 }
2159
2160 /*
2161 * This page will go to BIO. Do we need to send this
2162 * BIO off first?
2163 */
2164 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2165 *last_block_in_bio, block_nr) ||
2166 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2167 submit_and_realloc:
2168 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2169 bio = NULL;
2170 }
2171 if (bio == NULL) {
2172 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2173 f2fs_ra_op_flags(rac), index,
2174 false);
2175 if (IS_ERR(bio)) {
2176 ret = PTR_ERR(bio);
2177 bio = NULL;
2178 goto out;
2179 }
2180 }
2181
2182 /*
2183 * If the page is under writeback, we need to wait for
2184 * its completion to see the correct decrypted data.
2185 */
2186 f2fs_wait_on_block_writeback(inode, block_nr);
2187
2188 if (!bio_add_folio(bio, folio, blocksize, 0))
2189 goto submit_and_realloc;
2190
2191 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2192 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2193 F2FS_BLKSIZE);
2194 *last_block_in_bio = block_nr;
2195 goto out;
2196 confused:
2197 if (bio) {
2198 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2199 bio = NULL;
2200 }
2201 folio_unlock(folio);
2202 out:
2203 *bio_ret = bio;
2204 return ret;
2205 }
2206
2207 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,struct readahead_control * rac,bool for_write)2208 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2209 unsigned nr_pages, sector_t *last_block_in_bio,
2210 struct readahead_control *rac, bool for_write)
2211 {
2212 struct dnode_of_data dn;
2213 struct inode *inode = cc->inode;
2214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2215 struct bio *bio = *bio_ret;
2216 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2217 sector_t last_block_in_file;
2218 const unsigned blocksize = blks_to_bytes(inode, 1);
2219 struct decompress_io_ctx *dic = NULL;
2220 struct extent_info ei = {};
2221 bool from_dnode = true;
2222 int i;
2223 int ret = 0;
2224
2225 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2226
2227 last_block_in_file = bytes_to_blks(inode,
2228 f2fs_readpage_limit(inode) + blocksize - 1);
2229
2230 /* get rid of pages beyond EOF */
2231 for (i = 0; i < cc->cluster_size; i++) {
2232 struct page *page = cc->rpages[i];
2233
2234 if (!page)
2235 continue;
2236 if ((sector_t)page->index >= last_block_in_file) {
2237 zero_user_segment(page, 0, PAGE_SIZE);
2238 if (!PageUptodate(page))
2239 SetPageUptodate(page);
2240 } else if (!PageUptodate(page)) {
2241 continue;
2242 }
2243 unlock_page(page);
2244 if (for_write)
2245 put_page(page);
2246 cc->rpages[i] = NULL;
2247 cc->nr_rpages--;
2248 }
2249
2250 /* we are done since all pages are beyond EOF */
2251 if (f2fs_cluster_is_empty(cc))
2252 goto out;
2253
2254 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2255 from_dnode = false;
2256
2257 if (!from_dnode)
2258 goto skip_reading_dnode;
2259
2260 set_new_dnode(&dn, inode, NULL, NULL, 0);
2261 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2262 if (ret)
2263 goto out;
2264
2265 if (unlikely(f2fs_cp_error(sbi))) {
2266 ret = -EIO;
2267 goto out_put_dnode;
2268 }
2269 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2270
2271 skip_reading_dnode:
2272 for (i = 1; i < cc->cluster_size; i++) {
2273 block_t blkaddr;
2274
2275 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2276 dn.ofs_in_node + i) :
2277 ei.blk + i - 1;
2278
2279 if (!__is_valid_data_blkaddr(blkaddr))
2280 break;
2281
2282 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2283 ret = -EFAULT;
2284 goto out_put_dnode;
2285 }
2286 cc->nr_cpages++;
2287
2288 if (!from_dnode && i >= ei.c_len)
2289 break;
2290 }
2291
2292 /* nothing to decompress */
2293 if (cc->nr_cpages == 0) {
2294 ret = 0;
2295 goto out_put_dnode;
2296 }
2297
2298 dic = f2fs_alloc_dic(cc);
2299 if (IS_ERR(dic)) {
2300 ret = PTR_ERR(dic);
2301 goto out_put_dnode;
2302 }
2303
2304 for (i = 0; i < cc->nr_cpages; i++) {
2305 struct page *page = dic->cpages[i];
2306 block_t blkaddr;
2307 struct bio_post_read_ctx *ctx;
2308
2309 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2310 dn.ofs_in_node + i + 1) :
2311 ei.blk + i;
2312
2313 f2fs_wait_on_block_writeback(inode, blkaddr);
2314
2315 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2316 if (atomic_dec_and_test(&dic->remaining_pages)) {
2317 f2fs_decompress_cluster(dic, true);
2318 break;
2319 }
2320 continue;
2321 }
2322
2323 if (bio && (!page_is_mergeable(sbi, bio,
2324 *last_block_in_bio, blkaddr) ||
2325 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2326 submit_and_realloc:
2327 f2fs_submit_read_bio(sbi, bio, DATA);
2328 bio = NULL;
2329 }
2330
2331 if (!bio) {
2332 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2333 f2fs_ra_op_flags(rac),
2334 page->index, for_write);
2335 if (IS_ERR(bio)) {
2336 ret = PTR_ERR(bio);
2337 f2fs_decompress_end_io(dic, ret, true);
2338 f2fs_put_dnode(&dn);
2339 *bio_ret = NULL;
2340 return ret;
2341 }
2342 }
2343
2344 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2345 goto submit_and_realloc;
2346
2347 ctx = get_post_read_ctx(bio);
2348 ctx->enabled_steps |= STEP_DECOMPRESS;
2349 refcount_inc(&dic->refcnt);
2350
2351 inc_page_count(sbi, F2FS_RD_DATA);
2352 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2353 *last_block_in_bio = blkaddr;
2354 }
2355
2356 if (from_dnode)
2357 f2fs_put_dnode(&dn);
2358
2359 *bio_ret = bio;
2360 return 0;
2361
2362 out_put_dnode:
2363 if (from_dnode)
2364 f2fs_put_dnode(&dn);
2365 out:
2366 for (i = 0; i < cc->cluster_size; i++) {
2367 if (cc->rpages[i]) {
2368 ClearPageUptodate(cc->rpages[i]);
2369 unlock_page(cc->rpages[i]);
2370 }
2371 }
2372 *bio_ret = bio;
2373 return ret;
2374 }
2375 #endif
2376
2377 /*
2378 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2379 * Major change was from block_size == page_size in f2fs by default.
2380 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct folio * folio)2381 static int f2fs_mpage_readpages(struct inode *inode,
2382 struct readahead_control *rac, struct folio *folio)
2383 {
2384 struct bio *bio = NULL;
2385 sector_t last_block_in_bio = 0;
2386 struct f2fs_map_blocks map;
2387 #ifdef CONFIG_F2FS_FS_COMPRESSION
2388 struct compress_ctx cc = {
2389 .inode = inode,
2390 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2391 .cluster_size = F2FS_I(inode)->i_cluster_size,
2392 .cluster_idx = NULL_CLUSTER,
2393 .rpages = NULL,
2394 .cpages = NULL,
2395 .nr_rpages = 0,
2396 .nr_cpages = 0,
2397 };
2398 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2399 #endif
2400 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2401 unsigned max_nr_pages = nr_pages;
2402 pgoff_t index;
2403 int ret = 0;
2404
2405 map.m_pblk = 0;
2406 map.m_lblk = 0;
2407 map.m_len = 0;
2408 map.m_flags = 0;
2409 map.m_next_pgofs = NULL;
2410 map.m_next_extent = NULL;
2411 map.m_seg_type = NO_CHECK_TYPE;
2412 map.m_may_create = false;
2413
2414 for (; nr_pages; nr_pages--) {
2415 if (rac) {
2416 folio = readahead_folio(rac);
2417 prefetchw(&folio->flags);
2418 }
2419
2420 index = folio_index(folio);
2421
2422 #ifdef CONFIG_F2FS_FS_COMPRESSION
2423 if (!f2fs_compressed_file(inode))
2424 goto read_single_page;
2425
2426 /* there are remained compressed pages, submit them */
2427 if (!f2fs_cluster_can_merge_page(&cc, index)) {
2428 ret = f2fs_read_multi_pages(&cc, &bio,
2429 max_nr_pages,
2430 &last_block_in_bio,
2431 rac, false);
2432 f2fs_destroy_compress_ctx(&cc, false);
2433 if (ret)
2434 goto set_error_page;
2435 }
2436 if (cc.cluster_idx == NULL_CLUSTER) {
2437 if (nc_cluster_idx == index >> cc.log_cluster_size)
2438 goto read_single_page;
2439
2440 ret = f2fs_is_compressed_cluster(inode, index);
2441 if (ret < 0)
2442 goto set_error_page;
2443 else if (!ret) {
2444 nc_cluster_idx =
2445 index >> cc.log_cluster_size;
2446 goto read_single_page;
2447 }
2448
2449 nc_cluster_idx = NULL_CLUSTER;
2450 }
2451 ret = f2fs_init_compress_ctx(&cc);
2452 if (ret)
2453 goto set_error_page;
2454
2455 f2fs_compress_ctx_add_page(&cc, &folio->page);
2456
2457 goto next_page;
2458 read_single_page:
2459 #endif
2460
2461 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2462 &bio, &last_block_in_bio, rac);
2463 if (ret) {
2464 #ifdef CONFIG_F2FS_FS_COMPRESSION
2465 set_error_page:
2466 #endif
2467 folio_zero_segment(folio, 0, folio_size(folio));
2468 folio_unlock(folio);
2469 }
2470 #ifdef CONFIG_F2FS_FS_COMPRESSION
2471 next_page:
2472 #endif
2473
2474 #ifdef CONFIG_F2FS_FS_COMPRESSION
2475 if (f2fs_compressed_file(inode)) {
2476 /* last page */
2477 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2478 ret = f2fs_read_multi_pages(&cc, &bio,
2479 max_nr_pages,
2480 &last_block_in_bio,
2481 rac, false);
2482 f2fs_destroy_compress_ctx(&cc, false);
2483 }
2484 }
2485 #endif
2486 }
2487 if (bio)
2488 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2489 return ret;
2490 }
2491
f2fs_read_data_folio(struct file * file,struct folio * folio)2492 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2493 {
2494 struct inode *inode = folio_file_mapping(folio)->host;
2495 int ret = -EAGAIN;
2496
2497 trace_f2fs_readpage(folio, DATA);
2498
2499 if (!f2fs_is_compress_backend_ready(inode)) {
2500 folio_unlock(folio);
2501 return -EOPNOTSUPP;
2502 }
2503
2504 /* If the file has inline data, try to read it directly */
2505 if (f2fs_has_inline_data(inode))
2506 ret = f2fs_read_inline_data(inode, folio);
2507 if (ret == -EAGAIN)
2508 ret = f2fs_mpage_readpages(inode, NULL, folio);
2509 return ret;
2510 }
2511
f2fs_readahead(struct readahead_control * rac)2512 static void f2fs_readahead(struct readahead_control *rac)
2513 {
2514 struct inode *inode = rac->mapping->host;
2515
2516 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2517
2518 if (!f2fs_is_compress_backend_ready(inode))
2519 return;
2520
2521 /* If the file has inline data, skip readahead */
2522 if (f2fs_has_inline_data(inode))
2523 return;
2524
2525 f2fs_mpage_readpages(inode, rac, NULL);
2526 }
2527
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2528 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2529 {
2530 struct inode *inode = fio->page->mapping->host;
2531 struct page *mpage, *page;
2532 gfp_t gfp_flags = GFP_NOFS;
2533
2534 if (!f2fs_encrypted_file(inode))
2535 return 0;
2536
2537 page = fio->compressed_page ? fio->compressed_page : fio->page;
2538
2539 if (fscrypt_inode_uses_inline_crypto(inode))
2540 return 0;
2541
2542 retry_encrypt:
2543 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2544 PAGE_SIZE, 0, gfp_flags);
2545 if (IS_ERR(fio->encrypted_page)) {
2546 /* flush pending IOs and wait for a while in the ENOMEM case */
2547 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2548 f2fs_flush_merged_writes(fio->sbi);
2549 memalloc_retry_wait(GFP_NOFS);
2550 gfp_flags |= __GFP_NOFAIL;
2551 goto retry_encrypt;
2552 }
2553 return PTR_ERR(fio->encrypted_page);
2554 }
2555
2556 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2557 if (mpage) {
2558 if (PageUptodate(mpage))
2559 memcpy(page_address(mpage),
2560 page_address(fio->encrypted_page), PAGE_SIZE);
2561 f2fs_put_page(mpage, 1);
2562 }
2563 return 0;
2564 }
2565
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2566 static inline bool check_inplace_update_policy(struct inode *inode,
2567 struct f2fs_io_info *fio)
2568 {
2569 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2570
2571 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2572 is_inode_flag_set(inode, FI_OPU_WRITE))
2573 return false;
2574 if (IS_F2FS_IPU_FORCE(sbi))
2575 return true;
2576 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2577 return true;
2578 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2579 return true;
2580 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2581 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2582 return true;
2583
2584 /*
2585 * IPU for rewrite async pages
2586 */
2587 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2588 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2589 return true;
2590
2591 /* this is only set during fdatasync */
2592 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2593 return true;
2594
2595 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2596 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2597 return true;
2598
2599 return false;
2600 }
2601
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2602 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2603 {
2604 /* swap file is migrating in aligned write mode */
2605 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2606 return false;
2607
2608 if (f2fs_is_pinned_file(inode))
2609 return true;
2610
2611 /* if this is cold file, we should overwrite to avoid fragmentation */
2612 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2613 return true;
2614
2615 return check_inplace_update_policy(inode, fio);
2616 }
2617
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2618 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2619 {
2620 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2621
2622 /* The below cases were checked when setting it. */
2623 if (f2fs_is_pinned_file(inode))
2624 return false;
2625 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2626 return true;
2627 if (f2fs_lfs_mode(sbi))
2628 return true;
2629 if (S_ISDIR(inode->i_mode))
2630 return true;
2631 if (IS_NOQUOTA(inode))
2632 return true;
2633 if (f2fs_used_in_atomic_write(inode))
2634 return true;
2635 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2636 if (f2fs_compressed_file(inode) &&
2637 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2638 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2639 return true;
2640
2641 /* swap file is migrating in aligned write mode */
2642 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2643 return true;
2644
2645 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2646 return true;
2647
2648 if (fio) {
2649 if (page_private_gcing(fio->page))
2650 return true;
2651 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2652 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2653 return true;
2654 }
2655 return false;
2656 }
2657
need_inplace_update(struct f2fs_io_info * fio)2658 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2659 {
2660 struct inode *inode = fio->page->mapping->host;
2661
2662 if (f2fs_should_update_outplace(inode, fio))
2663 return false;
2664
2665 return f2fs_should_update_inplace(inode, fio);
2666 }
2667
f2fs_do_write_data_page(struct f2fs_io_info * fio)2668 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2669 {
2670 struct page *page = fio->page;
2671 struct inode *inode = page->mapping->host;
2672 struct dnode_of_data dn;
2673 struct node_info ni;
2674 bool ipu_force = false;
2675 int err = 0;
2676
2677 /* Use COW inode to make dnode_of_data for atomic write */
2678 if (f2fs_is_atomic_file(inode))
2679 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2680 else
2681 set_new_dnode(&dn, inode, NULL, NULL, 0);
2682
2683 if (need_inplace_update(fio) &&
2684 f2fs_lookup_read_extent_cache_block(inode, page->index,
2685 &fio->old_blkaddr)) {
2686 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2687 DATA_GENERIC_ENHANCE))
2688 return -EFSCORRUPTED;
2689
2690 ipu_force = true;
2691 fio->need_lock = LOCK_DONE;
2692 goto got_it;
2693 }
2694
2695 /* Deadlock due to between page->lock and f2fs_lock_op */
2696 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2697 return -EAGAIN;
2698
2699 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2700 if (err)
2701 goto out;
2702
2703 fio->old_blkaddr = dn.data_blkaddr;
2704
2705 /* This page is already truncated */
2706 if (fio->old_blkaddr == NULL_ADDR) {
2707 ClearPageUptodate(page);
2708 clear_page_private_gcing(page);
2709 goto out_writepage;
2710 }
2711 got_it:
2712 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2713 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2714 DATA_GENERIC_ENHANCE)) {
2715 err = -EFSCORRUPTED;
2716 goto out_writepage;
2717 }
2718
2719 /* wait for GCed page writeback via META_MAPPING */
2720 if (fio->meta_gc)
2721 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2722
2723 /*
2724 * If current allocation needs SSR,
2725 * it had better in-place writes for updated data.
2726 */
2727 if (ipu_force ||
2728 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2729 need_inplace_update(fio))) {
2730 err = f2fs_encrypt_one_page(fio);
2731 if (err)
2732 goto out_writepage;
2733
2734 set_page_writeback(page);
2735 f2fs_put_dnode(&dn);
2736 if (fio->need_lock == LOCK_REQ)
2737 f2fs_unlock_op(fio->sbi);
2738 err = f2fs_inplace_write_data(fio);
2739 if (err) {
2740 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2741 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2742 end_page_writeback(page);
2743 } else {
2744 set_inode_flag(inode, FI_UPDATE_WRITE);
2745 }
2746 trace_f2fs_do_write_data_page(page_folio(page), IPU);
2747 return err;
2748 }
2749
2750 if (fio->need_lock == LOCK_RETRY) {
2751 if (!f2fs_trylock_op(fio->sbi)) {
2752 err = -EAGAIN;
2753 goto out_writepage;
2754 }
2755 fio->need_lock = LOCK_REQ;
2756 }
2757
2758 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2759 if (err)
2760 goto out_writepage;
2761
2762 fio->version = ni.version;
2763
2764 err = f2fs_encrypt_one_page(fio);
2765 if (err)
2766 goto out_writepage;
2767
2768 set_page_writeback(page);
2769
2770 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2771 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2772
2773 /* LFS mode write path */
2774 f2fs_outplace_write_data(&dn, fio);
2775 trace_f2fs_do_write_data_page(page_folio(page), OPU);
2776 set_inode_flag(inode, FI_APPEND_WRITE);
2777 out_writepage:
2778 f2fs_put_dnode(&dn);
2779 out:
2780 if (fio->need_lock == LOCK_REQ)
2781 f2fs_unlock_op(fio->sbi);
2782 return err;
2783 }
2784
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2785 int f2fs_write_single_data_page(struct page *page, int *submitted,
2786 struct bio **bio,
2787 sector_t *last_block,
2788 struct writeback_control *wbc,
2789 enum iostat_type io_type,
2790 int compr_blocks,
2791 bool allow_balance)
2792 {
2793 struct inode *inode = page->mapping->host;
2794 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2795 loff_t i_size = i_size_read(inode);
2796 const pgoff_t end_index = ((unsigned long long)i_size)
2797 >> PAGE_SHIFT;
2798 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2799 unsigned offset = 0;
2800 bool need_balance_fs = false;
2801 bool quota_inode = IS_NOQUOTA(inode);
2802 int err = 0;
2803 struct f2fs_io_info fio = {
2804 .sbi = sbi,
2805 .ino = inode->i_ino,
2806 .type = DATA,
2807 .op = REQ_OP_WRITE,
2808 .op_flags = wbc_to_write_flags(wbc),
2809 .old_blkaddr = NULL_ADDR,
2810 .page = page,
2811 .encrypted_page = NULL,
2812 .submitted = 0,
2813 .compr_blocks = compr_blocks,
2814 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2815 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2816 .io_type = io_type,
2817 .io_wbc = wbc,
2818 .bio = bio,
2819 .last_block = last_block,
2820 };
2821
2822 trace_f2fs_writepage(page_folio(page), DATA);
2823
2824 /* we should bypass data pages to proceed the kworker jobs */
2825 if (unlikely(f2fs_cp_error(sbi))) {
2826 mapping_set_error(page->mapping, -EIO);
2827 /*
2828 * don't drop any dirty dentry pages for keeping lastest
2829 * directory structure.
2830 */
2831 if (S_ISDIR(inode->i_mode) &&
2832 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2833 goto redirty_out;
2834
2835 /* keep data pages in remount-ro mode */
2836 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2837 goto redirty_out;
2838 goto out;
2839 }
2840
2841 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2842 goto redirty_out;
2843
2844 if (page->index < end_index ||
2845 f2fs_verity_in_progress(inode) ||
2846 compr_blocks)
2847 goto write;
2848
2849 /*
2850 * If the offset is out-of-range of file size,
2851 * this page does not have to be written to disk.
2852 */
2853 offset = i_size & (PAGE_SIZE - 1);
2854 if ((page->index >= end_index + 1) || !offset)
2855 goto out;
2856
2857 zero_user_segment(page, offset, PAGE_SIZE);
2858 write:
2859 /* Dentry/quota blocks are controlled by checkpoint */
2860 if (S_ISDIR(inode->i_mode) || quota_inode) {
2861 /*
2862 * We need to wait for node_write to avoid block allocation during
2863 * checkpoint. This can only happen to quota writes which can cause
2864 * the below discard race condition.
2865 */
2866 if (quota_inode)
2867 f2fs_down_read(&sbi->node_write);
2868
2869 fio.need_lock = LOCK_DONE;
2870 err = f2fs_do_write_data_page(&fio);
2871
2872 if (quota_inode)
2873 f2fs_up_read(&sbi->node_write);
2874
2875 goto done;
2876 }
2877
2878 if (!wbc->for_reclaim)
2879 need_balance_fs = true;
2880 else if (has_not_enough_free_secs(sbi, 0, 0))
2881 goto redirty_out;
2882 else
2883 set_inode_flag(inode, FI_HOT_DATA);
2884
2885 err = -EAGAIN;
2886 if (f2fs_has_inline_data(inode)) {
2887 err = f2fs_write_inline_data(inode, page);
2888 if (!err)
2889 goto out;
2890 }
2891
2892 if (err == -EAGAIN) {
2893 err = f2fs_do_write_data_page(&fio);
2894 if (err == -EAGAIN) {
2895 f2fs_bug_on(sbi, compr_blocks);
2896 fio.need_lock = LOCK_REQ;
2897 err = f2fs_do_write_data_page(&fio);
2898 }
2899 }
2900
2901 if (err) {
2902 file_set_keep_isize(inode);
2903 } else {
2904 spin_lock(&F2FS_I(inode)->i_size_lock);
2905 if (F2FS_I(inode)->last_disk_size < psize)
2906 F2FS_I(inode)->last_disk_size = psize;
2907 spin_unlock(&F2FS_I(inode)->i_size_lock);
2908 }
2909
2910 done:
2911 if (err && err != -ENOENT)
2912 goto redirty_out;
2913
2914 out:
2915 inode_dec_dirty_pages(inode);
2916 if (err) {
2917 ClearPageUptodate(page);
2918 clear_page_private_gcing(page);
2919 }
2920
2921 if (wbc->for_reclaim) {
2922 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2923 clear_inode_flag(inode, FI_HOT_DATA);
2924 f2fs_remove_dirty_inode(inode);
2925 submitted = NULL;
2926 }
2927 unlock_page(page);
2928 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2929 !F2FS_I(inode)->wb_task && allow_balance)
2930 f2fs_balance_fs(sbi, need_balance_fs);
2931
2932 if (unlikely(f2fs_cp_error(sbi))) {
2933 f2fs_submit_merged_write(sbi, DATA);
2934 if (bio && *bio)
2935 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2936 submitted = NULL;
2937 }
2938
2939 if (submitted)
2940 *submitted = fio.submitted;
2941
2942 return 0;
2943
2944 redirty_out:
2945 redirty_page_for_writepage(wbc, page);
2946 /*
2947 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2948 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2949 * file_write_and_wait_range() will see EIO error, which is critical
2950 * to return value of fsync() followed by atomic_write failure to user.
2951 */
2952 if (!err || wbc->for_reclaim)
2953 return AOP_WRITEPAGE_ACTIVATE;
2954 unlock_page(page);
2955 return err;
2956 }
2957
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2958 static int f2fs_write_data_page(struct page *page,
2959 struct writeback_control *wbc)
2960 {
2961 #ifdef CONFIG_F2FS_FS_COMPRESSION
2962 struct inode *inode = page->mapping->host;
2963
2964 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2965 goto out;
2966
2967 if (f2fs_compressed_file(inode)) {
2968 if (f2fs_is_compressed_cluster(inode, page->index)) {
2969 redirty_page_for_writepage(wbc, page);
2970 return AOP_WRITEPAGE_ACTIVATE;
2971 }
2972 }
2973 out:
2974 #endif
2975
2976 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2977 wbc, FS_DATA_IO, 0, true);
2978 }
2979
2980 /*
2981 * This function was copied from write_cache_pages from mm/page-writeback.c.
2982 * The major change is making write step of cold data page separately from
2983 * warm/hot data page.
2984 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2985 static int f2fs_write_cache_pages(struct address_space *mapping,
2986 struct writeback_control *wbc,
2987 enum iostat_type io_type)
2988 {
2989 int ret = 0;
2990 int done = 0, retry = 0;
2991 struct page *pages_local[F2FS_ONSTACK_PAGES];
2992 struct page **pages = pages_local;
2993 struct folio_batch fbatch;
2994 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2995 struct bio *bio = NULL;
2996 sector_t last_block;
2997 #ifdef CONFIG_F2FS_FS_COMPRESSION
2998 struct inode *inode = mapping->host;
2999 struct compress_ctx cc = {
3000 .inode = inode,
3001 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3002 .cluster_size = F2FS_I(inode)->i_cluster_size,
3003 .cluster_idx = NULL_CLUSTER,
3004 .rpages = NULL,
3005 .nr_rpages = 0,
3006 .cpages = NULL,
3007 .valid_nr_cpages = 0,
3008 .rbuf = NULL,
3009 .cbuf = NULL,
3010 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3011 .private = NULL,
3012 };
3013 #endif
3014 int nr_folios, p, idx;
3015 int nr_pages;
3016 unsigned int max_pages = F2FS_ONSTACK_PAGES;
3017 pgoff_t index;
3018 pgoff_t end; /* Inclusive */
3019 pgoff_t done_index;
3020 int range_whole = 0;
3021 xa_mark_t tag;
3022 int nwritten = 0;
3023 int submitted = 0;
3024 int i;
3025
3026 #ifdef CONFIG_F2FS_FS_COMPRESSION
3027 if (f2fs_compressed_file(inode) &&
3028 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3029 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3030 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3031 max_pages = 1 << cc.log_cluster_size;
3032 }
3033 #endif
3034
3035 folio_batch_init(&fbatch);
3036
3037 if (get_dirty_pages(mapping->host) <=
3038 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3039 set_inode_flag(mapping->host, FI_HOT_DATA);
3040 else
3041 clear_inode_flag(mapping->host, FI_HOT_DATA);
3042
3043 if (wbc->range_cyclic) {
3044 index = mapping->writeback_index; /* prev offset */
3045 end = -1;
3046 } else {
3047 index = wbc->range_start >> PAGE_SHIFT;
3048 end = wbc->range_end >> PAGE_SHIFT;
3049 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3050 range_whole = 1;
3051 }
3052 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3053 tag = PAGECACHE_TAG_TOWRITE;
3054 else
3055 tag = PAGECACHE_TAG_DIRTY;
3056 retry:
3057 retry = 0;
3058 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3059 tag_pages_for_writeback(mapping, index, end);
3060 done_index = index;
3061 while (!done && !retry && (index <= end)) {
3062 nr_pages = 0;
3063 again:
3064 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3065 tag, &fbatch);
3066 if (nr_folios == 0) {
3067 if (nr_pages)
3068 goto write;
3069 break;
3070 }
3071
3072 for (i = 0; i < nr_folios; i++) {
3073 struct folio *folio = fbatch.folios[i];
3074
3075 idx = 0;
3076 p = folio_nr_pages(folio);
3077 add_more:
3078 pages[nr_pages] = folio_page(folio, idx);
3079 folio_get(folio);
3080 if (++nr_pages == max_pages) {
3081 index = folio->index + idx + 1;
3082 folio_batch_release(&fbatch);
3083 goto write;
3084 }
3085 if (++idx < p)
3086 goto add_more;
3087 }
3088 folio_batch_release(&fbatch);
3089 goto again;
3090 write:
3091 for (i = 0; i < nr_pages; i++) {
3092 struct page *page = pages[i];
3093 struct folio *folio = page_folio(page);
3094 bool need_readd;
3095 readd:
3096 need_readd = false;
3097 #ifdef CONFIG_F2FS_FS_COMPRESSION
3098 if (f2fs_compressed_file(inode)) {
3099 void *fsdata = NULL;
3100 struct page *pagep;
3101 int ret2;
3102
3103 ret = f2fs_init_compress_ctx(&cc);
3104 if (ret) {
3105 done = 1;
3106 break;
3107 }
3108
3109 if (!f2fs_cluster_can_merge_page(&cc,
3110 folio->index)) {
3111 ret = f2fs_write_multi_pages(&cc,
3112 &submitted, wbc, io_type);
3113 if (!ret)
3114 need_readd = true;
3115 goto result;
3116 }
3117
3118 if (unlikely(f2fs_cp_error(sbi)))
3119 goto lock_folio;
3120
3121 if (!f2fs_cluster_is_empty(&cc))
3122 goto lock_folio;
3123
3124 if (f2fs_all_cluster_page_ready(&cc,
3125 pages, i, nr_pages, true))
3126 goto lock_folio;
3127
3128 ret2 = f2fs_prepare_compress_overwrite(
3129 inode, &pagep,
3130 folio->index, &fsdata);
3131 if (ret2 < 0) {
3132 ret = ret2;
3133 done = 1;
3134 break;
3135 } else if (ret2 &&
3136 (!f2fs_compress_write_end(inode,
3137 fsdata, folio->index, 1) ||
3138 !f2fs_all_cluster_page_ready(&cc,
3139 pages, i, nr_pages,
3140 false))) {
3141 retry = 1;
3142 break;
3143 }
3144 }
3145 #endif
3146 /* give a priority to WB_SYNC threads */
3147 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3148 wbc->sync_mode == WB_SYNC_NONE) {
3149 done = 1;
3150 break;
3151 }
3152 #ifdef CONFIG_F2FS_FS_COMPRESSION
3153 lock_folio:
3154 #endif
3155 done_index = folio->index;
3156 retry_write:
3157 folio_lock(folio);
3158
3159 if (unlikely(folio->mapping != mapping)) {
3160 continue_unlock:
3161 folio_unlock(folio);
3162 continue;
3163 }
3164
3165 if (!folio_test_dirty(folio)) {
3166 /* someone wrote it for us */
3167 goto continue_unlock;
3168 }
3169
3170 if (folio_test_writeback(folio)) {
3171 if (wbc->sync_mode == WB_SYNC_NONE)
3172 goto continue_unlock;
3173 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3174 }
3175
3176 if (!folio_clear_dirty_for_io(folio))
3177 goto continue_unlock;
3178
3179 #ifdef CONFIG_F2FS_FS_COMPRESSION
3180 if (f2fs_compressed_file(inode)) {
3181 folio_get(folio);
3182 f2fs_compress_ctx_add_page(&cc, &folio->page);
3183 continue;
3184 }
3185 #endif
3186 ret = f2fs_write_single_data_page(&folio->page,
3187 &submitted, &bio, &last_block,
3188 wbc, io_type, 0, true);
3189 if (ret == AOP_WRITEPAGE_ACTIVATE)
3190 folio_unlock(folio);
3191 #ifdef CONFIG_F2FS_FS_COMPRESSION
3192 result:
3193 #endif
3194 nwritten += submitted;
3195 wbc->nr_to_write -= submitted;
3196
3197 if (unlikely(ret)) {
3198 /*
3199 * keep nr_to_write, since vfs uses this to
3200 * get # of written pages.
3201 */
3202 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3203 ret = 0;
3204 goto next;
3205 } else if (ret == -EAGAIN) {
3206 ret = 0;
3207 if (wbc->sync_mode == WB_SYNC_ALL) {
3208 f2fs_io_schedule_timeout(
3209 DEFAULT_IO_TIMEOUT);
3210 goto retry_write;
3211 }
3212 goto next;
3213 }
3214 done_index = folio_next_index(folio);
3215 done = 1;
3216 break;
3217 }
3218
3219 if (wbc->nr_to_write <= 0 &&
3220 wbc->sync_mode == WB_SYNC_NONE) {
3221 done = 1;
3222 break;
3223 }
3224 next:
3225 if (need_readd)
3226 goto readd;
3227 }
3228 release_pages(pages, nr_pages);
3229 cond_resched();
3230 }
3231 #ifdef CONFIG_F2FS_FS_COMPRESSION
3232 /* flush remained pages in compress cluster */
3233 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3234 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3235 nwritten += submitted;
3236 wbc->nr_to_write -= submitted;
3237 if (ret) {
3238 done = 1;
3239 retry = 0;
3240 }
3241 }
3242 if (f2fs_compressed_file(inode))
3243 f2fs_destroy_compress_ctx(&cc, false);
3244 #endif
3245 if (retry) {
3246 index = 0;
3247 end = -1;
3248 goto retry;
3249 }
3250 if (wbc->range_cyclic && !done)
3251 done_index = 0;
3252 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3253 mapping->writeback_index = done_index;
3254
3255 if (nwritten)
3256 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3257 NULL, 0, DATA);
3258 /* submit cached bio of IPU write */
3259 if (bio)
3260 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3261
3262 #ifdef CONFIG_F2FS_FS_COMPRESSION
3263 if (pages != pages_local)
3264 kfree(pages);
3265 #endif
3266
3267 return ret;
3268 }
3269
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3270 static inline bool __should_serialize_io(struct inode *inode,
3271 struct writeback_control *wbc)
3272 {
3273 /* to avoid deadlock in path of data flush */
3274 if (F2FS_I(inode)->wb_task)
3275 return false;
3276
3277 if (!S_ISREG(inode->i_mode))
3278 return false;
3279 if (IS_NOQUOTA(inode))
3280 return false;
3281
3282 if (f2fs_need_compress_data(inode))
3283 return true;
3284 if (wbc->sync_mode != WB_SYNC_ALL)
3285 return true;
3286 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3287 return true;
3288 return false;
3289 }
3290
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3291 static int __f2fs_write_data_pages(struct address_space *mapping,
3292 struct writeback_control *wbc,
3293 enum iostat_type io_type)
3294 {
3295 struct inode *inode = mapping->host;
3296 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3297 struct blk_plug plug;
3298 int ret;
3299 bool locked = false;
3300
3301 /* deal with chardevs and other special file */
3302 if (!mapping->a_ops->writepage)
3303 return 0;
3304
3305 /* skip writing if there is no dirty page in this inode */
3306 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3307 return 0;
3308
3309 /* during POR, we don't need to trigger writepage at all. */
3310 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3311 goto skip_write;
3312
3313 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3314 wbc->sync_mode == WB_SYNC_NONE &&
3315 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3316 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3317 goto skip_write;
3318
3319 /* skip writing in file defragment preparing stage */
3320 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3321 goto skip_write;
3322
3323 trace_f2fs_writepages(mapping->host, wbc, DATA);
3324
3325 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3326 if (wbc->sync_mode == WB_SYNC_ALL)
3327 atomic_inc(&sbi->wb_sync_req[DATA]);
3328 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3329 /* to avoid potential deadlock */
3330 if (current->plug)
3331 blk_finish_plug(current->plug);
3332 goto skip_write;
3333 }
3334
3335 if (__should_serialize_io(inode, wbc)) {
3336 mutex_lock(&sbi->writepages);
3337 locked = true;
3338 }
3339
3340 blk_start_plug(&plug);
3341 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3342 blk_finish_plug(&plug);
3343
3344 if (locked)
3345 mutex_unlock(&sbi->writepages);
3346
3347 if (wbc->sync_mode == WB_SYNC_ALL)
3348 atomic_dec(&sbi->wb_sync_req[DATA]);
3349 /*
3350 * if some pages were truncated, we cannot guarantee its mapping->host
3351 * to detect pending bios.
3352 */
3353
3354 f2fs_remove_dirty_inode(inode);
3355 return ret;
3356
3357 skip_write:
3358 wbc->pages_skipped += get_dirty_pages(inode);
3359 trace_f2fs_writepages(mapping->host, wbc, DATA);
3360 return 0;
3361 }
3362
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3363 static int f2fs_write_data_pages(struct address_space *mapping,
3364 struct writeback_control *wbc)
3365 {
3366 struct inode *inode = mapping->host;
3367
3368 return __f2fs_write_data_pages(mapping, wbc,
3369 F2FS_I(inode)->cp_task == current ?
3370 FS_CP_DATA_IO : FS_DATA_IO);
3371 }
3372
f2fs_write_failed(struct inode * inode,loff_t to)3373 void f2fs_write_failed(struct inode *inode, loff_t to)
3374 {
3375 loff_t i_size = i_size_read(inode);
3376
3377 if (IS_NOQUOTA(inode))
3378 return;
3379
3380 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3381 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3382 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3383 filemap_invalidate_lock(inode->i_mapping);
3384
3385 truncate_pagecache(inode, i_size);
3386 f2fs_truncate_blocks(inode, i_size, true);
3387
3388 filemap_invalidate_unlock(inode->i_mapping);
3389 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3390 }
3391 }
3392
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3393 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3394 struct page *page, loff_t pos, unsigned len,
3395 block_t *blk_addr, bool *node_changed)
3396 {
3397 struct inode *inode = page->mapping->host;
3398 pgoff_t index = page->index;
3399 struct dnode_of_data dn;
3400 struct page *ipage;
3401 bool locked = false;
3402 int flag = F2FS_GET_BLOCK_PRE_AIO;
3403 int err = 0;
3404
3405 /*
3406 * If a whole page is being written and we already preallocated all the
3407 * blocks, then there is no need to get a block address now.
3408 */
3409 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3410 return 0;
3411
3412 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3413 if (f2fs_has_inline_data(inode)) {
3414 if (pos + len > MAX_INLINE_DATA(inode))
3415 flag = F2FS_GET_BLOCK_DEFAULT;
3416 f2fs_map_lock(sbi, flag);
3417 locked = true;
3418 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3419 f2fs_map_lock(sbi, flag);
3420 locked = true;
3421 }
3422
3423 restart:
3424 /* check inline_data */
3425 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3426 if (IS_ERR(ipage)) {
3427 err = PTR_ERR(ipage);
3428 goto unlock_out;
3429 }
3430
3431 set_new_dnode(&dn, inode, ipage, ipage, 0);
3432
3433 if (f2fs_has_inline_data(inode)) {
3434 if (pos + len <= MAX_INLINE_DATA(inode)) {
3435 f2fs_do_read_inline_data(page_folio(page), ipage);
3436 set_inode_flag(inode, FI_DATA_EXIST);
3437 if (inode->i_nlink)
3438 set_page_private_inline(ipage);
3439 goto out;
3440 }
3441 err = f2fs_convert_inline_page(&dn, page);
3442 if (err || dn.data_blkaddr != NULL_ADDR)
3443 goto out;
3444 }
3445
3446 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3447 &dn.data_blkaddr)) {
3448 if (locked) {
3449 err = f2fs_reserve_block(&dn, index);
3450 goto out;
3451 }
3452
3453 /* hole case */
3454 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3455 if (!err && dn.data_blkaddr != NULL_ADDR)
3456 goto out;
3457 f2fs_put_dnode(&dn);
3458 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3459 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3460 locked = true;
3461 goto restart;
3462 }
3463 out:
3464 if (!err) {
3465 /* convert_inline_page can make node_changed */
3466 *blk_addr = dn.data_blkaddr;
3467 *node_changed = dn.node_changed;
3468 }
3469 f2fs_put_dnode(&dn);
3470 unlock_out:
3471 if (locked)
3472 f2fs_map_unlock(sbi, flag);
3473 return err;
3474 }
3475
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3476 static int __find_data_block(struct inode *inode, pgoff_t index,
3477 block_t *blk_addr)
3478 {
3479 struct dnode_of_data dn;
3480 struct page *ipage;
3481 int err = 0;
3482
3483 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3484 if (IS_ERR(ipage))
3485 return PTR_ERR(ipage);
3486
3487 set_new_dnode(&dn, inode, ipage, ipage, 0);
3488
3489 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3490 &dn.data_blkaddr)) {
3491 /* hole case */
3492 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3493 if (err) {
3494 dn.data_blkaddr = NULL_ADDR;
3495 err = 0;
3496 }
3497 }
3498 *blk_addr = dn.data_blkaddr;
3499 f2fs_put_dnode(&dn);
3500 return err;
3501 }
3502
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3503 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3504 block_t *blk_addr, bool *node_changed)
3505 {
3506 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3507 struct dnode_of_data dn;
3508 struct page *ipage;
3509 int err = 0;
3510
3511 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3512
3513 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3514 if (IS_ERR(ipage)) {
3515 err = PTR_ERR(ipage);
3516 goto unlock_out;
3517 }
3518 set_new_dnode(&dn, inode, ipage, ipage, 0);
3519
3520 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3521 &dn.data_blkaddr))
3522 err = f2fs_reserve_block(&dn, index);
3523
3524 *blk_addr = dn.data_blkaddr;
3525 *node_changed = dn.node_changed;
3526 f2fs_put_dnode(&dn);
3527
3528 unlock_out:
3529 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3530 return err;
3531 }
3532
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3533 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3534 struct page *page, loff_t pos, unsigned int len,
3535 block_t *blk_addr, bool *node_changed, bool *use_cow)
3536 {
3537 struct inode *inode = page->mapping->host;
3538 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3539 pgoff_t index = page->index;
3540 int err = 0;
3541 block_t ori_blk_addr = NULL_ADDR;
3542
3543 /* If pos is beyond the end of file, reserve a new block in COW inode */
3544 if ((pos & PAGE_MASK) >= i_size_read(inode))
3545 goto reserve_block;
3546
3547 /* Look for the block in COW inode first */
3548 err = __find_data_block(cow_inode, index, blk_addr);
3549 if (err) {
3550 return err;
3551 } else if (*blk_addr != NULL_ADDR) {
3552 *use_cow = true;
3553 return 0;
3554 }
3555
3556 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3557 goto reserve_block;
3558
3559 /* Look for the block in the original inode */
3560 err = __find_data_block(inode, index, &ori_blk_addr);
3561 if (err)
3562 return err;
3563
3564 reserve_block:
3565 /* Finally, we should reserve a new block in COW inode for the update */
3566 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3567 if (err)
3568 return err;
3569 inc_atomic_write_cnt(inode);
3570
3571 if (ori_blk_addr != NULL_ADDR)
3572 *blk_addr = ori_blk_addr;
3573 return 0;
3574 }
3575
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)3576 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3577 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3578 {
3579 struct inode *inode = mapping->host;
3580 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3581 struct page *page = NULL;
3582 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3583 bool need_balance = false;
3584 bool use_cow = false;
3585 block_t blkaddr = NULL_ADDR;
3586 int err = 0;
3587
3588 trace_f2fs_write_begin(inode, pos, len);
3589
3590 if (!f2fs_is_checkpoint_ready(sbi)) {
3591 err = -ENOSPC;
3592 goto fail;
3593 }
3594
3595 /*
3596 * We should check this at this moment to avoid deadlock on inode page
3597 * and #0 page. The locking rule for inline_data conversion should be:
3598 * lock_page(page #0) -> lock_page(inode_page)
3599 */
3600 if (index != 0) {
3601 err = f2fs_convert_inline_inode(inode);
3602 if (err)
3603 goto fail;
3604 }
3605
3606 #ifdef CONFIG_F2FS_FS_COMPRESSION
3607 if (f2fs_compressed_file(inode)) {
3608 int ret;
3609
3610 *fsdata = NULL;
3611
3612 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3613 goto repeat;
3614
3615 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3616 index, fsdata);
3617 if (ret < 0) {
3618 err = ret;
3619 goto fail;
3620 } else if (ret) {
3621 return 0;
3622 }
3623 }
3624 #endif
3625
3626 repeat:
3627 /*
3628 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3629 * wait_for_stable_page. Will wait that below with our IO control.
3630 */
3631 page = f2fs_pagecache_get_page(mapping, index,
3632 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3633 if (!page) {
3634 err = -ENOMEM;
3635 goto fail;
3636 }
3637
3638 /* TODO: cluster can be compressed due to race with .writepage */
3639
3640 *pagep = page;
3641
3642 if (f2fs_is_atomic_file(inode))
3643 err = prepare_atomic_write_begin(sbi, page, pos, len,
3644 &blkaddr, &need_balance, &use_cow);
3645 else
3646 err = prepare_write_begin(sbi, page, pos, len,
3647 &blkaddr, &need_balance);
3648 if (err)
3649 goto fail;
3650
3651 if (need_balance && !IS_NOQUOTA(inode) &&
3652 has_not_enough_free_secs(sbi, 0, 0)) {
3653 unlock_page(page);
3654 f2fs_balance_fs(sbi, true);
3655 lock_page(page);
3656 if (page->mapping != mapping) {
3657 /* The page got truncated from under us */
3658 f2fs_put_page(page, 1);
3659 goto repeat;
3660 }
3661 }
3662
3663 f2fs_wait_on_page_writeback(page, DATA, false, true);
3664
3665 if (len == PAGE_SIZE || PageUptodate(page))
3666 return 0;
3667
3668 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3669 !f2fs_verity_in_progress(inode)) {
3670 zero_user_segment(page, len, PAGE_SIZE);
3671 return 0;
3672 }
3673
3674 if (blkaddr == NEW_ADDR) {
3675 zero_user_segment(page, 0, PAGE_SIZE);
3676 SetPageUptodate(page);
3677 } else {
3678 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3679 DATA_GENERIC_ENHANCE_READ)) {
3680 err = -EFSCORRUPTED;
3681 goto fail;
3682 }
3683 err = f2fs_submit_page_read(use_cow ?
3684 F2FS_I(inode)->cow_inode : inode, page,
3685 blkaddr, 0, true);
3686 if (err)
3687 goto fail;
3688
3689 lock_page(page);
3690 if (unlikely(page->mapping != mapping)) {
3691 f2fs_put_page(page, 1);
3692 goto repeat;
3693 }
3694 if (unlikely(!PageUptodate(page))) {
3695 err = -EIO;
3696 goto fail;
3697 }
3698 }
3699 return 0;
3700
3701 fail:
3702 f2fs_put_page(page, 1);
3703 f2fs_write_failed(inode, pos + len);
3704 return err;
3705 }
3706
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3707 static int f2fs_write_end(struct file *file,
3708 struct address_space *mapping,
3709 loff_t pos, unsigned len, unsigned copied,
3710 struct page *page, void *fsdata)
3711 {
3712 struct inode *inode = page->mapping->host;
3713
3714 trace_f2fs_write_end(inode, pos, len, copied);
3715
3716 /*
3717 * This should be come from len == PAGE_SIZE, and we expect copied
3718 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3719 * let generic_perform_write() try to copy data again through copied=0.
3720 */
3721 if (!PageUptodate(page)) {
3722 if (unlikely(copied != len))
3723 copied = 0;
3724 else
3725 SetPageUptodate(page);
3726 }
3727
3728 #ifdef CONFIG_F2FS_FS_COMPRESSION
3729 /* overwrite compressed file */
3730 if (f2fs_compressed_file(inode) && fsdata) {
3731 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3732 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3733
3734 if (pos + copied > i_size_read(inode) &&
3735 !f2fs_verity_in_progress(inode))
3736 f2fs_i_size_write(inode, pos + copied);
3737 return copied;
3738 }
3739 #endif
3740
3741 if (!copied)
3742 goto unlock_out;
3743
3744 set_page_dirty(page);
3745
3746 if (pos + copied > i_size_read(inode) &&
3747 !f2fs_verity_in_progress(inode)) {
3748 f2fs_i_size_write(inode, pos + copied);
3749 if (f2fs_is_atomic_file(inode))
3750 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3751 pos + copied);
3752 }
3753 unlock_out:
3754 f2fs_put_page(page, 1);
3755 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3756 return copied;
3757 }
3758
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3759 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3760 {
3761 struct inode *inode = folio->mapping->host;
3762 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3763
3764 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3765 (offset || length != folio_size(folio)))
3766 return;
3767
3768 if (folio_test_dirty(folio)) {
3769 if (inode->i_ino == F2FS_META_INO(sbi)) {
3770 dec_page_count(sbi, F2FS_DIRTY_META);
3771 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3772 dec_page_count(sbi, F2FS_DIRTY_NODES);
3773 } else {
3774 inode_dec_dirty_pages(inode);
3775 f2fs_remove_dirty_inode(inode);
3776 }
3777 }
3778 clear_page_private_all(&folio->page);
3779 }
3780
f2fs_release_folio(struct folio * folio,gfp_t wait)3781 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3782 {
3783 /* If this is dirty folio, keep private data */
3784 if (folio_test_dirty(folio))
3785 return false;
3786
3787 clear_page_private_all(&folio->page);
3788 return true;
3789 }
3790
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3791 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3792 struct folio *folio)
3793 {
3794 struct inode *inode = mapping->host;
3795
3796 trace_f2fs_set_page_dirty(folio, DATA);
3797
3798 if (!folio_test_uptodate(folio))
3799 folio_mark_uptodate(folio);
3800 BUG_ON(folio_test_swapcache(folio));
3801
3802 if (filemap_dirty_folio(mapping, folio)) {
3803 f2fs_update_dirty_folio(inode, folio);
3804 return true;
3805 }
3806 return false;
3807 }
3808
3809
f2fs_bmap_compress(struct inode * inode,sector_t block)3810 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3811 {
3812 #ifdef CONFIG_F2FS_FS_COMPRESSION
3813 struct dnode_of_data dn;
3814 sector_t start_idx, blknr = 0;
3815 int ret;
3816
3817 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3818
3819 set_new_dnode(&dn, inode, NULL, NULL, 0);
3820 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3821 if (ret)
3822 return 0;
3823
3824 if (dn.data_blkaddr != COMPRESS_ADDR) {
3825 dn.ofs_in_node += block - start_idx;
3826 blknr = f2fs_data_blkaddr(&dn);
3827 if (!__is_valid_data_blkaddr(blknr))
3828 blknr = 0;
3829 }
3830
3831 f2fs_put_dnode(&dn);
3832 return blknr;
3833 #else
3834 return 0;
3835 #endif
3836 }
3837
3838
f2fs_bmap(struct address_space * mapping,sector_t block)3839 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3840 {
3841 struct inode *inode = mapping->host;
3842 sector_t blknr = 0;
3843
3844 if (f2fs_has_inline_data(inode))
3845 goto out;
3846
3847 /* make sure allocating whole blocks */
3848 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3849 filemap_write_and_wait(mapping);
3850
3851 /* Block number less than F2FS MAX BLOCKS */
3852 if (unlikely(block >= max_file_blocks(inode)))
3853 goto out;
3854
3855 if (f2fs_compressed_file(inode)) {
3856 blknr = f2fs_bmap_compress(inode, block);
3857 } else {
3858 struct f2fs_map_blocks map;
3859
3860 memset(&map, 0, sizeof(map));
3861 map.m_lblk = block;
3862 map.m_len = 1;
3863 map.m_next_pgofs = NULL;
3864 map.m_seg_type = NO_CHECK_TYPE;
3865
3866 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3867 blknr = map.m_pblk;
3868 }
3869 out:
3870 trace_f2fs_bmap(inode, block, blknr);
3871 return blknr;
3872 }
3873
3874 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3875 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3876 unsigned int blkcnt)
3877 {
3878 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3879 unsigned int blkofs;
3880 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3881 unsigned int end_blk = start_blk + blkcnt - 1;
3882 unsigned int secidx = start_blk / blk_per_sec;
3883 unsigned int end_sec;
3884 int ret = 0;
3885
3886 if (!blkcnt)
3887 return 0;
3888 end_sec = end_blk / blk_per_sec;
3889
3890 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3891 filemap_invalidate_lock(inode->i_mapping);
3892
3893 set_inode_flag(inode, FI_ALIGNED_WRITE);
3894 set_inode_flag(inode, FI_OPU_WRITE);
3895
3896 for (; secidx <= end_sec; secidx++) {
3897 unsigned int blkofs_end = secidx == end_sec ?
3898 end_blk % blk_per_sec : blk_per_sec - 1;
3899
3900 f2fs_down_write(&sbi->pin_sem);
3901
3902 ret = f2fs_allocate_pinning_section(sbi);
3903 if (ret) {
3904 f2fs_up_write(&sbi->pin_sem);
3905 break;
3906 }
3907
3908 set_inode_flag(inode, FI_SKIP_WRITES);
3909
3910 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3911 struct page *page;
3912 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3913
3914 page = f2fs_get_lock_data_page(inode, blkidx, true);
3915 if (IS_ERR(page)) {
3916 f2fs_up_write(&sbi->pin_sem);
3917 ret = PTR_ERR(page);
3918 goto done;
3919 }
3920
3921 set_page_dirty(page);
3922 f2fs_put_page(page, 1);
3923 }
3924
3925 clear_inode_flag(inode, FI_SKIP_WRITES);
3926
3927 ret = filemap_fdatawrite(inode->i_mapping);
3928
3929 f2fs_up_write(&sbi->pin_sem);
3930
3931 if (ret)
3932 break;
3933 }
3934
3935 done:
3936 clear_inode_flag(inode, FI_SKIP_WRITES);
3937 clear_inode_flag(inode, FI_OPU_WRITE);
3938 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3939
3940 filemap_invalidate_unlock(inode->i_mapping);
3941 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3942
3943 return ret;
3944 }
3945
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3946 static int check_swap_activate(struct swap_info_struct *sis,
3947 struct file *swap_file, sector_t *span)
3948 {
3949 struct address_space *mapping = swap_file->f_mapping;
3950 struct inode *inode = mapping->host;
3951 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3952 block_t cur_lblock;
3953 block_t last_lblock;
3954 block_t pblock;
3955 block_t lowest_pblock = -1;
3956 block_t highest_pblock = 0;
3957 int nr_extents = 0;
3958 unsigned int nr_pblocks;
3959 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3960 unsigned int not_aligned = 0;
3961 int ret = 0;
3962
3963 /*
3964 * Map all the blocks into the extent list. This code doesn't try
3965 * to be very smart.
3966 */
3967 cur_lblock = 0;
3968 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3969
3970 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3971 struct f2fs_map_blocks map;
3972 retry:
3973 cond_resched();
3974
3975 memset(&map, 0, sizeof(map));
3976 map.m_lblk = cur_lblock;
3977 map.m_len = last_lblock - cur_lblock;
3978 map.m_next_pgofs = NULL;
3979 map.m_next_extent = NULL;
3980 map.m_seg_type = NO_CHECK_TYPE;
3981 map.m_may_create = false;
3982
3983 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3984 if (ret)
3985 goto out;
3986
3987 /* hole */
3988 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3989 f2fs_err(sbi, "Swapfile has holes");
3990 ret = -EINVAL;
3991 goto out;
3992 }
3993
3994 pblock = map.m_pblk;
3995 nr_pblocks = map.m_len;
3996
3997 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3998 nr_pblocks % blks_per_sec ||
3999 !f2fs_valid_pinned_area(sbi, pblock)) {
4000 bool last_extent = false;
4001
4002 not_aligned++;
4003
4004 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4005 if (cur_lblock + nr_pblocks > sis->max)
4006 nr_pblocks -= blks_per_sec;
4007
4008 /* this extent is last one */
4009 if (!nr_pblocks) {
4010 nr_pblocks = last_lblock - cur_lblock;
4011 last_extent = true;
4012 }
4013
4014 ret = f2fs_migrate_blocks(inode, cur_lblock,
4015 nr_pblocks);
4016 if (ret) {
4017 if (ret == -ENOENT)
4018 ret = -EINVAL;
4019 goto out;
4020 }
4021
4022 if (!last_extent)
4023 goto retry;
4024 }
4025
4026 if (cur_lblock + nr_pblocks >= sis->max)
4027 nr_pblocks = sis->max - cur_lblock;
4028
4029 if (cur_lblock) { /* exclude the header page */
4030 if (pblock < lowest_pblock)
4031 lowest_pblock = pblock;
4032 if (pblock + nr_pblocks - 1 > highest_pblock)
4033 highest_pblock = pblock + nr_pblocks - 1;
4034 }
4035
4036 /*
4037 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4038 */
4039 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4040 if (ret < 0)
4041 goto out;
4042 nr_extents += ret;
4043 cur_lblock += nr_pblocks;
4044 }
4045 ret = nr_extents;
4046 *span = 1 + highest_pblock - lowest_pblock;
4047 if (cur_lblock == 0)
4048 cur_lblock = 1; /* force Empty message */
4049 sis->max = cur_lblock;
4050 sis->pages = cur_lblock - 1;
4051 sis->highest_bit = cur_lblock - 1;
4052 out:
4053 if (not_aligned)
4054 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4055 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4056 return ret;
4057 }
4058
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4059 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4060 sector_t *span)
4061 {
4062 struct inode *inode = file_inode(file);
4063 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4064 int ret;
4065
4066 if (!S_ISREG(inode->i_mode))
4067 return -EINVAL;
4068
4069 if (f2fs_readonly(sbi->sb))
4070 return -EROFS;
4071
4072 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4073 f2fs_err(sbi, "Swapfile not supported in LFS mode");
4074 return -EINVAL;
4075 }
4076
4077 ret = f2fs_convert_inline_inode(inode);
4078 if (ret)
4079 return ret;
4080
4081 if (!f2fs_disable_compressed_file(inode))
4082 return -EINVAL;
4083
4084 ret = filemap_fdatawrite(inode->i_mapping);
4085 if (ret < 0)
4086 return ret;
4087
4088 f2fs_precache_extents(inode);
4089
4090 ret = check_swap_activate(sis, file, span);
4091 if (ret < 0)
4092 return ret;
4093
4094 stat_inc_swapfile_inode(inode);
4095 set_inode_flag(inode, FI_PIN_FILE);
4096 f2fs_update_time(sbi, REQ_TIME);
4097 return ret;
4098 }
4099
f2fs_swap_deactivate(struct file * file)4100 static void f2fs_swap_deactivate(struct file *file)
4101 {
4102 struct inode *inode = file_inode(file);
4103
4104 stat_dec_swapfile_inode(inode);
4105 clear_inode_flag(inode, FI_PIN_FILE);
4106 }
4107 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4108 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4109 sector_t *span)
4110 {
4111 return -EOPNOTSUPP;
4112 }
4113
f2fs_swap_deactivate(struct file * file)4114 static void f2fs_swap_deactivate(struct file *file)
4115 {
4116 }
4117 #endif
4118
4119 const struct address_space_operations f2fs_dblock_aops = {
4120 .read_folio = f2fs_read_data_folio,
4121 .readahead = f2fs_readahead,
4122 .writepage = f2fs_write_data_page,
4123 .writepages = f2fs_write_data_pages,
4124 .write_begin = f2fs_write_begin,
4125 .write_end = f2fs_write_end,
4126 .dirty_folio = f2fs_dirty_data_folio,
4127 .migrate_folio = filemap_migrate_folio,
4128 .invalidate_folio = f2fs_invalidate_folio,
4129 .release_folio = f2fs_release_folio,
4130 .bmap = f2fs_bmap,
4131 .swap_activate = f2fs_swap_activate,
4132 .swap_deactivate = f2fs_swap_deactivate,
4133 };
4134
f2fs_clear_page_cache_dirty_tag(struct page * page)4135 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4136 {
4137 struct address_space *mapping = page_mapping(page);
4138 unsigned long flags;
4139
4140 xa_lock_irqsave(&mapping->i_pages, flags);
4141 __xa_clear_mark(&mapping->i_pages, page_index(page),
4142 PAGECACHE_TAG_DIRTY);
4143 xa_unlock_irqrestore(&mapping->i_pages, flags);
4144 }
4145
f2fs_init_post_read_processing(void)4146 int __init f2fs_init_post_read_processing(void)
4147 {
4148 bio_post_read_ctx_cache =
4149 kmem_cache_create("f2fs_bio_post_read_ctx",
4150 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4151 if (!bio_post_read_ctx_cache)
4152 goto fail;
4153 bio_post_read_ctx_pool =
4154 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4155 bio_post_read_ctx_cache);
4156 if (!bio_post_read_ctx_pool)
4157 goto fail_free_cache;
4158 return 0;
4159
4160 fail_free_cache:
4161 kmem_cache_destroy(bio_post_read_ctx_cache);
4162 fail:
4163 return -ENOMEM;
4164 }
4165
f2fs_destroy_post_read_processing(void)4166 void f2fs_destroy_post_read_processing(void)
4167 {
4168 mempool_destroy(bio_post_read_ctx_pool);
4169 kmem_cache_destroy(bio_post_read_ctx_cache);
4170 }
4171
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4172 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4173 {
4174 if (!f2fs_sb_has_encrypt(sbi) &&
4175 !f2fs_sb_has_verity(sbi) &&
4176 !f2fs_sb_has_compression(sbi))
4177 return 0;
4178
4179 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4180 WQ_UNBOUND | WQ_HIGHPRI,
4181 num_online_cpus());
4182 return sbi->post_read_wq ? 0 : -ENOMEM;
4183 }
4184
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4185 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4186 {
4187 if (sbi->post_read_wq)
4188 destroy_workqueue(sbi->post_read_wq);
4189 }
4190
f2fs_init_bio_entry_cache(void)4191 int __init f2fs_init_bio_entry_cache(void)
4192 {
4193 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4194 sizeof(struct bio_entry));
4195 return bio_entry_slab ? 0 : -ENOMEM;
4196 }
4197
f2fs_destroy_bio_entry_cache(void)4198 void f2fs_destroy_bio_entry_cache(void)
4199 {
4200 kmem_cache_destroy(bio_entry_slab);
4201 }
4202
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4203 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4204 unsigned int flags, struct iomap *iomap,
4205 struct iomap *srcmap)
4206 {
4207 struct f2fs_map_blocks map = {};
4208 pgoff_t next_pgofs = 0;
4209 int err;
4210
4211 map.m_lblk = bytes_to_blks(inode, offset);
4212 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4213 map.m_next_pgofs = &next_pgofs;
4214 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4215 inode->i_write_hint);
4216 if (flags & IOMAP_WRITE)
4217 map.m_may_create = true;
4218
4219 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4220 if (err)
4221 return err;
4222
4223 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4224
4225 /*
4226 * When inline encryption is enabled, sometimes I/O to an encrypted file
4227 * has to be broken up to guarantee DUN contiguity. Handle this by
4228 * limiting the length of the mapping returned.
4229 */
4230 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4231
4232 /*
4233 * We should never see delalloc or compressed extents here based on
4234 * prior flushing and checks.
4235 */
4236 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4237 return -EINVAL;
4238
4239 if (map.m_flags & F2FS_MAP_MAPPED) {
4240 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4241 return -EINVAL;
4242
4243 iomap->length = blks_to_bytes(inode, map.m_len);
4244 iomap->type = IOMAP_MAPPED;
4245 iomap->flags |= IOMAP_F_MERGED;
4246 iomap->bdev = map.m_bdev;
4247 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4248 } else {
4249 if (flags & IOMAP_WRITE)
4250 return -ENOTBLK;
4251
4252 if (map.m_pblk == NULL_ADDR) {
4253 iomap->length = blks_to_bytes(inode, next_pgofs) -
4254 iomap->offset;
4255 iomap->type = IOMAP_HOLE;
4256 } else if (map.m_pblk == NEW_ADDR) {
4257 iomap->length = blks_to_bytes(inode, map.m_len);
4258 iomap->type = IOMAP_UNWRITTEN;
4259 } else {
4260 f2fs_bug_on(F2FS_I_SB(inode), 1);
4261 }
4262 iomap->addr = IOMAP_NULL_ADDR;
4263 }
4264
4265 if (map.m_flags & F2FS_MAP_NEW)
4266 iomap->flags |= IOMAP_F_NEW;
4267 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4268 offset + length > i_size_read(inode))
4269 iomap->flags |= IOMAP_F_DIRTY;
4270
4271 return 0;
4272 }
4273
4274 const struct iomap_ops f2fs_iomap_ops = {
4275 .iomap_begin = f2fs_iomap_begin,
4276 };
4277