• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/gso.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 #include <net/mpls.h>
74 #include <net/mptcp.h>
75 #include <net/mctp.h>
76 #include <net/page_pool/helpers.h>
77 #include <net/dropreason.h>
78 
79 #include <linux/uaccess.h>
80 #include <trace/events/skb.h>
81 #include <linux/highmem.h>
82 #include <linux/capability.h>
83 #include <linux/user_namespace.h>
84 #include <linux/indirect_call_wrapper.h>
85 #include <linux/textsearch.h>
86 
87 #include <trace/hooks/net.h>
88 
89 #include "dev.h"
90 #include "sock_destructor.h"
91 
92 struct kmem_cache *skbuff_cache __ro_after_init;
93 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
94 #ifdef CONFIG_SKB_EXTENSIONS
95 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
96 #endif
97 
98 
99 static struct kmem_cache *skb_small_head_cache __ro_after_init;
100 
101 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
102 
103 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
104  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
105  * size, and we can differentiate heads from skb_small_head_cache
106  * vs system slabs by looking at their size (skb_end_offset()).
107  */
108 #define SKB_SMALL_HEAD_CACHE_SIZE					\
109 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
110 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
111 		SKB_SMALL_HEAD_SIZE)
112 
113 #define SKB_SMALL_HEAD_HEADROOM						\
114 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
115 
116 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
117 EXPORT_SYMBOL(sysctl_max_skb_frags);
118 
119 #undef FN
120 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
121 static const char * const drop_reasons[] = {
122 	[SKB_CONSUMED] = "CONSUMED",
123 	DEFINE_DROP_REASON(FN, FN)
124 };
125 
126 static const struct drop_reason_list drop_reasons_core = {
127 	.reasons = drop_reasons,
128 	.n_reasons = ARRAY_SIZE(drop_reasons),
129 };
130 
131 const struct drop_reason_list __rcu *
132 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
133 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
134 };
135 EXPORT_SYMBOL(drop_reasons_by_subsys);
136 
137 /**
138  * drop_reasons_register_subsys - register another drop reason subsystem
139  * @subsys: the subsystem to register, must not be the core
140  * @list: the list of drop reasons within the subsystem, must point to
141  *	a statically initialized list
142  */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)143 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
144 				  const struct drop_reason_list *list)
145 {
146 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
147 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
148 		 "invalid subsystem %d\n", subsys))
149 		return;
150 
151 	/* must point to statically allocated memory, so INIT is OK */
152 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
153 }
154 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
155 
156 /**
157  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
158  * @subsys: the subsystem to remove, must not be the core
159  *
160  * Note: This will synchronize_rcu() to ensure no users when it returns.
161  */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)162 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
163 {
164 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
165 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
166 		 "invalid subsystem %d\n", subsys))
167 		return;
168 
169 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
170 
171 	synchronize_rcu();
172 }
173 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
174 
175 /**
176  *	skb_panic - private function for out-of-line support
177  *	@skb:	buffer
178  *	@sz:	size
179  *	@addr:	address
180  *	@msg:	skb_over_panic or skb_under_panic
181  *
182  *	Out-of-line support for skb_put() and skb_push().
183  *	Called via the wrapper skb_over_panic() or skb_under_panic().
184  *	Keep out of line to prevent kernel bloat.
185  *	__builtin_return_address is not used because it is not always reliable.
186  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])187 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
188 		      const char msg[])
189 {
190 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
191 		 msg, addr, skb->len, sz, skb->head, skb->data,
192 		 (unsigned long)skb->tail, (unsigned long)skb->end,
193 		 skb->dev ? skb->dev->name : "<NULL>");
194 	BUG();
195 }
196 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)197 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
198 {
199 	skb_panic(skb, sz, addr, __func__);
200 }
201 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)202 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
203 {
204 	skb_panic(skb, sz, addr, __func__);
205 }
206 
207 #define NAPI_SKB_CACHE_SIZE	64
208 #define NAPI_SKB_CACHE_BULK	16
209 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
210 
211 #if PAGE_SIZE == SZ_4K
212 
213 #define NAPI_HAS_SMALL_PAGE_FRAG	1
214 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
215 
216 /* specialized page frag allocator using a single order 0 page
217  * and slicing it into 1K sized fragment. Constrained to systems
218  * with a very limited amount of 1K fragments fitting a single
219  * page - to avoid excessive truesize underestimation
220  */
221 
222 struct page_frag_1k {
223 	void *va;
224 	u16 offset;
225 	bool pfmemalloc;
226 };
227 
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp)228 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
229 {
230 	struct page *page;
231 	int offset;
232 
233 	offset = nc->offset - SZ_1K;
234 	if (likely(offset >= 0))
235 		goto use_frag;
236 
237 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
238 	if (!page)
239 		return NULL;
240 
241 	nc->va = page_address(page);
242 	nc->pfmemalloc = page_is_pfmemalloc(page);
243 	offset = PAGE_SIZE - SZ_1K;
244 	page_ref_add(page, offset / SZ_1K);
245 
246 use_frag:
247 	nc->offset = offset;
248 	return nc->va + offset;
249 }
250 #else
251 
252 /* the small page is actually unused in this build; add dummy helpers
253  * to please the compiler and avoid later preprocessor's conditionals
254  */
255 #define NAPI_HAS_SMALL_PAGE_FRAG	0
256 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
257 
258 struct page_frag_1k {
259 };
260 
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp_mask)261 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
262 {
263 	return NULL;
264 }
265 
266 #endif
267 
268 struct napi_alloc_cache {
269 	struct page_frag_cache page;
270 	struct page_frag_1k page_small;
271 	unsigned int skb_count;
272 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
273 };
274 
275 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
276 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
277 
278 /* Double check that napi_get_frags() allocates skbs with
279  * skb->head being backed by slab, not a page fragment.
280  * This is to make sure bug fixed in 3226b158e67c
281  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
282  * does not accidentally come back.
283  */
napi_get_frags_check(struct napi_struct * napi)284 void napi_get_frags_check(struct napi_struct *napi)
285 {
286 	struct sk_buff *skb;
287 
288 	local_bh_disable();
289 	skb = napi_get_frags(napi);
290 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
291 	napi_free_frags(napi);
292 	local_bh_enable();
293 }
294 
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)295 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
296 {
297 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
298 
299 	fragsz = SKB_DATA_ALIGN(fragsz);
300 
301 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
302 }
303 EXPORT_SYMBOL(__napi_alloc_frag_align);
304 
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)305 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
306 {
307 	void *data;
308 
309 	fragsz = SKB_DATA_ALIGN(fragsz);
310 	if (in_hardirq() || irqs_disabled()) {
311 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
312 
313 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
314 	} else {
315 		struct napi_alloc_cache *nc;
316 
317 		local_bh_disable();
318 		nc = this_cpu_ptr(&napi_alloc_cache);
319 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
320 		local_bh_enable();
321 	}
322 	return data;
323 }
324 EXPORT_SYMBOL(__netdev_alloc_frag_align);
325 
napi_skb_cache_get(void)326 static struct sk_buff *napi_skb_cache_get(void)
327 {
328 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
329 	struct sk_buff *skb;
330 
331 	if (unlikely(!nc->skb_count)) {
332 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
333 						      GFP_ATOMIC,
334 						      NAPI_SKB_CACHE_BULK,
335 						      nc->skb_cache);
336 		if (unlikely(!nc->skb_count))
337 			return NULL;
338 	}
339 
340 	skb = nc->skb_cache[--nc->skb_count];
341 	kasan_unpoison_object_data(skbuff_cache, skb);
342 
343 	return skb;
344 }
345 
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)346 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
347 					 unsigned int size)
348 {
349 	struct skb_shared_info *shinfo;
350 
351 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
352 
353 	/* Assumes caller memset cleared SKB */
354 	skb->truesize = SKB_TRUESIZE(size);
355 	refcount_set(&skb->users, 1);
356 	skb->head = data;
357 	skb->data = data;
358 	skb_reset_tail_pointer(skb);
359 	skb_set_end_offset(skb, size);
360 	skb->mac_header = (typeof(skb->mac_header))~0U;
361 	skb->transport_header = (typeof(skb->transport_header))~0U;
362 	skb->alloc_cpu = raw_smp_processor_id();
363 	/* make sure we initialize shinfo sequentially */
364 	shinfo = skb_shinfo(skb);
365 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
366 	atomic_set(&shinfo->dataref, 1);
367 
368 	skb_set_kcov_handle(skb, kcov_common_handle());
369 }
370 
__slab_build_skb(struct sk_buff * skb,void * data,unsigned int * size)371 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
372 				     unsigned int *size)
373 {
374 	void *resized;
375 
376 	/* Must find the allocation size (and grow it to match). */
377 	*size = ksize(data);
378 	/* krealloc() will immediately return "data" when
379 	 * "ksize(data)" is requested: it is the existing upper
380 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
381 	 * that this "new" pointer needs to be passed back to the
382 	 * caller for use so the __alloc_size hinting will be
383 	 * tracked correctly.
384 	 */
385 	resized = krealloc(data, *size, GFP_ATOMIC);
386 	WARN_ON_ONCE(resized != data);
387 	return resized;
388 }
389 
390 /* build_skb() variant which can operate on slab buffers.
391  * Note that this should be used sparingly as slab buffers
392  * cannot be combined efficiently by GRO!
393  */
slab_build_skb(void * data)394 struct sk_buff *slab_build_skb(void *data)
395 {
396 	struct sk_buff *skb;
397 	unsigned int size;
398 
399 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
400 	if (unlikely(!skb))
401 		return NULL;
402 
403 	memset(skb, 0, offsetof(struct sk_buff, tail));
404 	data = __slab_build_skb(skb, data, &size);
405 	__finalize_skb_around(skb, data, size);
406 
407 	trace_android_vh_build_skb_around(skb);
408 
409 	return skb;
410 }
411 EXPORT_SYMBOL(slab_build_skb);
412 
413 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)414 static void __build_skb_around(struct sk_buff *skb, void *data,
415 			       unsigned int frag_size)
416 {
417 	unsigned int size = frag_size;
418 
419 	/* frag_size == 0 is considered deprecated now. Callers
420 	 * using slab buffer should use slab_build_skb() instead.
421 	 */
422 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
423 		data = __slab_build_skb(skb, data, &size);
424 
425 	__finalize_skb_around(skb, data, size);
426 
427 	trace_android_vh_build_skb_around(skb);
428 }
429 
430 /**
431  * __build_skb - build a network buffer
432  * @data: data buffer provided by caller
433  * @frag_size: size of data (must not be 0)
434  *
435  * Allocate a new &sk_buff. Caller provides space holding head and
436  * skb_shared_info. @data must have been allocated from the page
437  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
438  * allocation is deprecated, and callers should use slab_build_skb()
439  * instead.)
440  * The return is the new skb buffer.
441  * On a failure the return is %NULL, and @data is not freed.
442  * Notes :
443  *  Before IO, driver allocates only data buffer where NIC put incoming frame
444  *  Driver should add room at head (NET_SKB_PAD) and
445  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
446  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
447  *  before giving packet to stack.
448  *  RX rings only contains data buffers, not full skbs.
449  */
__build_skb(void * data,unsigned int frag_size)450 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
451 {
452 	struct sk_buff *skb;
453 
454 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
455 	if (unlikely(!skb))
456 		return NULL;
457 
458 	memset(skb, 0, offsetof(struct sk_buff, tail));
459 	__build_skb_around(skb, data, frag_size);
460 
461 	return skb;
462 }
463 
464 /* build_skb() is wrapper over __build_skb(), that specifically
465  * takes care of skb->head and skb->pfmemalloc
466  */
build_skb(void * data,unsigned int frag_size)467 struct sk_buff *build_skb(void *data, unsigned int frag_size)
468 {
469 	struct sk_buff *skb = __build_skb(data, frag_size);
470 
471 	if (likely(skb && frag_size)) {
472 		skb->head_frag = 1;
473 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
474 	}
475 	return skb;
476 }
477 EXPORT_SYMBOL(build_skb);
478 
479 /**
480  * build_skb_around - build a network buffer around provided skb
481  * @skb: sk_buff provide by caller, must be memset cleared
482  * @data: data buffer provided by caller
483  * @frag_size: size of data
484  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)485 struct sk_buff *build_skb_around(struct sk_buff *skb,
486 				 void *data, unsigned int frag_size)
487 {
488 	if (unlikely(!skb))
489 		return NULL;
490 
491 	__build_skb_around(skb, data, frag_size);
492 
493 	if (frag_size) {
494 		skb->head_frag = 1;
495 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
496 	}
497 	return skb;
498 }
499 EXPORT_SYMBOL(build_skb_around);
500 
501 /**
502  * __napi_build_skb - build a network buffer
503  * @data: data buffer provided by caller
504  * @frag_size: size of data
505  *
506  * Version of __build_skb() that uses NAPI percpu caches to obtain
507  * skbuff_head instead of inplace allocation.
508  *
509  * Returns a new &sk_buff on success, %NULL on allocation failure.
510  */
__napi_build_skb(void * data,unsigned int frag_size)511 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
512 {
513 	struct sk_buff *skb;
514 
515 	skb = napi_skb_cache_get();
516 	if (unlikely(!skb))
517 		return NULL;
518 
519 	memset(skb, 0, offsetof(struct sk_buff, tail));
520 	__build_skb_around(skb, data, frag_size);
521 
522 	return skb;
523 }
524 
525 /**
526  * napi_build_skb - build a network buffer
527  * @data: data buffer provided by caller
528  * @frag_size: size of data
529  *
530  * Version of __napi_build_skb() that takes care of skb->head_frag
531  * and skb->pfmemalloc when the data is a page or page fragment.
532  *
533  * Returns a new &sk_buff on success, %NULL on allocation failure.
534  */
napi_build_skb(void * data,unsigned int frag_size)535 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
536 {
537 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
538 
539 	if (likely(skb) && frag_size) {
540 		skb->head_frag = 1;
541 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
542 	}
543 
544 	return skb;
545 }
546 EXPORT_SYMBOL(napi_build_skb);
547 
548 /*
549  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
550  * the caller if emergency pfmemalloc reserves are being used. If it is and
551  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
552  * may be used. Otherwise, the packet data may be discarded until enough
553  * memory is free
554  */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)555 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
556 			     bool *pfmemalloc)
557 {
558 	bool ret_pfmemalloc = false;
559 	size_t obj_size;
560 	void *obj;
561 
562 	obj_size = SKB_HEAD_ALIGN(*size);
563 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
564 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
565 		obj = kmem_cache_alloc_node(skb_small_head_cache,
566 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
567 				node);
568 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
569 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
570 			goto out;
571 		/* Try again but now we are using pfmemalloc reserves */
572 		ret_pfmemalloc = true;
573 		obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
574 		goto out;
575 	}
576 
577 	obj_size = kmalloc_size_roundup(obj_size);
578 	/* The following cast might truncate high-order bits of obj_size, this
579 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
580 	 */
581 	*size = (unsigned int)obj_size;
582 
583 	/*
584 	 * Try a regular allocation, when that fails and we're not entitled
585 	 * to the reserves, fail.
586 	 */
587 	obj = kmalloc_node_track_caller(obj_size,
588 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
589 					node);
590 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
591 		goto out;
592 
593 	/* Try again but now we are using pfmemalloc reserves */
594 	ret_pfmemalloc = true;
595 	obj = kmalloc_node_track_caller(obj_size, flags, node);
596 
597 out:
598 	if (pfmemalloc)
599 		*pfmemalloc = ret_pfmemalloc;
600 
601 	return obj;
602 }
603 
604 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
605  *	'private' fields and also do memory statistics to find all the
606  *	[BEEP] leaks.
607  *
608  */
609 
610 /**
611  *	__alloc_skb	-	allocate a network buffer
612  *	@size: size to allocate
613  *	@gfp_mask: allocation mask
614  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
615  *		instead of head cache and allocate a cloned (child) skb.
616  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
617  *		allocations in case the data is required for writeback
618  *	@node: numa node to allocate memory on
619  *
620  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
621  *	tail room of at least size bytes. The object has a reference count
622  *	of one. The return is the buffer. On a failure the return is %NULL.
623  *
624  *	Buffers may only be allocated from interrupts using a @gfp_mask of
625  *	%GFP_ATOMIC.
626  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)627 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
628 			    int flags, int node)
629 {
630 	struct kmem_cache *cache;
631 	struct sk_buff *skb;
632 	bool pfmemalloc;
633 	u8 *data;
634 
635 	cache = (flags & SKB_ALLOC_FCLONE)
636 		? skbuff_fclone_cache : skbuff_cache;
637 
638 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
639 		gfp_mask |= __GFP_MEMALLOC;
640 
641 	/* Get the HEAD */
642 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
643 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
644 		skb = napi_skb_cache_get();
645 	else
646 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
647 	if (unlikely(!skb))
648 		return NULL;
649 	prefetchw(skb);
650 
651 	/* We do our best to align skb_shared_info on a separate cache
652 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
653 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
654 	 * Both skb->head and skb_shared_info are cache line aligned.
655 	 */
656 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
657 	if (unlikely(!data))
658 		goto nodata;
659 	/* kmalloc_size_roundup() might give us more room than requested.
660 	 * Put skb_shared_info exactly at the end of allocated zone,
661 	 * to allow max possible filling before reallocation.
662 	 */
663 	prefetchw(data + SKB_WITH_OVERHEAD(size));
664 
665 	/*
666 	 * Only clear those fields we need to clear, not those that we will
667 	 * actually initialise below. Hence, don't put any more fields after
668 	 * the tail pointer in struct sk_buff!
669 	 */
670 	memset(skb, 0, offsetof(struct sk_buff, tail));
671 	__build_skb_around(skb, data, size);
672 	skb->pfmemalloc = pfmemalloc;
673 
674 	if (flags & SKB_ALLOC_FCLONE) {
675 		struct sk_buff_fclones *fclones;
676 
677 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
678 
679 		skb->fclone = SKB_FCLONE_ORIG;
680 		refcount_set(&fclones->fclone_ref, 1);
681 	}
682 
683 	return skb;
684 
685 nodata:
686 	kmem_cache_free(cache, skb);
687 	return NULL;
688 }
689 EXPORT_SYMBOL(__alloc_skb);
690 
691 /**
692  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
693  *	@dev: network device to receive on
694  *	@len: length to allocate
695  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
696  *
697  *	Allocate a new &sk_buff and assign it a usage count of one. The
698  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
699  *	the headroom they think they need without accounting for the
700  *	built in space. The built in space is used for optimisations.
701  *
702  *	%NULL is returned if there is no free memory.
703  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)704 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
705 				   gfp_t gfp_mask)
706 {
707 	struct page_frag_cache *nc;
708 	struct sk_buff *skb;
709 	bool pfmemalloc;
710 	void *data;
711 
712 	len += NET_SKB_PAD;
713 
714 	/* If requested length is either too small or too big,
715 	 * we use kmalloc() for skb->head allocation.
716 	 */
717 	if (len <= SKB_WITH_OVERHEAD(1024) ||
718 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
719 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
720 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
721 		if (!skb)
722 			goto skb_fail;
723 		goto skb_success;
724 	}
725 
726 	len = SKB_HEAD_ALIGN(len);
727 
728 	if (sk_memalloc_socks())
729 		gfp_mask |= __GFP_MEMALLOC;
730 
731 	if (in_hardirq() || irqs_disabled()) {
732 		nc = this_cpu_ptr(&netdev_alloc_cache);
733 		data = page_frag_alloc(nc, len, gfp_mask);
734 		pfmemalloc = nc->pfmemalloc;
735 	} else {
736 		local_bh_disable();
737 		nc = this_cpu_ptr(&napi_alloc_cache.page);
738 		data = page_frag_alloc(nc, len, gfp_mask);
739 		pfmemalloc = nc->pfmemalloc;
740 		local_bh_enable();
741 	}
742 
743 	if (unlikely(!data))
744 		return NULL;
745 
746 	skb = __build_skb(data, len);
747 	if (unlikely(!skb)) {
748 		skb_free_frag(data);
749 		return NULL;
750 	}
751 
752 	if (pfmemalloc)
753 		skb->pfmemalloc = 1;
754 	skb->head_frag = 1;
755 
756 skb_success:
757 	skb_reserve(skb, NET_SKB_PAD);
758 	skb->dev = dev;
759 
760 skb_fail:
761 	return skb;
762 }
763 EXPORT_SYMBOL(__netdev_alloc_skb);
764 
765 /**
766  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
767  *	@napi: napi instance this buffer was allocated for
768  *	@len: length to allocate
769  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
770  *
771  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
772  *	attempt to allocate the head from a special reserved region used
773  *	only for NAPI Rx allocation.  By doing this we can save several
774  *	CPU cycles by avoiding having to disable and re-enable IRQs.
775  *
776  *	%NULL is returned if there is no free memory.
777  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)778 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
779 				 gfp_t gfp_mask)
780 {
781 	struct napi_alloc_cache *nc;
782 	struct sk_buff *skb;
783 	bool pfmemalloc;
784 	void *data;
785 
786 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
787 	len += NET_SKB_PAD + NET_IP_ALIGN;
788 
789 	/* If requested length is either too small or too big,
790 	 * we use kmalloc() for skb->head allocation.
791 	 * When the small frag allocator is available, prefer it over kmalloc
792 	 * for small fragments
793 	 */
794 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
795 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
796 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
797 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
798 				  NUMA_NO_NODE);
799 		if (!skb)
800 			goto skb_fail;
801 		goto skb_success;
802 	}
803 
804 	nc = this_cpu_ptr(&napi_alloc_cache);
805 
806 	if (sk_memalloc_socks())
807 		gfp_mask |= __GFP_MEMALLOC;
808 
809 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
810 		/* we are artificially inflating the allocation size, but
811 		 * that is not as bad as it may look like, as:
812 		 * - 'len' less than GRO_MAX_HEAD makes little sense
813 		 * - On most systems, larger 'len' values lead to fragment
814 		 *   size above 512 bytes
815 		 * - kmalloc would use the kmalloc-1k slab for such values
816 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
817 		 *   little networking, as that implies no WiFi and no
818 		 *   tunnels support, and 32 bits arches.
819 		 */
820 		len = SZ_1K;
821 
822 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
823 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
824 	} else {
825 		len = SKB_HEAD_ALIGN(len);
826 
827 		data = page_frag_alloc(&nc->page, len, gfp_mask);
828 		pfmemalloc = nc->page.pfmemalloc;
829 	}
830 
831 	if (unlikely(!data))
832 		return NULL;
833 
834 	skb = __napi_build_skb(data, len);
835 	if (unlikely(!skb)) {
836 		skb_free_frag(data);
837 		return NULL;
838 	}
839 
840 	if (pfmemalloc)
841 		skb->pfmemalloc = 1;
842 	skb->head_frag = 1;
843 
844 skb_success:
845 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
846 	skb->dev = napi->dev;
847 
848 skb_fail:
849 	return skb;
850 }
851 EXPORT_SYMBOL(__napi_alloc_skb);
852 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)853 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
854 		     int size, unsigned int truesize)
855 {
856 	skb_fill_page_desc(skb, i, page, off, size);
857 	skb->len += size;
858 	skb->data_len += size;
859 	skb->truesize += truesize;
860 }
861 EXPORT_SYMBOL(skb_add_rx_frag);
862 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)863 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
864 			  unsigned int truesize)
865 {
866 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
867 
868 	skb_frag_size_add(frag, size);
869 	skb->len += size;
870 	skb->data_len += size;
871 	skb->truesize += truesize;
872 }
873 EXPORT_SYMBOL(skb_coalesce_rx_frag);
874 
skb_drop_list(struct sk_buff ** listp)875 static void skb_drop_list(struct sk_buff **listp)
876 {
877 	kfree_skb_list(*listp);
878 	*listp = NULL;
879 }
880 
skb_drop_fraglist(struct sk_buff * skb)881 static inline void skb_drop_fraglist(struct sk_buff *skb)
882 {
883 	skb_drop_list(&skb_shinfo(skb)->frag_list);
884 }
885 
skb_clone_fraglist(struct sk_buff * skb)886 static void skb_clone_fraglist(struct sk_buff *skb)
887 {
888 	struct sk_buff *list;
889 
890 	skb_walk_frags(skb, list)
891 		skb_get(list);
892 }
893 
894 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(struct page * page,bool napi_safe)895 bool napi_pp_put_page(struct page *page, bool napi_safe)
896 {
897 	bool allow_direct = false;
898 	struct page_pool *pp;
899 
900 	page = compound_head(page);
901 
902 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
903 	 * in order to preserve any existing bits, such as bit 0 for the
904 	 * head page of compound page and bit 1 for pfmemalloc page, so
905 	 * mask those bits for freeing side when doing below checking,
906 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
907 	 * to avoid recycling the pfmemalloc page.
908 	 */
909 	if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
910 		return false;
911 
912 	pp = page->pp;
913 
914 	/* Allow direct recycle if we have reasons to believe that we are
915 	 * in the same context as the consumer would run, so there's
916 	 * no possible race.
917 	 * __page_pool_put_page() makes sure we're not in hardirq context
918 	 * and interrupts are enabled prior to accessing the cache.
919 	 */
920 	if (napi_safe || in_softirq()) {
921 		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
922 
923 		allow_direct = napi &&
924 			READ_ONCE(napi->list_owner) == smp_processor_id();
925 	}
926 
927 	/* Driver set this to memory recycling info. Reset it on recycle.
928 	 * This will *not* work for NIC using a split-page memory model.
929 	 * The page will be returned to the pool here regardless of the
930 	 * 'flipped' fragment being in use or not.
931 	 */
932 	page_pool_put_full_page(pp, page, allow_direct);
933 
934 	return true;
935 }
936 EXPORT_SYMBOL(napi_pp_put_page);
937 #endif
938 
skb_pp_recycle(struct sk_buff * skb,void * data,bool napi_safe)939 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
940 {
941 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
942 		return false;
943 	return napi_pp_put_page(virt_to_page(data), napi_safe);
944 }
945 
skb_kfree_head(void * head,unsigned int end_offset)946 static void skb_kfree_head(void *head, unsigned int end_offset)
947 {
948 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
949 		kmem_cache_free(skb_small_head_cache, head);
950 	else
951 		kfree(head);
952 }
953 
skb_free_head(struct sk_buff * skb,bool napi_safe)954 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
955 {
956 	unsigned char *head = skb->head;
957 
958 	if (skb->head_frag) {
959 		if (skb_pp_recycle(skb, head, napi_safe))
960 			return;
961 		skb_free_frag(head);
962 	} else {
963 		skb_kfree_head(head, skb_end_offset(skb));
964 	}
965 }
966 
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason,bool napi_safe)967 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
968 			     bool napi_safe)
969 {
970 	struct skb_shared_info *shinfo = skb_shinfo(skb);
971 	int i;
972 
973 	if (skb->cloned &&
974 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
975 			      &shinfo->dataref))
976 		goto exit;
977 
978 	if (skb_zcopy(skb)) {
979 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
980 
981 		skb_zcopy_clear(skb, true);
982 		if (skip_unref)
983 			goto free_head;
984 	}
985 
986 	for (i = 0; i < shinfo->nr_frags; i++)
987 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
988 
989 free_head:
990 	if (shinfo->frag_list)
991 		kfree_skb_list_reason(shinfo->frag_list, reason);
992 
993 	skb_free_head(skb, napi_safe);
994 exit:
995 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
996 	 * bit is only set on the head though, so in order to avoid races
997 	 * while trying to recycle fragments on __skb_frag_unref() we need
998 	 * to make one SKB responsible for triggering the recycle path.
999 	 * So disable the recycling bit if an SKB is cloned and we have
1000 	 * additional references to the fragmented part of the SKB.
1001 	 * Eventually the last SKB will have the recycling bit set and it's
1002 	 * dataref set to 0, which will trigger the recycling
1003 	 */
1004 	skb->pp_recycle = 0;
1005 }
1006 
1007 /*
1008  *	Free an skbuff by memory without cleaning the state.
1009  */
kfree_skbmem(struct sk_buff * skb)1010 static void kfree_skbmem(struct sk_buff *skb)
1011 {
1012 	struct sk_buff_fclones *fclones;
1013 
1014 	switch (skb->fclone) {
1015 	case SKB_FCLONE_UNAVAILABLE:
1016 		kmem_cache_free(skbuff_cache, skb);
1017 		return;
1018 
1019 	case SKB_FCLONE_ORIG:
1020 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1021 
1022 		/* We usually free the clone (TX completion) before original skb
1023 		 * This test would have no chance to be true for the clone,
1024 		 * while here, branch prediction will be good.
1025 		 */
1026 		if (refcount_read(&fclones->fclone_ref) == 1)
1027 			goto fastpath;
1028 		break;
1029 
1030 	default: /* SKB_FCLONE_CLONE */
1031 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1032 		break;
1033 	}
1034 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1035 		return;
1036 fastpath:
1037 	kmem_cache_free(skbuff_fclone_cache, fclones);
1038 }
1039 
skb_release_head_state(struct sk_buff * skb)1040 void skb_release_head_state(struct sk_buff *skb)
1041 {
1042 	skb_dst_drop(skb);
1043 	if (skb->destructor) {
1044 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1045 		skb->destructor(skb);
1046 	}
1047 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1048 	nf_conntrack_put(skb_nfct(skb));
1049 #endif
1050 	skb_ext_put(skb);
1051 }
1052 
1053 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason,bool napi_safe)1054 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1055 			    bool napi_safe)
1056 {
1057 	skb_release_head_state(skb);
1058 	if (likely(skb->head))
1059 		skb_release_data(skb, reason, napi_safe);
1060 }
1061 
1062 /**
1063  *	__kfree_skb - private function
1064  *	@skb: buffer
1065  *
1066  *	Free an sk_buff. Release anything attached to the buffer.
1067  *	Clean the state. This is an internal helper function. Users should
1068  *	always call kfree_skb
1069  */
1070 
__kfree_skb(struct sk_buff * skb)1071 void __kfree_skb(struct sk_buff *skb)
1072 {
1073 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1074 	kfree_skbmem(skb);
1075 }
1076 EXPORT_SYMBOL(__kfree_skb);
1077 
1078 static __always_inline
__kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)1079 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1080 {
1081 	if (unlikely(!skb_unref(skb)))
1082 		return false;
1083 
1084 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1085 			       u32_get_bits(reason,
1086 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1087 				SKB_DROP_REASON_SUBSYS_NUM);
1088 
1089 	if (reason == SKB_CONSUMED)
1090 		trace_consume_skb(skb, __builtin_return_address(0));
1091 	else
1092 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1093 	return true;
1094 }
1095 
1096 /**
1097  *	kfree_skb_reason - free an sk_buff with special reason
1098  *	@skb: buffer to free
1099  *	@reason: reason why this skb is dropped
1100  *
1101  *	Drop a reference to the buffer and free it if the usage count has
1102  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1103  *	tracepoint.
1104  */
1105 void __fix_address
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)1106 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1107 {
1108 	if (__kfree_skb_reason(skb, reason))
1109 		__kfree_skb(skb);
1110 }
1111 EXPORT_SYMBOL(kfree_skb_reason);
1112 
1113 #define KFREE_SKB_BULK_SIZE	16
1114 
1115 struct skb_free_array {
1116 	unsigned int skb_count;
1117 	void *skb_array[KFREE_SKB_BULK_SIZE];
1118 };
1119 
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1120 static void kfree_skb_add_bulk(struct sk_buff *skb,
1121 			       struct skb_free_array *sa,
1122 			       enum skb_drop_reason reason)
1123 {
1124 	/* if SKB is a clone, don't handle this case */
1125 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1126 		__kfree_skb(skb);
1127 		return;
1128 	}
1129 
1130 	skb_release_all(skb, reason, false);
1131 	sa->skb_array[sa->skb_count++] = skb;
1132 
1133 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1134 		kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1135 				     sa->skb_array);
1136 		sa->skb_count = 0;
1137 	}
1138 }
1139 
1140 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1141 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1142 {
1143 	struct skb_free_array sa;
1144 
1145 	sa.skb_count = 0;
1146 
1147 	while (segs) {
1148 		struct sk_buff *next = segs->next;
1149 
1150 		if (__kfree_skb_reason(segs, reason)) {
1151 			skb_poison_list(segs);
1152 			kfree_skb_add_bulk(segs, &sa, reason);
1153 		}
1154 
1155 		segs = next;
1156 	}
1157 
1158 	if (sa.skb_count)
1159 		kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1160 }
1161 EXPORT_SYMBOL(kfree_skb_list_reason);
1162 
1163 /* Dump skb information and contents.
1164  *
1165  * Must only be called from net_ratelimit()-ed paths.
1166  *
1167  * Dumps whole packets if full_pkt, only headers otherwise.
1168  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1169 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1170 {
1171 	struct skb_shared_info *sh = skb_shinfo(skb);
1172 	struct net_device *dev = skb->dev;
1173 	struct sock *sk = skb->sk;
1174 	struct sk_buff *list_skb;
1175 	bool has_mac, has_trans;
1176 	int headroom, tailroom;
1177 	int i, len, seg_len;
1178 
1179 	if (full_pkt)
1180 		len = skb->len;
1181 	else
1182 		len = min_t(int, skb->len, MAX_HEADER + 128);
1183 
1184 	headroom = skb_headroom(skb);
1185 	tailroom = skb_tailroom(skb);
1186 
1187 	has_mac = skb_mac_header_was_set(skb);
1188 	has_trans = skb_transport_header_was_set(skb);
1189 
1190 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1191 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1192 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1193 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1194 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1195 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1196 	       has_mac ? skb->mac_header : -1,
1197 	       has_mac ? skb_mac_header_len(skb) : -1,
1198 	       skb->network_header,
1199 	       has_trans ? skb_network_header_len(skb) : -1,
1200 	       has_trans ? skb->transport_header : -1,
1201 	       sh->tx_flags, sh->nr_frags,
1202 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1203 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1204 	       skb->csum_valid, skb->csum_level,
1205 	       skb->hash, skb->sw_hash, skb->l4_hash,
1206 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1207 
1208 	if (dev)
1209 		printk("%sdev name=%s feat=%pNF\n",
1210 		       level, dev->name, &dev->features);
1211 	if (sk)
1212 		printk("%ssk family=%hu type=%u proto=%u\n",
1213 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1214 
1215 	if (full_pkt && headroom)
1216 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1217 			       16, 1, skb->head, headroom, false);
1218 
1219 	seg_len = min_t(int, skb_headlen(skb), len);
1220 	if (seg_len)
1221 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1222 			       16, 1, skb->data, seg_len, false);
1223 	len -= seg_len;
1224 
1225 	if (full_pkt && tailroom)
1226 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1227 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1228 
1229 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1230 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1231 		u32 p_off, p_len, copied;
1232 		struct page *p;
1233 		u8 *vaddr;
1234 
1235 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1236 				      skb_frag_size(frag), p, p_off, p_len,
1237 				      copied) {
1238 			seg_len = min_t(int, p_len, len);
1239 			vaddr = kmap_atomic(p);
1240 			print_hex_dump(level, "skb frag:     ",
1241 				       DUMP_PREFIX_OFFSET,
1242 				       16, 1, vaddr + p_off, seg_len, false);
1243 			kunmap_atomic(vaddr);
1244 			len -= seg_len;
1245 			if (!len)
1246 				break;
1247 		}
1248 	}
1249 
1250 	if (full_pkt && skb_has_frag_list(skb)) {
1251 		printk("skb fraglist:\n");
1252 		skb_walk_frags(skb, list_skb)
1253 			skb_dump(level, list_skb, true);
1254 	}
1255 }
1256 EXPORT_SYMBOL(skb_dump);
1257 
1258 /**
1259  *	skb_tx_error - report an sk_buff xmit error
1260  *	@skb: buffer that triggered an error
1261  *
1262  *	Report xmit error if a device callback is tracking this skb.
1263  *	skb must be freed afterwards.
1264  */
skb_tx_error(struct sk_buff * skb)1265 void skb_tx_error(struct sk_buff *skb)
1266 {
1267 	if (skb) {
1268 		skb_zcopy_downgrade_managed(skb);
1269 		skb_zcopy_clear(skb, true);
1270 	}
1271 }
1272 EXPORT_SYMBOL(skb_tx_error);
1273 
1274 #ifdef CONFIG_TRACEPOINTS
1275 /**
1276  *	consume_skb - free an skbuff
1277  *	@skb: buffer to free
1278  *
1279  *	Drop a ref to the buffer and free it if the usage count has hit zero
1280  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1281  *	is being dropped after a failure and notes that
1282  */
consume_skb(struct sk_buff * skb)1283 void consume_skb(struct sk_buff *skb)
1284 {
1285 	if (!skb_unref(skb))
1286 		return;
1287 
1288 	trace_consume_skb(skb, __builtin_return_address(0));
1289 	__kfree_skb(skb);
1290 }
1291 EXPORT_SYMBOL(consume_skb);
1292 #endif
1293 
1294 /**
1295  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1296  *	@skb: buffer to free
1297  *
1298  *	Alike consume_skb(), but this variant assumes that this is the last
1299  *	skb reference and all the head states have been already dropped
1300  */
__consume_stateless_skb(struct sk_buff * skb)1301 void __consume_stateless_skb(struct sk_buff *skb)
1302 {
1303 	trace_consume_skb(skb, __builtin_return_address(0));
1304 	skb_release_data(skb, SKB_CONSUMED, false);
1305 	kfree_skbmem(skb);
1306 }
1307 
napi_skb_cache_put(struct sk_buff * skb)1308 static void napi_skb_cache_put(struct sk_buff *skb)
1309 {
1310 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1311 	u32 i;
1312 
1313 	kasan_poison_object_data(skbuff_cache, skb);
1314 	nc->skb_cache[nc->skb_count++] = skb;
1315 
1316 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1317 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1318 			kasan_unpoison_object_data(skbuff_cache,
1319 						   nc->skb_cache[i]);
1320 
1321 		kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1322 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1323 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1324 	}
1325 }
1326 
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1327 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1328 {
1329 	skb_release_all(skb, reason, true);
1330 	napi_skb_cache_put(skb);
1331 }
1332 
napi_skb_free_stolen_head(struct sk_buff * skb)1333 void napi_skb_free_stolen_head(struct sk_buff *skb)
1334 {
1335 	if (unlikely(skb->slow_gro)) {
1336 		nf_reset_ct(skb);
1337 		skb_dst_drop(skb);
1338 		skb_ext_put(skb);
1339 		skb_orphan(skb);
1340 		skb->slow_gro = 0;
1341 	}
1342 	napi_skb_cache_put(skb);
1343 }
1344 
napi_consume_skb(struct sk_buff * skb,int budget)1345 void napi_consume_skb(struct sk_buff *skb, int budget)
1346 {
1347 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1348 	if (unlikely(!budget)) {
1349 		dev_consume_skb_any(skb);
1350 		return;
1351 	}
1352 
1353 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1354 
1355 	if (!skb_unref(skb))
1356 		return;
1357 
1358 	/* if reaching here SKB is ready to free */
1359 	trace_consume_skb(skb, __builtin_return_address(0));
1360 
1361 	/* if SKB is a clone, don't handle this case */
1362 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1363 		__kfree_skb(skb);
1364 		return;
1365 	}
1366 
1367 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1368 	napi_skb_cache_put(skb);
1369 }
1370 EXPORT_SYMBOL(napi_consume_skb);
1371 
1372 /* Make sure a field is contained by headers group */
1373 #define CHECK_SKB_FIELD(field) \
1374 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1375 		     offsetof(struct sk_buff, headers.field));	\
1376 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1377 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1378 {
1379 	new->tstamp		= old->tstamp;
1380 	/* We do not copy old->sk */
1381 	new->dev		= old->dev;
1382 	memcpy(new->cb, old->cb, sizeof(old->cb));
1383 	skb_dst_copy(new, old);
1384 	__skb_ext_copy(new, old);
1385 	__nf_copy(new, old, false);
1386 
1387 	/* Note : this field could be in the headers group.
1388 	 * It is not yet because we do not want to have a 16 bit hole
1389 	 */
1390 	new->queue_mapping = old->queue_mapping;
1391 
1392 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1393 	CHECK_SKB_FIELD(protocol);
1394 	CHECK_SKB_FIELD(csum);
1395 	CHECK_SKB_FIELD(hash);
1396 	CHECK_SKB_FIELD(priority);
1397 	CHECK_SKB_FIELD(skb_iif);
1398 	CHECK_SKB_FIELD(vlan_proto);
1399 	CHECK_SKB_FIELD(vlan_tci);
1400 	CHECK_SKB_FIELD(transport_header);
1401 	CHECK_SKB_FIELD(network_header);
1402 	CHECK_SKB_FIELD(mac_header);
1403 	CHECK_SKB_FIELD(inner_protocol);
1404 	CHECK_SKB_FIELD(inner_transport_header);
1405 	CHECK_SKB_FIELD(inner_network_header);
1406 	CHECK_SKB_FIELD(inner_mac_header);
1407 	CHECK_SKB_FIELD(mark);
1408 #ifdef CONFIG_NETWORK_SECMARK
1409 	CHECK_SKB_FIELD(secmark);
1410 #endif
1411 #ifdef CONFIG_NET_RX_BUSY_POLL
1412 	CHECK_SKB_FIELD(napi_id);
1413 #endif
1414 	CHECK_SKB_FIELD(alloc_cpu);
1415 #ifdef CONFIG_XPS
1416 	CHECK_SKB_FIELD(sender_cpu);
1417 #endif
1418 #ifdef CONFIG_NET_SCHED
1419 	CHECK_SKB_FIELD(tc_index);
1420 #endif
1421 
1422 }
1423 
1424 /*
1425  * You should not add any new code to this function.  Add it to
1426  * __copy_skb_header above instead.
1427  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1428 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1429 {
1430 #define C(x) n->x = skb->x
1431 
1432 	n->next = n->prev = NULL;
1433 	n->sk = NULL;
1434 	__copy_skb_header(n, skb);
1435 
1436 	C(len);
1437 	C(data_len);
1438 	C(mac_len);
1439 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1440 	n->cloned = 1;
1441 	n->nohdr = 0;
1442 	n->peeked = 0;
1443 	C(pfmemalloc);
1444 	C(pp_recycle);
1445 	n->destructor = NULL;
1446 	C(tail);
1447 	C(end);
1448 	C(head);
1449 	C(head_frag);
1450 	C(data);
1451 	C(truesize);
1452 	refcount_set(&n->users, 1);
1453 
1454 	atomic_inc(&(skb_shinfo(skb)->dataref));
1455 	skb->cloned = 1;
1456 
1457 	return n;
1458 #undef C
1459 }
1460 
1461 /**
1462  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1463  * @first: first sk_buff of the msg
1464  */
alloc_skb_for_msg(struct sk_buff * first)1465 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1466 {
1467 	struct sk_buff *n;
1468 
1469 	n = alloc_skb(0, GFP_ATOMIC);
1470 	if (!n)
1471 		return NULL;
1472 
1473 	n->len = first->len;
1474 	n->data_len = first->len;
1475 	n->truesize = first->truesize;
1476 
1477 	skb_shinfo(n)->frag_list = first;
1478 
1479 	__copy_skb_header(n, first);
1480 	n->destructor = NULL;
1481 
1482 	return n;
1483 }
1484 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1485 
1486 /**
1487  *	skb_morph	-	morph one skb into another
1488  *	@dst: the skb to receive the contents
1489  *	@src: the skb to supply the contents
1490  *
1491  *	This is identical to skb_clone except that the target skb is
1492  *	supplied by the user.
1493  *
1494  *	The target skb is returned upon exit.
1495  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1496 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1497 {
1498 	skb_release_all(dst, SKB_CONSUMED, false);
1499 	return __skb_clone(dst, src);
1500 }
1501 EXPORT_SYMBOL_GPL(skb_morph);
1502 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1503 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1504 {
1505 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1506 	struct user_struct *user;
1507 
1508 	if (capable(CAP_IPC_LOCK) || !size)
1509 		return 0;
1510 
1511 	rlim = rlimit(RLIMIT_MEMLOCK);
1512 	if (rlim == RLIM_INFINITY)
1513 		return 0;
1514 
1515 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1516 	max_pg = rlim >> PAGE_SHIFT;
1517 	user = mmp->user ? : current_user();
1518 
1519 	old_pg = atomic_long_read(&user->locked_vm);
1520 	do {
1521 		new_pg = old_pg + num_pg;
1522 		if (new_pg > max_pg)
1523 			return -ENOBUFS;
1524 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1525 
1526 	if (!mmp->user) {
1527 		mmp->user = get_uid(user);
1528 		mmp->num_pg = num_pg;
1529 	} else {
1530 		mmp->num_pg += num_pg;
1531 	}
1532 
1533 	return 0;
1534 }
1535 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1536 
mm_unaccount_pinned_pages(struct mmpin * mmp)1537 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1538 {
1539 	if (mmp->user) {
1540 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1541 		free_uid(mmp->user);
1542 	}
1543 }
1544 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1545 
msg_zerocopy_alloc(struct sock * sk,size_t size)1546 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1547 {
1548 	struct ubuf_info_msgzc *uarg;
1549 	struct sk_buff *skb;
1550 
1551 	WARN_ON_ONCE(!in_task());
1552 
1553 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1554 	if (!skb)
1555 		return NULL;
1556 
1557 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1558 	uarg = (void *)skb->cb;
1559 	uarg->mmp.user = NULL;
1560 
1561 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1562 		kfree_skb(skb);
1563 		return NULL;
1564 	}
1565 
1566 	uarg->ubuf.callback = msg_zerocopy_callback;
1567 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1568 	uarg->len = 1;
1569 	uarg->bytelen = size;
1570 	uarg->zerocopy = 1;
1571 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1572 	refcount_set(&uarg->ubuf.refcnt, 1);
1573 	sock_hold(sk);
1574 
1575 	return &uarg->ubuf;
1576 }
1577 
skb_from_uarg(struct ubuf_info_msgzc * uarg)1578 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1579 {
1580 	return container_of((void *)uarg, struct sk_buff, cb);
1581 }
1582 
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1583 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1584 				       struct ubuf_info *uarg)
1585 {
1586 	if (uarg) {
1587 		struct ubuf_info_msgzc *uarg_zc;
1588 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1589 		u32 bytelen, next;
1590 
1591 		/* there might be non MSG_ZEROCOPY users */
1592 		if (uarg->callback != msg_zerocopy_callback)
1593 			return NULL;
1594 
1595 		/* realloc only when socket is locked (TCP, UDP cork),
1596 		 * so uarg->len and sk_zckey access is serialized
1597 		 */
1598 		if (!sock_owned_by_user(sk)) {
1599 			WARN_ON_ONCE(1);
1600 			return NULL;
1601 		}
1602 
1603 		uarg_zc = uarg_to_msgzc(uarg);
1604 		bytelen = uarg_zc->bytelen + size;
1605 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1606 			/* TCP can create new skb to attach new uarg */
1607 			if (sk->sk_type == SOCK_STREAM)
1608 				goto new_alloc;
1609 			return NULL;
1610 		}
1611 
1612 		next = (u32)atomic_read(&sk->sk_zckey);
1613 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1614 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1615 				return NULL;
1616 			uarg_zc->len++;
1617 			uarg_zc->bytelen = bytelen;
1618 			atomic_set(&sk->sk_zckey, ++next);
1619 
1620 			/* no extra ref when appending to datagram (MSG_MORE) */
1621 			if (sk->sk_type == SOCK_STREAM)
1622 				net_zcopy_get(uarg);
1623 
1624 			return uarg;
1625 		}
1626 	}
1627 
1628 new_alloc:
1629 	return msg_zerocopy_alloc(sk, size);
1630 }
1631 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1632 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1633 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1634 {
1635 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1636 	u32 old_lo, old_hi;
1637 	u64 sum_len;
1638 
1639 	old_lo = serr->ee.ee_info;
1640 	old_hi = serr->ee.ee_data;
1641 	sum_len = old_hi - old_lo + 1ULL + len;
1642 
1643 	if (sum_len >= (1ULL << 32))
1644 		return false;
1645 
1646 	if (lo != old_hi + 1)
1647 		return false;
1648 
1649 	serr->ee.ee_data += len;
1650 	return true;
1651 }
1652 
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1653 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1654 {
1655 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1656 	struct sock_exterr_skb *serr;
1657 	struct sock *sk = skb->sk;
1658 	struct sk_buff_head *q;
1659 	unsigned long flags;
1660 	bool is_zerocopy;
1661 	u32 lo, hi;
1662 	u16 len;
1663 
1664 	mm_unaccount_pinned_pages(&uarg->mmp);
1665 
1666 	/* if !len, there was only 1 call, and it was aborted
1667 	 * so do not queue a completion notification
1668 	 */
1669 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1670 		goto release;
1671 
1672 	len = uarg->len;
1673 	lo = uarg->id;
1674 	hi = uarg->id + len - 1;
1675 	is_zerocopy = uarg->zerocopy;
1676 
1677 	serr = SKB_EXT_ERR(skb);
1678 	memset(serr, 0, sizeof(*serr));
1679 	serr->ee.ee_errno = 0;
1680 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1681 	serr->ee.ee_data = hi;
1682 	serr->ee.ee_info = lo;
1683 	if (!is_zerocopy)
1684 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1685 
1686 	q = &sk->sk_error_queue;
1687 	spin_lock_irqsave(&q->lock, flags);
1688 	tail = skb_peek_tail(q);
1689 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1690 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1691 		__skb_queue_tail(q, skb);
1692 		skb = NULL;
1693 	}
1694 	spin_unlock_irqrestore(&q->lock, flags);
1695 
1696 	sk_error_report(sk);
1697 
1698 release:
1699 	consume_skb(skb);
1700 	sock_put(sk);
1701 }
1702 
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1703 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1704 			   bool success)
1705 {
1706 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1707 
1708 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1709 
1710 	if (refcount_dec_and_test(&uarg->refcnt))
1711 		__msg_zerocopy_callback(uarg_zc);
1712 }
1713 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1714 
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1715 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1716 {
1717 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1718 
1719 	atomic_dec(&sk->sk_zckey);
1720 	uarg_to_msgzc(uarg)->len--;
1721 
1722 	if (have_uref)
1723 		msg_zerocopy_callback(NULL, uarg, true);
1724 }
1725 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1726 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1727 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1728 			     struct msghdr *msg, int len,
1729 			     struct ubuf_info *uarg)
1730 {
1731 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1732 	int err, orig_len = skb->len;
1733 
1734 	/* An skb can only point to one uarg. This edge case happens when
1735 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1736 	 */
1737 	if (orig_uarg && uarg != orig_uarg)
1738 		return -EEXIST;
1739 
1740 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1741 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1742 		struct sock *save_sk = skb->sk;
1743 
1744 		/* Streams do not free skb on error. Reset to prev state. */
1745 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1746 		skb->sk = sk;
1747 		___pskb_trim(skb, orig_len);
1748 		skb->sk = save_sk;
1749 		return err;
1750 	}
1751 
1752 	skb_zcopy_set(skb, uarg, NULL);
1753 	return skb->len - orig_len;
1754 }
1755 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1756 
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1757 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1758 {
1759 	int i;
1760 
1761 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1762 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1763 		skb_frag_ref(skb, i);
1764 }
1765 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1766 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1767 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1768 			      gfp_t gfp_mask)
1769 {
1770 	if (skb_zcopy(orig)) {
1771 		if (skb_zcopy(nskb)) {
1772 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1773 			if (!gfp_mask) {
1774 				WARN_ON_ONCE(1);
1775 				return -ENOMEM;
1776 			}
1777 			if (skb_uarg(nskb) == skb_uarg(orig))
1778 				return 0;
1779 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1780 				return -EIO;
1781 		}
1782 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1783 	}
1784 	return 0;
1785 }
1786 
1787 /**
1788  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1789  *	@skb: the skb to modify
1790  *	@gfp_mask: allocation priority
1791  *
1792  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1793  *	It will copy all frags into kernel and drop the reference
1794  *	to userspace pages.
1795  *
1796  *	If this function is called from an interrupt gfp_mask() must be
1797  *	%GFP_ATOMIC.
1798  *
1799  *	Returns 0 on success or a negative error code on failure
1800  *	to allocate kernel memory to copy to.
1801  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1802 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1803 {
1804 	int num_frags = skb_shinfo(skb)->nr_frags;
1805 	struct page *page, *head = NULL;
1806 	int i, order, psize, new_frags;
1807 	u32 d_off;
1808 
1809 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1810 		return -EINVAL;
1811 
1812 	if (!num_frags)
1813 		goto release;
1814 
1815 	/* We might have to allocate high order pages, so compute what minimum
1816 	 * page order is needed.
1817 	 */
1818 	order = 0;
1819 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1820 		order++;
1821 	psize = (PAGE_SIZE << order);
1822 
1823 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1824 	for (i = 0; i < new_frags; i++) {
1825 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1826 		if (!page) {
1827 			while (head) {
1828 				struct page *next = (struct page *)page_private(head);
1829 				put_page(head);
1830 				head = next;
1831 			}
1832 			return -ENOMEM;
1833 		}
1834 		set_page_private(page, (unsigned long)head);
1835 		head = page;
1836 	}
1837 
1838 	page = head;
1839 	d_off = 0;
1840 	for (i = 0; i < num_frags; i++) {
1841 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1842 		u32 p_off, p_len, copied;
1843 		struct page *p;
1844 		u8 *vaddr;
1845 
1846 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1847 				      p, p_off, p_len, copied) {
1848 			u32 copy, done = 0;
1849 			vaddr = kmap_atomic(p);
1850 
1851 			while (done < p_len) {
1852 				if (d_off == psize) {
1853 					d_off = 0;
1854 					page = (struct page *)page_private(page);
1855 				}
1856 				copy = min_t(u32, psize - d_off, p_len - done);
1857 				memcpy(page_address(page) + d_off,
1858 				       vaddr + p_off + done, copy);
1859 				done += copy;
1860 				d_off += copy;
1861 			}
1862 			kunmap_atomic(vaddr);
1863 		}
1864 	}
1865 
1866 	/* skb frags release userspace buffers */
1867 	for (i = 0; i < num_frags; i++)
1868 		skb_frag_unref(skb, i);
1869 
1870 	/* skb frags point to kernel buffers */
1871 	for (i = 0; i < new_frags - 1; i++) {
1872 		__skb_fill_page_desc(skb, i, head, 0, psize);
1873 		head = (struct page *)page_private(head);
1874 	}
1875 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1876 	skb_shinfo(skb)->nr_frags = new_frags;
1877 
1878 release:
1879 	skb_zcopy_clear(skb, false);
1880 	return 0;
1881 }
1882 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1883 
1884 /**
1885  *	skb_clone	-	duplicate an sk_buff
1886  *	@skb: buffer to clone
1887  *	@gfp_mask: allocation priority
1888  *
1889  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1890  *	copies share the same packet data but not structure. The new
1891  *	buffer has a reference count of 1. If the allocation fails the
1892  *	function returns %NULL otherwise the new buffer is returned.
1893  *
1894  *	If this function is called from an interrupt gfp_mask() must be
1895  *	%GFP_ATOMIC.
1896  */
1897 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1898 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1899 {
1900 	struct sk_buff_fclones *fclones = container_of(skb,
1901 						       struct sk_buff_fclones,
1902 						       skb1);
1903 	struct sk_buff *n;
1904 
1905 	if (skb_orphan_frags(skb, gfp_mask))
1906 		return NULL;
1907 
1908 	if (skb->fclone == SKB_FCLONE_ORIG &&
1909 	    refcount_read(&fclones->fclone_ref) == 1) {
1910 		n = &fclones->skb2;
1911 		refcount_set(&fclones->fclone_ref, 2);
1912 		n->fclone = SKB_FCLONE_CLONE;
1913 	} else {
1914 		if (skb_pfmemalloc(skb))
1915 			gfp_mask |= __GFP_MEMALLOC;
1916 
1917 		n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1918 		if (!n)
1919 			return NULL;
1920 
1921 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1922 	}
1923 
1924 	return __skb_clone(n, skb);
1925 }
1926 EXPORT_SYMBOL(skb_clone);
1927 
skb_headers_offset_update(struct sk_buff * skb,int off)1928 void skb_headers_offset_update(struct sk_buff *skb, int off)
1929 {
1930 	/* Only adjust this if it actually is csum_start rather than csum */
1931 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1932 		skb->csum_start += off;
1933 	/* {transport,network,mac}_header and tail are relative to skb->head */
1934 	skb->transport_header += off;
1935 	skb->network_header   += off;
1936 	if (skb_mac_header_was_set(skb))
1937 		skb->mac_header += off;
1938 	skb->inner_transport_header += off;
1939 	skb->inner_network_header += off;
1940 	skb->inner_mac_header += off;
1941 }
1942 EXPORT_SYMBOL(skb_headers_offset_update);
1943 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1944 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1945 {
1946 	__copy_skb_header(new, old);
1947 
1948 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1949 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1950 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1951 }
1952 EXPORT_SYMBOL(skb_copy_header);
1953 
skb_alloc_rx_flag(const struct sk_buff * skb)1954 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1955 {
1956 	if (skb_pfmemalloc(skb))
1957 		return SKB_ALLOC_RX;
1958 	return 0;
1959 }
1960 
1961 /**
1962  *	skb_copy	-	create private copy of an sk_buff
1963  *	@skb: buffer to copy
1964  *	@gfp_mask: allocation priority
1965  *
1966  *	Make a copy of both an &sk_buff and its data. This is used when the
1967  *	caller wishes to modify the data and needs a private copy of the
1968  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1969  *	on success. The returned buffer has a reference count of 1.
1970  *
1971  *	As by-product this function converts non-linear &sk_buff to linear
1972  *	one, so that &sk_buff becomes completely private and caller is allowed
1973  *	to modify all the data of returned buffer. This means that this
1974  *	function is not recommended for use in circumstances when only
1975  *	header is going to be modified. Use pskb_copy() instead.
1976  */
1977 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1978 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1979 {
1980 	struct sk_buff *n;
1981 	unsigned int size;
1982 	int headerlen;
1983 
1984 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
1985 		return NULL;
1986 
1987 	headerlen = skb_headroom(skb);
1988 	size = skb_end_offset(skb) + skb->data_len;
1989 	n = __alloc_skb(size, gfp_mask,
1990 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1991 	if (!n)
1992 		return NULL;
1993 
1994 	/* Set the data pointer */
1995 	skb_reserve(n, headerlen);
1996 	/* Set the tail pointer and length */
1997 	skb_put(n, skb->len);
1998 
1999 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2000 
2001 	skb_copy_header(n, skb);
2002 	return n;
2003 }
2004 EXPORT_SYMBOL(skb_copy);
2005 
2006 /**
2007  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2008  *	@skb: buffer to copy
2009  *	@headroom: headroom of new skb
2010  *	@gfp_mask: allocation priority
2011  *	@fclone: if true allocate the copy of the skb from the fclone
2012  *	cache instead of the head cache; it is recommended to set this
2013  *	to true for the cases where the copy will likely be cloned
2014  *
2015  *	Make a copy of both an &sk_buff and part of its data, located
2016  *	in header. Fragmented data remain shared. This is used when
2017  *	the caller wishes to modify only header of &sk_buff and needs
2018  *	private copy of the header to alter. Returns %NULL on failure
2019  *	or the pointer to the buffer on success.
2020  *	The returned buffer has a reference count of 1.
2021  */
2022 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2023 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2024 				   gfp_t gfp_mask, bool fclone)
2025 {
2026 	unsigned int size = skb_headlen(skb) + headroom;
2027 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2028 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2029 
2030 	if (!n)
2031 		goto out;
2032 
2033 	/* Set the data pointer */
2034 	skb_reserve(n, headroom);
2035 	/* Set the tail pointer and length */
2036 	skb_put(n, skb_headlen(skb));
2037 	/* Copy the bytes */
2038 	skb_copy_from_linear_data(skb, n->data, n->len);
2039 
2040 	n->truesize += skb->data_len;
2041 	n->data_len  = skb->data_len;
2042 	n->len	     = skb->len;
2043 
2044 	if (skb_shinfo(skb)->nr_frags) {
2045 		int i;
2046 
2047 		if (skb_orphan_frags(skb, gfp_mask) ||
2048 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2049 			kfree_skb(n);
2050 			n = NULL;
2051 			goto out;
2052 		}
2053 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2054 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2055 			skb_frag_ref(skb, i);
2056 		}
2057 		skb_shinfo(n)->nr_frags = i;
2058 	}
2059 
2060 	if (skb_has_frag_list(skb)) {
2061 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2062 		skb_clone_fraglist(n);
2063 	}
2064 
2065 	skb_copy_header(n, skb);
2066 out:
2067 	return n;
2068 }
2069 EXPORT_SYMBOL(__pskb_copy_fclone);
2070 
2071 /**
2072  *	pskb_expand_head - reallocate header of &sk_buff
2073  *	@skb: buffer to reallocate
2074  *	@nhead: room to add at head
2075  *	@ntail: room to add at tail
2076  *	@gfp_mask: allocation priority
2077  *
2078  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2079  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2080  *	reference count of 1. Returns zero in the case of success or error,
2081  *	if expansion failed. In the last case, &sk_buff is not changed.
2082  *
2083  *	All the pointers pointing into skb header may change and must be
2084  *	reloaded after call to this function.
2085  */
2086 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2087 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2088 		     gfp_t gfp_mask)
2089 {
2090 	unsigned int osize = skb_end_offset(skb);
2091 	unsigned int size = osize + nhead + ntail;
2092 	long off;
2093 	u8 *data;
2094 	int i;
2095 
2096 	BUG_ON(nhead < 0);
2097 
2098 	BUG_ON(skb_shared(skb));
2099 
2100 	skb_zcopy_downgrade_managed(skb);
2101 
2102 	if (skb_pfmemalloc(skb))
2103 		gfp_mask |= __GFP_MEMALLOC;
2104 
2105 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2106 	if (!data)
2107 		goto nodata;
2108 	size = SKB_WITH_OVERHEAD(size);
2109 
2110 	/* Copy only real data... and, alas, header. This should be
2111 	 * optimized for the cases when header is void.
2112 	 */
2113 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2114 
2115 	memcpy((struct skb_shared_info *)(data + size),
2116 	       skb_shinfo(skb),
2117 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2118 
2119 	/*
2120 	 * if shinfo is shared we must drop the old head gracefully, but if it
2121 	 * is not we can just drop the old head and let the existing refcount
2122 	 * be since all we did is relocate the values
2123 	 */
2124 	if (skb_cloned(skb)) {
2125 		if (skb_orphan_frags(skb, gfp_mask))
2126 			goto nofrags;
2127 		if (skb_zcopy(skb))
2128 			refcount_inc(&skb_uarg(skb)->refcnt);
2129 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2130 			skb_frag_ref(skb, i);
2131 
2132 		if (skb_has_frag_list(skb))
2133 			skb_clone_fraglist(skb);
2134 
2135 		skb_release_data(skb, SKB_CONSUMED, false);
2136 	} else {
2137 		skb_free_head(skb, false);
2138 	}
2139 	off = (data + nhead) - skb->head;
2140 
2141 	skb->head     = data;
2142 	skb->head_frag = 0;
2143 	skb->data    += off;
2144 
2145 	skb_set_end_offset(skb, size);
2146 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2147 	off           = nhead;
2148 #endif
2149 	skb->tail	      += off;
2150 	skb_headers_offset_update(skb, nhead);
2151 	skb->cloned   = 0;
2152 	skb->hdr_len  = 0;
2153 	skb->nohdr    = 0;
2154 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2155 
2156 	skb_metadata_clear(skb);
2157 
2158 	/* It is not generally safe to change skb->truesize.
2159 	 * For the moment, we really care of rx path, or
2160 	 * when skb is orphaned (not attached to a socket).
2161 	 */
2162 	if (!skb->sk || skb->destructor == sock_edemux)
2163 		skb->truesize += size - osize;
2164 
2165 	return 0;
2166 
2167 nofrags:
2168 	skb_kfree_head(data, size);
2169 nodata:
2170 	return -ENOMEM;
2171 }
2172 EXPORT_SYMBOL(pskb_expand_head);
2173 
2174 /* Make private copy of skb with writable head and some headroom */
2175 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2176 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2177 {
2178 	struct sk_buff *skb2;
2179 	int delta = headroom - skb_headroom(skb);
2180 
2181 	if (delta <= 0)
2182 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2183 	else {
2184 		skb2 = skb_clone(skb, GFP_ATOMIC);
2185 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2186 					     GFP_ATOMIC)) {
2187 			kfree_skb(skb2);
2188 			skb2 = NULL;
2189 		}
2190 	}
2191 	return skb2;
2192 }
2193 EXPORT_SYMBOL(skb_realloc_headroom);
2194 
2195 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2196 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2197 {
2198 	unsigned int saved_end_offset, saved_truesize;
2199 	struct skb_shared_info *shinfo;
2200 	int res;
2201 
2202 	saved_end_offset = skb_end_offset(skb);
2203 	saved_truesize = skb->truesize;
2204 
2205 	res = pskb_expand_head(skb, 0, 0, pri);
2206 	if (res)
2207 		return res;
2208 
2209 	skb->truesize = saved_truesize;
2210 
2211 	if (likely(skb_end_offset(skb) == saved_end_offset))
2212 		return 0;
2213 
2214 	/* We can not change skb->end if the original or new value
2215 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2216 	 */
2217 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2218 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2219 		/* We think this path should not be taken.
2220 		 * Add a temporary trace to warn us just in case.
2221 		 */
2222 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2223 			    saved_end_offset, skb_end_offset(skb));
2224 		WARN_ON_ONCE(1);
2225 		return 0;
2226 	}
2227 
2228 	shinfo = skb_shinfo(skb);
2229 
2230 	/* We are about to change back skb->end,
2231 	 * we need to move skb_shinfo() to its new location.
2232 	 */
2233 	memmove(skb->head + saved_end_offset,
2234 		shinfo,
2235 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2236 
2237 	skb_set_end_offset(skb, saved_end_offset);
2238 
2239 	return 0;
2240 }
2241 
2242 /**
2243  *	skb_expand_head - reallocate header of &sk_buff
2244  *	@skb: buffer to reallocate
2245  *	@headroom: needed headroom
2246  *
2247  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2248  *	if possible; copies skb->sk to new skb as needed
2249  *	and frees original skb in case of failures.
2250  *
2251  *	It expect increased headroom and generates warning otherwise.
2252  */
2253 
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2254 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2255 {
2256 	int delta = headroom - skb_headroom(skb);
2257 	int osize = skb_end_offset(skb);
2258 	struct sock *sk = skb->sk;
2259 
2260 	if (WARN_ONCE(delta <= 0,
2261 		      "%s is expecting an increase in the headroom", __func__))
2262 		return skb;
2263 
2264 	delta = SKB_DATA_ALIGN(delta);
2265 	/* pskb_expand_head() might crash, if skb is shared. */
2266 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2267 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2268 
2269 		if (unlikely(!nskb))
2270 			goto fail;
2271 
2272 		if (sk)
2273 			skb_set_owner_w(nskb, sk);
2274 		consume_skb(skb);
2275 		skb = nskb;
2276 	}
2277 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2278 		goto fail;
2279 
2280 	if (sk && is_skb_wmem(skb)) {
2281 		delta = skb_end_offset(skb) - osize;
2282 		refcount_add(delta, &sk->sk_wmem_alloc);
2283 		skb->truesize += delta;
2284 	}
2285 	return skb;
2286 
2287 fail:
2288 	kfree_skb(skb);
2289 	return NULL;
2290 }
2291 EXPORT_SYMBOL(skb_expand_head);
2292 
2293 /**
2294  *	skb_copy_expand	-	copy and expand sk_buff
2295  *	@skb: buffer to copy
2296  *	@newheadroom: new free bytes at head
2297  *	@newtailroom: new free bytes at tail
2298  *	@gfp_mask: allocation priority
2299  *
2300  *	Make a copy of both an &sk_buff and its data and while doing so
2301  *	allocate additional space.
2302  *
2303  *	This is used when the caller wishes to modify the data and needs a
2304  *	private copy of the data to alter as well as more space for new fields.
2305  *	Returns %NULL on failure or the pointer to the buffer
2306  *	on success. The returned buffer has a reference count of 1.
2307  *
2308  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2309  *	is called from an interrupt.
2310  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2311 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2312 				int newheadroom, int newtailroom,
2313 				gfp_t gfp_mask)
2314 {
2315 	/*
2316 	 *	Allocate the copy buffer
2317 	 */
2318 	int head_copy_len, head_copy_off;
2319 	struct sk_buff *n;
2320 	int oldheadroom;
2321 
2322 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2323 		return NULL;
2324 
2325 	oldheadroom = skb_headroom(skb);
2326 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2327 			gfp_mask, skb_alloc_rx_flag(skb),
2328 			NUMA_NO_NODE);
2329 	if (!n)
2330 		return NULL;
2331 
2332 	skb_reserve(n, newheadroom);
2333 
2334 	/* Set the tail pointer and length */
2335 	skb_put(n, skb->len);
2336 
2337 	head_copy_len = oldheadroom;
2338 	head_copy_off = 0;
2339 	if (newheadroom <= head_copy_len)
2340 		head_copy_len = newheadroom;
2341 	else
2342 		head_copy_off = newheadroom - head_copy_len;
2343 
2344 	/* Copy the linear header and data. */
2345 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2346 			     skb->len + head_copy_len));
2347 
2348 	skb_copy_header(n, skb);
2349 
2350 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2351 
2352 	return n;
2353 }
2354 EXPORT_SYMBOL(skb_copy_expand);
2355 
2356 /**
2357  *	__skb_pad		-	zero pad the tail of an skb
2358  *	@skb: buffer to pad
2359  *	@pad: space to pad
2360  *	@free_on_error: free buffer on error
2361  *
2362  *	Ensure that a buffer is followed by a padding area that is zero
2363  *	filled. Used by network drivers which may DMA or transfer data
2364  *	beyond the buffer end onto the wire.
2365  *
2366  *	May return error in out of memory cases. The skb is freed on error
2367  *	if @free_on_error is true.
2368  */
2369 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2370 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2371 {
2372 	int err;
2373 	int ntail;
2374 
2375 	/* If the skbuff is non linear tailroom is always zero.. */
2376 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2377 		memset(skb->data+skb->len, 0, pad);
2378 		return 0;
2379 	}
2380 
2381 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2382 	if (likely(skb_cloned(skb) || ntail > 0)) {
2383 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2384 		if (unlikely(err))
2385 			goto free_skb;
2386 	}
2387 
2388 	/* FIXME: The use of this function with non-linear skb's really needs
2389 	 * to be audited.
2390 	 */
2391 	err = skb_linearize(skb);
2392 	if (unlikely(err))
2393 		goto free_skb;
2394 
2395 	memset(skb->data + skb->len, 0, pad);
2396 	return 0;
2397 
2398 free_skb:
2399 	if (free_on_error)
2400 		kfree_skb(skb);
2401 	return err;
2402 }
2403 EXPORT_SYMBOL(__skb_pad);
2404 
2405 /**
2406  *	pskb_put - add data to the tail of a potentially fragmented buffer
2407  *	@skb: start of the buffer to use
2408  *	@tail: tail fragment of the buffer to use
2409  *	@len: amount of data to add
2410  *
2411  *	This function extends the used data area of the potentially
2412  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2413  *	@skb itself. If this would exceed the total buffer size the kernel
2414  *	will panic. A pointer to the first byte of the extra data is
2415  *	returned.
2416  */
2417 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2418 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2419 {
2420 	if (tail != skb) {
2421 		skb->data_len += len;
2422 		skb->len += len;
2423 	}
2424 	return skb_put(tail, len);
2425 }
2426 EXPORT_SYMBOL_GPL(pskb_put);
2427 
2428 /**
2429  *	skb_put - add data to a buffer
2430  *	@skb: buffer to use
2431  *	@len: amount of data to add
2432  *
2433  *	This function extends the used data area of the buffer. If this would
2434  *	exceed the total buffer size the kernel will panic. A pointer to the
2435  *	first byte of the extra data is returned.
2436  */
skb_put(struct sk_buff * skb,unsigned int len)2437 void *skb_put(struct sk_buff *skb, unsigned int len)
2438 {
2439 	void *tmp = skb_tail_pointer(skb);
2440 	SKB_LINEAR_ASSERT(skb);
2441 	skb->tail += len;
2442 	skb->len  += len;
2443 	if (unlikely(skb->tail > skb->end))
2444 		skb_over_panic(skb, len, __builtin_return_address(0));
2445 	return tmp;
2446 }
2447 EXPORT_SYMBOL(skb_put);
2448 
2449 /**
2450  *	skb_push - add data to the start of a buffer
2451  *	@skb: buffer to use
2452  *	@len: amount of data to add
2453  *
2454  *	This function extends the used data area of the buffer at the buffer
2455  *	start. If this would exceed the total buffer headroom the kernel will
2456  *	panic. A pointer to the first byte of the extra data is returned.
2457  */
skb_push(struct sk_buff * skb,unsigned int len)2458 void *skb_push(struct sk_buff *skb, unsigned int len)
2459 {
2460 	skb->data -= len;
2461 	skb->len  += len;
2462 	if (unlikely(skb->data < skb->head))
2463 		skb_under_panic(skb, len, __builtin_return_address(0));
2464 	return skb->data;
2465 }
2466 EXPORT_SYMBOL(skb_push);
2467 
2468 /**
2469  *	skb_pull - remove data from the start of a buffer
2470  *	@skb: buffer to use
2471  *	@len: amount of data to remove
2472  *
2473  *	This function removes data from the start of a buffer, returning
2474  *	the memory to the headroom. A pointer to the next data in the buffer
2475  *	is returned. Once the data has been pulled future pushes will overwrite
2476  *	the old data.
2477  */
skb_pull(struct sk_buff * skb,unsigned int len)2478 void *skb_pull(struct sk_buff *skb, unsigned int len)
2479 {
2480 	return skb_pull_inline(skb, len);
2481 }
2482 EXPORT_SYMBOL(skb_pull);
2483 
2484 /**
2485  *	skb_pull_data - remove data from the start of a buffer returning its
2486  *	original position.
2487  *	@skb: buffer to use
2488  *	@len: amount of data to remove
2489  *
2490  *	This function removes data from the start of a buffer, returning
2491  *	the memory to the headroom. A pointer to the original data in the buffer
2492  *	is returned after checking if there is enough data to pull. Once the
2493  *	data has been pulled future pushes will overwrite the old data.
2494  */
skb_pull_data(struct sk_buff * skb,size_t len)2495 void *skb_pull_data(struct sk_buff *skb, size_t len)
2496 {
2497 	void *data = skb->data;
2498 
2499 	if (skb->len < len)
2500 		return NULL;
2501 
2502 	skb_pull(skb, len);
2503 
2504 	return data;
2505 }
2506 EXPORT_SYMBOL(skb_pull_data);
2507 
2508 /**
2509  *	skb_trim - remove end from a buffer
2510  *	@skb: buffer to alter
2511  *	@len: new length
2512  *
2513  *	Cut the length of a buffer down by removing data from the tail. If
2514  *	the buffer is already under the length specified it is not modified.
2515  *	The skb must be linear.
2516  */
skb_trim(struct sk_buff * skb,unsigned int len)2517 void skb_trim(struct sk_buff *skb, unsigned int len)
2518 {
2519 	if (skb->len > len)
2520 		__skb_trim(skb, len);
2521 }
2522 EXPORT_SYMBOL(skb_trim);
2523 
2524 /* Trims skb to length len. It can change skb pointers.
2525  */
2526 
___pskb_trim(struct sk_buff * skb,unsigned int len)2527 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2528 {
2529 	struct sk_buff **fragp;
2530 	struct sk_buff *frag;
2531 	int offset = skb_headlen(skb);
2532 	int nfrags = skb_shinfo(skb)->nr_frags;
2533 	int i;
2534 	int err;
2535 
2536 	if (skb_cloned(skb) &&
2537 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2538 		return err;
2539 
2540 	i = 0;
2541 	if (offset >= len)
2542 		goto drop_pages;
2543 
2544 	for (; i < nfrags; i++) {
2545 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2546 
2547 		if (end < len) {
2548 			offset = end;
2549 			continue;
2550 		}
2551 
2552 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2553 
2554 drop_pages:
2555 		skb_shinfo(skb)->nr_frags = i;
2556 
2557 		for (; i < nfrags; i++)
2558 			skb_frag_unref(skb, i);
2559 
2560 		if (skb_has_frag_list(skb))
2561 			skb_drop_fraglist(skb);
2562 		goto done;
2563 	}
2564 
2565 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2566 	     fragp = &frag->next) {
2567 		int end = offset + frag->len;
2568 
2569 		if (skb_shared(frag)) {
2570 			struct sk_buff *nfrag;
2571 
2572 			nfrag = skb_clone(frag, GFP_ATOMIC);
2573 			if (unlikely(!nfrag))
2574 				return -ENOMEM;
2575 
2576 			nfrag->next = frag->next;
2577 			consume_skb(frag);
2578 			frag = nfrag;
2579 			*fragp = frag;
2580 		}
2581 
2582 		if (end < len) {
2583 			offset = end;
2584 			continue;
2585 		}
2586 
2587 		if (end > len &&
2588 		    unlikely((err = pskb_trim(frag, len - offset))))
2589 			return err;
2590 
2591 		if (frag->next)
2592 			skb_drop_list(&frag->next);
2593 		break;
2594 	}
2595 
2596 done:
2597 	if (len > skb_headlen(skb)) {
2598 		skb->data_len -= skb->len - len;
2599 		skb->len       = len;
2600 	} else {
2601 		skb->len       = len;
2602 		skb->data_len  = 0;
2603 		skb_set_tail_pointer(skb, len);
2604 	}
2605 
2606 	if (!skb->sk || skb->destructor == sock_edemux)
2607 		skb_condense(skb);
2608 	return 0;
2609 }
2610 EXPORT_SYMBOL(___pskb_trim);
2611 
2612 /* Note : use pskb_trim_rcsum() instead of calling this directly
2613  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2614 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2615 {
2616 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2617 		int delta = skb->len - len;
2618 
2619 		skb->csum = csum_block_sub(skb->csum,
2620 					   skb_checksum(skb, len, delta, 0),
2621 					   len);
2622 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2623 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2624 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2625 
2626 		if (offset + sizeof(__sum16) > hdlen)
2627 			return -EINVAL;
2628 	}
2629 	return __pskb_trim(skb, len);
2630 }
2631 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2632 
2633 /**
2634  *	__pskb_pull_tail - advance tail of skb header
2635  *	@skb: buffer to reallocate
2636  *	@delta: number of bytes to advance tail
2637  *
2638  *	The function makes a sense only on a fragmented &sk_buff,
2639  *	it expands header moving its tail forward and copying necessary
2640  *	data from fragmented part.
2641  *
2642  *	&sk_buff MUST have reference count of 1.
2643  *
2644  *	Returns %NULL (and &sk_buff does not change) if pull failed
2645  *	or value of new tail of skb in the case of success.
2646  *
2647  *	All the pointers pointing into skb header may change and must be
2648  *	reloaded after call to this function.
2649  */
2650 
2651 /* Moves tail of skb head forward, copying data from fragmented part,
2652  * when it is necessary.
2653  * 1. It may fail due to malloc failure.
2654  * 2. It may change skb pointers.
2655  *
2656  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2657  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2658 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2659 {
2660 	/* If skb has not enough free space at tail, get new one
2661 	 * plus 128 bytes for future expansions. If we have enough
2662 	 * room at tail, reallocate without expansion only if skb is cloned.
2663 	 */
2664 	int i, k, eat = (skb->tail + delta) - skb->end;
2665 
2666 	if (eat > 0 || skb_cloned(skb)) {
2667 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2668 				     GFP_ATOMIC))
2669 			return NULL;
2670 	}
2671 
2672 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2673 			     skb_tail_pointer(skb), delta));
2674 
2675 	/* Optimization: no fragments, no reasons to preestimate
2676 	 * size of pulled pages. Superb.
2677 	 */
2678 	if (!skb_has_frag_list(skb))
2679 		goto pull_pages;
2680 
2681 	/* Estimate size of pulled pages. */
2682 	eat = delta;
2683 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2684 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2685 
2686 		if (size >= eat)
2687 			goto pull_pages;
2688 		eat -= size;
2689 	}
2690 
2691 	/* If we need update frag list, we are in troubles.
2692 	 * Certainly, it is possible to add an offset to skb data,
2693 	 * but taking into account that pulling is expected to
2694 	 * be very rare operation, it is worth to fight against
2695 	 * further bloating skb head and crucify ourselves here instead.
2696 	 * Pure masohism, indeed. 8)8)
2697 	 */
2698 	if (eat) {
2699 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2700 		struct sk_buff *clone = NULL;
2701 		struct sk_buff *insp = NULL;
2702 
2703 		do {
2704 			if (list->len <= eat) {
2705 				/* Eaten as whole. */
2706 				eat -= list->len;
2707 				list = list->next;
2708 				insp = list;
2709 			} else {
2710 				/* Eaten partially. */
2711 				if (skb_is_gso(skb) && !list->head_frag &&
2712 				    skb_headlen(list))
2713 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2714 
2715 				if (skb_shared(list)) {
2716 					/* Sucks! We need to fork list. :-( */
2717 					clone = skb_clone(list, GFP_ATOMIC);
2718 					if (!clone)
2719 						return NULL;
2720 					insp = list->next;
2721 					list = clone;
2722 				} else {
2723 					/* This may be pulled without
2724 					 * problems. */
2725 					insp = list;
2726 				}
2727 				if (!pskb_pull(list, eat)) {
2728 					kfree_skb(clone);
2729 					return NULL;
2730 				}
2731 				break;
2732 			}
2733 		} while (eat);
2734 
2735 		/* Free pulled out fragments. */
2736 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2737 			skb_shinfo(skb)->frag_list = list->next;
2738 			consume_skb(list);
2739 		}
2740 		/* And insert new clone at head. */
2741 		if (clone) {
2742 			clone->next = list;
2743 			skb_shinfo(skb)->frag_list = clone;
2744 		}
2745 	}
2746 	/* Success! Now we may commit changes to skb data. */
2747 
2748 pull_pages:
2749 	eat = delta;
2750 	k = 0;
2751 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2752 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2753 
2754 		if (size <= eat) {
2755 			skb_frag_unref(skb, i);
2756 			eat -= size;
2757 		} else {
2758 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2759 
2760 			*frag = skb_shinfo(skb)->frags[i];
2761 			if (eat) {
2762 				skb_frag_off_add(frag, eat);
2763 				skb_frag_size_sub(frag, eat);
2764 				if (!i)
2765 					goto end;
2766 				eat = 0;
2767 			}
2768 			k++;
2769 		}
2770 	}
2771 	skb_shinfo(skb)->nr_frags = k;
2772 
2773 end:
2774 	skb->tail     += delta;
2775 	skb->data_len -= delta;
2776 
2777 	if (!skb->data_len)
2778 		skb_zcopy_clear(skb, false);
2779 
2780 	return skb_tail_pointer(skb);
2781 }
2782 EXPORT_SYMBOL(__pskb_pull_tail);
2783 
2784 /**
2785  *	skb_copy_bits - copy bits from skb to kernel buffer
2786  *	@skb: source skb
2787  *	@offset: offset in source
2788  *	@to: destination buffer
2789  *	@len: number of bytes to copy
2790  *
2791  *	Copy the specified number of bytes from the source skb to the
2792  *	destination buffer.
2793  *
2794  *	CAUTION ! :
2795  *		If its prototype is ever changed,
2796  *		check arch/{*}/net/{*}.S files,
2797  *		since it is called from BPF assembly code.
2798  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2799 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2800 {
2801 	int start = skb_headlen(skb);
2802 	struct sk_buff *frag_iter;
2803 	int i, copy;
2804 
2805 	if (offset > (int)skb->len - len)
2806 		goto fault;
2807 
2808 	/* Copy header. */
2809 	if ((copy = start - offset) > 0) {
2810 		if (copy > len)
2811 			copy = len;
2812 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2813 		if ((len -= copy) == 0)
2814 			return 0;
2815 		offset += copy;
2816 		to     += copy;
2817 	}
2818 
2819 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2820 		int end;
2821 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2822 
2823 		WARN_ON(start > offset + len);
2824 
2825 		end = start + skb_frag_size(f);
2826 		if ((copy = end - offset) > 0) {
2827 			u32 p_off, p_len, copied;
2828 			struct page *p;
2829 			u8 *vaddr;
2830 
2831 			if (copy > len)
2832 				copy = len;
2833 
2834 			skb_frag_foreach_page(f,
2835 					      skb_frag_off(f) + offset - start,
2836 					      copy, p, p_off, p_len, copied) {
2837 				vaddr = kmap_atomic(p);
2838 				memcpy(to + copied, vaddr + p_off, p_len);
2839 				kunmap_atomic(vaddr);
2840 			}
2841 
2842 			if ((len -= copy) == 0)
2843 				return 0;
2844 			offset += copy;
2845 			to     += copy;
2846 		}
2847 		start = end;
2848 	}
2849 
2850 	skb_walk_frags(skb, frag_iter) {
2851 		int end;
2852 
2853 		WARN_ON(start > offset + len);
2854 
2855 		end = start + frag_iter->len;
2856 		if ((copy = end - offset) > 0) {
2857 			if (copy > len)
2858 				copy = len;
2859 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2860 				goto fault;
2861 			if ((len -= copy) == 0)
2862 				return 0;
2863 			offset += copy;
2864 			to     += copy;
2865 		}
2866 		start = end;
2867 	}
2868 
2869 	if (!len)
2870 		return 0;
2871 
2872 fault:
2873 	return -EFAULT;
2874 }
2875 EXPORT_SYMBOL(skb_copy_bits);
2876 
2877 /*
2878  * Callback from splice_to_pipe(), if we need to release some pages
2879  * at the end of the spd in case we error'ed out in filling the pipe.
2880  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2881 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2882 {
2883 	put_page(spd->pages[i]);
2884 }
2885 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2886 static struct page *linear_to_page(struct page *page, unsigned int *len,
2887 				   unsigned int *offset,
2888 				   struct sock *sk)
2889 {
2890 	struct page_frag *pfrag = sk_page_frag(sk);
2891 
2892 	if (!sk_page_frag_refill(sk, pfrag))
2893 		return NULL;
2894 
2895 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2896 
2897 	memcpy(page_address(pfrag->page) + pfrag->offset,
2898 	       page_address(page) + *offset, *len);
2899 	*offset = pfrag->offset;
2900 	pfrag->offset += *len;
2901 
2902 	return pfrag->page;
2903 }
2904 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2905 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2906 			     struct page *page,
2907 			     unsigned int offset)
2908 {
2909 	return	spd->nr_pages &&
2910 		spd->pages[spd->nr_pages - 1] == page &&
2911 		(spd->partial[spd->nr_pages - 1].offset +
2912 		 spd->partial[spd->nr_pages - 1].len == offset);
2913 }
2914 
2915 /*
2916  * Fill page/offset/length into spd, if it can hold more pages.
2917  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2918 static bool spd_fill_page(struct splice_pipe_desc *spd,
2919 			  struct pipe_inode_info *pipe, struct page *page,
2920 			  unsigned int *len, unsigned int offset,
2921 			  bool linear,
2922 			  struct sock *sk)
2923 {
2924 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2925 		return true;
2926 
2927 	if (linear) {
2928 		page = linear_to_page(page, len, &offset, sk);
2929 		if (!page)
2930 			return true;
2931 	}
2932 	if (spd_can_coalesce(spd, page, offset)) {
2933 		spd->partial[spd->nr_pages - 1].len += *len;
2934 		return false;
2935 	}
2936 	get_page(page);
2937 	spd->pages[spd->nr_pages] = page;
2938 	spd->partial[spd->nr_pages].len = *len;
2939 	spd->partial[spd->nr_pages].offset = offset;
2940 	spd->nr_pages++;
2941 
2942 	return false;
2943 }
2944 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2945 static bool __splice_segment(struct page *page, unsigned int poff,
2946 			     unsigned int plen, unsigned int *off,
2947 			     unsigned int *len,
2948 			     struct splice_pipe_desc *spd, bool linear,
2949 			     struct sock *sk,
2950 			     struct pipe_inode_info *pipe)
2951 {
2952 	if (!*len)
2953 		return true;
2954 
2955 	/* skip this segment if already processed */
2956 	if (*off >= plen) {
2957 		*off -= plen;
2958 		return false;
2959 	}
2960 
2961 	/* ignore any bits we already processed */
2962 	poff += *off;
2963 	plen -= *off;
2964 	*off = 0;
2965 
2966 	do {
2967 		unsigned int flen = min(*len, plen);
2968 
2969 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2970 				  linear, sk))
2971 			return true;
2972 		poff += flen;
2973 		plen -= flen;
2974 		*len -= flen;
2975 	} while (*len && plen);
2976 
2977 	return false;
2978 }
2979 
2980 /*
2981  * Map linear and fragment data from the skb to spd. It reports true if the
2982  * pipe is full or if we already spliced the requested length.
2983  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2984 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2985 			      unsigned int *offset, unsigned int *len,
2986 			      struct splice_pipe_desc *spd, struct sock *sk)
2987 {
2988 	int seg;
2989 	struct sk_buff *iter;
2990 
2991 	/* map the linear part :
2992 	 * If skb->head_frag is set, this 'linear' part is backed by a
2993 	 * fragment, and if the head is not shared with any clones then
2994 	 * we can avoid a copy since we own the head portion of this page.
2995 	 */
2996 	if (__splice_segment(virt_to_page(skb->data),
2997 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2998 			     skb_headlen(skb),
2999 			     offset, len, spd,
3000 			     skb_head_is_locked(skb),
3001 			     sk, pipe))
3002 		return true;
3003 
3004 	/*
3005 	 * then map the fragments
3006 	 */
3007 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3008 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3009 
3010 		if (__splice_segment(skb_frag_page(f),
3011 				     skb_frag_off(f), skb_frag_size(f),
3012 				     offset, len, spd, false, sk, pipe))
3013 			return true;
3014 	}
3015 
3016 	skb_walk_frags(skb, iter) {
3017 		if (*offset >= iter->len) {
3018 			*offset -= iter->len;
3019 			continue;
3020 		}
3021 		/* __skb_splice_bits() only fails if the output has no room
3022 		 * left, so no point in going over the frag_list for the error
3023 		 * case.
3024 		 */
3025 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3026 			return true;
3027 	}
3028 
3029 	return false;
3030 }
3031 
3032 /*
3033  * Map data from the skb to a pipe. Should handle both the linear part,
3034  * the fragments, and the frag list.
3035  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3036 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3037 		    struct pipe_inode_info *pipe, unsigned int tlen,
3038 		    unsigned int flags)
3039 {
3040 	struct partial_page partial[MAX_SKB_FRAGS];
3041 	struct page *pages[MAX_SKB_FRAGS];
3042 	struct splice_pipe_desc spd = {
3043 		.pages = pages,
3044 		.partial = partial,
3045 		.nr_pages_max = MAX_SKB_FRAGS,
3046 		.ops = &nosteal_pipe_buf_ops,
3047 		.spd_release = sock_spd_release,
3048 	};
3049 	int ret = 0;
3050 
3051 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3052 
3053 	if (spd.nr_pages)
3054 		ret = splice_to_pipe(pipe, &spd);
3055 
3056 	return ret;
3057 }
3058 EXPORT_SYMBOL_GPL(skb_splice_bits);
3059 
sendmsg_locked(struct sock * sk,struct msghdr * msg)3060 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3061 {
3062 	struct socket *sock = sk->sk_socket;
3063 	size_t size = msg_data_left(msg);
3064 
3065 	if (!sock)
3066 		return -EINVAL;
3067 
3068 	if (!sock->ops->sendmsg_locked)
3069 		return sock_no_sendmsg_locked(sk, msg, size);
3070 
3071 	return sock->ops->sendmsg_locked(sk, msg, size);
3072 }
3073 
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3074 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3075 {
3076 	struct socket *sock = sk->sk_socket;
3077 
3078 	if (!sock)
3079 		return -EINVAL;
3080 	return sock_sendmsg(sock, msg);
3081 }
3082 
3083 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg)3084 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3085 			   int len, sendmsg_func sendmsg)
3086 {
3087 	unsigned int orig_len = len;
3088 	struct sk_buff *head = skb;
3089 	unsigned short fragidx;
3090 	int slen, ret;
3091 
3092 do_frag_list:
3093 
3094 	/* Deal with head data */
3095 	while (offset < skb_headlen(skb) && len) {
3096 		struct kvec kv;
3097 		struct msghdr msg;
3098 
3099 		slen = min_t(int, len, skb_headlen(skb) - offset);
3100 		kv.iov_base = skb->data + offset;
3101 		kv.iov_len = slen;
3102 		memset(&msg, 0, sizeof(msg));
3103 		msg.msg_flags = MSG_DONTWAIT;
3104 
3105 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3106 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3107 				      sendmsg_unlocked, sk, &msg);
3108 		if (ret <= 0)
3109 			goto error;
3110 
3111 		offset += ret;
3112 		len -= ret;
3113 	}
3114 
3115 	/* All the data was skb head? */
3116 	if (!len)
3117 		goto out;
3118 
3119 	/* Make offset relative to start of frags */
3120 	offset -= skb_headlen(skb);
3121 
3122 	/* Find where we are in frag list */
3123 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3124 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3125 
3126 		if (offset < skb_frag_size(frag))
3127 			break;
3128 
3129 		offset -= skb_frag_size(frag);
3130 	}
3131 
3132 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3133 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3134 
3135 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3136 
3137 		while (slen) {
3138 			struct bio_vec bvec;
3139 			struct msghdr msg = {
3140 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3141 			};
3142 
3143 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3144 				      skb_frag_off(frag) + offset);
3145 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3146 				      slen);
3147 
3148 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3149 					      sendmsg_unlocked, sk, &msg);
3150 			if (ret <= 0)
3151 				goto error;
3152 
3153 			len -= ret;
3154 			offset += ret;
3155 			slen -= ret;
3156 		}
3157 
3158 		offset = 0;
3159 	}
3160 
3161 	if (len) {
3162 		/* Process any frag lists */
3163 
3164 		if (skb == head) {
3165 			if (skb_has_frag_list(skb)) {
3166 				skb = skb_shinfo(skb)->frag_list;
3167 				goto do_frag_list;
3168 			}
3169 		} else if (skb->next) {
3170 			skb = skb->next;
3171 			goto do_frag_list;
3172 		}
3173 	}
3174 
3175 out:
3176 	return orig_len - len;
3177 
3178 error:
3179 	return orig_len == len ? ret : orig_len - len;
3180 }
3181 
3182 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3183 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3184 			 int len)
3185 {
3186 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3187 }
3188 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3189 
3190 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3191 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3192 {
3193 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3194 }
3195 
3196 /**
3197  *	skb_store_bits - store bits from kernel buffer to skb
3198  *	@skb: destination buffer
3199  *	@offset: offset in destination
3200  *	@from: source buffer
3201  *	@len: number of bytes to copy
3202  *
3203  *	Copy the specified number of bytes from the source buffer to the
3204  *	destination skb.  This function handles all the messy bits of
3205  *	traversing fragment lists and such.
3206  */
3207 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3208 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3209 {
3210 	int start = skb_headlen(skb);
3211 	struct sk_buff *frag_iter;
3212 	int i, copy;
3213 
3214 	if (offset > (int)skb->len - len)
3215 		goto fault;
3216 
3217 	if ((copy = start - offset) > 0) {
3218 		if (copy > len)
3219 			copy = len;
3220 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3221 		if ((len -= copy) == 0)
3222 			return 0;
3223 		offset += copy;
3224 		from += copy;
3225 	}
3226 
3227 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3228 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3229 		int end;
3230 
3231 		WARN_ON(start > offset + len);
3232 
3233 		end = start + skb_frag_size(frag);
3234 		if ((copy = end - offset) > 0) {
3235 			u32 p_off, p_len, copied;
3236 			struct page *p;
3237 			u8 *vaddr;
3238 
3239 			if (copy > len)
3240 				copy = len;
3241 
3242 			skb_frag_foreach_page(frag,
3243 					      skb_frag_off(frag) + offset - start,
3244 					      copy, p, p_off, p_len, copied) {
3245 				vaddr = kmap_atomic(p);
3246 				memcpy(vaddr + p_off, from + copied, p_len);
3247 				kunmap_atomic(vaddr);
3248 			}
3249 
3250 			if ((len -= copy) == 0)
3251 				return 0;
3252 			offset += copy;
3253 			from += copy;
3254 		}
3255 		start = end;
3256 	}
3257 
3258 	skb_walk_frags(skb, frag_iter) {
3259 		int end;
3260 
3261 		WARN_ON(start > offset + len);
3262 
3263 		end = start + frag_iter->len;
3264 		if ((copy = end - offset) > 0) {
3265 			if (copy > len)
3266 				copy = len;
3267 			if (skb_store_bits(frag_iter, offset - start,
3268 					   from, copy))
3269 				goto fault;
3270 			if ((len -= copy) == 0)
3271 				return 0;
3272 			offset += copy;
3273 			from += copy;
3274 		}
3275 		start = end;
3276 	}
3277 	if (!len)
3278 		return 0;
3279 
3280 fault:
3281 	return -EFAULT;
3282 }
3283 EXPORT_SYMBOL(skb_store_bits);
3284 
3285 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)3286 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3287 		      __wsum csum, const struct skb_checksum_ops *ops)
3288 {
3289 	int start = skb_headlen(skb);
3290 	int i, copy = start - offset;
3291 	struct sk_buff *frag_iter;
3292 	int pos = 0;
3293 
3294 	/* Checksum header. */
3295 	if (copy > 0) {
3296 		if (copy > len)
3297 			copy = len;
3298 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3299 				       skb->data + offset, copy, csum);
3300 		if ((len -= copy) == 0)
3301 			return csum;
3302 		offset += copy;
3303 		pos	= copy;
3304 	}
3305 
3306 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3307 		int end;
3308 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3309 
3310 		WARN_ON(start > offset + len);
3311 
3312 		end = start + skb_frag_size(frag);
3313 		if ((copy = end - offset) > 0) {
3314 			u32 p_off, p_len, copied;
3315 			struct page *p;
3316 			__wsum csum2;
3317 			u8 *vaddr;
3318 
3319 			if (copy > len)
3320 				copy = len;
3321 
3322 			skb_frag_foreach_page(frag,
3323 					      skb_frag_off(frag) + offset - start,
3324 					      copy, p, p_off, p_len, copied) {
3325 				vaddr = kmap_atomic(p);
3326 				csum2 = INDIRECT_CALL_1(ops->update,
3327 							csum_partial_ext,
3328 							vaddr + p_off, p_len, 0);
3329 				kunmap_atomic(vaddr);
3330 				csum = INDIRECT_CALL_1(ops->combine,
3331 						       csum_block_add_ext, csum,
3332 						       csum2, pos, p_len);
3333 				pos += p_len;
3334 			}
3335 
3336 			if (!(len -= copy))
3337 				return csum;
3338 			offset += copy;
3339 		}
3340 		start = end;
3341 	}
3342 
3343 	skb_walk_frags(skb, frag_iter) {
3344 		int end;
3345 
3346 		WARN_ON(start > offset + len);
3347 
3348 		end = start + frag_iter->len;
3349 		if ((copy = end - offset) > 0) {
3350 			__wsum csum2;
3351 			if (copy > len)
3352 				copy = len;
3353 			csum2 = __skb_checksum(frag_iter, offset - start,
3354 					       copy, 0, ops);
3355 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3356 					       csum, csum2, pos, copy);
3357 			if ((len -= copy) == 0)
3358 				return csum;
3359 			offset += copy;
3360 			pos    += copy;
3361 		}
3362 		start = end;
3363 	}
3364 	BUG_ON(len);
3365 
3366 	return csum;
3367 }
3368 EXPORT_SYMBOL(__skb_checksum);
3369 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3370 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3371 		    int len, __wsum csum)
3372 {
3373 	const struct skb_checksum_ops ops = {
3374 		.update  = csum_partial_ext,
3375 		.combine = csum_block_add_ext,
3376 	};
3377 
3378 	return __skb_checksum(skb, offset, len, csum, &ops);
3379 }
3380 EXPORT_SYMBOL(skb_checksum);
3381 
3382 /* Both of above in one bottle. */
3383 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3384 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3385 				    u8 *to, int len)
3386 {
3387 	int start = skb_headlen(skb);
3388 	int i, copy = start - offset;
3389 	struct sk_buff *frag_iter;
3390 	int pos = 0;
3391 	__wsum csum = 0;
3392 
3393 	/* Copy header. */
3394 	if (copy > 0) {
3395 		if (copy > len)
3396 			copy = len;
3397 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3398 						 copy);
3399 		if ((len -= copy) == 0)
3400 			return csum;
3401 		offset += copy;
3402 		to     += copy;
3403 		pos	= copy;
3404 	}
3405 
3406 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3407 		int end;
3408 
3409 		WARN_ON(start > offset + len);
3410 
3411 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3412 		if ((copy = end - offset) > 0) {
3413 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3414 			u32 p_off, p_len, copied;
3415 			struct page *p;
3416 			__wsum csum2;
3417 			u8 *vaddr;
3418 
3419 			if (copy > len)
3420 				copy = len;
3421 
3422 			skb_frag_foreach_page(frag,
3423 					      skb_frag_off(frag) + offset - start,
3424 					      copy, p, p_off, p_len, copied) {
3425 				vaddr = kmap_atomic(p);
3426 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3427 								  to + copied,
3428 								  p_len);
3429 				kunmap_atomic(vaddr);
3430 				csum = csum_block_add(csum, csum2, pos);
3431 				pos += p_len;
3432 			}
3433 
3434 			if (!(len -= copy))
3435 				return csum;
3436 			offset += copy;
3437 			to     += copy;
3438 		}
3439 		start = end;
3440 	}
3441 
3442 	skb_walk_frags(skb, frag_iter) {
3443 		__wsum csum2;
3444 		int end;
3445 
3446 		WARN_ON(start > offset + len);
3447 
3448 		end = start + frag_iter->len;
3449 		if ((copy = end - offset) > 0) {
3450 			if (copy > len)
3451 				copy = len;
3452 			csum2 = skb_copy_and_csum_bits(frag_iter,
3453 						       offset - start,
3454 						       to, copy);
3455 			csum = csum_block_add(csum, csum2, pos);
3456 			if ((len -= copy) == 0)
3457 				return csum;
3458 			offset += copy;
3459 			to     += copy;
3460 			pos    += copy;
3461 		}
3462 		start = end;
3463 	}
3464 	BUG_ON(len);
3465 	return csum;
3466 }
3467 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3468 
__skb_checksum_complete_head(struct sk_buff * skb,int len)3469 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3470 {
3471 	__sum16 sum;
3472 
3473 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3474 	/* See comments in __skb_checksum_complete(). */
3475 	if (likely(!sum)) {
3476 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3477 		    !skb->csum_complete_sw)
3478 			netdev_rx_csum_fault(skb->dev, skb);
3479 	}
3480 	if (!skb_shared(skb))
3481 		skb->csum_valid = !sum;
3482 	return sum;
3483 }
3484 EXPORT_SYMBOL(__skb_checksum_complete_head);
3485 
3486 /* This function assumes skb->csum already holds pseudo header's checksum,
3487  * which has been changed from the hardware checksum, for example, by
3488  * __skb_checksum_validate_complete(). And, the original skb->csum must
3489  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3490  *
3491  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3492  * zero. The new checksum is stored back into skb->csum unless the skb is
3493  * shared.
3494  */
__skb_checksum_complete(struct sk_buff * skb)3495 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3496 {
3497 	__wsum csum;
3498 	__sum16 sum;
3499 
3500 	csum = skb_checksum(skb, 0, skb->len, 0);
3501 
3502 	sum = csum_fold(csum_add(skb->csum, csum));
3503 	/* This check is inverted, because we already knew the hardware
3504 	 * checksum is invalid before calling this function. So, if the
3505 	 * re-computed checksum is valid instead, then we have a mismatch
3506 	 * between the original skb->csum and skb_checksum(). This means either
3507 	 * the original hardware checksum is incorrect or we screw up skb->csum
3508 	 * when moving skb->data around.
3509 	 */
3510 	if (likely(!sum)) {
3511 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3512 		    !skb->csum_complete_sw)
3513 			netdev_rx_csum_fault(skb->dev, skb);
3514 	}
3515 
3516 	if (!skb_shared(skb)) {
3517 		/* Save full packet checksum */
3518 		skb->csum = csum;
3519 		skb->ip_summed = CHECKSUM_COMPLETE;
3520 		skb->csum_complete_sw = 1;
3521 		skb->csum_valid = !sum;
3522 	}
3523 
3524 	return sum;
3525 }
3526 EXPORT_SYMBOL(__skb_checksum_complete);
3527 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3528 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3529 {
3530 	net_warn_ratelimited(
3531 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3532 		__func__);
3533 	return 0;
3534 }
3535 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3536 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3537 				       int offset, int len)
3538 {
3539 	net_warn_ratelimited(
3540 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3541 		__func__);
3542 	return 0;
3543 }
3544 
3545 static const struct skb_checksum_ops default_crc32c_ops = {
3546 	.update  = warn_crc32c_csum_update,
3547 	.combine = warn_crc32c_csum_combine,
3548 };
3549 
3550 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3551 	&default_crc32c_ops;
3552 EXPORT_SYMBOL(crc32c_csum_stub);
3553 
3554  /**
3555  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3556  *	@from: source buffer
3557  *
3558  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3559  *	into skb_zerocopy().
3560  */
3561 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3562 skb_zerocopy_headlen(const struct sk_buff *from)
3563 {
3564 	unsigned int hlen = 0;
3565 
3566 	if (!from->head_frag ||
3567 	    skb_headlen(from) < L1_CACHE_BYTES ||
3568 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3569 		hlen = skb_headlen(from);
3570 		if (!hlen)
3571 			hlen = from->len;
3572 	}
3573 
3574 	if (skb_has_frag_list(from))
3575 		hlen = from->len;
3576 
3577 	return hlen;
3578 }
3579 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3580 
3581 /**
3582  *	skb_zerocopy - Zero copy skb to skb
3583  *	@to: destination buffer
3584  *	@from: source buffer
3585  *	@len: number of bytes to copy from source buffer
3586  *	@hlen: size of linear headroom in destination buffer
3587  *
3588  *	Copies up to `len` bytes from `from` to `to` by creating references
3589  *	to the frags in the source buffer.
3590  *
3591  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3592  *	headroom in the `to` buffer.
3593  *
3594  *	Return value:
3595  *	0: everything is OK
3596  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3597  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3598  */
3599 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3600 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3601 {
3602 	int i, j = 0;
3603 	int plen = 0; /* length of skb->head fragment */
3604 	int ret;
3605 	struct page *page;
3606 	unsigned int offset;
3607 
3608 	BUG_ON(!from->head_frag && !hlen);
3609 
3610 	/* dont bother with small payloads */
3611 	if (len <= skb_tailroom(to))
3612 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3613 
3614 	if (hlen) {
3615 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3616 		if (unlikely(ret))
3617 			return ret;
3618 		len -= hlen;
3619 	} else {
3620 		plen = min_t(int, skb_headlen(from), len);
3621 		if (plen) {
3622 			page = virt_to_head_page(from->head);
3623 			offset = from->data - (unsigned char *)page_address(page);
3624 			__skb_fill_page_desc(to, 0, page, offset, plen);
3625 			get_page(page);
3626 			j = 1;
3627 			len -= plen;
3628 		}
3629 	}
3630 
3631 	skb_len_add(to, len + plen);
3632 
3633 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3634 		skb_tx_error(from);
3635 		return -ENOMEM;
3636 	}
3637 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3638 
3639 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3640 		int size;
3641 
3642 		if (!len)
3643 			break;
3644 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3645 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3646 					len);
3647 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3648 		len -= size;
3649 		skb_frag_ref(to, j);
3650 		j++;
3651 	}
3652 	skb_shinfo(to)->nr_frags = j;
3653 
3654 	return 0;
3655 }
3656 EXPORT_SYMBOL_GPL(skb_zerocopy);
3657 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3658 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3659 {
3660 	__wsum csum;
3661 	long csstart;
3662 
3663 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3664 		csstart = skb_checksum_start_offset(skb);
3665 	else
3666 		csstart = skb_headlen(skb);
3667 
3668 	BUG_ON(csstart > skb_headlen(skb));
3669 
3670 	skb_copy_from_linear_data(skb, to, csstart);
3671 
3672 	csum = 0;
3673 	if (csstart != skb->len)
3674 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3675 					      skb->len - csstart);
3676 
3677 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3678 		long csstuff = csstart + skb->csum_offset;
3679 
3680 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3681 	}
3682 }
3683 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3684 
3685 /**
3686  *	skb_dequeue - remove from the head of the queue
3687  *	@list: list to dequeue from
3688  *
3689  *	Remove the head of the list. The list lock is taken so the function
3690  *	may be used safely with other locking list functions. The head item is
3691  *	returned or %NULL if the list is empty.
3692  */
3693 
skb_dequeue(struct sk_buff_head * list)3694 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3695 {
3696 	unsigned long flags;
3697 	struct sk_buff *result;
3698 
3699 	spin_lock_irqsave(&list->lock, flags);
3700 	result = __skb_dequeue(list);
3701 	spin_unlock_irqrestore(&list->lock, flags);
3702 	return result;
3703 }
3704 EXPORT_SYMBOL(skb_dequeue);
3705 
3706 /**
3707  *	skb_dequeue_tail - remove from the tail of the queue
3708  *	@list: list to dequeue from
3709  *
3710  *	Remove the tail of the list. The list lock is taken so the function
3711  *	may be used safely with other locking list functions. The tail item is
3712  *	returned or %NULL if the list is empty.
3713  */
skb_dequeue_tail(struct sk_buff_head * list)3714 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3715 {
3716 	unsigned long flags;
3717 	struct sk_buff *result;
3718 
3719 	spin_lock_irqsave(&list->lock, flags);
3720 	result = __skb_dequeue_tail(list);
3721 	spin_unlock_irqrestore(&list->lock, flags);
3722 	return result;
3723 }
3724 EXPORT_SYMBOL(skb_dequeue_tail);
3725 
3726 /**
3727  *	skb_queue_purge_reason - empty a list
3728  *	@list: list to empty
3729  *	@reason: drop reason
3730  *
3731  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3732  *	the list and one reference dropped. This function takes the list
3733  *	lock and is atomic with respect to other list locking functions.
3734  */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3735 void skb_queue_purge_reason(struct sk_buff_head *list,
3736 			    enum skb_drop_reason reason)
3737 {
3738 	struct sk_buff *skb;
3739 
3740 	while ((skb = skb_dequeue(list)) != NULL)
3741 		kfree_skb_reason(skb, reason);
3742 }
3743 EXPORT_SYMBOL(skb_queue_purge_reason);
3744 
3745 /**
3746  *	skb_rbtree_purge - empty a skb rbtree
3747  *	@root: root of the rbtree to empty
3748  *	Return value: the sum of truesizes of all purged skbs.
3749  *
3750  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3751  *	the list and one reference dropped. This function does not take
3752  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3753  *	out-of-order queue is protected by the socket lock).
3754  */
skb_rbtree_purge(struct rb_root * root)3755 unsigned int skb_rbtree_purge(struct rb_root *root)
3756 {
3757 	struct rb_node *p = rb_first(root);
3758 	unsigned int sum = 0;
3759 
3760 	while (p) {
3761 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3762 
3763 		p = rb_next(p);
3764 		rb_erase(&skb->rbnode, root);
3765 		sum += skb->truesize;
3766 		kfree_skb(skb);
3767 	}
3768 	return sum;
3769 }
3770 
skb_errqueue_purge(struct sk_buff_head * list)3771 void skb_errqueue_purge(struct sk_buff_head *list)
3772 {
3773 	struct sk_buff *skb, *next;
3774 	struct sk_buff_head kill;
3775 	unsigned long flags;
3776 
3777 	__skb_queue_head_init(&kill);
3778 
3779 	spin_lock_irqsave(&list->lock, flags);
3780 	skb_queue_walk_safe(list, skb, next) {
3781 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3782 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3783 			continue;
3784 		__skb_unlink(skb, list);
3785 		__skb_queue_tail(&kill, skb);
3786 	}
3787 	spin_unlock_irqrestore(&list->lock, flags);
3788 	__skb_queue_purge(&kill);
3789 }
3790 EXPORT_SYMBOL(skb_errqueue_purge);
3791 
3792 /**
3793  *	skb_queue_head - queue a buffer at the list head
3794  *	@list: list to use
3795  *	@newsk: buffer to queue
3796  *
3797  *	Queue a buffer at the start of the list. This function takes the
3798  *	list lock and can be used safely with other locking &sk_buff functions
3799  *	safely.
3800  *
3801  *	A buffer cannot be placed on two lists at the same time.
3802  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3803 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3804 {
3805 	unsigned long flags;
3806 
3807 	spin_lock_irqsave(&list->lock, flags);
3808 	__skb_queue_head(list, newsk);
3809 	spin_unlock_irqrestore(&list->lock, flags);
3810 }
3811 EXPORT_SYMBOL(skb_queue_head);
3812 
3813 /**
3814  *	skb_queue_tail - queue a buffer at the list tail
3815  *	@list: list to use
3816  *	@newsk: buffer to queue
3817  *
3818  *	Queue a buffer at the tail of the list. This function takes the
3819  *	list lock and can be used safely with other locking &sk_buff functions
3820  *	safely.
3821  *
3822  *	A buffer cannot be placed on two lists at the same time.
3823  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3824 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3825 {
3826 	unsigned long flags;
3827 
3828 	spin_lock_irqsave(&list->lock, flags);
3829 	__skb_queue_tail(list, newsk);
3830 	spin_unlock_irqrestore(&list->lock, flags);
3831 }
3832 EXPORT_SYMBOL(skb_queue_tail);
3833 
3834 /**
3835  *	skb_unlink	-	remove a buffer from a list
3836  *	@skb: buffer to remove
3837  *	@list: list to use
3838  *
3839  *	Remove a packet from a list. The list locks are taken and this
3840  *	function is atomic with respect to other list locked calls
3841  *
3842  *	You must know what list the SKB is on.
3843  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3844 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3845 {
3846 	unsigned long flags;
3847 
3848 	spin_lock_irqsave(&list->lock, flags);
3849 	__skb_unlink(skb, list);
3850 	spin_unlock_irqrestore(&list->lock, flags);
3851 }
3852 EXPORT_SYMBOL(skb_unlink);
3853 
3854 /**
3855  *	skb_append	-	append a buffer
3856  *	@old: buffer to insert after
3857  *	@newsk: buffer to insert
3858  *	@list: list to use
3859  *
3860  *	Place a packet after a given packet in a list. The list locks are taken
3861  *	and this function is atomic with respect to other list locked calls.
3862  *	A buffer cannot be placed on two lists at the same time.
3863  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3864 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3865 {
3866 	unsigned long flags;
3867 
3868 	spin_lock_irqsave(&list->lock, flags);
3869 	__skb_queue_after(list, old, newsk);
3870 	spin_unlock_irqrestore(&list->lock, flags);
3871 }
3872 EXPORT_SYMBOL(skb_append);
3873 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3874 static inline void skb_split_inside_header(struct sk_buff *skb,
3875 					   struct sk_buff* skb1,
3876 					   const u32 len, const int pos)
3877 {
3878 	int i;
3879 
3880 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3881 					 pos - len);
3882 	/* And move data appendix as is. */
3883 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3884 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3885 
3886 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3887 	skb_shinfo(skb)->nr_frags  = 0;
3888 	skb1->data_len		   = skb->data_len;
3889 	skb1->len		   += skb1->data_len;
3890 	skb->data_len		   = 0;
3891 	skb->len		   = len;
3892 	skb_set_tail_pointer(skb, len);
3893 }
3894 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3895 static inline void skb_split_no_header(struct sk_buff *skb,
3896 				       struct sk_buff* skb1,
3897 				       const u32 len, int pos)
3898 {
3899 	int i, k = 0;
3900 	const int nfrags = skb_shinfo(skb)->nr_frags;
3901 
3902 	skb_shinfo(skb)->nr_frags = 0;
3903 	skb1->len		  = skb1->data_len = skb->len - len;
3904 	skb->len		  = len;
3905 	skb->data_len		  = len - pos;
3906 
3907 	for (i = 0; i < nfrags; i++) {
3908 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3909 
3910 		if (pos + size > len) {
3911 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3912 
3913 			if (pos < len) {
3914 				/* Split frag.
3915 				 * We have two variants in this case:
3916 				 * 1. Move all the frag to the second
3917 				 *    part, if it is possible. F.e.
3918 				 *    this approach is mandatory for TUX,
3919 				 *    where splitting is expensive.
3920 				 * 2. Split is accurately. We make this.
3921 				 */
3922 				skb_frag_ref(skb, i);
3923 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3924 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3925 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3926 				skb_shinfo(skb)->nr_frags++;
3927 			}
3928 			k++;
3929 		} else
3930 			skb_shinfo(skb)->nr_frags++;
3931 		pos += size;
3932 	}
3933 	skb_shinfo(skb1)->nr_frags = k;
3934 }
3935 
3936 /**
3937  * skb_split - Split fragmented skb to two parts at length len.
3938  * @skb: the buffer to split
3939  * @skb1: the buffer to receive the second part
3940  * @len: new length for skb
3941  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3942 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3943 {
3944 	int pos = skb_headlen(skb);
3945 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3946 
3947 	skb_zcopy_downgrade_managed(skb);
3948 
3949 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3950 	skb_zerocopy_clone(skb1, skb, 0);
3951 	if (len < pos)	/* Split line is inside header. */
3952 		skb_split_inside_header(skb, skb1, len, pos);
3953 	else		/* Second chunk has no header, nothing to copy. */
3954 		skb_split_no_header(skb, skb1, len, pos);
3955 }
3956 EXPORT_SYMBOL(skb_split);
3957 
3958 /* Shifting from/to a cloned skb is a no-go.
3959  *
3960  * Caller cannot keep skb_shinfo related pointers past calling here!
3961  */
skb_prepare_for_shift(struct sk_buff * skb)3962 static int skb_prepare_for_shift(struct sk_buff *skb)
3963 {
3964 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3965 }
3966 
3967 /**
3968  * skb_shift - Shifts paged data partially from skb to another
3969  * @tgt: buffer into which tail data gets added
3970  * @skb: buffer from which the paged data comes from
3971  * @shiftlen: shift up to this many bytes
3972  *
3973  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3974  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3975  * It's up to caller to free skb if everything was shifted.
3976  *
3977  * If @tgt runs out of frags, the whole operation is aborted.
3978  *
3979  * Skb cannot include anything else but paged data while tgt is allowed
3980  * to have non-paged data as well.
3981  *
3982  * TODO: full sized shift could be optimized but that would need
3983  * specialized skb free'er to handle frags without up-to-date nr_frags.
3984  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3985 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3986 {
3987 	int from, to, merge, todo;
3988 	skb_frag_t *fragfrom, *fragto;
3989 
3990 	BUG_ON(shiftlen > skb->len);
3991 
3992 	if (skb_headlen(skb))
3993 		return 0;
3994 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3995 		return 0;
3996 
3997 	todo = shiftlen;
3998 	from = 0;
3999 	to = skb_shinfo(tgt)->nr_frags;
4000 	fragfrom = &skb_shinfo(skb)->frags[from];
4001 
4002 	/* Actual merge is delayed until the point when we know we can
4003 	 * commit all, so that we don't have to undo partial changes
4004 	 */
4005 	if (!to ||
4006 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4007 			      skb_frag_off(fragfrom))) {
4008 		merge = -1;
4009 	} else {
4010 		merge = to - 1;
4011 
4012 		todo -= skb_frag_size(fragfrom);
4013 		if (todo < 0) {
4014 			if (skb_prepare_for_shift(skb) ||
4015 			    skb_prepare_for_shift(tgt))
4016 				return 0;
4017 
4018 			/* All previous frag pointers might be stale! */
4019 			fragfrom = &skb_shinfo(skb)->frags[from];
4020 			fragto = &skb_shinfo(tgt)->frags[merge];
4021 
4022 			skb_frag_size_add(fragto, shiftlen);
4023 			skb_frag_size_sub(fragfrom, shiftlen);
4024 			skb_frag_off_add(fragfrom, shiftlen);
4025 
4026 			goto onlymerged;
4027 		}
4028 
4029 		from++;
4030 	}
4031 
4032 	/* Skip full, not-fitting skb to avoid expensive operations */
4033 	if ((shiftlen == skb->len) &&
4034 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4035 		return 0;
4036 
4037 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4038 		return 0;
4039 
4040 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4041 		if (to == MAX_SKB_FRAGS)
4042 			return 0;
4043 
4044 		fragfrom = &skb_shinfo(skb)->frags[from];
4045 		fragto = &skb_shinfo(tgt)->frags[to];
4046 
4047 		if (todo >= skb_frag_size(fragfrom)) {
4048 			*fragto = *fragfrom;
4049 			todo -= skb_frag_size(fragfrom);
4050 			from++;
4051 			to++;
4052 
4053 		} else {
4054 			__skb_frag_ref(fragfrom);
4055 			skb_frag_page_copy(fragto, fragfrom);
4056 			skb_frag_off_copy(fragto, fragfrom);
4057 			skb_frag_size_set(fragto, todo);
4058 
4059 			skb_frag_off_add(fragfrom, todo);
4060 			skb_frag_size_sub(fragfrom, todo);
4061 			todo = 0;
4062 
4063 			to++;
4064 			break;
4065 		}
4066 	}
4067 
4068 	/* Ready to "commit" this state change to tgt */
4069 	skb_shinfo(tgt)->nr_frags = to;
4070 
4071 	if (merge >= 0) {
4072 		fragfrom = &skb_shinfo(skb)->frags[0];
4073 		fragto = &skb_shinfo(tgt)->frags[merge];
4074 
4075 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4076 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4077 	}
4078 
4079 	/* Reposition in the original skb */
4080 	to = 0;
4081 	while (from < skb_shinfo(skb)->nr_frags)
4082 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4083 	skb_shinfo(skb)->nr_frags = to;
4084 
4085 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4086 
4087 onlymerged:
4088 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4089 	 * the other hand might need it if it needs to be resent
4090 	 */
4091 	tgt->ip_summed = CHECKSUM_PARTIAL;
4092 	skb->ip_summed = CHECKSUM_PARTIAL;
4093 
4094 	skb_len_add(skb, -shiftlen);
4095 	skb_len_add(tgt, shiftlen);
4096 
4097 	return shiftlen;
4098 }
4099 
4100 /**
4101  * skb_prepare_seq_read - Prepare a sequential read of skb data
4102  * @skb: the buffer to read
4103  * @from: lower offset of data to be read
4104  * @to: upper offset of data to be read
4105  * @st: state variable
4106  *
4107  * Initializes the specified state variable. Must be called before
4108  * invoking skb_seq_read() for the first time.
4109  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4110 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4111 			  unsigned int to, struct skb_seq_state *st)
4112 {
4113 	st->lower_offset = from;
4114 	st->upper_offset = to;
4115 	st->root_skb = st->cur_skb = skb;
4116 	st->frag_idx = st->stepped_offset = 0;
4117 	st->frag_data = NULL;
4118 	st->frag_off = 0;
4119 }
4120 EXPORT_SYMBOL(skb_prepare_seq_read);
4121 
4122 /**
4123  * skb_seq_read - Sequentially read skb data
4124  * @consumed: number of bytes consumed by the caller so far
4125  * @data: destination pointer for data to be returned
4126  * @st: state variable
4127  *
4128  * Reads a block of skb data at @consumed relative to the
4129  * lower offset specified to skb_prepare_seq_read(). Assigns
4130  * the head of the data block to @data and returns the length
4131  * of the block or 0 if the end of the skb data or the upper
4132  * offset has been reached.
4133  *
4134  * The caller is not required to consume all of the data
4135  * returned, i.e. @consumed is typically set to the number
4136  * of bytes already consumed and the next call to
4137  * skb_seq_read() will return the remaining part of the block.
4138  *
4139  * Note 1: The size of each block of data returned can be arbitrary,
4140  *       this limitation is the cost for zerocopy sequential
4141  *       reads of potentially non linear data.
4142  *
4143  * Note 2: Fragment lists within fragments are not implemented
4144  *       at the moment, state->root_skb could be replaced with
4145  *       a stack for this purpose.
4146  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4147 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4148 			  struct skb_seq_state *st)
4149 {
4150 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4151 	skb_frag_t *frag;
4152 
4153 	if (unlikely(abs_offset >= st->upper_offset)) {
4154 		if (st->frag_data) {
4155 			kunmap_atomic(st->frag_data);
4156 			st->frag_data = NULL;
4157 		}
4158 		return 0;
4159 	}
4160 
4161 next_skb:
4162 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4163 
4164 	if (abs_offset < block_limit && !st->frag_data) {
4165 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4166 		return block_limit - abs_offset;
4167 	}
4168 
4169 	if (st->frag_idx == 0 && !st->frag_data)
4170 		st->stepped_offset += skb_headlen(st->cur_skb);
4171 
4172 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4173 		unsigned int pg_idx, pg_off, pg_sz;
4174 
4175 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4176 
4177 		pg_idx = 0;
4178 		pg_off = skb_frag_off(frag);
4179 		pg_sz = skb_frag_size(frag);
4180 
4181 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4182 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4183 			pg_off = offset_in_page(pg_off + st->frag_off);
4184 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4185 						    PAGE_SIZE - pg_off);
4186 		}
4187 
4188 		block_limit = pg_sz + st->stepped_offset;
4189 		if (abs_offset < block_limit) {
4190 			if (!st->frag_data)
4191 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4192 
4193 			*data = (u8 *)st->frag_data + pg_off +
4194 				(abs_offset - st->stepped_offset);
4195 
4196 			return block_limit - abs_offset;
4197 		}
4198 
4199 		if (st->frag_data) {
4200 			kunmap_atomic(st->frag_data);
4201 			st->frag_data = NULL;
4202 		}
4203 
4204 		st->stepped_offset += pg_sz;
4205 		st->frag_off += pg_sz;
4206 		if (st->frag_off == skb_frag_size(frag)) {
4207 			st->frag_off = 0;
4208 			st->frag_idx++;
4209 		}
4210 	}
4211 
4212 	if (st->frag_data) {
4213 		kunmap_atomic(st->frag_data);
4214 		st->frag_data = NULL;
4215 	}
4216 
4217 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4218 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4219 		st->frag_idx = 0;
4220 		goto next_skb;
4221 	} else if (st->cur_skb->next) {
4222 		st->cur_skb = st->cur_skb->next;
4223 		st->frag_idx = 0;
4224 		goto next_skb;
4225 	}
4226 
4227 	return 0;
4228 }
4229 EXPORT_SYMBOL(skb_seq_read);
4230 
4231 /**
4232  * skb_abort_seq_read - Abort a sequential read of skb data
4233  * @st: state variable
4234  *
4235  * Must be called if skb_seq_read() was not called until it
4236  * returned 0.
4237  */
skb_abort_seq_read(struct skb_seq_state * st)4238 void skb_abort_seq_read(struct skb_seq_state *st)
4239 {
4240 	if (st->frag_data)
4241 		kunmap_atomic(st->frag_data);
4242 }
4243 EXPORT_SYMBOL(skb_abort_seq_read);
4244 
4245 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4246 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4247 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4248 					  struct ts_config *conf,
4249 					  struct ts_state *state)
4250 {
4251 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4252 }
4253 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4254 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4255 {
4256 	skb_abort_seq_read(TS_SKB_CB(state));
4257 }
4258 
4259 /**
4260  * skb_find_text - Find a text pattern in skb data
4261  * @skb: the buffer to look in
4262  * @from: search offset
4263  * @to: search limit
4264  * @config: textsearch configuration
4265  *
4266  * Finds a pattern in the skb data according to the specified
4267  * textsearch configuration. Use textsearch_next() to retrieve
4268  * subsequent occurrences of the pattern. Returns the offset
4269  * to the first occurrence or UINT_MAX if no match was found.
4270  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4271 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4272 			   unsigned int to, struct ts_config *config)
4273 {
4274 	unsigned int patlen = config->ops->get_pattern_len(config);
4275 	struct ts_state state;
4276 	unsigned int ret;
4277 
4278 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4279 
4280 	config->get_next_block = skb_ts_get_next_block;
4281 	config->finish = skb_ts_finish;
4282 
4283 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4284 
4285 	ret = textsearch_find(config, &state);
4286 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4287 }
4288 EXPORT_SYMBOL(skb_find_text);
4289 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4290 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4291 			 int offset, size_t size, size_t max_frags)
4292 {
4293 	int i = skb_shinfo(skb)->nr_frags;
4294 
4295 	if (skb_can_coalesce(skb, i, page, offset)) {
4296 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4297 	} else if (i < max_frags) {
4298 		skb_zcopy_downgrade_managed(skb);
4299 		get_page(page);
4300 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4301 	} else {
4302 		return -EMSGSIZE;
4303 	}
4304 
4305 	return 0;
4306 }
4307 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4308 
4309 /**
4310  *	skb_pull_rcsum - pull skb and update receive checksum
4311  *	@skb: buffer to update
4312  *	@len: length of data pulled
4313  *
4314  *	This function performs an skb_pull on the packet and updates
4315  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4316  *	receive path processing instead of skb_pull unless you know
4317  *	that the checksum difference is zero (e.g., a valid IP header)
4318  *	or you are setting ip_summed to CHECKSUM_NONE.
4319  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4320 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4321 {
4322 	unsigned char *data = skb->data;
4323 
4324 	BUG_ON(len > skb->len);
4325 	__skb_pull(skb, len);
4326 	skb_postpull_rcsum(skb, data, len);
4327 	return skb->data;
4328 }
4329 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4330 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4331 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4332 {
4333 	skb_frag_t head_frag;
4334 	struct page *page;
4335 
4336 	page = virt_to_head_page(frag_skb->head);
4337 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4338 				(unsigned char *)page_address(page),
4339 				skb_headlen(frag_skb));
4340 	return head_frag;
4341 }
4342 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4343 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4344 				 netdev_features_t features,
4345 				 unsigned int offset)
4346 {
4347 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4348 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4349 	unsigned int delta_truesize = 0;
4350 	unsigned int delta_len = 0;
4351 	struct sk_buff *tail = NULL;
4352 	struct sk_buff *nskb, *tmp;
4353 	int len_diff, err;
4354 
4355 	skb_push(skb, -skb_network_offset(skb) + offset);
4356 
4357 	/* Ensure the head is writeable before touching the shared info */
4358 	err = skb_unclone(skb, GFP_ATOMIC);
4359 	if (err)
4360 		goto err_linearize;
4361 
4362 	skb_shinfo(skb)->frag_list = NULL;
4363 
4364 	while (list_skb) {
4365 		nskb = list_skb;
4366 		list_skb = list_skb->next;
4367 
4368 		err = 0;
4369 		delta_truesize += nskb->truesize;
4370 		if (skb_shared(nskb)) {
4371 			tmp = skb_clone(nskb, GFP_ATOMIC);
4372 			if (tmp) {
4373 				consume_skb(nskb);
4374 				nskb = tmp;
4375 				err = skb_unclone(nskb, GFP_ATOMIC);
4376 			} else {
4377 				err = -ENOMEM;
4378 			}
4379 		}
4380 
4381 		if (!tail)
4382 			skb->next = nskb;
4383 		else
4384 			tail->next = nskb;
4385 
4386 		if (unlikely(err)) {
4387 			nskb->next = list_skb;
4388 			goto err_linearize;
4389 		}
4390 
4391 		tail = nskb;
4392 
4393 		delta_len += nskb->len;
4394 
4395 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4396 
4397 		skb_release_head_state(nskb);
4398 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4399 		__copy_skb_header(nskb, skb);
4400 
4401 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4402 		nskb->transport_header += len_diff;
4403 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4404 						 nskb->data - tnl_hlen,
4405 						 offset + tnl_hlen);
4406 
4407 		if (skb_needs_linearize(nskb, features) &&
4408 		    __skb_linearize(nskb))
4409 			goto err_linearize;
4410 	}
4411 
4412 	skb->truesize = skb->truesize - delta_truesize;
4413 	skb->data_len = skb->data_len - delta_len;
4414 	skb->len = skb->len - delta_len;
4415 
4416 	skb_gso_reset(skb);
4417 
4418 	skb->prev = tail;
4419 
4420 	if (skb_needs_linearize(skb, features) &&
4421 	    __skb_linearize(skb))
4422 		goto err_linearize;
4423 
4424 	skb_get(skb);
4425 
4426 	return skb;
4427 
4428 err_linearize:
4429 	kfree_skb_list(skb->next);
4430 	skb->next = NULL;
4431 	return ERR_PTR(-ENOMEM);
4432 }
4433 EXPORT_SYMBOL_GPL(skb_segment_list);
4434 
4435 /**
4436  *	skb_segment - Perform protocol segmentation on skb.
4437  *	@head_skb: buffer to segment
4438  *	@features: features for the output path (see dev->features)
4439  *
4440  *	This function performs segmentation on the given skb.  It returns
4441  *	a pointer to the first in a list of new skbs for the segments.
4442  *	In case of error it returns ERR_PTR(err).
4443  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4444 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4445 			    netdev_features_t features)
4446 {
4447 	struct sk_buff *segs = NULL;
4448 	struct sk_buff *tail = NULL;
4449 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4450 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4451 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4452 	unsigned int offset = doffset;
4453 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4454 	unsigned int partial_segs = 0;
4455 	unsigned int headroom;
4456 	unsigned int len = head_skb->len;
4457 	struct sk_buff *frag_skb;
4458 	skb_frag_t *frag;
4459 	__be16 proto;
4460 	bool csum, sg;
4461 	int err = -ENOMEM;
4462 	int i = 0;
4463 	int nfrags, pos;
4464 
4465 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4466 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4467 		struct sk_buff *check_skb;
4468 
4469 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4470 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4471 				/* gso_size is untrusted, and we have a frag_list with
4472 				 * a linear non head_frag item.
4473 				 *
4474 				 * If head_skb's headlen does not fit requested gso_size,
4475 				 * it means that the frag_list members do NOT terminate
4476 				 * on exact gso_size boundaries. Hence we cannot perform
4477 				 * skb_frag_t page sharing. Therefore we must fallback to
4478 				 * copying the frag_list skbs; we do so by disabling SG.
4479 				 */
4480 				features &= ~NETIF_F_SG;
4481 				break;
4482 			}
4483 		}
4484 	}
4485 
4486 	__skb_push(head_skb, doffset);
4487 	proto = skb_network_protocol(head_skb, NULL);
4488 	if (unlikely(!proto))
4489 		return ERR_PTR(-EINVAL);
4490 
4491 	sg = !!(features & NETIF_F_SG);
4492 	csum = !!can_checksum_protocol(features, proto);
4493 
4494 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4495 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4496 			struct sk_buff *iter;
4497 			unsigned int frag_len;
4498 
4499 			if (!list_skb ||
4500 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4501 				goto normal;
4502 
4503 			/* If we get here then all the required
4504 			 * GSO features except frag_list are supported.
4505 			 * Try to split the SKB to multiple GSO SKBs
4506 			 * with no frag_list.
4507 			 * Currently we can do that only when the buffers don't
4508 			 * have a linear part and all the buffers except
4509 			 * the last are of the same length.
4510 			 */
4511 			frag_len = list_skb->len;
4512 			skb_walk_frags(head_skb, iter) {
4513 				if (frag_len != iter->len && iter->next)
4514 					goto normal;
4515 				if (skb_headlen(iter) && !iter->head_frag)
4516 					goto normal;
4517 
4518 				len -= iter->len;
4519 			}
4520 
4521 			if (len != frag_len)
4522 				goto normal;
4523 		}
4524 
4525 		/* GSO partial only requires that we trim off any excess that
4526 		 * doesn't fit into an MSS sized block, so take care of that
4527 		 * now.
4528 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4529 		 */
4530 		partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
4531 		if (partial_segs > 1)
4532 			mss *= partial_segs;
4533 		else
4534 			partial_segs = 0;
4535 	}
4536 
4537 normal:
4538 	headroom = skb_headroom(head_skb);
4539 	pos = skb_headlen(head_skb);
4540 
4541 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4542 		return ERR_PTR(-ENOMEM);
4543 
4544 	nfrags = skb_shinfo(head_skb)->nr_frags;
4545 	frag = skb_shinfo(head_skb)->frags;
4546 	frag_skb = head_skb;
4547 
4548 	do {
4549 		struct sk_buff *nskb;
4550 		skb_frag_t *nskb_frag;
4551 		int hsize;
4552 		int size;
4553 
4554 		if (unlikely(mss == GSO_BY_FRAGS)) {
4555 			len = list_skb->len;
4556 		} else {
4557 			len = head_skb->len - offset;
4558 			if (len > mss)
4559 				len = mss;
4560 		}
4561 
4562 		hsize = skb_headlen(head_skb) - offset;
4563 
4564 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4565 		    (skb_headlen(list_skb) == len || sg)) {
4566 			BUG_ON(skb_headlen(list_skb) > len);
4567 
4568 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4569 			if (unlikely(!nskb))
4570 				goto err;
4571 
4572 			i = 0;
4573 			nfrags = skb_shinfo(list_skb)->nr_frags;
4574 			frag = skb_shinfo(list_skb)->frags;
4575 			frag_skb = list_skb;
4576 			pos += skb_headlen(list_skb);
4577 
4578 			while (pos < offset + len) {
4579 				BUG_ON(i >= nfrags);
4580 
4581 				size = skb_frag_size(frag);
4582 				if (pos + size > offset + len)
4583 					break;
4584 
4585 				i++;
4586 				pos += size;
4587 				frag++;
4588 			}
4589 
4590 			list_skb = list_skb->next;
4591 
4592 			if (unlikely(pskb_trim(nskb, len))) {
4593 				kfree_skb(nskb);
4594 				goto err;
4595 			}
4596 
4597 			hsize = skb_end_offset(nskb);
4598 			if (skb_cow_head(nskb, doffset + headroom)) {
4599 				kfree_skb(nskb);
4600 				goto err;
4601 			}
4602 
4603 			nskb->truesize += skb_end_offset(nskb) - hsize;
4604 			skb_release_head_state(nskb);
4605 			__skb_push(nskb, doffset);
4606 		} else {
4607 			if (hsize < 0)
4608 				hsize = 0;
4609 			if (hsize > len || !sg)
4610 				hsize = len;
4611 
4612 			nskb = __alloc_skb(hsize + doffset + headroom,
4613 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4614 					   NUMA_NO_NODE);
4615 
4616 			if (unlikely(!nskb))
4617 				goto err;
4618 
4619 			skb_reserve(nskb, headroom);
4620 			__skb_put(nskb, doffset);
4621 		}
4622 
4623 		if (segs)
4624 			tail->next = nskb;
4625 		else
4626 			segs = nskb;
4627 		tail = nskb;
4628 
4629 		__copy_skb_header(nskb, head_skb);
4630 
4631 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4632 		skb_reset_mac_len(nskb);
4633 
4634 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4635 						 nskb->data - tnl_hlen,
4636 						 doffset + tnl_hlen);
4637 
4638 		if (nskb->len == len + doffset)
4639 			goto perform_csum_check;
4640 
4641 		if (!sg) {
4642 			if (!csum) {
4643 				if (!nskb->remcsum_offload)
4644 					nskb->ip_summed = CHECKSUM_NONE;
4645 				SKB_GSO_CB(nskb)->csum =
4646 					skb_copy_and_csum_bits(head_skb, offset,
4647 							       skb_put(nskb,
4648 								       len),
4649 							       len);
4650 				SKB_GSO_CB(nskb)->csum_start =
4651 					skb_headroom(nskb) + doffset;
4652 			} else {
4653 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4654 					goto err;
4655 			}
4656 			continue;
4657 		}
4658 
4659 		nskb_frag = skb_shinfo(nskb)->frags;
4660 
4661 		skb_copy_from_linear_data_offset(head_skb, offset,
4662 						 skb_put(nskb, hsize), hsize);
4663 
4664 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4665 					   SKBFL_SHARED_FRAG;
4666 
4667 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4668 			goto err;
4669 
4670 		while (pos < offset + len) {
4671 			if (i >= nfrags) {
4672 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4673 				    skb_zerocopy_clone(nskb, list_skb,
4674 						       GFP_ATOMIC))
4675 					goto err;
4676 
4677 				i = 0;
4678 				nfrags = skb_shinfo(list_skb)->nr_frags;
4679 				frag = skb_shinfo(list_skb)->frags;
4680 				frag_skb = list_skb;
4681 				if (!skb_headlen(list_skb)) {
4682 					BUG_ON(!nfrags);
4683 				} else {
4684 					BUG_ON(!list_skb->head_frag);
4685 
4686 					/* to make room for head_frag. */
4687 					i--;
4688 					frag--;
4689 				}
4690 
4691 				list_skb = list_skb->next;
4692 			}
4693 
4694 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4695 				     MAX_SKB_FRAGS)) {
4696 				net_warn_ratelimited(
4697 					"skb_segment: too many frags: %u %u\n",
4698 					pos, mss);
4699 				err = -EINVAL;
4700 				goto err;
4701 			}
4702 
4703 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4704 			__skb_frag_ref(nskb_frag);
4705 			size = skb_frag_size(nskb_frag);
4706 
4707 			if (pos < offset) {
4708 				skb_frag_off_add(nskb_frag, offset - pos);
4709 				skb_frag_size_sub(nskb_frag, offset - pos);
4710 			}
4711 
4712 			skb_shinfo(nskb)->nr_frags++;
4713 
4714 			if (pos + size <= offset + len) {
4715 				i++;
4716 				frag++;
4717 				pos += size;
4718 			} else {
4719 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4720 				goto skip_fraglist;
4721 			}
4722 
4723 			nskb_frag++;
4724 		}
4725 
4726 skip_fraglist:
4727 		nskb->data_len = len - hsize;
4728 		nskb->len += nskb->data_len;
4729 		nskb->truesize += nskb->data_len;
4730 
4731 perform_csum_check:
4732 		if (!csum) {
4733 			if (skb_has_shared_frag(nskb) &&
4734 			    __skb_linearize(nskb))
4735 				goto err;
4736 
4737 			if (!nskb->remcsum_offload)
4738 				nskb->ip_summed = CHECKSUM_NONE;
4739 			SKB_GSO_CB(nskb)->csum =
4740 				skb_checksum(nskb, doffset,
4741 					     nskb->len - doffset, 0);
4742 			SKB_GSO_CB(nskb)->csum_start =
4743 				skb_headroom(nskb) + doffset;
4744 		}
4745 	} while ((offset += len) < head_skb->len);
4746 
4747 	/* Some callers want to get the end of the list.
4748 	 * Put it in segs->prev to avoid walking the list.
4749 	 * (see validate_xmit_skb_list() for example)
4750 	 */
4751 	segs->prev = tail;
4752 
4753 	if (partial_segs) {
4754 		struct sk_buff *iter;
4755 		int type = skb_shinfo(head_skb)->gso_type;
4756 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4757 
4758 		/* Update type to add partial and then remove dodgy if set */
4759 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4760 		type &= ~SKB_GSO_DODGY;
4761 
4762 		/* Update GSO info and prepare to start updating headers on
4763 		 * our way back down the stack of protocols.
4764 		 */
4765 		for (iter = segs; iter; iter = iter->next) {
4766 			skb_shinfo(iter)->gso_size = gso_size;
4767 			skb_shinfo(iter)->gso_segs = partial_segs;
4768 			skb_shinfo(iter)->gso_type = type;
4769 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4770 		}
4771 
4772 		if (tail->len - doffset <= gso_size)
4773 			skb_shinfo(tail)->gso_size = 0;
4774 		else if (tail != segs)
4775 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4776 	}
4777 
4778 	/* Following permits correct backpressure, for protocols
4779 	 * using skb_set_owner_w().
4780 	 * Idea is to tranfert ownership from head_skb to last segment.
4781 	 */
4782 	if (head_skb->destructor == sock_wfree) {
4783 		swap(tail->truesize, head_skb->truesize);
4784 		swap(tail->destructor, head_skb->destructor);
4785 		swap(tail->sk, head_skb->sk);
4786 	}
4787 	return segs;
4788 
4789 err:
4790 	kfree_skb_list(segs);
4791 	return ERR_PTR(err);
4792 }
4793 EXPORT_SYMBOL_GPL(skb_segment);
4794 
4795 #ifdef CONFIG_SKB_EXTENSIONS
4796 #define SKB_EXT_ALIGN_VALUE	8
4797 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4798 
4799 static const u8 skb_ext_type_len[] = {
4800 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4801 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4802 #endif
4803 #ifdef CONFIG_XFRM
4804 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4805 #endif
4806 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4807 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4808 #endif
4809 #if IS_ENABLED(CONFIG_MPTCP)
4810 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4811 #endif
4812 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4813 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4814 #endif
4815 };
4816 
skb_ext_total_length(void)4817 static __always_inline unsigned int skb_ext_total_length(void)
4818 {
4819 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4820 	int i;
4821 
4822 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4823 		l += skb_ext_type_len[i];
4824 
4825 	return l;
4826 }
4827 
skb_extensions_init(void)4828 static void skb_extensions_init(void)
4829 {
4830 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4831 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4832 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4833 #endif
4834 
4835 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4836 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4837 					     0,
4838 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4839 					     NULL);
4840 }
4841 #else
skb_extensions_init(void)4842 static void skb_extensions_init(void) {}
4843 #endif
4844 
4845 /* The SKB kmem_cache slab is critical for network performance.  Never
4846  * merge/alias the slab with similar sized objects.  This avoids fragmentation
4847  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4848  */
4849 #ifndef CONFIG_SLUB_TINY
4850 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4851 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4852 #define FLAG_SKB_NO_MERGE	0
4853 #endif
4854 
skb_init(void)4855 void __init skb_init(void)
4856 {
4857 	skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4858 					      sizeof(struct sk_buff),
4859 					      0,
4860 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4861 						FLAG_SKB_NO_MERGE,
4862 					      offsetof(struct sk_buff, cb),
4863 					      sizeof_field(struct sk_buff, cb),
4864 					      NULL);
4865 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4866 						sizeof(struct sk_buff_fclones),
4867 						0,
4868 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4869 						NULL);
4870 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4871 	 * struct skb_shared_info is located at the end of skb->head,
4872 	 * and should not be copied to/from user.
4873 	 */
4874 	skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4875 						SKB_SMALL_HEAD_CACHE_SIZE,
4876 						0,
4877 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4878 						0,
4879 						SKB_SMALL_HEAD_HEADROOM,
4880 						NULL);
4881 	skb_extensions_init();
4882 }
4883 
4884 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4885 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4886 	       unsigned int recursion_level)
4887 {
4888 	int start = skb_headlen(skb);
4889 	int i, copy = start - offset;
4890 	struct sk_buff *frag_iter;
4891 	int elt = 0;
4892 
4893 	if (unlikely(recursion_level >= 24))
4894 		return -EMSGSIZE;
4895 
4896 	if (copy > 0) {
4897 		if (copy > len)
4898 			copy = len;
4899 		sg_set_buf(sg, skb->data + offset, copy);
4900 		elt++;
4901 		if ((len -= copy) == 0)
4902 			return elt;
4903 		offset += copy;
4904 	}
4905 
4906 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4907 		int end;
4908 
4909 		WARN_ON(start > offset + len);
4910 
4911 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4912 		if ((copy = end - offset) > 0) {
4913 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4914 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4915 				return -EMSGSIZE;
4916 
4917 			if (copy > len)
4918 				copy = len;
4919 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4920 				    skb_frag_off(frag) + offset - start);
4921 			elt++;
4922 			if (!(len -= copy))
4923 				return elt;
4924 			offset += copy;
4925 		}
4926 		start = end;
4927 	}
4928 
4929 	skb_walk_frags(skb, frag_iter) {
4930 		int end, ret;
4931 
4932 		WARN_ON(start > offset + len);
4933 
4934 		end = start + frag_iter->len;
4935 		if ((copy = end - offset) > 0) {
4936 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4937 				return -EMSGSIZE;
4938 
4939 			if (copy > len)
4940 				copy = len;
4941 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4942 					      copy, recursion_level + 1);
4943 			if (unlikely(ret < 0))
4944 				return ret;
4945 			elt += ret;
4946 			if ((len -= copy) == 0)
4947 				return elt;
4948 			offset += copy;
4949 		}
4950 		start = end;
4951 	}
4952 	BUG_ON(len);
4953 	return elt;
4954 }
4955 
4956 /**
4957  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4958  *	@skb: Socket buffer containing the buffers to be mapped
4959  *	@sg: The scatter-gather list to map into
4960  *	@offset: The offset into the buffer's contents to start mapping
4961  *	@len: Length of buffer space to be mapped
4962  *
4963  *	Fill the specified scatter-gather list with mappings/pointers into a
4964  *	region of the buffer space attached to a socket buffer. Returns either
4965  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4966  *	could not fit.
4967  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4968 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4969 {
4970 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4971 
4972 	if (nsg <= 0)
4973 		return nsg;
4974 
4975 	sg_mark_end(&sg[nsg - 1]);
4976 
4977 	return nsg;
4978 }
4979 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4980 
4981 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4982  * sglist without mark the sg which contain last skb data as the end.
4983  * So the caller can mannipulate sg list as will when padding new data after
4984  * the first call without calling sg_unmark_end to expend sg list.
4985  *
4986  * Scenario to use skb_to_sgvec_nomark:
4987  * 1. sg_init_table
4988  * 2. skb_to_sgvec_nomark(payload1)
4989  * 3. skb_to_sgvec_nomark(payload2)
4990  *
4991  * This is equivalent to:
4992  * 1. sg_init_table
4993  * 2. skb_to_sgvec(payload1)
4994  * 3. sg_unmark_end
4995  * 4. skb_to_sgvec(payload2)
4996  *
4997  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4998  * is more preferable.
4999  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5000 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5001 			int offset, int len)
5002 {
5003 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5004 }
5005 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5006 
5007 
5008 
5009 /**
5010  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5011  *	@skb: The socket buffer to check.
5012  *	@tailbits: Amount of trailing space to be added
5013  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5014  *
5015  *	Make sure that the data buffers attached to a socket buffer are
5016  *	writable. If they are not, private copies are made of the data buffers
5017  *	and the socket buffer is set to use these instead.
5018  *
5019  *	If @tailbits is given, make sure that there is space to write @tailbits
5020  *	bytes of data beyond current end of socket buffer.  @trailer will be
5021  *	set to point to the skb in which this space begins.
5022  *
5023  *	The number of scatterlist elements required to completely map the
5024  *	COW'd and extended socket buffer will be returned.
5025  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5026 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5027 {
5028 	int copyflag;
5029 	int elt;
5030 	struct sk_buff *skb1, **skb_p;
5031 
5032 	/* If skb is cloned or its head is paged, reallocate
5033 	 * head pulling out all the pages (pages are considered not writable
5034 	 * at the moment even if they are anonymous).
5035 	 */
5036 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5037 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5038 		return -ENOMEM;
5039 
5040 	/* Easy case. Most of packets will go this way. */
5041 	if (!skb_has_frag_list(skb)) {
5042 		/* A little of trouble, not enough of space for trailer.
5043 		 * This should not happen, when stack is tuned to generate
5044 		 * good frames. OK, on miss we reallocate and reserve even more
5045 		 * space, 128 bytes is fair. */
5046 
5047 		if (skb_tailroom(skb) < tailbits &&
5048 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5049 			return -ENOMEM;
5050 
5051 		/* Voila! */
5052 		*trailer = skb;
5053 		return 1;
5054 	}
5055 
5056 	/* Misery. We are in troubles, going to mincer fragments... */
5057 
5058 	elt = 1;
5059 	skb_p = &skb_shinfo(skb)->frag_list;
5060 	copyflag = 0;
5061 
5062 	while ((skb1 = *skb_p) != NULL) {
5063 		int ntail = 0;
5064 
5065 		/* The fragment is partially pulled by someone,
5066 		 * this can happen on input. Copy it and everything
5067 		 * after it. */
5068 
5069 		if (skb_shared(skb1))
5070 			copyflag = 1;
5071 
5072 		/* If the skb is the last, worry about trailer. */
5073 
5074 		if (skb1->next == NULL && tailbits) {
5075 			if (skb_shinfo(skb1)->nr_frags ||
5076 			    skb_has_frag_list(skb1) ||
5077 			    skb_tailroom(skb1) < tailbits)
5078 				ntail = tailbits + 128;
5079 		}
5080 
5081 		if (copyflag ||
5082 		    skb_cloned(skb1) ||
5083 		    ntail ||
5084 		    skb_shinfo(skb1)->nr_frags ||
5085 		    skb_has_frag_list(skb1)) {
5086 			struct sk_buff *skb2;
5087 
5088 			/* Fuck, we are miserable poor guys... */
5089 			if (ntail == 0)
5090 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5091 			else
5092 				skb2 = skb_copy_expand(skb1,
5093 						       skb_headroom(skb1),
5094 						       ntail,
5095 						       GFP_ATOMIC);
5096 			if (unlikely(skb2 == NULL))
5097 				return -ENOMEM;
5098 
5099 			if (skb1->sk)
5100 				skb_set_owner_w(skb2, skb1->sk);
5101 
5102 			/* Looking around. Are we still alive?
5103 			 * OK, link new skb, drop old one */
5104 
5105 			skb2->next = skb1->next;
5106 			*skb_p = skb2;
5107 			kfree_skb(skb1);
5108 			skb1 = skb2;
5109 		}
5110 		elt++;
5111 		*trailer = skb1;
5112 		skb_p = &skb1->next;
5113 	}
5114 
5115 	return elt;
5116 }
5117 EXPORT_SYMBOL_GPL(skb_cow_data);
5118 
sock_rmem_free(struct sk_buff * skb)5119 static void sock_rmem_free(struct sk_buff *skb)
5120 {
5121 	struct sock *sk = skb->sk;
5122 
5123 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5124 }
5125 
skb_set_err_queue(struct sk_buff * skb)5126 static void skb_set_err_queue(struct sk_buff *skb)
5127 {
5128 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5129 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5130 	 */
5131 	skb->pkt_type = PACKET_OUTGOING;
5132 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5133 }
5134 
5135 /*
5136  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5137  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5138 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5139 {
5140 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5141 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5142 		return -ENOMEM;
5143 
5144 	skb_orphan(skb);
5145 	skb->sk = sk;
5146 	skb->destructor = sock_rmem_free;
5147 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5148 	skb_set_err_queue(skb);
5149 
5150 	/* before exiting rcu section, make sure dst is refcounted */
5151 	skb_dst_force(skb);
5152 
5153 	skb_queue_tail(&sk->sk_error_queue, skb);
5154 	if (!sock_flag(sk, SOCK_DEAD))
5155 		sk_error_report(sk);
5156 	return 0;
5157 }
5158 EXPORT_SYMBOL(sock_queue_err_skb);
5159 
is_icmp_err_skb(const struct sk_buff * skb)5160 static bool is_icmp_err_skb(const struct sk_buff *skb)
5161 {
5162 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5163 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5164 }
5165 
sock_dequeue_err_skb(struct sock * sk)5166 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5167 {
5168 	struct sk_buff_head *q = &sk->sk_error_queue;
5169 	struct sk_buff *skb, *skb_next = NULL;
5170 	bool icmp_next = false;
5171 	unsigned long flags;
5172 
5173 	spin_lock_irqsave(&q->lock, flags);
5174 	skb = __skb_dequeue(q);
5175 	if (skb && (skb_next = skb_peek(q))) {
5176 		icmp_next = is_icmp_err_skb(skb_next);
5177 		if (icmp_next)
5178 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5179 	}
5180 	spin_unlock_irqrestore(&q->lock, flags);
5181 
5182 	if (is_icmp_err_skb(skb) && !icmp_next)
5183 		sk->sk_err = 0;
5184 
5185 	if (skb_next)
5186 		sk_error_report(sk);
5187 
5188 	return skb;
5189 }
5190 EXPORT_SYMBOL(sock_dequeue_err_skb);
5191 
5192 /**
5193  * skb_clone_sk - create clone of skb, and take reference to socket
5194  * @skb: the skb to clone
5195  *
5196  * This function creates a clone of a buffer that holds a reference on
5197  * sk_refcnt.  Buffers created via this function are meant to be
5198  * returned using sock_queue_err_skb, or free via kfree_skb.
5199  *
5200  * When passing buffers allocated with this function to sock_queue_err_skb
5201  * it is necessary to wrap the call with sock_hold/sock_put in order to
5202  * prevent the socket from being released prior to being enqueued on
5203  * the sk_error_queue.
5204  */
skb_clone_sk(struct sk_buff * skb)5205 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5206 {
5207 	struct sock *sk = skb->sk;
5208 	struct sk_buff *clone;
5209 
5210 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5211 		return NULL;
5212 
5213 	clone = skb_clone(skb, GFP_ATOMIC);
5214 	if (!clone) {
5215 		sock_put(sk);
5216 		return NULL;
5217 	}
5218 
5219 	clone->sk = sk;
5220 	clone->destructor = sock_efree;
5221 
5222 	return clone;
5223 }
5224 EXPORT_SYMBOL(skb_clone_sk);
5225 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5226 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5227 					struct sock *sk,
5228 					int tstype,
5229 					bool opt_stats)
5230 {
5231 	struct sock_exterr_skb *serr;
5232 	int err;
5233 
5234 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5235 
5236 	serr = SKB_EXT_ERR(skb);
5237 	memset(serr, 0, sizeof(*serr));
5238 	serr->ee.ee_errno = ENOMSG;
5239 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5240 	serr->ee.ee_info = tstype;
5241 	serr->opt_stats = opt_stats;
5242 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5243 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5244 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5245 		if (sk_is_tcp(sk))
5246 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5247 	}
5248 
5249 	err = sock_queue_err_skb(sk, skb);
5250 
5251 	if (err)
5252 		kfree_skb(skb);
5253 }
5254 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5255 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5256 {
5257 	bool ret;
5258 
5259 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5260 		return true;
5261 
5262 	read_lock_bh(&sk->sk_callback_lock);
5263 	ret = sk->sk_socket && sk->sk_socket->file &&
5264 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5265 	read_unlock_bh(&sk->sk_callback_lock);
5266 	return ret;
5267 }
5268 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5269 void skb_complete_tx_timestamp(struct sk_buff *skb,
5270 			       struct skb_shared_hwtstamps *hwtstamps)
5271 {
5272 	struct sock *sk = skb->sk;
5273 
5274 	if (!skb_may_tx_timestamp(sk, false))
5275 		goto err;
5276 
5277 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5278 	 * but only if the socket refcount is not zero.
5279 	 */
5280 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5281 		*skb_hwtstamps(skb) = *hwtstamps;
5282 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5283 		sock_put(sk);
5284 		return;
5285 	}
5286 
5287 err:
5288 	kfree_skb(skb);
5289 }
5290 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5291 
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5292 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5293 		     const struct sk_buff *ack_skb,
5294 		     struct skb_shared_hwtstamps *hwtstamps,
5295 		     struct sock *sk, int tstype)
5296 {
5297 	struct sk_buff *skb;
5298 	bool tsonly, opt_stats = false;
5299 	u32 tsflags;
5300 
5301 	if (!sk)
5302 		return;
5303 
5304 	tsflags = READ_ONCE(sk->sk_tsflags);
5305 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5306 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5307 		return;
5308 
5309 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5310 	if (!skb_may_tx_timestamp(sk, tsonly))
5311 		return;
5312 
5313 	if (tsonly) {
5314 #ifdef CONFIG_INET
5315 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5316 		    sk_is_tcp(sk)) {
5317 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5318 							     ack_skb);
5319 			opt_stats = true;
5320 		} else
5321 #endif
5322 			skb = alloc_skb(0, GFP_ATOMIC);
5323 	} else {
5324 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5325 
5326 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5327 			kfree_skb(skb);
5328 			return;
5329 		}
5330 	}
5331 	if (!skb)
5332 		return;
5333 
5334 	if (tsonly) {
5335 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5336 					     SKBTX_ANY_TSTAMP;
5337 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5338 	}
5339 
5340 	if (hwtstamps)
5341 		*skb_hwtstamps(skb) = *hwtstamps;
5342 	else
5343 		__net_timestamp(skb);
5344 
5345 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5346 }
5347 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5348 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5349 void skb_tstamp_tx(struct sk_buff *orig_skb,
5350 		   struct skb_shared_hwtstamps *hwtstamps)
5351 {
5352 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5353 			       SCM_TSTAMP_SND);
5354 }
5355 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5356 
5357 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5358 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5359 {
5360 	struct sock *sk = skb->sk;
5361 	struct sock_exterr_skb *serr;
5362 	int err = 1;
5363 
5364 	skb->wifi_acked_valid = 1;
5365 	skb->wifi_acked = acked;
5366 
5367 	serr = SKB_EXT_ERR(skb);
5368 	memset(serr, 0, sizeof(*serr));
5369 	serr->ee.ee_errno = ENOMSG;
5370 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5371 
5372 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5373 	 * but only if the socket refcount is not zero.
5374 	 */
5375 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5376 		err = sock_queue_err_skb(sk, skb);
5377 		sock_put(sk);
5378 	}
5379 	if (err)
5380 		kfree_skb(skb);
5381 }
5382 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5383 #endif /* CONFIG_WIRELESS */
5384 
5385 /**
5386  * skb_partial_csum_set - set up and verify partial csum values for packet
5387  * @skb: the skb to set
5388  * @start: the number of bytes after skb->data to start checksumming.
5389  * @off: the offset from start to place the checksum.
5390  *
5391  * For untrusted partially-checksummed packets, we need to make sure the values
5392  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5393  *
5394  * This function checks and sets those values and skb->ip_summed: if this
5395  * returns false you should drop the packet.
5396  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5397 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5398 {
5399 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5400 	u32 csum_start = skb_headroom(skb) + (u32)start;
5401 
5402 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5403 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5404 				     start, off, skb_headroom(skb), skb_headlen(skb));
5405 		return false;
5406 	}
5407 	skb->ip_summed = CHECKSUM_PARTIAL;
5408 	skb->csum_start = csum_start;
5409 	skb->csum_offset = off;
5410 	skb->transport_header = csum_start;
5411 	return true;
5412 }
5413 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5414 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5415 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5416 			       unsigned int max)
5417 {
5418 	if (skb_headlen(skb) >= len)
5419 		return 0;
5420 
5421 	/* If we need to pullup then pullup to the max, so we
5422 	 * won't need to do it again.
5423 	 */
5424 	if (max > skb->len)
5425 		max = skb->len;
5426 
5427 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5428 		return -ENOMEM;
5429 
5430 	if (skb_headlen(skb) < len)
5431 		return -EPROTO;
5432 
5433 	return 0;
5434 }
5435 
5436 #define MAX_TCP_HDR_LEN (15 * 4)
5437 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5438 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5439 				      typeof(IPPROTO_IP) proto,
5440 				      unsigned int off)
5441 {
5442 	int err;
5443 
5444 	switch (proto) {
5445 	case IPPROTO_TCP:
5446 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5447 					  off + MAX_TCP_HDR_LEN);
5448 		if (!err && !skb_partial_csum_set(skb, off,
5449 						  offsetof(struct tcphdr,
5450 							   check)))
5451 			err = -EPROTO;
5452 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5453 
5454 	case IPPROTO_UDP:
5455 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5456 					  off + sizeof(struct udphdr));
5457 		if (!err && !skb_partial_csum_set(skb, off,
5458 						  offsetof(struct udphdr,
5459 							   check)))
5460 			err = -EPROTO;
5461 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5462 	}
5463 
5464 	return ERR_PTR(-EPROTO);
5465 }
5466 
5467 /* This value should be large enough to cover a tagged ethernet header plus
5468  * maximally sized IP and TCP or UDP headers.
5469  */
5470 #define MAX_IP_HDR_LEN 128
5471 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5472 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5473 {
5474 	unsigned int off;
5475 	bool fragment;
5476 	__sum16 *csum;
5477 	int err;
5478 
5479 	fragment = false;
5480 
5481 	err = skb_maybe_pull_tail(skb,
5482 				  sizeof(struct iphdr),
5483 				  MAX_IP_HDR_LEN);
5484 	if (err < 0)
5485 		goto out;
5486 
5487 	if (ip_is_fragment(ip_hdr(skb)))
5488 		fragment = true;
5489 
5490 	off = ip_hdrlen(skb);
5491 
5492 	err = -EPROTO;
5493 
5494 	if (fragment)
5495 		goto out;
5496 
5497 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5498 	if (IS_ERR(csum))
5499 		return PTR_ERR(csum);
5500 
5501 	if (recalculate)
5502 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5503 					   ip_hdr(skb)->daddr,
5504 					   skb->len - off,
5505 					   ip_hdr(skb)->protocol, 0);
5506 	err = 0;
5507 
5508 out:
5509 	return err;
5510 }
5511 
5512 /* This value should be large enough to cover a tagged ethernet header plus
5513  * an IPv6 header, all options, and a maximal TCP or UDP header.
5514  */
5515 #define MAX_IPV6_HDR_LEN 256
5516 
5517 #define OPT_HDR(type, skb, off) \
5518 	(type *)(skb_network_header(skb) + (off))
5519 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5520 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5521 {
5522 	int err;
5523 	u8 nexthdr;
5524 	unsigned int off;
5525 	unsigned int len;
5526 	bool fragment;
5527 	bool done;
5528 	__sum16 *csum;
5529 
5530 	fragment = false;
5531 	done = false;
5532 
5533 	off = sizeof(struct ipv6hdr);
5534 
5535 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5536 	if (err < 0)
5537 		goto out;
5538 
5539 	nexthdr = ipv6_hdr(skb)->nexthdr;
5540 
5541 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5542 	while (off <= len && !done) {
5543 		switch (nexthdr) {
5544 		case IPPROTO_DSTOPTS:
5545 		case IPPROTO_HOPOPTS:
5546 		case IPPROTO_ROUTING: {
5547 			struct ipv6_opt_hdr *hp;
5548 
5549 			err = skb_maybe_pull_tail(skb,
5550 						  off +
5551 						  sizeof(struct ipv6_opt_hdr),
5552 						  MAX_IPV6_HDR_LEN);
5553 			if (err < 0)
5554 				goto out;
5555 
5556 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5557 			nexthdr = hp->nexthdr;
5558 			off += ipv6_optlen(hp);
5559 			break;
5560 		}
5561 		case IPPROTO_AH: {
5562 			struct ip_auth_hdr *hp;
5563 
5564 			err = skb_maybe_pull_tail(skb,
5565 						  off +
5566 						  sizeof(struct ip_auth_hdr),
5567 						  MAX_IPV6_HDR_LEN);
5568 			if (err < 0)
5569 				goto out;
5570 
5571 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5572 			nexthdr = hp->nexthdr;
5573 			off += ipv6_authlen(hp);
5574 			break;
5575 		}
5576 		case IPPROTO_FRAGMENT: {
5577 			struct frag_hdr *hp;
5578 
5579 			err = skb_maybe_pull_tail(skb,
5580 						  off +
5581 						  sizeof(struct frag_hdr),
5582 						  MAX_IPV6_HDR_LEN);
5583 			if (err < 0)
5584 				goto out;
5585 
5586 			hp = OPT_HDR(struct frag_hdr, skb, off);
5587 
5588 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5589 				fragment = true;
5590 
5591 			nexthdr = hp->nexthdr;
5592 			off += sizeof(struct frag_hdr);
5593 			break;
5594 		}
5595 		default:
5596 			done = true;
5597 			break;
5598 		}
5599 	}
5600 
5601 	err = -EPROTO;
5602 
5603 	if (!done || fragment)
5604 		goto out;
5605 
5606 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5607 	if (IS_ERR(csum))
5608 		return PTR_ERR(csum);
5609 
5610 	if (recalculate)
5611 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5612 					 &ipv6_hdr(skb)->daddr,
5613 					 skb->len - off, nexthdr, 0);
5614 	err = 0;
5615 
5616 out:
5617 	return err;
5618 }
5619 
5620 /**
5621  * skb_checksum_setup - set up partial checksum offset
5622  * @skb: the skb to set up
5623  * @recalculate: if true the pseudo-header checksum will be recalculated
5624  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5625 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5626 {
5627 	int err;
5628 
5629 	switch (skb->protocol) {
5630 	case htons(ETH_P_IP):
5631 		err = skb_checksum_setup_ipv4(skb, recalculate);
5632 		break;
5633 
5634 	case htons(ETH_P_IPV6):
5635 		err = skb_checksum_setup_ipv6(skb, recalculate);
5636 		break;
5637 
5638 	default:
5639 		err = -EPROTO;
5640 		break;
5641 	}
5642 
5643 	return err;
5644 }
5645 EXPORT_SYMBOL(skb_checksum_setup);
5646 
5647 /**
5648  * skb_checksum_maybe_trim - maybe trims the given skb
5649  * @skb: the skb to check
5650  * @transport_len: the data length beyond the network header
5651  *
5652  * Checks whether the given skb has data beyond the given transport length.
5653  * If so, returns a cloned skb trimmed to this transport length.
5654  * Otherwise returns the provided skb. Returns NULL in error cases
5655  * (e.g. transport_len exceeds skb length or out-of-memory).
5656  *
5657  * Caller needs to set the skb transport header and free any returned skb if it
5658  * differs from the provided skb.
5659  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5660 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5661 					       unsigned int transport_len)
5662 {
5663 	struct sk_buff *skb_chk;
5664 	unsigned int len = skb_transport_offset(skb) + transport_len;
5665 	int ret;
5666 
5667 	if (skb->len < len)
5668 		return NULL;
5669 	else if (skb->len == len)
5670 		return skb;
5671 
5672 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5673 	if (!skb_chk)
5674 		return NULL;
5675 
5676 	ret = pskb_trim_rcsum(skb_chk, len);
5677 	if (ret) {
5678 		kfree_skb(skb_chk);
5679 		return NULL;
5680 	}
5681 
5682 	return skb_chk;
5683 }
5684 
5685 /**
5686  * skb_checksum_trimmed - validate checksum of an skb
5687  * @skb: the skb to check
5688  * @transport_len: the data length beyond the network header
5689  * @skb_chkf: checksum function to use
5690  *
5691  * Applies the given checksum function skb_chkf to the provided skb.
5692  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5693  *
5694  * If the skb has data beyond the given transport length, then a
5695  * trimmed & cloned skb is checked and returned.
5696  *
5697  * Caller needs to set the skb transport header and free any returned skb if it
5698  * differs from the provided skb.
5699  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5700 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5701 				     unsigned int transport_len,
5702 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5703 {
5704 	struct sk_buff *skb_chk;
5705 	unsigned int offset = skb_transport_offset(skb);
5706 	__sum16 ret;
5707 
5708 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5709 	if (!skb_chk)
5710 		goto err;
5711 
5712 	if (!pskb_may_pull(skb_chk, offset))
5713 		goto err;
5714 
5715 	skb_pull_rcsum(skb_chk, offset);
5716 	ret = skb_chkf(skb_chk);
5717 	skb_push_rcsum(skb_chk, offset);
5718 
5719 	if (ret)
5720 		goto err;
5721 
5722 	return skb_chk;
5723 
5724 err:
5725 	if (skb_chk && skb_chk != skb)
5726 		kfree_skb(skb_chk);
5727 
5728 	return NULL;
5729 
5730 }
5731 EXPORT_SYMBOL(skb_checksum_trimmed);
5732 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5733 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5734 {
5735 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5736 			     skb->dev->name);
5737 }
5738 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5739 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5740 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5741 {
5742 	if (head_stolen) {
5743 		skb_release_head_state(skb);
5744 		kmem_cache_free(skbuff_cache, skb);
5745 	} else {
5746 		__kfree_skb(skb);
5747 	}
5748 }
5749 EXPORT_SYMBOL(kfree_skb_partial);
5750 
5751 /**
5752  * skb_try_coalesce - try to merge skb to prior one
5753  * @to: prior buffer
5754  * @from: buffer to add
5755  * @fragstolen: pointer to boolean
5756  * @delta_truesize: how much more was allocated than was requested
5757  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5758 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5759 		      bool *fragstolen, int *delta_truesize)
5760 {
5761 	struct skb_shared_info *to_shinfo, *from_shinfo;
5762 	int i, delta, len = from->len;
5763 
5764 	*fragstolen = false;
5765 
5766 	if (skb_cloned(to))
5767 		return false;
5768 
5769 	/* In general, avoid mixing page_pool and non-page_pool allocated
5770 	 * pages within the same SKB. Additionally avoid dealing with clones
5771 	 * with page_pool pages, in case the SKB is using page_pool fragment
5772 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5773 	 * references for cloned SKBs at the moment that would result in
5774 	 * inconsistent reference counts.
5775 	 * In theory we could take full references if @from is cloned and
5776 	 * !@to->pp_recycle but its tricky (due to potential race with
5777 	 * the clone disappearing) and rare, so not worth dealing with.
5778 	 */
5779 	if (to->pp_recycle != from->pp_recycle ||
5780 	    (from->pp_recycle && skb_cloned(from)))
5781 		return false;
5782 
5783 	if (len <= skb_tailroom(to)) {
5784 		if (len)
5785 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5786 		*delta_truesize = 0;
5787 		return true;
5788 	}
5789 
5790 	to_shinfo = skb_shinfo(to);
5791 	from_shinfo = skb_shinfo(from);
5792 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5793 		return false;
5794 	if (skb_zcopy(to) || skb_zcopy(from))
5795 		return false;
5796 
5797 	if (skb_headlen(from) != 0) {
5798 		struct page *page;
5799 		unsigned int offset;
5800 
5801 		if (to_shinfo->nr_frags +
5802 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5803 			return false;
5804 
5805 		if (skb_head_is_locked(from))
5806 			return false;
5807 
5808 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5809 
5810 		page = virt_to_head_page(from->head);
5811 		offset = from->data - (unsigned char *)page_address(page);
5812 
5813 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5814 				   page, offset, skb_headlen(from));
5815 		*fragstolen = true;
5816 	} else {
5817 		if (to_shinfo->nr_frags +
5818 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5819 			return false;
5820 
5821 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5822 	}
5823 
5824 	WARN_ON_ONCE(delta < len);
5825 
5826 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5827 	       from_shinfo->frags,
5828 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5829 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5830 
5831 	if (!skb_cloned(from))
5832 		from_shinfo->nr_frags = 0;
5833 
5834 	/* if the skb is not cloned this does nothing
5835 	 * since we set nr_frags to 0.
5836 	 */
5837 	for (i = 0; i < from_shinfo->nr_frags; i++)
5838 		__skb_frag_ref(&from_shinfo->frags[i]);
5839 
5840 	to->truesize += delta;
5841 	to->len += len;
5842 	to->data_len += len;
5843 
5844 	*delta_truesize = delta;
5845 	return true;
5846 }
5847 EXPORT_SYMBOL(skb_try_coalesce);
5848 
5849 /**
5850  * skb_scrub_packet - scrub an skb
5851  *
5852  * @skb: buffer to clean
5853  * @xnet: packet is crossing netns
5854  *
5855  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5856  * into/from a tunnel. Some information have to be cleared during these
5857  * operations.
5858  * skb_scrub_packet can also be used to clean a skb before injecting it in
5859  * another namespace (@xnet == true). We have to clear all information in the
5860  * skb that could impact namespace isolation.
5861  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5862 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5863 {
5864 	skb->pkt_type = PACKET_HOST;
5865 	skb->skb_iif = 0;
5866 	skb->ignore_df = 0;
5867 	skb_dst_drop(skb);
5868 	skb_ext_reset(skb);
5869 	nf_reset_ct(skb);
5870 	nf_reset_trace(skb);
5871 
5872 #ifdef CONFIG_NET_SWITCHDEV
5873 	skb->offload_fwd_mark = 0;
5874 	skb->offload_l3_fwd_mark = 0;
5875 #endif
5876 
5877 	if (!xnet)
5878 		return;
5879 
5880 	ipvs_reset(skb);
5881 	skb->mark = 0;
5882 	skb_clear_tstamp(skb);
5883 }
5884 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5885 
skb_reorder_vlan_header(struct sk_buff * skb)5886 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5887 {
5888 	int mac_len, meta_len;
5889 	void *meta;
5890 
5891 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5892 		kfree_skb(skb);
5893 		return NULL;
5894 	}
5895 
5896 	mac_len = skb->data - skb_mac_header(skb);
5897 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5898 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5899 			mac_len - VLAN_HLEN - ETH_TLEN);
5900 	}
5901 
5902 	meta_len = skb_metadata_len(skb);
5903 	if (meta_len) {
5904 		meta = skb_metadata_end(skb) - meta_len;
5905 		memmove(meta + VLAN_HLEN, meta, meta_len);
5906 	}
5907 
5908 	skb->mac_header += VLAN_HLEN;
5909 	return skb;
5910 }
5911 
skb_vlan_untag(struct sk_buff * skb)5912 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5913 {
5914 	struct vlan_hdr *vhdr;
5915 	u16 vlan_tci;
5916 
5917 	if (unlikely(skb_vlan_tag_present(skb))) {
5918 		/* vlan_tci is already set-up so leave this for another time */
5919 		return skb;
5920 	}
5921 
5922 	skb = skb_share_check(skb, GFP_ATOMIC);
5923 	if (unlikely(!skb))
5924 		goto err_free;
5925 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5926 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5927 		goto err_free;
5928 
5929 	vhdr = (struct vlan_hdr *)skb->data;
5930 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5931 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5932 
5933 	skb_pull_rcsum(skb, VLAN_HLEN);
5934 	vlan_set_encap_proto(skb, vhdr);
5935 
5936 	skb = skb_reorder_vlan_header(skb);
5937 	if (unlikely(!skb))
5938 		goto err_free;
5939 
5940 	skb_reset_network_header(skb);
5941 	if (!skb_transport_header_was_set(skb))
5942 		skb_reset_transport_header(skb);
5943 	skb_reset_mac_len(skb);
5944 
5945 	return skb;
5946 
5947 err_free:
5948 	kfree_skb(skb);
5949 	return NULL;
5950 }
5951 EXPORT_SYMBOL(skb_vlan_untag);
5952 
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)5953 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5954 {
5955 	if (!pskb_may_pull(skb, write_len))
5956 		return -ENOMEM;
5957 
5958 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5959 		return 0;
5960 
5961 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5962 }
5963 EXPORT_SYMBOL(skb_ensure_writable);
5964 
5965 /* remove VLAN header from packet and update csum accordingly.
5966  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5967  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5968 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5969 {
5970 	int offset = skb->data - skb_mac_header(skb);
5971 	int err;
5972 
5973 	if (WARN_ONCE(offset,
5974 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5975 		      offset)) {
5976 		return -EINVAL;
5977 	}
5978 
5979 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5980 	if (unlikely(err))
5981 		return err;
5982 
5983 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5984 
5985 	vlan_remove_tag(skb, vlan_tci);
5986 
5987 	skb->mac_header += VLAN_HLEN;
5988 
5989 	if (skb_network_offset(skb) < ETH_HLEN)
5990 		skb_set_network_header(skb, ETH_HLEN);
5991 
5992 	skb_reset_mac_len(skb);
5993 
5994 	return err;
5995 }
5996 EXPORT_SYMBOL(__skb_vlan_pop);
5997 
5998 /* Pop a vlan tag either from hwaccel or from payload.
5999  * Expects skb->data at mac header.
6000  */
skb_vlan_pop(struct sk_buff * skb)6001 int skb_vlan_pop(struct sk_buff *skb)
6002 {
6003 	u16 vlan_tci;
6004 	__be16 vlan_proto;
6005 	int err;
6006 
6007 	if (likely(skb_vlan_tag_present(skb))) {
6008 		__vlan_hwaccel_clear_tag(skb);
6009 	} else {
6010 		if (unlikely(!eth_type_vlan(skb->protocol)))
6011 			return 0;
6012 
6013 		err = __skb_vlan_pop(skb, &vlan_tci);
6014 		if (err)
6015 			return err;
6016 	}
6017 	/* move next vlan tag to hw accel tag */
6018 	if (likely(!eth_type_vlan(skb->protocol)))
6019 		return 0;
6020 
6021 	vlan_proto = skb->protocol;
6022 	err = __skb_vlan_pop(skb, &vlan_tci);
6023 	if (unlikely(err))
6024 		return err;
6025 
6026 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6027 	return 0;
6028 }
6029 EXPORT_SYMBOL(skb_vlan_pop);
6030 
6031 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6032  * Expects skb->data at mac header.
6033  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6034 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6035 {
6036 	if (skb_vlan_tag_present(skb)) {
6037 		int offset = skb->data - skb_mac_header(skb);
6038 		int err;
6039 
6040 		if (WARN_ONCE(offset,
6041 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6042 			      offset)) {
6043 			return -EINVAL;
6044 		}
6045 
6046 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6047 					skb_vlan_tag_get(skb));
6048 		if (err)
6049 			return err;
6050 
6051 		skb->protocol = skb->vlan_proto;
6052 		skb->mac_len += VLAN_HLEN;
6053 
6054 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6055 	}
6056 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6057 	return 0;
6058 }
6059 EXPORT_SYMBOL(skb_vlan_push);
6060 
6061 /**
6062  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6063  *
6064  * @skb: Socket buffer to modify
6065  *
6066  * Drop the Ethernet header of @skb.
6067  *
6068  * Expects that skb->data points to the mac header and that no VLAN tags are
6069  * present.
6070  *
6071  * Returns 0 on success, -errno otherwise.
6072  */
skb_eth_pop(struct sk_buff * skb)6073 int skb_eth_pop(struct sk_buff *skb)
6074 {
6075 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6076 	    skb_network_offset(skb) < ETH_HLEN)
6077 		return -EPROTO;
6078 
6079 	skb_pull_rcsum(skb, ETH_HLEN);
6080 	skb_reset_mac_header(skb);
6081 	skb_reset_mac_len(skb);
6082 
6083 	return 0;
6084 }
6085 EXPORT_SYMBOL(skb_eth_pop);
6086 
6087 /**
6088  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6089  *
6090  * @skb: Socket buffer to modify
6091  * @dst: Destination MAC address of the new header
6092  * @src: Source MAC address of the new header
6093  *
6094  * Prepend @skb with a new Ethernet header.
6095  *
6096  * Expects that skb->data points to the mac header, which must be empty.
6097  *
6098  * Returns 0 on success, -errno otherwise.
6099  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6100 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6101 		 const unsigned char *src)
6102 {
6103 	struct ethhdr *eth;
6104 	int err;
6105 
6106 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6107 		return -EPROTO;
6108 
6109 	err = skb_cow_head(skb, sizeof(*eth));
6110 	if (err < 0)
6111 		return err;
6112 
6113 	skb_push(skb, sizeof(*eth));
6114 	skb_reset_mac_header(skb);
6115 	skb_reset_mac_len(skb);
6116 
6117 	eth = eth_hdr(skb);
6118 	ether_addr_copy(eth->h_dest, dst);
6119 	ether_addr_copy(eth->h_source, src);
6120 	eth->h_proto = skb->protocol;
6121 
6122 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6123 
6124 	return 0;
6125 }
6126 EXPORT_SYMBOL(skb_eth_push);
6127 
6128 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6129 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6130 			     __be16 ethertype)
6131 {
6132 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6133 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6134 
6135 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6136 	}
6137 
6138 	hdr->h_proto = ethertype;
6139 }
6140 
6141 /**
6142  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6143  *                   the packet
6144  *
6145  * @skb: buffer
6146  * @mpls_lse: MPLS label stack entry to push
6147  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6148  * @mac_len: length of the MAC header
6149  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6150  *            ethernet
6151  *
6152  * Expects skb->data at mac header.
6153  *
6154  * Returns 0 on success, -errno otherwise.
6155  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6156 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6157 		  int mac_len, bool ethernet)
6158 {
6159 	struct mpls_shim_hdr *lse;
6160 	int err;
6161 
6162 	if (unlikely(!eth_p_mpls(mpls_proto)))
6163 		return -EINVAL;
6164 
6165 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6166 	if (skb->encapsulation)
6167 		return -EINVAL;
6168 
6169 	err = skb_cow_head(skb, MPLS_HLEN);
6170 	if (unlikely(err))
6171 		return err;
6172 
6173 	if (!skb->inner_protocol) {
6174 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6175 		skb_set_inner_protocol(skb, skb->protocol);
6176 	}
6177 
6178 	skb_push(skb, MPLS_HLEN);
6179 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6180 		mac_len);
6181 	skb_reset_mac_header(skb);
6182 	skb_set_network_header(skb, mac_len);
6183 	skb_reset_mac_len(skb);
6184 
6185 	lse = mpls_hdr(skb);
6186 	lse->label_stack_entry = mpls_lse;
6187 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6188 
6189 	if (ethernet && mac_len >= ETH_HLEN)
6190 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6191 	skb->protocol = mpls_proto;
6192 
6193 	return 0;
6194 }
6195 EXPORT_SYMBOL_GPL(skb_mpls_push);
6196 
6197 /**
6198  * skb_mpls_pop() - pop the outermost MPLS header
6199  *
6200  * @skb: buffer
6201  * @next_proto: ethertype of header after popped MPLS header
6202  * @mac_len: length of the MAC header
6203  * @ethernet: flag to indicate if the packet is ethernet
6204  *
6205  * Expects skb->data at mac header.
6206  *
6207  * Returns 0 on success, -errno otherwise.
6208  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6209 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6210 		 bool ethernet)
6211 {
6212 	int err;
6213 
6214 	if (unlikely(!eth_p_mpls(skb->protocol)))
6215 		return 0;
6216 
6217 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6218 	if (unlikely(err))
6219 		return err;
6220 
6221 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6222 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6223 		mac_len);
6224 
6225 	__skb_pull(skb, MPLS_HLEN);
6226 	skb_reset_mac_header(skb);
6227 	skb_set_network_header(skb, mac_len);
6228 
6229 	if (ethernet && mac_len >= ETH_HLEN) {
6230 		struct ethhdr *hdr;
6231 
6232 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6233 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6234 		skb_mod_eth_type(skb, hdr, next_proto);
6235 	}
6236 	skb->protocol = next_proto;
6237 
6238 	return 0;
6239 }
6240 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6241 
6242 /**
6243  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6244  *
6245  * @skb: buffer
6246  * @mpls_lse: new MPLS label stack entry to update to
6247  *
6248  * Expects skb->data at mac header.
6249  *
6250  * Returns 0 on success, -errno otherwise.
6251  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6252 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6253 {
6254 	int err;
6255 
6256 	if (unlikely(!eth_p_mpls(skb->protocol)))
6257 		return -EINVAL;
6258 
6259 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6260 	if (unlikely(err))
6261 		return err;
6262 
6263 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6264 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6265 
6266 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6267 	}
6268 
6269 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6270 
6271 	return 0;
6272 }
6273 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6274 
6275 /**
6276  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6277  *
6278  * @skb: buffer
6279  *
6280  * Expects skb->data at mac header.
6281  *
6282  * Returns 0 on success, -errno otherwise.
6283  */
skb_mpls_dec_ttl(struct sk_buff * skb)6284 int skb_mpls_dec_ttl(struct sk_buff *skb)
6285 {
6286 	u32 lse;
6287 	u8 ttl;
6288 
6289 	if (unlikely(!eth_p_mpls(skb->protocol)))
6290 		return -EINVAL;
6291 
6292 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6293 		return -ENOMEM;
6294 
6295 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6296 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6297 	if (!--ttl)
6298 		return -EINVAL;
6299 
6300 	lse &= ~MPLS_LS_TTL_MASK;
6301 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6302 
6303 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6304 }
6305 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6306 
6307 /**
6308  * alloc_skb_with_frags - allocate skb with page frags
6309  *
6310  * @header_len: size of linear part
6311  * @data_len: needed length in frags
6312  * @order: max page order desired.
6313  * @errcode: pointer to error code if any
6314  * @gfp_mask: allocation mask
6315  *
6316  * This can be used to allocate a paged skb, given a maximal order for frags.
6317  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6318 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6319 				     unsigned long data_len,
6320 				     int order,
6321 				     int *errcode,
6322 				     gfp_t gfp_mask)
6323 {
6324 	unsigned long chunk;
6325 	struct sk_buff *skb;
6326 	struct page *page;
6327 	int nr_frags = 0;
6328 
6329 	*errcode = -EMSGSIZE;
6330 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6331 		return NULL;
6332 
6333 	*errcode = -ENOBUFS;
6334 	skb = alloc_skb(header_len, gfp_mask);
6335 	if (!skb)
6336 		return NULL;
6337 
6338 	while (data_len) {
6339 		if (nr_frags == MAX_SKB_FRAGS - 1)
6340 			goto failure;
6341 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6342 			order--;
6343 
6344 		if (order) {
6345 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6346 					   __GFP_COMP |
6347 					   __GFP_NOWARN,
6348 					   order);
6349 			if (!page) {
6350 				order--;
6351 				continue;
6352 			}
6353 		} else {
6354 			page = alloc_page(gfp_mask);
6355 			if (!page)
6356 				goto failure;
6357 		}
6358 		chunk = min_t(unsigned long, data_len,
6359 			      PAGE_SIZE << order);
6360 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6361 		nr_frags++;
6362 		skb->truesize += (PAGE_SIZE << order);
6363 		data_len -= chunk;
6364 	}
6365 	return skb;
6366 
6367 failure:
6368 	kfree_skb(skb);
6369 	return NULL;
6370 }
6371 EXPORT_SYMBOL(alloc_skb_with_frags);
6372 
6373 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6374 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6375 				    const int headlen, gfp_t gfp_mask)
6376 {
6377 	int i;
6378 	unsigned int size = skb_end_offset(skb);
6379 	int new_hlen = headlen - off;
6380 	u8 *data;
6381 
6382 	if (skb_pfmemalloc(skb))
6383 		gfp_mask |= __GFP_MEMALLOC;
6384 
6385 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6386 	if (!data)
6387 		return -ENOMEM;
6388 	size = SKB_WITH_OVERHEAD(size);
6389 
6390 	/* Copy real data, and all frags */
6391 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6392 	skb->len -= off;
6393 
6394 	memcpy((struct skb_shared_info *)(data + size),
6395 	       skb_shinfo(skb),
6396 	       offsetof(struct skb_shared_info,
6397 			frags[skb_shinfo(skb)->nr_frags]));
6398 	if (skb_cloned(skb)) {
6399 		/* drop the old head gracefully */
6400 		if (skb_orphan_frags(skb, gfp_mask)) {
6401 			skb_kfree_head(data, size);
6402 			return -ENOMEM;
6403 		}
6404 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6405 			skb_frag_ref(skb, i);
6406 		if (skb_has_frag_list(skb))
6407 			skb_clone_fraglist(skb);
6408 		skb_release_data(skb, SKB_CONSUMED, false);
6409 	} else {
6410 		/* we can reuse existing recount- all we did was
6411 		 * relocate values
6412 		 */
6413 		skb_free_head(skb, false);
6414 	}
6415 
6416 	skb->head = data;
6417 	skb->data = data;
6418 	skb->head_frag = 0;
6419 	skb_set_end_offset(skb, size);
6420 	skb_set_tail_pointer(skb, skb_headlen(skb));
6421 	skb_headers_offset_update(skb, 0);
6422 	skb->cloned = 0;
6423 	skb->hdr_len = 0;
6424 	skb->nohdr = 0;
6425 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6426 
6427 	return 0;
6428 }
6429 
6430 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6431 
6432 /* carve out the first eat bytes from skb's frag_list. May recurse into
6433  * pskb_carve()
6434  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6435 static int pskb_carve_frag_list(struct sk_buff *skb,
6436 				struct skb_shared_info *shinfo, int eat,
6437 				gfp_t gfp_mask)
6438 {
6439 	struct sk_buff *list = shinfo->frag_list;
6440 	struct sk_buff *clone = NULL;
6441 	struct sk_buff *insp = NULL;
6442 
6443 	do {
6444 		if (!list) {
6445 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6446 			return -EFAULT;
6447 		}
6448 		if (list->len <= eat) {
6449 			/* Eaten as whole. */
6450 			eat -= list->len;
6451 			list = list->next;
6452 			insp = list;
6453 		} else {
6454 			/* Eaten partially. */
6455 			if (skb_shared(list)) {
6456 				clone = skb_clone(list, gfp_mask);
6457 				if (!clone)
6458 					return -ENOMEM;
6459 				insp = list->next;
6460 				list = clone;
6461 			} else {
6462 				/* This may be pulled without problems. */
6463 				insp = list;
6464 			}
6465 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6466 				kfree_skb(clone);
6467 				return -ENOMEM;
6468 			}
6469 			break;
6470 		}
6471 	} while (eat);
6472 
6473 	/* Free pulled out fragments. */
6474 	while ((list = shinfo->frag_list) != insp) {
6475 		shinfo->frag_list = list->next;
6476 		consume_skb(list);
6477 	}
6478 	/* And insert new clone at head. */
6479 	if (clone) {
6480 		clone->next = list;
6481 		shinfo->frag_list = clone;
6482 	}
6483 	return 0;
6484 }
6485 
6486 /* carve off first len bytes from skb. Split line (off) is in the
6487  * non-linear part of skb
6488  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6489 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6490 				       int pos, gfp_t gfp_mask)
6491 {
6492 	int i, k = 0;
6493 	unsigned int size = skb_end_offset(skb);
6494 	u8 *data;
6495 	const int nfrags = skb_shinfo(skb)->nr_frags;
6496 	struct skb_shared_info *shinfo;
6497 
6498 	if (skb_pfmemalloc(skb))
6499 		gfp_mask |= __GFP_MEMALLOC;
6500 
6501 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6502 	if (!data)
6503 		return -ENOMEM;
6504 	size = SKB_WITH_OVERHEAD(size);
6505 
6506 	memcpy((struct skb_shared_info *)(data + size),
6507 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6508 	if (skb_orphan_frags(skb, gfp_mask)) {
6509 		skb_kfree_head(data, size);
6510 		return -ENOMEM;
6511 	}
6512 	shinfo = (struct skb_shared_info *)(data + size);
6513 	for (i = 0; i < nfrags; i++) {
6514 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6515 
6516 		if (pos + fsize > off) {
6517 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6518 
6519 			if (pos < off) {
6520 				/* Split frag.
6521 				 * We have two variants in this case:
6522 				 * 1. Move all the frag to the second
6523 				 *    part, if it is possible. F.e.
6524 				 *    this approach is mandatory for TUX,
6525 				 *    where splitting is expensive.
6526 				 * 2. Split is accurately. We make this.
6527 				 */
6528 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6529 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6530 			}
6531 			skb_frag_ref(skb, i);
6532 			k++;
6533 		}
6534 		pos += fsize;
6535 	}
6536 	shinfo->nr_frags = k;
6537 	if (skb_has_frag_list(skb))
6538 		skb_clone_fraglist(skb);
6539 
6540 	/* split line is in frag list */
6541 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6542 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6543 		if (skb_has_frag_list(skb))
6544 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6545 		skb_kfree_head(data, size);
6546 		return -ENOMEM;
6547 	}
6548 	skb_release_data(skb, SKB_CONSUMED, false);
6549 
6550 	skb->head = data;
6551 	skb->head_frag = 0;
6552 	skb->data = data;
6553 	skb_set_end_offset(skb, size);
6554 	skb_reset_tail_pointer(skb);
6555 	skb_headers_offset_update(skb, 0);
6556 	skb->cloned   = 0;
6557 	skb->hdr_len  = 0;
6558 	skb->nohdr    = 0;
6559 	skb->len -= off;
6560 	skb->data_len = skb->len;
6561 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6562 	return 0;
6563 }
6564 
6565 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6566 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6567 {
6568 	int headlen = skb_headlen(skb);
6569 
6570 	if (len < headlen)
6571 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6572 	else
6573 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6574 }
6575 
6576 /* Extract to_copy bytes starting at off from skb, and return this in
6577  * a new skb
6578  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6579 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6580 			     int to_copy, gfp_t gfp)
6581 {
6582 	struct sk_buff  *clone = skb_clone(skb, gfp);
6583 
6584 	if (!clone)
6585 		return NULL;
6586 
6587 	if (pskb_carve(clone, off, gfp) < 0 ||
6588 	    pskb_trim(clone, to_copy)) {
6589 		kfree_skb(clone);
6590 		return NULL;
6591 	}
6592 	return clone;
6593 }
6594 EXPORT_SYMBOL(pskb_extract);
6595 
6596 /**
6597  * skb_condense - try to get rid of fragments/frag_list if possible
6598  * @skb: buffer
6599  *
6600  * Can be used to save memory before skb is added to a busy queue.
6601  * If packet has bytes in frags and enough tail room in skb->head,
6602  * pull all of them, so that we can free the frags right now and adjust
6603  * truesize.
6604  * Notes:
6605  *	We do not reallocate skb->head thus can not fail.
6606  *	Caller must re-evaluate skb->truesize if needed.
6607  */
skb_condense(struct sk_buff * skb)6608 void skb_condense(struct sk_buff *skb)
6609 {
6610 	if (skb->data_len) {
6611 		if (skb->data_len > skb->end - skb->tail ||
6612 		    skb_cloned(skb))
6613 			return;
6614 
6615 		/* Nice, we can free page frag(s) right now */
6616 		__pskb_pull_tail(skb, skb->data_len);
6617 	}
6618 	/* At this point, skb->truesize might be over estimated,
6619 	 * because skb had a fragment, and fragments do not tell
6620 	 * their truesize.
6621 	 * When we pulled its content into skb->head, fragment
6622 	 * was freed, but __pskb_pull_tail() could not possibly
6623 	 * adjust skb->truesize, not knowing the frag truesize.
6624 	 */
6625 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6626 }
6627 EXPORT_SYMBOL(skb_condense);
6628 
6629 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6630 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6631 {
6632 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6633 }
6634 
6635 /**
6636  * __skb_ext_alloc - allocate a new skb extensions storage
6637  *
6638  * @flags: See kmalloc().
6639  *
6640  * Returns the newly allocated pointer. The pointer can later attached to a
6641  * skb via __skb_ext_set().
6642  * Note: caller must handle the skb_ext as an opaque data.
6643  */
__skb_ext_alloc(gfp_t flags)6644 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6645 {
6646 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6647 
6648 	if (new) {
6649 		memset(new->offset, 0, sizeof(new->offset));
6650 		refcount_set(&new->refcnt, 1);
6651 	}
6652 
6653 	return new;
6654 }
6655 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6656 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6657 					 unsigned int old_active)
6658 {
6659 	struct skb_ext *new;
6660 
6661 	if (refcount_read(&old->refcnt) == 1)
6662 		return old;
6663 
6664 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6665 	if (!new)
6666 		return NULL;
6667 
6668 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6669 	refcount_set(&new->refcnt, 1);
6670 
6671 #ifdef CONFIG_XFRM
6672 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6673 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6674 		unsigned int i;
6675 
6676 		for (i = 0; i < sp->len; i++)
6677 			xfrm_state_hold(sp->xvec[i]);
6678 	}
6679 #endif
6680 #ifdef CONFIG_MCTP_FLOWS
6681 	if (old_active & (1 << SKB_EXT_MCTP)) {
6682 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6683 
6684 		if (flow->key)
6685 			refcount_inc(&flow->key->refs);
6686 	}
6687 #endif
6688 	__skb_ext_put(old);
6689 	return new;
6690 }
6691 
6692 /**
6693  * __skb_ext_set - attach the specified extension storage to this skb
6694  * @skb: buffer
6695  * @id: extension id
6696  * @ext: extension storage previously allocated via __skb_ext_alloc()
6697  *
6698  * Existing extensions, if any, are cleared.
6699  *
6700  * Returns the pointer to the extension.
6701  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6702 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6703 		    struct skb_ext *ext)
6704 {
6705 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6706 
6707 	skb_ext_put(skb);
6708 	newlen = newoff + skb_ext_type_len[id];
6709 	ext->chunks = newlen;
6710 	ext->offset[id] = newoff;
6711 	skb->extensions = ext;
6712 	skb->active_extensions = 1 << id;
6713 	return skb_ext_get_ptr(ext, id);
6714 }
6715 
6716 /**
6717  * skb_ext_add - allocate space for given extension, COW if needed
6718  * @skb: buffer
6719  * @id: extension to allocate space for
6720  *
6721  * Allocates enough space for the given extension.
6722  * If the extension is already present, a pointer to that extension
6723  * is returned.
6724  *
6725  * If the skb was cloned, COW applies and the returned memory can be
6726  * modified without changing the extension space of clones buffers.
6727  *
6728  * Returns pointer to the extension or NULL on allocation failure.
6729  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6730 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6731 {
6732 	struct skb_ext *new, *old = NULL;
6733 	unsigned int newlen, newoff;
6734 
6735 	if (skb->active_extensions) {
6736 		old = skb->extensions;
6737 
6738 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6739 		if (!new)
6740 			return NULL;
6741 
6742 		if (__skb_ext_exist(new, id))
6743 			goto set_active;
6744 
6745 		newoff = new->chunks;
6746 	} else {
6747 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6748 
6749 		new = __skb_ext_alloc(GFP_ATOMIC);
6750 		if (!new)
6751 			return NULL;
6752 	}
6753 
6754 	newlen = newoff + skb_ext_type_len[id];
6755 	new->chunks = newlen;
6756 	new->offset[id] = newoff;
6757 set_active:
6758 	skb->slow_gro = 1;
6759 	skb->extensions = new;
6760 	skb->active_extensions |= 1 << id;
6761 	return skb_ext_get_ptr(new, id);
6762 }
6763 EXPORT_SYMBOL(skb_ext_add);
6764 
6765 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6766 static void skb_ext_put_sp(struct sec_path *sp)
6767 {
6768 	unsigned int i;
6769 
6770 	for (i = 0; i < sp->len; i++)
6771 		xfrm_state_put(sp->xvec[i]);
6772 }
6773 #endif
6774 
6775 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)6776 static void skb_ext_put_mctp(struct mctp_flow *flow)
6777 {
6778 	if (flow->key)
6779 		mctp_key_unref(flow->key);
6780 }
6781 #endif
6782 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6783 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6784 {
6785 	struct skb_ext *ext = skb->extensions;
6786 
6787 	skb->active_extensions &= ~(1 << id);
6788 	if (skb->active_extensions == 0) {
6789 		skb->extensions = NULL;
6790 		__skb_ext_put(ext);
6791 #ifdef CONFIG_XFRM
6792 	} else if (id == SKB_EXT_SEC_PATH &&
6793 		   refcount_read(&ext->refcnt) == 1) {
6794 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6795 
6796 		skb_ext_put_sp(sp);
6797 		sp->len = 0;
6798 #endif
6799 	}
6800 }
6801 EXPORT_SYMBOL(__skb_ext_del);
6802 
__skb_ext_put(struct skb_ext * ext)6803 void __skb_ext_put(struct skb_ext *ext)
6804 {
6805 	/* If this is last clone, nothing can increment
6806 	 * it after check passes.  Avoids one atomic op.
6807 	 */
6808 	if (refcount_read(&ext->refcnt) == 1)
6809 		goto free_now;
6810 
6811 	if (!refcount_dec_and_test(&ext->refcnt))
6812 		return;
6813 free_now:
6814 #ifdef CONFIG_XFRM
6815 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6816 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6817 #endif
6818 #ifdef CONFIG_MCTP_FLOWS
6819 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6820 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6821 #endif
6822 
6823 	kmem_cache_free(skbuff_ext_cache, ext);
6824 }
6825 EXPORT_SYMBOL(__skb_ext_put);
6826 #endif /* CONFIG_SKB_EXTENSIONS */
6827 
6828 /**
6829  * skb_attempt_defer_free - queue skb for remote freeing
6830  * @skb: buffer
6831  *
6832  * Put @skb in a per-cpu list, using the cpu which
6833  * allocated the skb/pages to reduce false sharing
6834  * and memory zone spinlock contention.
6835  */
skb_attempt_defer_free(struct sk_buff * skb)6836 void skb_attempt_defer_free(struct sk_buff *skb)
6837 {
6838 	int cpu = skb->alloc_cpu;
6839 	struct softnet_data *sd;
6840 	unsigned int defer_max;
6841 	bool kick;
6842 
6843 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6844 	    !cpu_online(cpu) ||
6845 	    cpu == raw_smp_processor_id()) {
6846 nodefer:	__kfree_skb(skb);
6847 		return;
6848 	}
6849 
6850 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6851 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6852 
6853 	sd = &per_cpu(softnet_data, cpu);
6854 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6855 	if (READ_ONCE(sd->defer_count) >= defer_max)
6856 		goto nodefer;
6857 
6858 	spin_lock_bh(&sd->defer_lock);
6859 	/* Send an IPI every time queue reaches half capacity. */
6860 	kick = sd->defer_count == (defer_max >> 1);
6861 	/* Paired with the READ_ONCE() few lines above */
6862 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6863 
6864 	skb->next = sd->defer_list;
6865 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6866 	WRITE_ONCE(sd->defer_list, skb);
6867 	spin_unlock_bh(&sd->defer_lock);
6868 
6869 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6870 	 * if we are unlucky enough (this seems very unlikely).
6871 	 */
6872 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6873 		smp_call_function_single_async(cpu, &sd->defer_csd);
6874 }
6875 
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)6876 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6877 				 size_t offset, size_t len)
6878 {
6879 	const char *kaddr;
6880 	__wsum csum;
6881 
6882 	kaddr = kmap_local_page(page);
6883 	csum = csum_partial(kaddr + offset, len, 0);
6884 	kunmap_local(kaddr);
6885 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
6886 }
6887 
6888 /**
6889  * skb_splice_from_iter - Splice (or copy) pages to skbuff
6890  * @skb: The buffer to add pages to
6891  * @iter: Iterator representing the pages to be added
6892  * @maxsize: Maximum amount of pages to be added
6893  * @gfp: Allocation flags
6894  *
6895  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
6896  * extracts pages from an iterator and adds them to the socket buffer if
6897  * possible, copying them to fragments if not possible (such as if they're slab
6898  * pages).
6899  *
6900  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6901  * insufficient space in the buffer to transfer anything.
6902  */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize,gfp_t gfp)6903 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6904 			     ssize_t maxsize, gfp_t gfp)
6905 {
6906 	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6907 	struct page *pages[8], **ppages = pages;
6908 	ssize_t spliced = 0, ret = 0;
6909 	unsigned int i;
6910 
6911 	while (iter->count > 0) {
6912 		ssize_t space, nr, len;
6913 		size_t off;
6914 
6915 		ret = -EMSGSIZE;
6916 		space = frag_limit - skb_shinfo(skb)->nr_frags;
6917 		if (space < 0)
6918 			break;
6919 
6920 		/* We might be able to coalesce without increasing nr_frags */
6921 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6922 
6923 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6924 		if (len <= 0) {
6925 			ret = len ?: -EIO;
6926 			break;
6927 		}
6928 
6929 		i = 0;
6930 		do {
6931 			struct page *page = pages[i++];
6932 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
6933 
6934 			ret = -EIO;
6935 			if (WARN_ON_ONCE(!sendpage_ok(page)))
6936 				goto out;
6937 
6938 			ret = skb_append_pagefrags(skb, page, off, part,
6939 						   frag_limit);
6940 			if (ret < 0) {
6941 				iov_iter_revert(iter, len);
6942 				goto out;
6943 			}
6944 
6945 			if (skb->ip_summed == CHECKSUM_NONE)
6946 				skb_splice_csum_page(skb, page, off, part);
6947 
6948 			off = 0;
6949 			spliced += part;
6950 			maxsize -= part;
6951 			len -= part;
6952 		} while (len > 0);
6953 
6954 		if (maxsize <= 0)
6955 			break;
6956 	}
6957 
6958 out:
6959 	skb_len_add(skb, spliced);
6960 	return spliced ?: ret;
6961 }
6962 EXPORT_SYMBOL(skb_splice_from_iter);
6963