• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/io.h>
43 #include <linux/sched/mm.h>
44 #include <asm/tlbflush.h>
45 #include <asm/shmparam.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49 
50 #undef CREATE_TRACE_POINTS
51 #include <trace/hooks/mm.h>
52 
53 #include "internal.h"
54 #include "pgalloc-track.h"
55 
56 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
57 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
58 
set_nohugeiomap(char * str)59 static int __init set_nohugeiomap(char *str)
60 {
61 	ioremap_max_page_shift = PAGE_SHIFT;
62 	return 0;
63 }
64 early_param("nohugeiomap", set_nohugeiomap);
65 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
66 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
67 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
68 
69 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
70 static bool __ro_after_init vmap_allow_huge = true;
71 
set_nohugevmalloc(char * str)72 static int __init set_nohugevmalloc(char *str)
73 {
74 	vmap_allow_huge = false;
75 	return 0;
76 }
77 early_param("nohugevmalloc", set_nohugevmalloc);
78 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
79 static const bool vmap_allow_huge = false;
80 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
81 
is_vmalloc_addr(const void * x)82 bool is_vmalloc_addr(const void *x)
83 {
84 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
85 
86 	return addr >= VMALLOC_START && addr < VMALLOC_END;
87 }
88 EXPORT_SYMBOL(is_vmalloc_addr);
89 
90 struct vfree_deferred {
91 	struct llist_head list;
92 	struct work_struct wq;
93 };
94 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
95 
96 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)97 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
98 			phys_addr_t phys_addr, pgprot_t prot,
99 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
100 {
101 	pte_t *pte;
102 	u64 pfn;
103 	unsigned long size = PAGE_SIZE;
104 
105 	pfn = phys_addr >> PAGE_SHIFT;
106 	pte = pte_alloc_kernel_track(pmd, addr, mask);
107 	if (!pte)
108 		return -ENOMEM;
109 	do {
110 		BUG_ON(!pte_none(ptep_get(pte)));
111 
112 #ifdef CONFIG_HUGETLB_PAGE
113 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
114 		if (size != PAGE_SIZE) {
115 			pte_t entry = pfn_pte(pfn, prot);
116 
117 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
118 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
119 			pfn += PFN_DOWN(size);
120 			continue;
121 		}
122 #endif
123 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
124 		pfn++;
125 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
126 	*mask |= PGTBL_PTE_MODIFIED;
127 	return 0;
128 }
129 
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)130 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
131 			phys_addr_t phys_addr, pgprot_t prot,
132 			unsigned int max_page_shift)
133 {
134 	if (max_page_shift < PMD_SHIFT)
135 		return 0;
136 
137 	if (!arch_vmap_pmd_supported(prot))
138 		return 0;
139 
140 	if ((end - addr) != PMD_SIZE)
141 		return 0;
142 
143 	if (!IS_ALIGNED(addr, PMD_SIZE))
144 		return 0;
145 
146 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
147 		return 0;
148 
149 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
150 		return 0;
151 
152 	return pmd_set_huge(pmd, phys_addr, prot);
153 }
154 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)155 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
156 			phys_addr_t phys_addr, pgprot_t prot,
157 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
158 {
159 	pmd_t *pmd;
160 	unsigned long next;
161 
162 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
163 	if (!pmd)
164 		return -ENOMEM;
165 	do {
166 		next = pmd_addr_end(addr, end);
167 
168 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
169 					max_page_shift)) {
170 			*mask |= PGTBL_PMD_MODIFIED;
171 			continue;
172 		}
173 
174 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
175 			return -ENOMEM;
176 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
177 	return 0;
178 }
179 
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)180 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
181 			phys_addr_t phys_addr, pgprot_t prot,
182 			unsigned int max_page_shift)
183 {
184 	if (max_page_shift < PUD_SHIFT)
185 		return 0;
186 
187 	if (!arch_vmap_pud_supported(prot))
188 		return 0;
189 
190 	if ((end - addr) != PUD_SIZE)
191 		return 0;
192 
193 	if (!IS_ALIGNED(addr, PUD_SIZE))
194 		return 0;
195 
196 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
197 		return 0;
198 
199 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
200 		return 0;
201 
202 	return pud_set_huge(pud, phys_addr, prot);
203 }
204 
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)205 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
206 			phys_addr_t phys_addr, pgprot_t prot,
207 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
208 {
209 	pud_t *pud;
210 	unsigned long next;
211 
212 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
213 	if (!pud)
214 		return -ENOMEM;
215 	do {
216 		next = pud_addr_end(addr, end);
217 
218 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
219 					max_page_shift)) {
220 			*mask |= PGTBL_PUD_MODIFIED;
221 			continue;
222 		}
223 
224 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
225 					max_page_shift, mask))
226 			return -ENOMEM;
227 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
228 	return 0;
229 }
230 
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)231 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
232 			phys_addr_t phys_addr, pgprot_t prot,
233 			unsigned int max_page_shift)
234 {
235 	if (max_page_shift < P4D_SHIFT)
236 		return 0;
237 
238 	if (!arch_vmap_p4d_supported(prot))
239 		return 0;
240 
241 	if ((end - addr) != P4D_SIZE)
242 		return 0;
243 
244 	if (!IS_ALIGNED(addr, P4D_SIZE))
245 		return 0;
246 
247 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
248 		return 0;
249 
250 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
251 		return 0;
252 
253 	return p4d_set_huge(p4d, phys_addr, prot);
254 }
255 
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)256 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
257 			phys_addr_t phys_addr, pgprot_t prot,
258 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
259 {
260 	p4d_t *p4d;
261 	unsigned long next;
262 
263 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 	if (!p4d)
265 		return -ENOMEM;
266 	do {
267 		next = p4d_addr_end(addr, end);
268 
269 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
270 					max_page_shift)) {
271 			*mask |= PGTBL_P4D_MODIFIED;
272 			continue;
273 		}
274 
275 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
276 					max_page_shift, mask))
277 			return -ENOMEM;
278 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
279 	return 0;
280 }
281 
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)282 static int vmap_range_noflush(unsigned long addr, unsigned long end,
283 			phys_addr_t phys_addr, pgprot_t prot,
284 			unsigned int max_page_shift)
285 {
286 	pgd_t *pgd;
287 	unsigned long start;
288 	unsigned long next;
289 	int err;
290 	pgtbl_mod_mask mask = 0;
291 
292 	might_sleep();
293 	BUG_ON(addr >= end);
294 
295 	start = addr;
296 	pgd = pgd_offset_k(addr);
297 	do {
298 		next = pgd_addr_end(addr, end);
299 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
300 					max_page_shift, &mask);
301 		if (err)
302 			break;
303 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
304 
305 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
306 		arch_sync_kernel_mappings(start, end);
307 
308 	return err;
309 }
310 
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)311 int ioremap_page_range(unsigned long addr, unsigned long end,
312 		phys_addr_t phys_addr, pgprot_t prot)
313 {
314 	int err;
315 
316 	prot = pgprot_nx(prot);
317 	err = vmap_range_noflush(addr, end, phys_addr, prot,
318 				 ioremap_max_page_shift);
319 	flush_cache_vmap(addr, end);
320 	if (!err)
321 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
322 					       ioremap_max_page_shift);
323 
324 	if (IS_ENABLED(CONFIG_ARCH_HAS_IOREMAP_PHYS_HOOKS) && !err)
325 		ioremap_phys_range_hook(phys_addr, end - addr, prot);
326 
327 	return err;
328 }
329 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)330 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
331 			     pgtbl_mod_mask *mask)
332 {
333 	pte_t *pte;
334 
335 	pte = pte_offset_kernel(pmd, addr);
336 	do {
337 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
338 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
339 	} while (pte++, addr += PAGE_SIZE, addr != end);
340 	*mask |= PGTBL_PTE_MODIFIED;
341 }
342 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)343 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
344 			     pgtbl_mod_mask *mask)
345 {
346 	pmd_t *pmd;
347 	unsigned long next;
348 	int cleared;
349 
350 	pmd = pmd_offset(pud, addr);
351 	do {
352 		next = pmd_addr_end(addr, end);
353 
354 		cleared = pmd_clear_huge(pmd);
355 		if (cleared || pmd_bad(*pmd))
356 			*mask |= PGTBL_PMD_MODIFIED;
357 
358 		if (cleared)
359 			continue;
360 		if (pmd_none_or_clear_bad(pmd))
361 			continue;
362 		vunmap_pte_range(pmd, addr, next, mask);
363 
364 		cond_resched();
365 	} while (pmd++, addr = next, addr != end);
366 }
367 
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)368 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
369 			     pgtbl_mod_mask *mask)
370 {
371 	pud_t *pud;
372 	unsigned long next;
373 	int cleared;
374 
375 	pud = pud_offset(p4d, addr);
376 	do {
377 		next = pud_addr_end(addr, end);
378 
379 		cleared = pud_clear_huge(pud);
380 		if (cleared || pud_bad(*pud))
381 			*mask |= PGTBL_PUD_MODIFIED;
382 
383 		if (cleared)
384 			continue;
385 		if (pud_none_or_clear_bad(pud))
386 			continue;
387 		vunmap_pmd_range(pud, addr, next, mask);
388 	} while (pud++, addr = next, addr != end);
389 }
390 
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)391 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
392 			     pgtbl_mod_mask *mask)
393 {
394 	p4d_t *p4d;
395 	unsigned long next;
396 
397 	p4d = p4d_offset(pgd, addr);
398 	do {
399 		next = p4d_addr_end(addr, end);
400 
401 		p4d_clear_huge(p4d);
402 		if (p4d_bad(*p4d))
403 			*mask |= PGTBL_P4D_MODIFIED;
404 
405 		if (p4d_none_or_clear_bad(p4d))
406 			continue;
407 		vunmap_pud_range(p4d, addr, next, mask);
408 	} while (p4d++, addr = next, addr != end);
409 }
410 
411 /*
412  * vunmap_range_noflush is similar to vunmap_range, but does not
413  * flush caches or TLBs.
414  *
415  * The caller is responsible for calling flush_cache_vmap() before calling
416  * this function, and flush_tlb_kernel_range after it has returned
417  * successfully (and before the addresses are expected to cause a page fault
418  * or be re-mapped for something else, if TLB flushes are being delayed or
419  * coalesced).
420  *
421  * This is an internal function only. Do not use outside mm/.
422  */
__vunmap_range_noflush(unsigned long start,unsigned long end)423 void __vunmap_range_noflush(unsigned long start, unsigned long end)
424 {
425 	unsigned long next;
426 	pgd_t *pgd;
427 	unsigned long addr = start;
428 	pgtbl_mod_mask mask = 0;
429 
430 	BUG_ON(addr >= end);
431 	pgd = pgd_offset_k(addr);
432 	do {
433 		next = pgd_addr_end(addr, end);
434 		if (pgd_bad(*pgd))
435 			mask |= PGTBL_PGD_MODIFIED;
436 		if (pgd_none_or_clear_bad(pgd))
437 			continue;
438 		vunmap_p4d_range(pgd, addr, next, &mask);
439 	} while (pgd++, addr = next, addr != end);
440 
441 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
442 		arch_sync_kernel_mappings(start, end);
443 }
444 
vunmap_range_noflush(unsigned long start,unsigned long end)445 void vunmap_range_noflush(unsigned long start, unsigned long end)
446 {
447 	kmsan_vunmap_range_noflush(start, end);
448 	__vunmap_range_noflush(start, end);
449 }
450 
451 /**
452  * vunmap_range - unmap kernel virtual addresses
453  * @addr: start of the VM area to unmap
454  * @end: end of the VM area to unmap (non-inclusive)
455  *
456  * Clears any present PTEs in the virtual address range, flushes TLBs and
457  * caches. Any subsequent access to the address before it has been re-mapped
458  * is a kernel bug.
459  */
vunmap_range(unsigned long addr,unsigned long end)460 void vunmap_range(unsigned long addr, unsigned long end)
461 {
462 	flush_cache_vunmap(addr, end);
463 	vunmap_range_noflush(addr, end);
464 	flush_tlb_kernel_range(addr, end);
465 }
466 
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)467 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
468 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
469 		pgtbl_mod_mask *mask)
470 {
471 	pte_t *pte;
472 
473 	/*
474 	 * nr is a running index into the array which helps higher level
475 	 * callers keep track of where we're up to.
476 	 */
477 
478 	pte = pte_alloc_kernel_track(pmd, addr, mask);
479 	if (!pte)
480 		return -ENOMEM;
481 	do {
482 		struct page *page = pages[*nr];
483 
484 		if (WARN_ON(!pte_none(ptep_get(pte))))
485 			return -EBUSY;
486 		if (WARN_ON(!page))
487 			return -ENOMEM;
488 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
489 			return -EINVAL;
490 
491 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
492 		(*nr)++;
493 	} while (pte++, addr += PAGE_SIZE, addr != end);
494 	*mask |= PGTBL_PTE_MODIFIED;
495 	return 0;
496 }
497 
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)498 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
499 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
500 		pgtbl_mod_mask *mask)
501 {
502 	pmd_t *pmd;
503 	unsigned long next;
504 
505 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
506 	if (!pmd)
507 		return -ENOMEM;
508 	do {
509 		next = pmd_addr_end(addr, end);
510 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
511 			return -ENOMEM;
512 	} while (pmd++, addr = next, addr != end);
513 	return 0;
514 }
515 
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)516 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
517 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
518 		pgtbl_mod_mask *mask)
519 {
520 	pud_t *pud;
521 	unsigned long next;
522 
523 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
524 	if (!pud)
525 		return -ENOMEM;
526 	do {
527 		next = pud_addr_end(addr, end);
528 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
529 			return -ENOMEM;
530 	} while (pud++, addr = next, addr != end);
531 	return 0;
532 }
533 
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)534 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
535 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
536 		pgtbl_mod_mask *mask)
537 {
538 	p4d_t *p4d;
539 	unsigned long next;
540 
541 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
542 	if (!p4d)
543 		return -ENOMEM;
544 	do {
545 		next = p4d_addr_end(addr, end);
546 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
547 			return -ENOMEM;
548 	} while (p4d++, addr = next, addr != end);
549 	return 0;
550 }
551 
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)552 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
553 		pgprot_t prot, struct page **pages)
554 {
555 	unsigned long start = addr;
556 	pgd_t *pgd;
557 	unsigned long next;
558 	int err = 0;
559 	int nr = 0;
560 	pgtbl_mod_mask mask = 0;
561 
562 	BUG_ON(addr >= end);
563 	pgd = pgd_offset_k(addr);
564 	do {
565 		next = pgd_addr_end(addr, end);
566 		if (pgd_bad(*pgd))
567 			mask |= PGTBL_PGD_MODIFIED;
568 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
569 		if (err)
570 			return err;
571 	} while (pgd++, addr = next, addr != end);
572 
573 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
574 		arch_sync_kernel_mappings(start, end);
575 
576 	return 0;
577 }
578 
579 /*
580  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
581  * flush caches.
582  *
583  * The caller is responsible for calling flush_cache_vmap() after this
584  * function returns successfully and before the addresses are accessed.
585  *
586  * This is an internal function only. Do not use outside mm/.
587  */
__vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)588 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
589 		pgprot_t prot, struct page **pages, unsigned int page_shift)
590 {
591 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
592 
593 	WARN_ON(page_shift < PAGE_SHIFT);
594 
595 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
596 			page_shift == PAGE_SHIFT)
597 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
598 
599 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
600 		int err;
601 
602 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
603 					page_to_phys(pages[i]), prot,
604 					page_shift);
605 		if (err)
606 			return err;
607 
608 		addr += 1UL << page_shift;
609 	}
610 
611 	return 0;
612 }
613 
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)614 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
615 		pgprot_t prot, struct page **pages, unsigned int page_shift)
616 {
617 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
618 						 page_shift);
619 
620 	if (ret)
621 		return ret;
622 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
623 }
624 
625 /**
626  * vmap_pages_range - map pages to a kernel virtual address
627  * @addr: start of the VM area to map
628  * @end: end of the VM area to map (non-inclusive)
629  * @prot: page protection flags to use
630  * @pages: pages to map (always PAGE_SIZE pages)
631  * @page_shift: maximum shift that the pages may be mapped with, @pages must
632  * be aligned and contiguous up to at least this shift.
633  *
634  * RETURNS:
635  * 0 on success, -errno on failure.
636  */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)637 static int vmap_pages_range(unsigned long addr, unsigned long end,
638 		pgprot_t prot, struct page **pages, unsigned int page_shift)
639 {
640 	int err;
641 
642 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
643 	flush_cache_vmap(addr, end);
644 	return err;
645 }
646 
is_vmalloc_or_module_addr(const void * x)647 int is_vmalloc_or_module_addr(const void *x)
648 {
649 	/*
650 	 * ARM, x86-64 and sparc64 put modules in a special place,
651 	 * and fall back on vmalloc() if that fails. Others
652 	 * just put it in the vmalloc space.
653 	 */
654 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
655 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
656 	if (addr >= MODULES_VADDR && addr < MODULES_END)
657 		return 1;
658 #endif
659 	return is_vmalloc_addr(x);
660 }
661 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
662 
663 /*
664  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
665  * return the tail page that corresponds to the base page address, which
666  * matches small vmap mappings.
667  */
vmalloc_to_page(const void * vmalloc_addr)668 struct page *vmalloc_to_page(const void *vmalloc_addr)
669 {
670 	unsigned long addr = (unsigned long) vmalloc_addr;
671 	struct page *page = NULL;
672 	pgd_t *pgd = pgd_offset_k(addr);
673 	p4d_t *p4d;
674 	pud_t *pud;
675 	pmd_t *pmd;
676 	pte_t *ptep, pte;
677 
678 	/*
679 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
680 	 * architectures that do not vmalloc module space
681 	 */
682 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
683 
684 	if (pgd_none(*pgd))
685 		return NULL;
686 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
687 		return NULL; /* XXX: no allowance for huge pgd */
688 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
689 		return NULL;
690 
691 	p4d = p4d_offset(pgd, addr);
692 	if (p4d_none(*p4d))
693 		return NULL;
694 	if (p4d_leaf(*p4d))
695 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
696 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
697 		return NULL;
698 
699 	pud = pud_offset(p4d, addr);
700 	if (pud_none(*pud))
701 		return NULL;
702 	if (pud_leaf(*pud))
703 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
704 	if (WARN_ON_ONCE(pud_bad(*pud)))
705 		return NULL;
706 
707 	pmd = pmd_offset(pud, addr);
708 	if (pmd_none(*pmd))
709 		return NULL;
710 	if (pmd_leaf(*pmd))
711 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
712 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
713 		return NULL;
714 
715 	ptep = pte_offset_kernel(pmd, addr);
716 	pte = ptep_get(ptep);
717 	if (pte_present(pte))
718 		page = pte_page(pte);
719 
720 	return page;
721 }
722 EXPORT_SYMBOL(vmalloc_to_page);
723 
724 /*
725  * Map a vmalloc()-space virtual address to the physical page frame number.
726  */
vmalloc_to_pfn(const void * vmalloc_addr)727 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
728 {
729 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
730 }
731 EXPORT_SYMBOL(vmalloc_to_pfn);
732 
733 
734 /*** Global kva allocator ***/
735 
736 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
737 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
738 
739 
740 static DEFINE_SPINLOCK(vmap_area_lock);
741 static DEFINE_SPINLOCK(free_vmap_area_lock);
742 /* Export for kexec only */
743 LIST_HEAD(vmap_area_list);
744 static struct rb_root vmap_area_root = RB_ROOT;
745 static bool vmap_initialized __read_mostly;
746 
747 static struct rb_root purge_vmap_area_root = RB_ROOT;
748 static LIST_HEAD(purge_vmap_area_list);
749 static DEFINE_SPINLOCK(purge_vmap_area_lock);
750 
751 /*
752  * This kmem_cache is used for vmap_area objects. Instead of
753  * allocating from slab we reuse an object from this cache to
754  * make things faster. Especially in "no edge" splitting of
755  * free block.
756  */
757 static struct kmem_cache *vmap_area_cachep;
758 
759 /*
760  * This linked list is used in pair with free_vmap_area_root.
761  * It gives O(1) access to prev/next to perform fast coalescing.
762  */
763 static LIST_HEAD(free_vmap_area_list);
764 
765 /*
766  * This augment red-black tree represents the free vmap space.
767  * All vmap_area objects in this tree are sorted by va->va_start
768  * address. It is used for allocation and merging when a vmap
769  * object is released.
770  *
771  * Each vmap_area node contains a maximum available free block
772  * of its sub-tree, right or left. Therefore it is possible to
773  * find a lowest match of free area.
774  */
775 static struct rb_root free_vmap_area_root = RB_ROOT;
776 
777 /*
778  * Preload a CPU with one object for "no edge" split case. The
779  * aim is to get rid of allocations from the atomic context, thus
780  * to use more permissive allocation masks.
781  */
782 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
783 
784 static __always_inline unsigned long
va_size(struct vmap_area * va)785 va_size(struct vmap_area *va)
786 {
787 	return (va->va_end - va->va_start);
788 }
789 
790 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)791 get_subtree_max_size(struct rb_node *node)
792 {
793 	struct vmap_area *va;
794 
795 	va = rb_entry_safe(node, struct vmap_area, rb_node);
796 	return va ? va->subtree_max_size : 0;
797 }
798 
799 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
800 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
801 
802 static void reclaim_and_purge_vmap_areas(void);
803 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
804 static void drain_vmap_area_work(struct work_struct *work);
805 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
806 
807 static atomic_long_t nr_vmalloc_pages;
808 
vmalloc_nr_pages(void)809 unsigned long vmalloc_nr_pages(void)
810 {
811 	return atomic_long_read(&nr_vmalloc_pages);
812 }
813 EXPORT_SYMBOL_GPL(vmalloc_nr_pages);
814 
815 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
find_vmap_area_exceed_addr(unsigned long addr)816 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
817 {
818 	struct vmap_area *va = NULL;
819 	struct rb_node *n = vmap_area_root.rb_node;
820 
821 	addr = (unsigned long)kasan_reset_tag((void *)addr);
822 
823 	while (n) {
824 		struct vmap_area *tmp;
825 
826 		tmp = rb_entry(n, struct vmap_area, rb_node);
827 		if (tmp->va_end > addr) {
828 			va = tmp;
829 			if (tmp->va_start <= addr)
830 				break;
831 
832 			n = n->rb_left;
833 		} else
834 			n = n->rb_right;
835 	}
836 
837 	return va;
838 }
839 
__find_vmap_area(unsigned long addr,struct rb_root * root)840 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
841 {
842 	struct rb_node *n = root->rb_node;
843 
844 	addr = (unsigned long)kasan_reset_tag((void *)addr);
845 
846 	while (n) {
847 		struct vmap_area *va;
848 
849 		va = rb_entry(n, struct vmap_area, rb_node);
850 		if (addr < va->va_start)
851 			n = n->rb_left;
852 		else if (addr >= va->va_end)
853 			n = n->rb_right;
854 		else
855 			return va;
856 	}
857 
858 	return NULL;
859 }
860 
861 /*
862  * This function returns back addresses of parent node
863  * and its left or right link for further processing.
864  *
865  * Otherwise NULL is returned. In that case all further
866  * steps regarding inserting of conflicting overlap range
867  * have to be declined and actually considered as a bug.
868  */
869 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)870 find_va_links(struct vmap_area *va,
871 	struct rb_root *root, struct rb_node *from,
872 	struct rb_node **parent)
873 {
874 	struct vmap_area *tmp_va;
875 	struct rb_node **link;
876 
877 	if (root) {
878 		link = &root->rb_node;
879 		if (unlikely(!*link)) {
880 			*parent = NULL;
881 			return link;
882 		}
883 	} else {
884 		link = &from;
885 	}
886 
887 	/*
888 	 * Go to the bottom of the tree. When we hit the last point
889 	 * we end up with parent rb_node and correct direction, i name
890 	 * it link, where the new va->rb_node will be attached to.
891 	 */
892 	do {
893 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
894 
895 		/*
896 		 * During the traversal we also do some sanity check.
897 		 * Trigger the BUG() if there are sides(left/right)
898 		 * or full overlaps.
899 		 */
900 		if (va->va_end <= tmp_va->va_start)
901 			link = &(*link)->rb_left;
902 		else if (va->va_start >= tmp_va->va_end)
903 			link = &(*link)->rb_right;
904 		else {
905 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
906 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
907 
908 			return NULL;
909 		}
910 	} while (*link);
911 
912 	*parent = &tmp_va->rb_node;
913 	return link;
914 }
915 
916 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)917 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
918 {
919 	struct list_head *list;
920 
921 	if (unlikely(!parent))
922 		/*
923 		 * The red-black tree where we try to find VA neighbors
924 		 * before merging or inserting is empty, i.e. it means
925 		 * there is no free vmap space. Normally it does not
926 		 * happen but we handle this case anyway.
927 		 */
928 		return NULL;
929 
930 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
931 	return (&parent->rb_right == link ? list->next : list);
932 }
933 
934 static __always_inline void
__link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head,bool augment)935 __link_va(struct vmap_area *va, struct rb_root *root,
936 	struct rb_node *parent, struct rb_node **link,
937 	struct list_head *head, bool augment)
938 {
939 	/*
940 	 * VA is still not in the list, but we can
941 	 * identify its future previous list_head node.
942 	 */
943 	if (likely(parent)) {
944 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
945 		if (&parent->rb_right != link)
946 			head = head->prev;
947 	}
948 
949 	/* Insert to the rb-tree */
950 	rb_link_node(&va->rb_node, parent, link);
951 	if (augment) {
952 		/*
953 		 * Some explanation here. Just perform simple insertion
954 		 * to the tree. We do not set va->subtree_max_size to
955 		 * its current size before calling rb_insert_augmented().
956 		 * It is because we populate the tree from the bottom
957 		 * to parent levels when the node _is_ in the tree.
958 		 *
959 		 * Therefore we set subtree_max_size to zero after insertion,
960 		 * to let __augment_tree_propagate_from() puts everything to
961 		 * the correct order later on.
962 		 */
963 		rb_insert_augmented(&va->rb_node,
964 			root, &free_vmap_area_rb_augment_cb);
965 		va->subtree_max_size = 0;
966 	} else {
967 		rb_insert_color(&va->rb_node, root);
968 	}
969 
970 	/* Address-sort this list */
971 	list_add(&va->list, head);
972 }
973 
974 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)975 link_va(struct vmap_area *va, struct rb_root *root,
976 	struct rb_node *parent, struct rb_node **link,
977 	struct list_head *head)
978 {
979 	__link_va(va, root, parent, link, head, false);
980 }
981 
982 static __always_inline void
link_va_augment(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)983 link_va_augment(struct vmap_area *va, struct rb_root *root,
984 	struct rb_node *parent, struct rb_node **link,
985 	struct list_head *head)
986 {
987 	__link_va(va, root, parent, link, head, true);
988 }
989 
990 static __always_inline void
__unlink_va(struct vmap_area * va,struct rb_root * root,bool augment)991 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
992 {
993 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
994 		return;
995 
996 	if (augment)
997 		rb_erase_augmented(&va->rb_node,
998 			root, &free_vmap_area_rb_augment_cb);
999 	else
1000 		rb_erase(&va->rb_node, root);
1001 
1002 	list_del_init(&va->list);
1003 	RB_CLEAR_NODE(&va->rb_node);
1004 }
1005 
1006 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)1007 unlink_va(struct vmap_area *va, struct rb_root *root)
1008 {
1009 	__unlink_va(va, root, false);
1010 }
1011 
1012 static __always_inline void
unlink_va_augment(struct vmap_area * va,struct rb_root * root)1013 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1014 {
1015 	__unlink_va(va, root, true);
1016 }
1017 
1018 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1019 /*
1020  * Gets called when remove the node and rotate.
1021  */
1022 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)1023 compute_subtree_max_size(struct vmap_area *va)
1024 {
1025 	return max3(va_size(va),
1026 		get_subtree_max_size(va->rb_node.rb_left),
1027 		get_subtree_max_size(va->rb_node.rb_right));
1028 }
1029 
1030 static void
augment_tree_propagate_check(void)1031 augment_tree_propagate_check(void)
1032 {
1033 	struct vmap_area *va;
1034 	unsigned long computed_size;
1035 
1036 	list_for_each_entry(va, &free_vmap_area_list, list) {
1037 		computed_size = compute_subtree_max_size(va);
1038 		if (computed_size != va->subtree_max_size)
1039 			pr_emerg("tree is corrupted: %lu, %lu\n",
1040 				va_size(va), va->subtree_max_size);
1041 	}
1042 }
1043 #endif
1044 
1045 /*
1046  * This function populates subtree_max_size from bottom to upper
1047  * levels starting from VA point. The propagation must be done
1048  * when VA size is modified by changing its va_start/va_end. Or
1049  * in case of newly inserting of VA to the tree.
1050  *
1051  * It means that __augment_tree_propagate_from() must be called:
1052  * - After VA has been inserted to the tree(free path);
1053  * - After VA has been shrunk(allocation path);
1054  * - After VA has been increased(merging path).
1055  *
1056  * Please note that, it does not mean that upper parent nodes
1057  * and their subtree_max_size are recalculated all the time up
1058  * to the root node.
1059  *
1060  *       4--8
1061  *        /\
1062  *       /  \
1063  *      /    \
1064  *    2--2  8--8
1065  *
1066  * For example if we modify the node 4, shrinking it to 2, then
1067  * no any modification is required. If we shrink the node 2 to 1
1068  * its subtree_max_size is updated only, and set to 1. If we shrink
1069  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1070  * node becomes 4--6.
1071  */
1072 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1073 augment_tree_propagate_from(struct vmap_area *va)
1074 {
1075 	/*
1076 	 * Populate the tree from bottom towards the root until
1077 	 * the calculated maximum available size of checked node
1078 	 * is equal to its current one.
1079 	 */
1080 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1081 
1082 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1083 	augment_tree_propagate_check();
1084 #endif
1085 }
1086 
1087 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1088 insert_vmap_area(struct vmap_area *va,
1089 	struct rb_root *root, struct list_head *head)
1090 {
1091 	struct rb_node **link;
1092 	struct rb_node *parent;
1093 
1094 	link = find_va_links(va, root, NULL, &parent);
1095 	if (link)
1096 		link_va(va, root, parent, link, head);
1097 }
1098 
1099 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1100 insert_vmap_area_augment(struct vmap_area *va,
1101 	struct rb_node *from, struct rb_root *root,
1102 	struct list_head *head)
1103 {
1104 	struct rb_node **link;
1105 	struct rb_node *parent;
1106 
1107 	if (from)
1108 		link = find_va_links(va, NULL, from, &parent);
1109 	else
1110 		link = find_va_links(va, root, NULL, &parent);
1111 
1112 	if (link) {
1113 		link_va_augment(va, root, parent, link, head);
1114 		augment_tree_propagate_from(va);
1115 	}
1116 }
1117 
1118 /*
1119  * Merge de-allocated chunk of VA memory with previous
1120  * and next free blocks. If coalesce is not done a new
1121  * free area is inserted. If VA has been merged, it is
1122  * freed.
1123  *
1124  * Please note, it can return NULL in case of overlap
1125  * ranges, followed by WARN() report. Despite it is a
1126  * buggy behaviour, a system can be alive and keep
1127  * ongoing.
1128  */
1129 static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head,bool augment)1130 __merge_or_add_vmap_area(struct vmap_area *va,
1131 	struct rb_root *root, struct list_head *head, bool augment)
1132 {
1133 	struct vmap_area *sibling;
1134 	struct list_head *next;
1135 	struct rb_node **link;
1136 	struct rb_node *parent;
1137 	bool merged = false;
1138 
1139 	/*
1140 	 * Find a place in the tree where VA potentially will be
1141 	 * inserted, unless it is merged with its sibling/siblings.
1142 	 */
1143 	link = find_va_links(va, root, NULL, &parent);
1144 	if (!link)
1145 		return NULL;
1146 
1147 	/*
1148 	 * Get next node of VA to check if merging can be done.
1149 	 */
1150 	next = get_va_next_sibling(parent, link);
1151 	if (unlikely(next == NULL))
1152 		goto insert;
1153 
1154 	/*
1155 	 * start            end
1156 	 * |                |
1157 	 * |<------VA------>|<-----Next----->|
1158 	 *                  |                |
1159 	 *                  start            end
1160 	 */
1161 	if (next != head) {
1162 		sibling = list_entry(next, struct vmap_area, list);
1163 		if (sibling->va_start == va->va_end) {
1164 			sibling->va_start = va->va_start;
1165 
1166 			/* Free vmap_area object. */
1167 			kmem_cache_free(vmap_area_cachep, va);
1168 
1169 			/* Point to the new merged area. */
1170 			va = sibling;
1171 			merged = true;
1172 		}
1173 	}
1174 
1175 	/*
1176 	 * start            end
1177 	 * |                |
1178 	 * |<-----Prev----->|<------VA------>|
1179 	 *                  |                |
1180 	 *                  start            end
1181 	 */
1182 	if (next->prev != head) {
1183 		sibling = list_entry(next->prev, struct vmap_area, list);
1184 		if (sibling->va_end == va->va_start) {
1185 			/*
1186 			 * If both neighbors are coalesced, it is important
1187 			 * to unlink the "next" node first, followed by merging
1188 			 * with "previous" one. Otherwise the tree might not be
1189 			 * fully populated if a sibling's augmented value is
1190 			 * "normalized" because of rotation operations.
1191 			 */
1192 			if (merged)
1193 				__unlink_va(va, root, augment);
1194 
1195 			sibling->va_end = va->va_end;
1196 
1197 			/* Free vmap_area object. */
1198 			kmem_cache_free(vmap_area_cachep, va);
1199 
1200 			/* Point to the new merged area. */
1201 			va = sibling;
1202 			merged = true;
1203 		}
1204 	}
1205 
1206 insert:
1207 	if (!merged)
1208 		__link_va(va, root, parent, link, head, augment);
1209 
1210 	return va;
1211 }
1212 
1213 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1214 merge_or_add_vmap_area(struct vmap_area *va,
1215 	struct rb_root *root, struct list_head *head)
1216 {
1217 	return __merge_or_add_vmap_area(va, root, head, false);
1218 }
1219 
1220 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1221 merge_or_add_vmap_area_augment(struct vmap_area *va,
1222 	struct rb_root *root, struct list_head *head)
1223 {
1224 	va = __merge_or_add_vmap_area(va, root, head, true);
1225 	if (va)
1226 		augment_tree_propagate_from(va);
1227 
1228 	return va;
1229 }
1230 
1231 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1232 is_within_this_va(struct vmap_area *va, unsigned long size,
1233 	unsigned long align, unsigned long vstart)
1234 {
1235 	unsigned long nva_start_addr;
1236 
1237 	if (va->va_start > vstart)
1238 		nva_start_addr = ALIGN(va->va_start, align);
1239 	else
1240 		nva_start_addr = ALIGN(vstart, align);
1241 
1242 	/* Can be overflowed due to big size or alignment. */
1243 	if (nva_start_addr + size < nva_start_addr ||
1244 			nva_start_addr < vstart)
1245 		return false;
1246 
1247 	return (nva_start_addr + size <= va->va_end);
1248 }
1249 
1250 /*
1251  * Find the first free block(lowest start address) in the tree,
1252  * that will accomplish the request corresponding to passing
1253  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1254  * a search length is adjusted to account for worst case alignment
1255  * overhead.
1256  */
1257 static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root * root,unsigned long size,unsigned long align,unsigned long vstart,bool adjust_search_size)1258 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1259 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1260 {
1261 	struct vmap_area *va;
1262 	struct rb_node *node;
1263 	unsigned long length;
1264 
1265 	/* Start from the root. */
1266 	node = root->rb_node;
1267 
1268 	/* Adjust the search size for alignment overhead. */
1269 	length = adjust_search_size ? size + align - 1 : size;
1270 
1271 	while (node) {
1272 		va = rb_entry(node, struct vmap_area, rb_node);
1273 
1274 		if (get_subtree_max_size(node->rb_left) >= length &&
1275 				vstart < va->va_start) {
1276 			node = node->rb_left;
1277 		} else {
1278 			if (is_within_this_va(va, size, align, vstart))
1279 				return va;
1280 
1281 			/*
1282 			 * Does not make sense to go deeper towards the right
1283 			 * sub-tree if it does not have a free block that is
1284 			 * equal or bigger to the requested search length.
1285 			 */
1286 			if (get_subtree_max_size(node->rb_right) >= length) {
1287 				node = node->rb_right;
1288 				continue;
1289 			}
1290 
1291 			/*
1292 			 * OK. We roll back and find the first right sub-tree,
1293 			 * that will satisfy the search criteria. It can happen
1294 			 * due to "vstart" restriction or an alignment overhead
1295 			 * that is bigger then PAGE_SIZE.
1296 			 */
1297 			while ((node = rb_parent(node))) {
1298 				va = rb_entry(node, struct vmap_area, rb_node);
1299 				if (is_within_this_va(va, size, align, vstart))
1300 					return va;
1301 
1302 				if (get_subtree_max_size(node->rb_right) >= length &&
1303 						vstart <= va->va_start) {
1304 					/*
1305 					 * Shift the vstart forward. Please note, we update it with
1306 					 * parent's start address adding "1" because we do not want
1307 					 * to enter same sub-tree after it has already been checked
1308 					 * and no suitable free block found there.
1309 					 */
1310 					vstart = va->va_start + 1;
1311 					node = node->rb_right;
1312 					break;
1313 				}
1314 			}
1315 		}
1316 	}
1317 
1318 	return NULL;
1319 }
1320 
1321 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1322 #include <linux/random.h>
1323 
1324 static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart)1325 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1326 	unsigned long align, unsigned long vstart)
1327 {
1328 	struct vmap_area *va;
1329 
1330 	list_for_each_entry(va, head, list) {
1331 		if (!is_within_this_va(va, size, align, vstart))
1332 			continue;
1333 
1334 		return va;
1335 	}
1336 
1337 	return NULL;
1338 }
1339 
1340 static void
find_vmap_lowest_match_check(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align)1341 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1342 			     unsigned long size, unsigned long align)
1343 {
1344 	struct vmap_area *va_1, *va_2;
1345 	unsigned long vstart;
1346 	unsigned int rnd;
1347 
1348 	get_random_bytes(&rnd, sizeof(rnd));
1349 	vstart = VMALLOC_START + rnd;
1350 
1351 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1352 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1353 
1354 	if (va_1 != va_2)
1355 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1356 			va_1, va_2, vstart);
1357 }
1358 #endif
1359 
1360 enum fit_type {
1361 	NOTHING_FIT = 0,
1362 	FL_FIT_TYPE = 1,	/* full fit */
1363 	LE_FIT_TYPE = 2,	/* left edge fit */
1364 	RE_FIT_TYPE = 3,	/* right edge fit */
1365 	NE_FIT_TYPE = 4		/* no edge fit */
1366 };
1367 
1368 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1369 classify_va_fit_type(struct vmap_area *va,
1370 	unsigned long nva_start_addr, unsigned long size)
1371 {
1372 	enum fit_type type;
1373 
1374 	/* Check if it is within VA. */
1375 	if (nva_start_addr < va->va_start ||
1376 			nva_start_addr + size > va->va_end)
1377 		return NOTHING_FIT;
1378 
1379 	/* Now classify. */
1380 	if (va->va_start == nva_start_addr) {
1381 		if (va->va_end == nva_start_addr + size)
1382 			type = FL_FIT_TYPE;
1383 		else
1384 			type = LE_FIT_TYPE;
1385 	} else if (va->va_end == nva_start_addr + size) {
1386 		type = RE_FIT_TYPE;
1387 	} else {
1388 		type = NE_FIT_TYPE;
1389 	}
1390 
1391 	return type;
1392 }
1393 
1394 static __always_inline int
adjust_va_to_fit_type(struct rb_root * root,struct list_head * head,struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1395 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1396 		      struct vmap_area *va, unsigned long nva_start_addr,
1397 		      unsigned long size)
1398 {
1399 	struct vmap_area *lva = NULL;
1400 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1401 
1402 	if (type == FL_FIT_TYPE) {
1403 		/*
1404 		 * No need to split VA, it fully fits.
1405 		 *
1406 		 * |               |
1407 		 * V      NVA      V
1408 		 * |---------------|
1409 		 */
1410 		unlink_va_augment(va, root);
1411 		kmem_cache_free(vmap_area_cachep, va);
1412 	} else if (type == LE_FIT_TYPE) {
1413 		/*
1414 		 * Split left edge of fit VA.
1415 		 *
1416 		 * |       |
1417 		 * V  NVA  V   R
1418 		 * |-------|-------|
1419 		 */
1420 		va->va_start += size;
1421 	} else if (type == RE_FIT_TYPE) {
1422 		/*
1423 		 * Split right edge of fit VA.
1424 		 *
1425 		 *         |       |
1426 		 *     L   V  NVA  V
1427 		 * |-------|-------|
1428 		 */
1429 		va->va_end = nva_start_addr;
1430 	} else if (type == NE_FIT_TYPE) {
1431 		/*
1432 		 * Split no edge of fit VA.
1433 		 *
1434 		 *     |       |
1435 		 *   L V  NVA  V R
1436 		 * |---|-------|---|
1437 		 */
1438 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1439 		if (unlikely(!lva)) {
1440 			/*
1441 			 * For percpu allocator we do not do any pre-allocation
1442 			 * and leave it as it is. The reason is it most likely
1443 			 * never ends up with NE_FIT_TYPE splitting. In case of
1444 			 * percpu allocations offsets and sizes are aligned to
1445 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1446 			 * are its main fitting cases.
1447 			 *
1448 			 * There are a few exceptions though, as an example it is
1449 			 * a first allocation (early boot up) when we have "one"
1450 			 * big free space that has to be split.
1451 			 *
1452 			 * Also we can hit this path in case of regular "vmap"
1453 			 * allocations, if "this" current CPU was not preloaded.
1454 			 * See the comment in alloc_vmap_area() why. If so, then
1455 			 * GFP_NOWAIT is used instead to get an extra object for
1456 			 * split purpose. That is rare and most time does not
1457 			 * occur.
1458 			 *
1459 			 * What happens if an allocation gets failed. Basically,
1460 			 * an "overflow" path is triggered to purge lazily freed
1461 			 * areas to free some memory, then, the "retry" path is
1462 			 * triggered to repeat one more time. See more details
1463 			 * in alloc_vmap_area() function.
1464 			 */
1465 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1466 			if (!lva)
1467 				return -1;
1468 		}
1469 
1470 		/*
1471 		 * Build the remainder.
1472 		 */
1473 		lva->va_start = va->va_start;
1474 		lva->va_end = nva_start_addr;
1475 
1476 		/*
1477 		 * Shrink this VA to remaining size.
1478 		 */
1479 		va->va_start = nva_start_addr + size;
1480 	} else {
1481 		return -1;
1482 	}
1483 
1484 	if (type != FL_FIT_TYPE) {
1485 		augment_tree_propagate_from(va);
1486 
1487 		if (lva)	/* type == NE_FIT_TYPE */
1488 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 /*
1495  * Returns a start address of the newly allocated area, if success.
1496  * Otherwise a vend is returned that indicates failure.
1497  */
1498 static __always_inline unsigned long
__alloc_vmap_area(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1499 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1500 	unsigned long size, unsigned long align,
1501 	unsigned long vstart, unsigned long vend)
1502 {
1503 	bool adjust_search_size = true;
1504 	unsigned long nva_start_addr;
1505 	struct vmap_area *va;
1506 	int ret;
1507 
1508 	/*
1509 	 * Do not adjust when:
1510 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1511 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1512 	 *      aligned anyway;
1513 	 *   b) a short range where a requested size corresponds to exactly
1514 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1515 	 *      With adjusted search length an allocation would not succeed.
1516 	 */
1517 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1518 		adjust_search_size = false;
1519 
1520 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1521 	if (unlikely(!va))
1522 		return vend;
1523 
1524 	if (va->va_start > vstart)
1525 		nva_start_addr = ALIGN(va->va_start, align);
1526 	else
1527 		nva_start_addr = ALIGN(vstart, align);
1528 
1529 	/* Check the "vend" restriction. */
1530 	if (nva_start_addr + size > vend)
1531 		return vend;
1532 
1533 	/* Update the free vmap_area. */
1534 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1535 	if (WARN_ON_ONCE(ret))
1536 		return vend;
1537 
1538 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1539 	find_vmap_lowest_match_check(root, head, size, align);
1540 #endif
1541 
1542 	return nva_start_addr;
1543 }
1544 
1545 /*
1546  * Free a region of KVA allocated by alloc_vmap_area
1547  */
free_vmap_area(struct vmap_area * va)1548 static void free_vmap_area(struct vmap_area *va)
1549 {
1550 	/*
1551 	 * Remove from the busy tree/list.
1552 	 */
1553 	spin_lock(&vmap_area_lock);
1554 	unlink_va(va, &vmap_area_root);
1555 	spin_unlock(&vmap_area_lock);
1556 
1557 	/*
1558 	 * Insert/Merge it back to the free tree/list.
1559 	 */
1560 	spin_lock(&free_vmap_area_lock);
1561 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1562 	spin_unlock(&free_vmap_area_lock);
1563 }
1564 
1565 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1566 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1567 {
1568 	struct vmap_area *va = NULL;
1569 
1570 	/*
1571 	 * Preload this CPU with one extra vmap_area object. It is used
1572 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1573 	 * a CPU that does an allocation is preloaded.
1574 	 *
1575 	 * We do it in non-atomic context, thus it allows us to use more
1576 	 * permissive allocation masks to be more stable under low memory
1577 	 * condition and high memory pressure.
1578 	 */
1579 	if (!this_cpu_read(ne_fit_preload_node))
1580 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1581 
1582 	spin_lock(lock);
1583 
1584 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1585 		kmem_cache_free(vmap_area_cachep, va);
1586 }
1587 
1588 /*
1589  * Allocate a region of KVA of the specified size and alignment, within the
1590  * vstart and vend.
1591  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask,unsigned long va_flags)1592 static struct vmap_area *alloc_vmap_area(unsigned long size,
1593 				unsigned long align,
1594 				unsigned long vstart, unsigned long vend,
1595 				int node, gfp_t gfp_mask,
1596 				unsigned long va_flags)
1597 {
1598 	struct vmap_area *va;
1599 	unsigned long freed;
1600 	unsigned long addr;
1601 	int purged = 0;
1602 	int ret;
1603 
1604 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1605 		return ERR_PTR(-EINVAL);
1606 
1607 	if (unlikely(!vmap_initialized))
1608 		return ERR_PTR(-EBUSY);
1609 
1610 	might_sleep();
1611 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1612 
1613 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1614 	if (unlikely(!va))
1615 		return ERR_PTR(-ENOMEM);
1616 
1617 	/*
1618 	 * Only scan the relevant parts containing pointers to other objects
1619 	 * to avoid false negatives.
1620 	 */
1621 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1622 
1623 retry:
1624 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1625 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1626 		size, align, vstart, vend);
1627 	spin_unlock(&free_vmap_area_lock);
1628 
1629 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1630 
1631 	/*
1632 	 * If an allocation fails, the "vend" address is
1633 	 * returned. Therefore trigger the overflow path.
1634 	 */
1635 	if (unlikely(addr == vend))
1636 		goto overflow;
1637 
1638 	va->va_start = addr;
1639 	va->va_end = addr + size;
1640 	va->vm = NULL;
1641 	va->flags = va_flags;
1642 
1643 	spin_lock(&vmap_area_lock);
1644 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1645 	spin_unlock(&vmap_area_lock);
1646 
1647 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1648 	BUG_ON(va->va_start < vstart);
1649 	BUG_ON(va->va_end > vend);
1650 
1651 	ret = kasan_populate_vmalloc(addr, size);
1652 	if (ret) {
1653 		free_vmap_area(va);
1654 		return ERR_PTR(ret);
1655 	}
1656 
1657 	return va;
1658 
1659 overflow:
1660 	if (!purged) {
1661 		reclaim_and_purge_vmap_areas();
1662 		purged = 1;
1663 		goto retry;
1664 	}
1665 
1666 	freed = 0;
1667 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1668 
1669 	if (freed > 0) {
1670 		purged = 0;
1671 		goto retry;
1672 	}
1673 
1674 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1675 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1676 			size);
1677 
1678 	kmem_cache_free(vmap_area_cachep, va);
1679 	return ERR_PTR(-EBUSY);
1680 }
1681 
register_vmap_purge_notifier(struct notifier_block * nb)1682 int register_vmap_purge_notifier(struct notifier_block *nb)
1683 {
1684 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1685 }
1686 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1687 
unregister_vmap_purge_notifier(struct notifier_block * nb)1688 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1689 {
1690 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1691 }
1692 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1693 
1694 /*
1695  * lazy_max_pages is the maximum amount of virtual address space we gather up
1696  * before attempting to purge with a TLB flush.
1697  *
1698  * There is a tradeoff here: a larger number will cover more kernel page tables
1699  * and take slightly longer to purge, but it will linearly reduce the number of
1700  * global TLB flushes that must be performed. It would seem natural to scale
1701  * this number up linearly with the number of CPUs (because vmapping activity
1702  * could also scale linearly with the number of CPUs), however it is likely
1703  * that in practice, workloads might be constrained in other ways that mean
1704  * vmap activity will not scale linearly with CPUs. Also, I want to be
1705  * conservative and not introduce a big latency on huge systems, so go with
1706  * a less aggressive log scale. It will still be an improvement over the old
1707  * code, and it will be simple to change the scale factor if we find that it
1708  * becomes a problem on bigger systems.
1709  */
lazy_max_pages(void)1710 static unsigned long lazy_max_pages(void)
1711 {
1712 	unsigned int log;
1713 
1714 	log = fls(num_online_cpus());
1715 
1716 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1717 }
1718 
1719 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1720 
1721 /*
1722  * Serialize vmap purging.  There is no actual critical section protected
1723  * by this lock, but we want to avoid concurrent calls for performance
1724  * reasons and to make the pcpu_get_vm_areas more deterministic.
1725  */
1726 static DEFINE_MUTEX(vmap_purge_lock);
1727 
1728 /* for per-CPU blocks */
1729 static void purge_fragmented_blocks_allcpus(void);
1730 
1731 /*
1732  * Purges all lazily-freed vmap areas.
1733  */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)1734 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1735 {
1736 	unsigned long resched_threshold;
1737 	unsigned int num_purged_areas = 0;
1738 	struct list_head local_purge_list;
1739 	struct vmap_area *va, *n_va;
1740 
1741 	lockdep_assert_held(&vmap_purge_lock);
1742 
1743 	spin_lock(&purge_vmap_area_lock);
1744 	purge_vmap_area_root = RB_ROOT;
1745 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1746 	spin_unlock(&purge_vmap_area_lock);
1747 
1748 	if (unlikely(list_empty(&local_purge_list)))
1749 		goto out;
1750 
1751 	start = min(start,
1752 		list_first_entry(&local_purge_list,
1753 			struct vmap_area, list)->va_start);
1754 
1755 	end = max(end,
1756 		list_last_entry(&local_purge_list,
1757 			struct vmap_area, list)->va_end);
1758 
1759 	flush_tlb_kernel_range(start, end);
1760 	resched_threshold = lazy_max_pages() << 1;
1761 
1762 	spin_lock(&free_vmap_area_lock);
1763 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1764 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1765 		unsigned long orig_start = va->va_start;
1766 		unsigned long orig_end = va->va_end;
1767 
1768 		/*
1769 		 * Finally insert or merge lazily-freed area. It is
1770 		 * detached and there is no need to "unlink" it from
1771 		 * anything.
1772 		 */
1773 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1774 				&free_vmap_area_list);
1775 
1776 		if (!va)
1777 			continue;
1778 
1779 		if (is_vmalloc_or_module_addr((void *)orig_start))
1780 			kasan_release_vmalloc(orig_start, orig_end,
1781 					      va->va_start, va->va_end);
1782 
1783 		atomic_long_sub(nr, &vmap_lazy_nr);
1784 		num_purged_areas++;
1785 
1786 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1787 			cond_resched_lock(&free_vmap_area_lock);
1788 	}
1789 	spin_unlock(&free_vmap_area_lock);
1790 
1791 out:
1792 	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1793 	return num_purged_areas > 0;
1794 }
1795 
1796 /*
1797  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
1798  */
reclaim_and_purge_vmap_areas(void)1799 static void reclaim_and_purge_vmap_areas(void)
1800 
1801 {
1802 	mutex_lock(&vmap_purge_lock);
1803 	purge_fragmented_blocks_allcpus();
1804 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1805 	mutex_unlock(&vmap_purge_lock);
1806 }
1807 
drain_vmap_area_work(struct work_struct * work)1808 static void drain_vmap_area_work(struct work_struct *work)
1809 {
1810 	unsigned long nr_lazy;
1811 
1812 	do {
1813 		mutex_lock(&vmap_purge_lock);
1814 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1815 		mutex_unlock(&vmap_purge_lock);
1816 
1817 		/* Recheck if further work is required. */
1818 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1819 	} while (nr_lazy > lazy_max_pages());
1820 }
1821 
1822 /*
1823  * Free a vmap area, caller ensuring that the area has been unmapped,
1824  * unlinked and flush_cache_vunmap had been called for the correct
1825  * range previously.
1826  */
free_vmap_area_noflush(struct vmap_area * va)1827 static void free_vmap_area_noflush(struct vmap_area *va)
1828 {
1829 	unsigned long nr_lazy_max = lazy_max_pages();
1830 	unsigned long va_start = va->va_start;
1831 	unsigned long nr_lazy;
1832 
1833 	if (WARN_ON_ONCE(!list_empty(&va->list)))
1834 		return;
1835 
1836 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1837 				PAGE_SHIFT, &vmap_lazy_nr);
1838 
1839 	/*
1840 	 * Merge or place it to the purge tree/list.
1841 	 */
1842 	spin_lock(&purge_vmap_area_lock);
1843 	merge_or_add_vmap_area(va,
1844 		&purge_vmap_area_root, &purge_vmap_area_list);
1845 	spin_unlock(&purge_vmap_area_lock);
1846 
1847 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1848 
1849 	/* After this point, we may free va at any time */
1850 	if (unlikely(nr_lazy > nr_lazy_max))
1851 		schedule_work(&drain_vmap_work);
1852 }
1853 
1854 /*
1855  * Free and unmap a vmap area
1856  */
free_unmap_vmap_area(struct vmap_area * va)1857 static void free_unmap_vmap_area(struct vmap_area *va)
1858 {
1859 	flush_cache_vunmap(va->va_start, va->va_end);
1860 	vunmap_range_noflush(va->va_start, va->va_end);
1861 	if (debug_pagealloc_enabled_static())
1862 		flush_tlb_kernel_range(va->va_start, va->va_end);
1863 
1864 	free_vmap_area_noflush(va);
1865 }
1866 
find_vmap_area(unsigned long addr)1867 struct vmap_area *find_vmap_area(unsigned long addr)
1868 {
1869 	struct vmap_area *va;
1870 
1871 	spin_lock(&vmap_area_lock);
1872 	va = __find_vmap_area(addr, &vmap_area_root);
1873 	spin_unlock(&vmap_area_lock);
1874 
1875 	return va;
1876 }
1877 
find_unlink_vmap_area(unsigned long addr)1878 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1879 {
1880 	struct vmap_area *va;
1881 
1882 	spin_lock(&vmap_area_lock);
1883 	va = __find_vmap_area(addr, &vmap_area_root);
1884 	if (va)
1885 		unlink_va(va, &vmap_area_root);
1886 	spin_unlock(&vmap_area_lock);
1887 
1888 	return va;
1889 }
1890 
1891 /*** Per cpu kva allocator ***/
1892 
1893 /*
1894  * vmap space is limited especially on 32 bit architectures. Ensure there is
1895  * room for at least 16 percpu vmap blocks per CPU.
1896  */
1897 /*
1898  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1899  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1900  * instead (we just need a rough idea)
1901  */
1902 #if BITS_PER_LONG == 32
1903 #define VMALLOC_SPACE		(128UL*1024*1024)
1904 #else
1905 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1906 #endif
1907 
1908 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1909 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1910 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1911 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1912 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1913 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1914 #define VMAP_BBMAP_BITS		\
1915 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1916 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1917 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1918 
1919 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1920 
1921 /*
1922  * Purge threshold to prevent overeager purging of fragmented blocks for
1923  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1924  */
1925 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
1926 
1927 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
1928 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
1929 #define VMAP_FLAGS_MASK		0x3
1930 
1931 struct vmap_block_queue {
1932 	spinlock_t lock;
1933 	struct list_head free;
1934 
1935 	/*
1936 	 * An xarray requires an extra memory dynamically to
1937 	 * be allocated. If it is an issue, we can use rb-tree
1938 	 * instead.
1939 	 */
1940 	struct xarray vmap_blocks;
1941 };
1942 
1943 struct vmap_block {
1944 	spinlock_t lock;
1945 	struct vmap_area *va;
1946 	unsigned long free, dirty;
1947 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1948 	unsigned long dirty_min, dirty_max; /*< dirty range */
1949 	struct list_head free_list;
1950 	struct rcu_head rcu_head;
1951 	struct list_head purge;
1952 	unsigned int cpu;
1953 };
1954 
1955 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1956 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1957 
1958 /*
1959  * In order to fast access to any "vmap_block" associated with a
1960  * specific address, we use a hash.
1961  *
1962  * A per-cpu vmap_block_queue is used in both ways, to serialize
1963  * an access to free block chains among CPUs(alloc path) and it
1964  * also acts as a vmap_block hash(alloc/free paths). It means we
1965  * overload it, since we already have the per-cpu array which is
1966  * used as a hash table. When used as a hash a 'cpu' passed to
1967  * per_cpu() is not actually a CPU but rather a hash index.
1968  *
1969  * A hash function is addr_to_vb_xa() which hashes any address
1970  * to a specific index(in a hash) it belongs to. This then uses a
1971  * per_cpu() macro to access an array with generated index.
1972  *
1973  * An example:
1974  *
1975  *  CPU_1  CPU_2  CPU_0
1976  *    |      |      |
1977  *    V      V      V
1978  * 0     10     20     30     40     50     60
1979  * |------|------|------|------|------|------|...<vmap address space>
1980  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
1981  *
1982  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1983  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1984  *
1985  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1986  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1987  *
1988  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1989  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1990  *
1991  * This technique almost always avoids lock contention on insert/remove,
1992  * however xarray spinlocks protect against any contention that remains.
1993  */
1994 static struct xarray *
addr_to_vb_xa(unsigned long addr)1995 addr_to_vb_xa(unsigned long addr)
1996 {
1997 	int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
1998 
1999 	/*
2000 	 * Please note, nr_cpu_ids points on a highest set
2001 	 * possible bit, i.e. we never invoke cpumask_next()
2002 	 * if an index points on it which is nr_cpu_ids - 1.
2003 	 */
2004 	if (!cpu_possible(index))
2005 		index = cpumask_next(index, cpu_possible_mask);
2006 
2007 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2008 }
2009 
2010 /*
2011  * We should probably have a fallback mechanism to allocate virtual memory
2012  * out of partially filled vmap blocks. However vmap block sizing should be
2013  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2014  * big problem.
2015  */
2016 
addr_to_vb_idx(unsigned long addr)2017 static unsigned long addr_to_vb_idx(unsigned long addr)
2018 {
2019 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2020 	addr /= VMAP_BLOCK_SIZE;
2021 	return addr;
2022 }
2023 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)2024 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2025 {
2026 	unsigned long addr;
2027 
2028 	addr = va_start + (pages_off << PAGE_SHIFT);
2029 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2030 	return (void *)addr;
2031 }
2032 
2033 /**
2034  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2035  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2036  * @order:    how many 2^order pages should be occupied in newly allocated block
2037  * @gfp_mask: flags for the page level allocator
2038  *
2039  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2040  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)2041 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2042 {
2043 	struct vmap_block_queue *vbq;
2044 	struct vmap_block *vb;
2045 	struct vmap_area *va;
2046 	struct xarray *xa;
2047 	unsigned long vb_idx;
2048 	int node, err;
2049 	void *vaddr;
2050 
2051 	node = numa_node_id();
2052 
2053 	vb = kmalloc_node(sizeof(struct vmap_block),
2054 			gfp_mask & GFP_RECLAIM_MASK, node);
2055 	if (unlikely(!vb))
2056 		return ERR_PTR(-ENOMEM);
2057 
2058 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2059 					VMALLOC_START, VMALLOC_END,
2060 					node, gfp_mask,
2061 					VMAP_RAM|VMAP_BLOCK);
2062 	if (IS_ERR(va)) {
2063 		kfree(vb);
2064 		return ERR_CAST(va);
2065 	}
2066 
2067 	vaddr = vmap_block_vaddr(va->va_start, 0);
2068 	spin_lock_init(&vb->lock);
2069 	vb->va = va;
2070 	/* At least something should be left free */
2071 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2072 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2073 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2074 	vb->dirty = 0;
2075 	vb->dirty_min = VMAP_BBMAP_BITS;
2076 	vb->dirty_max = 0;
2077 	bitmap_set(vb->used_map, 0, (1UL << order));
2078 	INIT_LIST_HEAD(&vb->free_list);
2079 
2080 	xa = addr_to_vb_xa(va->va_start);
2081 	vb_idx = addr_to_vb_idx(va->va_start);
2082 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2083 	if (err) {
2084 		kfree(vb);
2085 		free_vmap_area(va);
2086 		return ERR_PTR(err);
2087 	}
2088 	/*
2089 	 * list_add_tail_rcu could happened in another core
2090 	 * rather than vb->cpu due to task migration, which
2091 	 * is safe as list_add_tail_rcu will ensure the list's
2092 	 * integrity together with list_for_each_rcu from read
2093 	 * side.
2094 	 */
2095 	vb->cpu = raw_smp_processor_id();
2096 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2097 	spin_lock(&vbq->lock);
2098 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2099 	spin_unlock(&vbq->lock);
2100 
2101 	return vaddr;
2102 }
2103 
free_vmap_block(struct vmap_block * vb)2104 static void free_vmap_block(struct vmap_block *vb)
2105 {
2106 	struct vmap_block *tmp;
2107 	struct xarray *xa;
2108 
2109 	xa = addr_to_vb_xa(vb->va->va_start);
2110 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2111 	BUG_ON(tmp != vb);
2112 
2113 	spin_lock(&vmap_area_lock);
2114 	unlink_va(vb->va, &vmap_area_root);
2115 	spin_unlock(&vmap_area_lock);
2116 
2117 	free_vmap_area_noflush(vb->va);
2118 	kfree_rcu(vb, rcu_head);
2119 }
2120 
purge_fragmented_block(struct vmap_block * vb,struct list_head * purge_list,bool force_purge)2121 static bool purge_fragmented_block(struct vmap_block *vb,
2122 		struct list_head *purge_list, bool force_purge)
2123 {
2124 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2125 
2126 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2127 	    vb->dirty == VMAP_BBMAP_BITS)
2128 		return false;
2129 
2130 	/* Don't overeagerly purge usable blocks unless requested */
2131 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2132 		return false;
2133 
2134 	/* prevent further allocs after releasing lock */
2135 	WRITE_ONCE(vb->free, 0);
2136 	/* prevent purging it again */
2137 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2138 	vb->dirty_min = 0;
2139 	vb->dirty_max = VMAP_BBMAP_BITS;
2140 	spin_lock(&vbq->lock);
2141 	list_del_rcu(&vb->free_list);
2142 	spin_unlock(&vbq->lock);
2143 	list_add_tail(&vb->purge, purge_list);
2144 	return true;
2145 }
2146 
free_purged_blocks(struct list_head * purge_list)2147 static void free_purged_blocks(struct list_head *purge_list)
2148 {
2149 	struct vmap_block *vb, *n_vb;
2150 
2151 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2152 		list_del(&vb->purge);
2153 		free_vmap_block(vb);
2154 	}
2155 }
2156 
purge_fragmented_blocks(int cpu)2157 static void purge_fragmented_blocks(int cpu)
2158 {
2159 	LIST_HEAD(purge);
2160 	struct vmap_block *vb;
2161 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2162 
2163 	rcu_read_lock();
2164 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2165 		unsigned long free = READ_ONCE(vb->free);
2166 		unsigned long dirty = READ_ONCE(vb->dirty);
2167 
2168 		if (free + dirty != VMAP_BBMAP_BITS ||
2169 		    dirty == VMAP_BBMAP_BITS)
2170 			continue;
2171 
2172 		spin_lock(&vb->lock);
2173 		purge_fragmented_block(vb, &purge, true);
2174 		spin_unlock(&vb->lock);
2175 	}
2176 	rcu_read_unlock();
2177 	free_purged_blocks(&purge);
2178 }
2179 
purge_fragmented_blocks_allcpus(void)2180 static void purge_fragmented_blocks_allcpus(void)
2181 {
2182 	int cpu;
2183 
2184 	for_each_possible_cpu(cpu)
2185 		purge_fragmented_blocks(cpu);
2186 }
2187 
vb_alloc(unsigned long size,gfp_t gfp_mask)2188 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2189 {
2190 	struct vmap_block_queue *vbq;
2191 	struct vmap_block *vb;
2192 	void *vaddr = NULL;
2193 	unsigned int order;
2194 
2195 	BUG_ON(offset_in_page(size));
2196 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2197 	if (WARN_ON(size == 0)) {
2198 		/*
2199 		 * Allocating 0 bytes isn't what caller wants since
2200 		 * get_order(0) returns funny result. Just warn and terminate
2201 		 * early.
2202 		 */
2203 		return NULL;
2204 	}
2205 	order = get_order(size);
2206 
2207 	rcu_read_lock();
2208 	vbq = raw_cpu_ptr(&vmap_block_queue);
2209 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2210 		unsigned long pages_off;
2211 
2212 		if (READ_ONCE(vb->free) < (1UL << order))
2213 			continue;
2214 
2215 		spin_lock(&vb->lock);
2216 		if (vb->free < (1UL << order)) {
2217 			spin_unlock(&vb->lock);
2218 			continue;
2219 		}
2220 
2221 		pages_off = VMAP_BBMAP_BITS - vb->free;
2222 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2223 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2224 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2225 		if (vb->free == 0) {
2226 			spin_lock(&vbq->lock);
2227 			list_del_rcu(&vb->free_list);
2228 			spin_unlock(&vbq->lock);
2229 		}
2230 
2231 		spin_unlock(&vb->lock);
2232 		break;
2233 	}
2234 
2235 	rcu_read_unlock();
2236 
2237 	/* Allocate new block if nothing was found */
2238 	if (!vaddr)
2239 		vaddr = new_vmap_block(order, gfp_mask);
2240 
2241 	return vaddr;
2242 }
2243 
vb_free(unsigned long addr,unsigned long size)2244 static void vb_free(unsigned long addr, unsigned long size)
2245 {
2246 	unsigned long offset;
2247 	unsigned int order;
2248 	struct vmap_block *vb;
2249 	struct xarray *xa;
2250 
2251 	BUG_ON(offset_in_page(size));
2252 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2253 
2254 	flush_cache_vunmap(addr, addr + size);
2255 
2256 	order = get_order(size);
2257 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2258 
2259 	xa = addr_to_vb_xa(addr);
2260 	vb = xa_load(xa, addr_to_vb_idx(addr));
2261 
2262 	spin_lock(&vb->lock);
2263 	bitmap_clear(vb->used_map, offset, (1UL << order));
2264 	spin_unlock(&vb->lock);
2265 
2266 	vunmap_range_noflush(addr, addr + size);
2267 
2268 	if (debug_pagealloc_enabled_static())
2269 		flush_tlb_kernel_range(addr, addr + size);
2270 
2271 	spin_lock(&vb->lock);
2272 
2273 	/* Expand the not yet TLB flushed dirty range */
2274 	vb->dirty_min = min(vb->dirty_min, offset);
2275 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2276 
2277 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2278 	if (vb->dirty == VMAP_BBMAP_BITS) {
2279 		BUG_ON(vb->free);
2280 		spin_unlock(&vb->lock);
2281 		free_vmap_block(vb);
2282 	} else
2283 		spin_unlock(&vb->lock);
2284 }
2285 
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2286 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2287 {
2288 	LIST_HEAD(purge_list);
2289 	int cpu;
2290 
2291 	if (unlikely(!vmap_initialized))
2292 		return;
2293 
2294 	mutex_lock(&vmap_purge_lock);
2295 
2296 	for_each_possible_cpu(cpu) {
2297 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2298 		struct vmap_block *vb;
2299 		unsigned long idx;
2300 
2301 		rcu_read_lock();
2302 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2303 			spin_lock(&vb->lock);
2304 
2305 			/*
2306 			 * Try to purge a fragmented block first. If it's
2307 			 * not purgeable, check whether there is dirty
2308 			 * space to be flushed.
2309 			 */
2310 			if (!purge_fragmented_block(vb, &purge_list, false) &&
2311 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2312 				unsigned long va_start = vb->va->va_start;
2313 				unsigned long s, e;
2314 
2315 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2316 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2317 
2318 				start = min(s, start);
2319 				end   = max(e, end);
2320 
2321 				/* Prevent that this is flushed again */
2322 				vb->dirty_min = VMAP_BBMAP_BITS;
2323 				vb->dirty_max = 0;
2324 
2325 				flush = 1;
2326 			}
2327 			spin_unlock(&vb->lock);
2328 		}
2329 		rcu_read_unlock();
2330 	}
2331 	free_purged_blocks(&purge_list);
2332 
2333 	if (!__purge_vmap_area_lazy(start, end) && flush)
2334 		flush_tlb_kernel_range(start, end);
2335 	mutex_unlock(&vmap_purge_lock);
2336 }
2337 
2338 /**
2339  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2340  *
2341  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2342  * to amortize TLB flushing overheads. What this means is that any page you
2343  * have now, may, in a former life, have been mapped into kernel virtual
2344  * address by the vmap layer and so there might be some CPUs with TLB entries
2345  * still referencing that page (additional to the regular 1:1 kernel mapping).
2346  *
2347  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2348  * be sure that none of the pages we have control over will have any aliases
2349  * from the vmap layer.
2350  */
vm_unmap_aliases(void)2351 void vm_unmap_aliases(void)
2352 {
2353 	unsigned long start = ULONG_MAX, end = 0;
2354 	int flush = 0;
2355 
2356 	_vm_unmap_aliases(start, end, flush);
2357 }
2358 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2359 
2360 /**
2361  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2362  * @mem: the pointer returned by vm_map_ram
2363  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2364  */
vm_unmap_ram(const void * mem,unsigned int count)2365 void vm_unmap_ram(const void *mem, unsigned int count)
2366 {
2367 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2368 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2369 	struct vmap_area *va;
2370 
2371 	might_sleep();
2372 	BUG_ON(!addr);
2373 	BUG_ON(addr < VMALLOC_START);
2374 	BUG_ON(addr > VMALLOC_END);
2375 	BUG_ON(!PAGE_ALIGNED(addr));
2376 
2377 	kasan_poison_vmalloc(mem, size);
2378 
2379 	if (likely(count <= VMAP_MAX_ALLOC)) {
2380 		debug_check_no_locks_freed(mem, size);
2381 		vb_free(addr, size);
2382 		return;
2383 	}
2384 
2385 	va = find_unlink_vmap_area(addr);
2386 	if (WARN_ON_ONCE(!va))
2387 		return;
2388 
2389 	debug_check_no_locks_freed((void *)va->va_start,
2390 				    (va->va_end - va->va_start));
2391 
2392 	if (IS_ENABLED(CONFIG_ARCH_HAS_IOREMAP_PHYS_HOOKS) && va->vm &&
2393 	    va->vm->flags & VM_IOREMAP)
2394 		iounmap_phys_range_hook(va->vm->phys_addr, get_vm_area_size(va->vm));
2395 
2396 	free_unmap_vmap_area(va);
2397 }
2398 EXPORT_SYMBOL(vm_unmap_ram);
2399 
2400 /**
2401  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2402  * @pages: an array of pointers to the pages to be mapped
2403  * @count: number of pages
2404  * @node: prefer to allocate data structures on this node
2405  *
2406  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2407  * faster than vmap so it's good.  But if you mix long-life and short-life
2408  * objects with vm_map_ram(), it could consume lots of address space through
2409  * fragmentation (especially on a 32bit machine).  You could see failures in
2410  * the end.  Please use this function for short-lived objects.
2411  *
2412  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2413  */
vm_map_ram(struct page ** pages,unsigned int count,int node)2414 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2415 {
2416 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2417 	unsigned long addr;
2418 	void *mem;
2419 
2420 	if (likely(count <= VMAP_MAX_ALLOC)) {
2421 		mem = vb_alloc(size, GFP_KERNEL);
2422 		if (IS_ERR(mem))
2423 			return NULL;
2424 		addr = (unsigned long)mem;
2425 	} else {
2426 		struct vmap_area *va;
2427 		va = alloc_vmap_area(size, PAGE_SIZE,
2428 				VMALLOC_START, VMALLOC_END,
2429 				node, GFP_KERNEL, VMAP_RAM);
2430 		if (IS_ERR(va))
2431 			return NULL;
2432 
2433 		addr = va->va_start;
2434 		mem = (void *)addr;
2435 	}
2436 
2437 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2438 				pages, PAGE_SHIFT) < 0) {
2439 		vm_unmap_ram(mem, count);
2440 		return NULL;
2441 	}
2442 
2443 	/*
2444 	 * Mark the pages as accessible, now that they are mapped.
2445 	 * With hardware tag-based KASAN, marking is skipped for
2446 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2447 	 */
2448 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2449 
2450 	return mem;
2451 }
2452 EXPORT_SYMBOL(vm_map_ram);
2453 
2454 static struct vm_struct *vmlist __initdata;
2455 
vm_area_page_order(struct vm_struct * vm)2456 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2457 {
2458 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2459 	return vm->page_order;
2460 #else
2461 	return 0;
2462 #endif
2463 }
2464 
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)2465 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2466 {
2467 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2468 	vm->page_order = order;
2469 #else
2470 	BUG_ON(order != 0);
2471 #endif
2472 }
2473 
2474 /**
2475  * vm_area_add_early - add vmap area early during boot
2476  * @vm: vm_struct to add
2477  *
2478  * This function is used to add fixed kernel vm area to vmlist before
2479  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2480  * should contain proper values and the other fields should be zero.
2481  *
2482  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2483  */
vm_area_add_early(struct vm_struct * vm)2484 void __init vm_area_add_early(struct vm_struct *vm)
2485 {
2486 	struct vm_struct *tmp, **p;
2487 
2488 	BUG_ON(vmap_initialized);
2489 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2490 		if (tmp->addr >= vm->addr) {
2491 			BUG_ON(tmp->addr < vm->addr + vm->size);
2492 			break;
2493 		} else
2494 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2495 	}
2496 	vm->next = *p;
2497 	*p = vm;
2498 }
2499 
2500 /**
2501  * vm_area_register_early - register vmap area early during boot
2502  * @vm: vm_struct to register
2503  * @align: requested alignment
2504  *
2505  * This function is used to register kernel vm area before
2506  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2507  * proper values on entry and other fields should be zero.  On return,
2508  * vm->addr contains the allocated address.
2509  *
2510  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2511  */
vm_area_register_early(struct vm_struct * vm,size_t align)2512 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2513 {
2514 	unsigned long addr = ALIGN(VMALLOC_START, align);
2515 	struct vm_struct *cur, **p;
2516 
2517 	BUG_ON(vmap_initialized);
2518 
2519 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2520 		if ((unsigned long)cur->addr - addr >= vm->size)
2521 			break;
2522 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2523 	}
2524 
2525 	BUG_ON(addr > VMALLOC_END - vm->size);
2526 	vm->addr = (void *)addr;
2527 	vm->next = *p;
2528 	*p = vm;
2529 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2530 }
2531 
vmap_init_free_space(void)2532 static void vmap_init_free_space(void)
2533 {
2534 	unsigned long vmap_start = 1;
2535 	const unsigned long vmap_end = ULONG_MAX;
2536 	struct vmap_area *busy, *free;
2537 
2538 	/*
2539 	 *     B     F     B     B     B     F
2540 	 * -|-----|.....|-----|-----|-----|.....|-
2541 	 *  |           The KVA space           |
2542 	 *  |<--------------------------------->|
2543 	 */
2544 	list_for_each_entry(busy, &vmap_area_list, list) {
2545 		if (busy->va_start - vmap_start > 0) {
2546 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2547 			if (!WARN_ON_ONCE(!free)) {
2548 				free->va_start = vmap_start;
2549 				free->va_end = busy->va_start;
2550 
2551 				insert_vmap_area_augment(free, NULL,
2552 					&free_vmap_area_root,
2553 						&free_vmap_area_list);
2554 			}
2555 		}
2556 
2557 		vmap_start = busy->va_end;
2558 	}
2559 
2560 	if (vmap_end - vmap_start > 0) {
2561 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2562 		if (!WARN_ON_ONCE(!free)) {
2563 			free->va_start = vmap_start;
2564 			free->va_end = vmap_end;
2565 
2566 			insert_vmap_area_augment(free, NULL,
2567 				&free_vmap_area_root,
2568 					&free_vmap_area_list);
2569 		}
2570 	}
2571 }
2572 
setup_vmalloc_vm_locked(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2573 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2574 	struct vmap_area *va, unsigned long flags, const void *caller)
2575 {
2576 	vm->flags = flags;
2577 	vm->addr = (void *)va->va_start;
2578 	vm->size = va->va_end - va->va_start;
2579 	vm->caller = caller;
2580 	va->vm = vm;
2581 	trace_android_vh_save_vmalloc_stack(flags, vm);
2582 }
2583 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2584 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2585 			      unsigned long flags, const void *caller)
2586 {
2587 	spin_lock(&vmap_area_lock);
2588 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2589 	spin_unlock(&vmap_area_lock);
2590 }
2591 
clear_vm_uninitialized_flag(struct vm_struct * vm)2592 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2593 {
2594 	/*
2595 	 * Before removing VM_UNINITIALIZED,
2596 	 * we should make sure that vm has proper values.
2597 	 * Pair with smp_rmb() in show_numa_info().
2598 	 */
2599 	smp_wmb();
2600 	vm->flags &= ~VM_UNINITIALIZED;
2601 }
2602 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)2603 static struct vm_struct *__get_vm_area_node(unsigned long size,
2604 		unsigned long align, unsigned long shift, unsigned long flags,
2605 		unsigned long start, unsigned long end, int node,
2606 		gfp_t gfp_mask, const void *caller)
2607 {
2608 	struct vmap_area *va;
2609 	struct vm_struct *area;
2610 	unsigned long requested_size = size;
2611 
2612 	BUG_ON(in_interrupt());
2613 	size = ALIGN(size, 1ul << shift);
2614 	if (unlikely(!size))
2615 		return NULL;
2616 
2617 	if (flags & VM_IOREMAP)
2618 		align = 1ul << clamp_t(int, get_count_order_long(size),
2619 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2620 
2621 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2622 	if (unlikely(!area))
2623 		return NULL;
2624 
2625 	if (!(flags & VM_NO_GUARD))
2626 		size += PAGE_SIZE;
2627 
2628 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2629 	if (IS_ERR(va)) {
2630 		kfree(area);
2631 		return NULL;
2632 	}
2633 
2634 	setup_vmalloc_vm(area, va, flags, caller);
2635 
2636 	/*
2637 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2638 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2639 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2640 	 * getting mapped in __vmalloc_node_range().
2641 	 * With hardware tag-based KASAN, marking is skipped for
2642 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2643 	 */
2644 	if (!(flags & VM_ALLOC))
2645 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2646 						    KASAN_VMALLOC_PROT_NORMAL);
2647 
2648 	return area;
2649 }
2650 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)2651 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2652 				       unsigned long start, unsigned long end,
2653 				       const void *caller)
2654 {
2655 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2656 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2657 }
2658 
2659 /**
2660  * get_vm_area - reserve a contiguous kernel virtual area
2661  * @size:	 size of the area
2662  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2663  *
2664  * Search an area of @size in the kernel virtual mapping area,
2665  * and reserved it for out purposes.  Returns the area descriptor
2666  * on success or %NULL on failure.
2667  *
2668  * Return: the area descriptor on success or %NULL on failure.
2669  */
get_vm_area(unsigned long size,unsigned long flags)2670 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2671 {
2672 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2673 				  VMALLOC_START, VMALLOC_END,
2674 				  NUMA_NO_NODE, GFP_KERNEL,
2675 				  __builtin_return_address(0));
2676 }
2677 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)2678 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2679 				const void *caller)
2680 {
2681 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2682 				  VMALLOC_START, VMALLOC_END,
2683 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2684 }
2685 
2686 /**
2687  * find_vm_area - find a continuous kernel virtual area
2688  * @addr:	  base address
2689  *
2690  * Search for the kernel VM area starting at @addr, and return it.
2691  * It is up to the caller to do all required locking to keep the returned
2692  * pointer valid.
2693  *
2694  * Return: the area descriptor on success or %NULL on failure.
2695  */
find_vm_area(const void * addr)2696 struct vm_struct *find_vm_area(const void *addr)
2697 {
2698 	struct vmap_area *va;
2699 
2700 	va = find_vmap_area((unsigned long)addr);
2701 	if (!va)
2702 		return NULL;
2703 
2704 	return va->vm;
2705 }
2706 EXPORT_SYMBOL_GPL(find_vm_area);
2707 
2708 /**
2709  * remove_vm_area - find and remove a continuous kernel virtual area
2710  * @addr:	    base address
2711  *
2712  * Search for the kernel VM area starting at @addr, and remove it.
2713  * This function returns the found VM area, but using it is NOT safe
2714  * on SMP machines, except for its size or flags.
2715  *
2716  * Return: the area descriptor on success or %NULL on failure.
2717  */
remove_vm_area(const void * addr)2718 struct vm_struct *remove_vm_area(const void *addr)
2719 {
2720 	struct vmap_area *va;
2721 	struct vm_struct *vm;
2722 
2723 	might_sleep();
2724 
2725 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2726 			addr))
2727 		return NULL;
2728 
2729 	va = find_unlink_vmap_area((unsigned long)addr);
2730 	if (!va || !va->vm)
2731 		return NULL;
2732 	vm = va->vm;
2733 
2734 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2735 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2736 	kasan_free_module_shadow(vm);
2737 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2738 
2739 	free_unmap_vmap_area(va);
2740 	return vm;
2741 }
2742 
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))2743 static inline void set_area_direct_map(const struct vm_struct *area,
2744 				       int (*set_direct_map)(struct page *page))
2745 {
2746 	int i;
2747 
2748 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2749 	for (i = 0; i < area->nr_pages; i++)
2750 		if (page_address(area->pages[i]))
2751 			set_direct_map(area->pages[i]);
2752 }
2753 
2754 /*
2755  * Flush the vm mapping and reset the direct map.
2756  */
vm_reset_perms(struct vm_struct * area)2757 static void vm_reset_perms(struct vm_struct *area)
2758 {
2759 	unsigned long start = ULONG_MAX, end = 0;
2760 	unsigned int page_order = vm_area_page_order(area);
2761 	int flush_dmap = 0;
2762 	int i;
2763 
2764 	/*
2765 	 * Find the start and end range of the direct mappings to make sure that
2766 	 * the vm_unmap_aliases() flush includes the direct map.
2767 	 */
2768 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2769 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2770 
2771 		if (addr) {
2772 			unsigned long page_size;
2773 
2774 			page_size = PAGE_SIZE << page_order;
2775 			start = min(addr, start);
2776 			end = max(addr + page_size, end);
2777 			flush_dmap = 1;
2778 		}
2779 	}
2780 
2781 	/*
2782 	 * Set direct map to something invalid so that it won't be cached if
2783 	 * there are any accesses after the TLB flush, then flush the TLB and
2784 	 * reset the direct map permissions to the default.
2785 	 */
2786 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2787 	_vm_unmap_aliases(start, end, flush_dmap);
2788 	set_area_direct_map(area, set_direct_map_default_noflush);
2789 }
2790 
delayed_vfree_work(struct work_struct * w)2791 static void delayed_vfree_work(struct work_struct *w)
2792 {
2793 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2794 	struct llist_node *t, *llnode;
2795 
2796 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2797 		vfree(llnode);
2798 }
2799 
2800 /**
2801  * vfree_atomic - release memory allocated by vmalloc()
2802  * @addr:	  memory base address
2803  *
2804  * This one is just like vfree() but can be called in any atomic context
2805  * except NMIs.
2806  */
vfree_atomic(const void * addr)2807 void vfree_atomic(const void *addr)
2808 {
2809 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2810 
2811 	BUG_ON(in_nmi());
2812 	kmemleak_free(addr);
2813 
2814 	/*
2815 	 * Use raw_cpu_ptr() because this can be called from preemptible
2816 	 * context. Preemption is absolutely fine here, because the llist_add()
2817 	 * implementation is lockless, so it works even if we are adding to
2818 	 * another cpu's list. schedule_work() should be fine with this too.
2819 	 */
2820 	if (addr && llist_add((struct llist_node *)addr, &p->list))
2821 		schedule_work(&p->wq);
2822 }
2823 
2824 /**
2825  * vfree - Release memory allocated by vmalloc()
2826  * @addr:  Memory base address
2827  *
2828  * Free the virtually continuous memory area starting at @addr, as obtained
2829  * from one of the vmalloc() family of APIs.  This will usually also free the
2830  * physical memory underlying the virtual allocation, but that memory is
2831  * reference counted, so it will not be freed until the last user goes away.
2832  *
2833  * If @addr is NULL, no operation is performed.
2834  *
2835  * Context:
2836  * May sleep if called *not* from interrupt context.
2837  * Must not be called in NMI context (strictly speaking, it could be
2838  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2839  * conventions for vfree() arch-dependent would be a really bad idea).
2840  */
vfree(const void * addr)2841 void vfree(const void *addr)
2842 {
2843 	struct vm_struct *vm;
2844 	int i;
2845 
2846 	if (unlikely(in_interrupt())) {
2847 		vfree_atomic(addr);
2848 		return;
2849 	}
2850 
2851 	BUG_ON(in_nmi());
2852 	kmemleak_free(addr);
2853 	might_sleep();
2854 
2855 	if (!addr)
2856 		return;
2857 
2858 	vm = remove_vm_area(addr);
2859 	if (unlikely(!vm)) {
2860 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2861 				addr);
2862 		return;
2863 	}
2864 
2865 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2866 		vm_reset_perms(vm);
2867 	for (i = 0; i < vm->nr_pages; i++) {
2868 		struct page *page = vm->pages[i];
2869 
2870 		BUG_ON(!page);
2871 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2872 		/*
2873 		 * High-order allocs for huge vmallocs are split, so
2874 		 * can be freed as an array of order-0 allocations
2875 		 */
2876 		__free_page(page);
2877 		cond_resched();
2878 	}
2879 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2880 	kvfree(vm->pages);
2881 	kfree(vm);
2882 }
2883 EXPORT_SYMBOL(vfree);
2884 
2885 /**
2886  * vunmap - release virtual mapping obtained by vmap()
2887  * @addr:   memory base address
2888  *
2889  * Free the virtually contiguous memory area starting at @addr,
2890  * which was created from the page array passed to vmap().
2891  *
2892  * Must not be called in interrupt context.
2893  */
vunmap(const void * addr)2894 void vunmap(const void *addr)
2895 {
2896 	struct vm_struct *vm;
2897 
2898 	BUG_ON(in_interrupt());
2899 	might_sleep();
2900 
2901 	if (!addr)
2902 		return;
2903 	vm = remove_vm_area(addr);
2904 	if (unlikely(!vm)) {
2905 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2906 				addr);
2907 		return;
2908 	}
2909 	kfree(vm);
2910 }
2911 EXPORT_SYMBOL(vunmap);
2912 
2913 /**
2914  * vmap - map an array of pages into virtually contiguous space
2915  * @pages: array of page pointers
2916  * @count: number of pages to map
2917  * @flags: vm_area->flags
2918  * @prot: page protection for the mapping
2919  *
2920  * Maps @count pages from @pages into contiguous kernel virtual space.
2921  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2922  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2923  * are transferred from the caller to vmap(), and will be freed / dropped when
2924  * vfree() is called on the return value.
2925  *
2926  * Return: the address of the area or %NULL on failure
2927  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)2928 void *vmap(struct page **pages, unsigned int count,
2929 	   unsigned long flags, pgprot_t prot)
2930 {
2931 	struct vm_struct *area;
2932 	unsigned long addr;
2933 	unsigned long size;		/* In bytes */
2934 
2935 	might_sleep();
2936 
2937 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2938 		return NULL;
2939 
2940 	/*
2941 	 * Your top guard is someone else's bottom guard. Not having a top
2942 	 * guard compromises someone else's mappings too.
2943 	 */
2944 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2945 		flags &= ~VM_NO_GUARD;
2946 
2947 	if (count > totalram_pages())
2948 		return NULL;
2949 
2950 	size = (unsigned long)count << PAGE_SHIFT;
2951 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2952 	if (!area)
2953 		return NULL;
2954 
2955 	addr = (unsigned long)area->addr;
2956 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2957 				pages, PAGE_SHIFT) < 0) {
2958 		vunmap(area->addr);
2959 		return NULL;
2960 	}
2961 
2962 	if (flags & VM_MAP_PUT_PAGES) {
2963 		area->pages = pages;
2964 		area->nr_pages = count;
2965 	}
2966 	return area->addr;
2967 }
2968 EXPORT_SYMBOL(vmap);
2969 
2970 #ifdef CONFIG_VMAP_PFN
2971 struct vmap_pfn_data {
2972 	unsigned long	*pfns;
2973 	pgprot_t	prot;
2974 	unsigned int	idx;
2975 };
2976 
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)2977 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2978 {
2979 	struct vmap_pfn_data *data = private;
2980 	unsigned long pfn = data->pfns[data->idx];
2981 	pte_t ptent;
2982 
2983 	if (WARN_ON_ONCE(pfn_valid(pfn)))
2984 		return -EINVAL;
2985 
2986 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
2987 	set_pte_at(&init_mm, addr, pte, ptent);
2988 
2989 	data->idx++;
2990 	return 0;
2991 }
2992 
2993 /**
2994  * vmap_pfn - map an array of PFNs into virtually contiguous space
2995  * @pfns: array of PFNs
2996  * @count: number of pages to map
2997  * @prot: page protection for the mapping
2998  *
2999  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3000  * the start address of the mapping.
3001  */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)3002 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3003 {
3004 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3005 	struct vm_struct *area;
3006 
3007 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3008 			__builtin_return_address(0));
3009 	if (!area)
3010 		return NULL;
3011 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3012 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3013 		free_vm_area(area);
3014 		return NULL;
3015 	}
3016 
3017 	flush_cache_vmap((unsigned long)area->addr,
3018 			 (unsigned long)area->addr + count * PAGE_SIZE);
3019 
3020 	return area->addr;
3021 }
3022 EXPORT_SYMBOL_GPL(vmap_pfn);
3023 #endif /* CONFIG_VMAP_PFN */
3024 
3025 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)3026 vm_area_alloc_pages(gfp_t gfp, int nid,
3027 		unsigned int order, unsigned int nr_pages, struct page **pages)
3028 {
3029 	unsigned int nr_allocated = 0;
3030 	gfp_t alloc_gfp = gfp;
3031 	bool nofail = gfp & __GFP_NOFAIL;
3032 	struct page *page;
3033 	int i;
3034 
3035 	/*
3036 	 * For order-0 pages we make use of bulk allocator, if
3037 	 * the page array is partly or not at all populated due
3038 	 * to fails, fallback to a single page allocator that is
3039 	 * more permissive.
3040 	 */
3041 	if (!order) {
3042 		/* bulk allocator doesn't support nofail req. officially */
3043 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3044 
3045 		while (nr_allocated < nr_pages) {
3046 			unsigned int nr, nr_pages_request;
3047 
3048 			/*
3049 			 * A maximum allowed request is hard-coded and is 100
3050 			 * pages per call. That is done in order to prevent a
3051 			 * long preemption off scenario in the bulk-allocator
3052 			 * so the range is [1:100].
3053 			 */
3054 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3055 
3056 			/* memory allocation should consider mempolicy, we can't
3057 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3058 			 * otherwise memory may be allocated in only one node,
3059 			 * but mempolicy wants to alloc memory by interleaving.
3060 			 */
3061 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3062 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3063 							nr_pages_request,
3064 							pages + nr_allocated);
3065 
3066 			else
3067 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3068 							nr_pages_request,
3069 							pages + nr_allocated);
3070 
3071 			nr_allocated += nr;
3072 			cond_resched();
3073 
3074 			/*
3075 			 * If zero or pages were obtained partly,
3076 			 * fallback to a single page allocator.
3077 			 */
3078 			if (nr != nr_pages_request)
3079 				break;
3080 		}
3081 	} else if (gfp & __GFP_NOFAIL) {
3082 		/*
3083 		 * Higher order nofail allocations are really expensive and
3084 		 * potentially dangerous (pre-mature OOM, disruptive reclaim
3085 		 * and compaction etc.
3086 		 */
3087 		alloc_gfp &= ~__GFP_NOFAIL;
3088 	}
3089 
3090 	/* High-order pages or fallback path if "bulk" fails. */
3091 	while (nr_allocated < nr_pages) {
3092 		if (!nofail && fatal_signal_pending(current))
3093 			break;
3094 
3095 		if (nid == NUMA_NO_NODE)
3096 			page = alloc_pages(alloc_gfp, order);
3097 		else
3098 			page = alloc_pages_node(nid, alloc_gfp, order);
3099 		if (unlikely(!page))
3100 			break;
3101 
3102 		/*
3103 		 * Higher order allocations must be able to be treated as
3104 		 * indepdenent small pages by callers (as they can with
3105 		 * small-page vmallocs). Some drivers do their own refcounting
3106 		 * on vmalloc_to_page() pages, some use page->mapping,
3107 		 * page->lru, etc.
3108 		 */
3109 		if (order)
3110 			split_page(page, order);
3111 
3112 		/*
3113 		 * Careful, we allocate and map page-order pages, but
3114 		 * tracking is done per PAGE_SIZE page so as to keep the
3115 		 * vm_struct APIs independent of the physical/mapped size.
3116 		 */
3117 		for (i = 0; i < (1U << order); i++)
3118 			pages[nr_allocated + i] = page + i;
3119 
3120 		cond_resched();
3121 		nr_allocated += 1U << order;
3122 	}
3123 
3124 	return nr_allocated;
3125 }
3126 
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)3127 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3128 				 pgprot_t prot, unsigned int page_shift,
3129 				 int node)
3130 {
3131 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3132 	bool nofail = gfp_mask & __GFP_NOFAIL;
3133 	unsigned long addr = (unsigned long)area->addr;
3134 	unsigned long size = get_vm_area_size(area);
3135 	unsigned long array_size;
3136 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3137 	unsigned int page_order;
3138 	unsigned int flags;
3139 	int ret;
3140 
3141 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3142 
3143 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3144 		gfp_mask |= __GFP_HIGHMEM;
3145 
3146 	/* Please note that the recursion is strictly bounded. */
3147 	if (array_size > PAGE_SIZE) {
3148 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3149 					area->caller);
3150 	} else {
3151 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3152 	}
3153 
3154 	if (!area->pages) {
3155 		warn_alloc(gfp_mask, NULL,
3156 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3157 			nr_small_pages * PAGE_SIZE, array_size);
3158 		free_vm_area(area);
3159 		return NULL;
3160 	}
3161 
3162 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3163 	page_order = vm_area_page_order(area);
3164 
3165 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3166 		node, page_order, nr_small_pages, area->pages);
3167 
3168 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3169 	if (gfp_mask & __GFP_ACCOUNT) {
3170 		int i;
3171 
3172 		for (i = 0; i < area->nr_pages; i++)
3173 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3174 	}
3175 
3176 	/*
3177 	 * If not enough pages were obtained to accomplish an
3178 	 * allocation request, free them via vfree() if any.
3179 	 */
3180 	if (area->nr_pages != nr_small_pages) {
3181 		/*
3182 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3183 		 * also:-
3184 		 *
3185 		 * - a pending fatal signal
3186 		 * - insufficient huge page-order pages
3187 		 *
3188 		 * Since we always retry allocations at order-0 in the huge page
3189 		 * case a warning for either is spurious.
3190 		 */
3191 		if (!fatal_signal_pending(current) && page_order == 0)
3192 			warn_alloc(gfp_mask, NULL,
3193 				"vmalloc error: size %lu, failed to allocate pages",
3194 				area->nr_pages * PAGE_SIZE);
3195 		goto fail;
3196 	}
3197 
3198 	/*
3199 	 * page tables allocations ignore external gfp mask, enforce it
3200 	 * by the scope API
3201 	 */
3202 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3203 		flags = memalloc_nofs_save();
3204 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3205 		flags = memalloc_noio_save();
3206 
3207 	do {
3208 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3209 			page_shift);
3210 		if (nofail && (ret < 0))
3211 			schedule_timeout_uninterruptible(1);
3212 	} while (nofail && (ret < 0));
3213 
3214 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3215 		memalloc_nofs_restore(flags);
3216 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3217 		memalloc_noio_restore(flags);
3218 
3219 	if (ret < 0) {
3220 		warn_alloc(gfp_mask, NULL,
3221 			"vmalloc error: size %lu, failed to map pages",
3222 			area->nr_pages * PAGE_SIZE);
3223 		goto fail;
3224 	}
3225 
3226 	return area->addr;
3227 
3228 fail:
3229 	vfree(area->addr);
3230 	return NULL;
3231 }
3232 
3233 /**
3234  * __vmalloc_node_range - allocate virtually contiguous memory
3235  * @size:		  allocation size
3236  * @align:		  desired alignment
3237  * @start:		  vm area range start
3238  * @end:		  vm area range end
3239  * @gfp_mask:		  flags for the page level allocator
3240  * @prot:		  protection mask for the allocated pages
3241  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3242  * @node:		  node to use for allocation or NUMA_NO_NODE
3243  * @caller:		  caller's return address
3244  *
3245  * Allocate enough pages to cover @size from the page level
3246  * allocator with @gfp_mask flags. Please note that the full set of gfp
3247  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3248  * supported.
3249  * Zone modifiers are not supported. From the reclaim modifiers
3250  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3251  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3252  * __GFP_RETRY_MAYFAIL are not supported).
3253  *
3254  * __GFP_NOWARN can be used to suppress failures messages.
3255  *
3256  * Map them into contiguous kernel virtual space, using a pagetable
3257  * protection of @prot.
3258  *
3259  * Return: the address of the area or %NULL on failure
3260  */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3261 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3262 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3263 			pgprot_t prot, unsigned long vm_flags, int node,
3264 			const void *caller)
3265 {
3266 	struct vm_struct *area;
3267 	void *ret;
3268 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3269 	unsigned long real_size = size;
3270 	unsigned long real_align = align;
3271 	unsigned int shift = PAGE_SHIFT;
3272 
3273 	if (WARN_ON_ONCE(!size))
3274 		return NULL;
3275 
3276 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3277 		warn_alloc(gfp_mask, NULL,
3278 			"vmalloc error: size %lu, exceeds total pages",
3279 			real_size);
3280 		return NULL;
3281 	}
3282 
3283 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3284 		unsigned long size_per_node;
3285 
3286 		/*
3287 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3288 		 * others like modules don't yet expect huge pages in
3289 		 * their allocations due to apply_to_page_range not
3290 		 * supporting them.
3291 		 */
3292 
3293 		size_per_node = size;
3294 		if (node == NUMA_NO_NODE)
3295 			size_per_node /= num_online_nodes();
3296 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3297 			shift = PMD_SHIFT;
3298 		else
3299 			shift = arch_vmap_pte_supported_shift(size_per_node);
3300 
3301 		align = max(real_align, 1UL << shift);
3302 		size = ALIGN(real_size, 1UL << shift);
3303 	}
3304 
3305 again:
3306 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3307 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3308 				  gfp_mask, caller);
3309 	if (!area) {
3310 		bool nofail = gfp_mask & __GFP_NOFAIL;
3311 		warn_alloc(gfp_mask, NULL,
3312 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3313 			real_size, (nofail) ? ". Retrying." : "");
3314 		if (nofail) {
3315 			schedule_timeout_uninterruptible(1);
3316 			goto again;
3317 		}
3318 		goto fail;
3319 	}
3320 
3321 	/*
3322 	 * Prepare arguments for __vmalloc_area_node() and
3323 	 * kasan_unpoison_vmalloc().
3324 	 */
3325 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3326 		if (kasan_hw_tags_enabled()) {
3327 			/*
3328 			 * Modify protection bits to allow tagging.
3329 			 * This must be done before mapping.
3330 			 */
3331 			prot = arch_vmap_pgprot_tagged(prot);
3332 
3333 			/*
3334 			 * Skip page_alloc poisoning and zeroing for physical
3335 			 * pages backing VM_ALLOC mapping. Memory is instead
3336 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3337 			 */
3338 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3339 		}
3340 
3341 		/* Take note that the mapping is PAGE_KERNEL. */
3342 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3343 	}
3344 
3345 	/* Allocate physical pages and map them into vmalloc space. */
3346 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3347 	if (!ret)
3348 		goto fail;
3349 
3350 	/*
3351 	 * Mark the pages as accessible, now that they are mapped.
3352 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3353 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3354 	 * to make sure that memory is initialized under the same conditions.
3355 	 * Tag-based KASAN modes only assign tags to normal non-executable
3356 	 * allocations, see __kasan_unpoison_vmalloc().
3357 	 */
3358 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3359 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3360 	    (gfp_mask & __GFP_SKIP_ZERO))
3361 		kasan_flags |= KASAN_VMALLOC_INIT;
3362 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3363 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3364 
3365 	/*
3366 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3367 	 * flag. It means that vm_struct is not fully initialized.
3368 	 * Now, it is fully initialized, so remove this flag here.
3369 	 */
3370 	clear_vm_uninitialized_flag(area);
3371 
3372 	size = PAGE_ALIGN(size);
3373 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3374 		kmemleak_vmalloc(area, size, gfp_mask);
3375 
3376 	return area->addr;
3377 
3378 fail:
3379 	if (shift > PAGE_SHIFT) {
3380 		shift = PAGE_SHIFT;
3381 		align = real_align;
3382 		size = real_size;
3383 		goto again;
3384 	}
3385 
3386 	return NULL;
3387 }
3388 
3389 /**
3390  * __vmalloc_node - allocate virtually contiguous memory
3391  * @size:	    allocation size
3392  * @align:	    desired alignment
3393  * @gfp_mask:	    flags for the page level allocator
3394  * @node:	    node to use for allocation or NUMA_NO_NODE
3395  * @caller:	    caller's return address
3396  *
3397  * Allocate enough pages to cover @size from the page level allocator with
3398  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3399  *
3400  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3401  * and __GFP_NOFAIL are not supported
3402  *
3403  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3404  * with mm people.
3405  *
3406  * Return: pointer to the allocated memory or %NULL on error
3407  */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)3408 void *__vmalloc_node(unsigned long size, unsigned long align,
3409 			    gfp_t gfp_mask, int node, const void *caller)
3410 {
3411 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3412 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3413 }
3414 /*
3415  * This is only for performance analysis of vmalloc and stress purpose.
3416  * It is required by vmalloc test module, therefore do not use it other
3417  * than that.
3418  */
3419 #ifdef CONFIG_TEST_VMALLOC_MODULE
3420 EXPORT_SYMBOL_GPL(__vmalloc_node);
3421 #endif
3422 
__vmalloc(unsigned long size,gfp_t gfp_mask)3423 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3424 {
3425 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3426 				__builtin_return_address(0));
3427 }
3428 EXPORT_SYMBOL(__vmalloc);
3429 
3430 /**
3431  * vmalloc - allocate virtually contiguous memory
3432  * @size:    allocation size
3433  *
3434  * Allocate enough pages to cover @size from the page level
3435  * allocator and map them into contiguous kernel virtual space.
3436  *
3437  * For tight control over page level allocator and protection flags
3438  * use __vmalloc() instead.
3439  *
3440  * Return: pointer to the allocated memory or %NULL on error
3441  */
vmalloc(unsigned long size)3442 void *vmalloc(unsigned long size)
3443 {
3444 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3445 				__builtin_return_address(0));
3446 }
3447 EXPORT_SYMBOL(vmalloc);
3448 
3449 /**
3450  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3451  * @size:      allocation size
3452  * @gfp_mask:  flags for the page level allocator
3453  *
3454  * Allocate enough pages to cover @size from the page level
3455  * allocator and map them into contiguous kernel virtual space.
3456  * If @size is greater than or equal to PMD_SIZE, allow using
3457  * huge pages for the memory
3458  *
3459  * Return: pointer to the allocated memory or %NULL on error
3460  */
vmalloc_huge(unsigned long size,gfp_t gfp_mask)3461 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3462 {
3463 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3464 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3465 				    NUMA_NO_NODE, __builtin_return_address(0));
3466 }
3467 EXPORT_SYMBOL_GPL(vmalloc_huge);
3468 
3469 /**
3470  * vzalloc - allocate virtually contiguous memory with zero fill
3471  * @size:    allocation size
3472  *
3473  * Allocate enough pages to cover @size from the page level
3474  * allocator and map them into contiguous kernel virtual space.
3475  * The memory allocated is set to zero.
3476  *
3477  * For tight control over page level allocator and protection flags
3478  * use __vmalloc() instead.
3479  *
3480  * Return: pointer to the allocated memory or %NULL on error
3481  */
vzalloc(unsigned long size)3482 void *vzalloc(unsigned long size)
3483 {
3484 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3485 				__builtin_return_address(0));
3486 }
3487 EXPORT_SYMBOL(vzalloc);
3488 
3489 /**
3490  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3491  * @size: allocation size
3492  *
3493  * The resulting memory area is zeroed so it can be mapped to userspace
3494  * without leaking data.
3495  *
3496  * Return: pointer to the allocated memory or %NULL on error
3497  */
vmalloc_user(unsigned long size)3498 void *vmalloc_user(unsigned long size)
3499 {
3500 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3501 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3502 				    VM_USERMAP, NUMA_NO_NODE,
3503 				    __builtin_return_address(0));
3504 }
3505 EXPORT_SYMBOL(vmalloc_user);
3506 
3507 /**
3508  * vmalloc_node - allocate memory on a specific node
3509  * @size:	  allocation size
3510  * @node:	  numa node
3511  *
3512  * Allocate enough pages to cover @size from the page level
3513  * allocator and map them into contiguous kernel virtual space.
3514  *
3515  * For tight control over page level allocator and protection flags
3516  * use __vmalloc() instead.
3517  *
3518  * Return: pointer to the allocated memory or %NULL on error
3519  */
vmalloc_node(unsigned long size,int node)3520 void *vmalloc_node(unsigned long size, int node)
3521 {
3522 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3523 			__builtin_return_address(0));
3524 }
3525 EXPORT_SYMBOL(vmalloc_node);
3526 
3527 /**
3528  * vzalloc_node - allocate memory on a specific node with zero fill
3529  * @size:	allocation size
3530  * @node:	numa node
3531  *
3532  * Allocate enough pages to cover @size from the page level
3533  * allocator and map them into contiguous kernel virtual space.
3534  * The memory allocated is set to zero.
3535  *
3536  * Return: pointer to the allocated memory or %NULL on error
3537  */
vzalloc_node(unsigned long size,int node)3538 void *vzalloc_node(unsigned long size, int node)
3539 {
3540 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3541 				__builtin_return_address(0));
3542 }
3543 EXPORT_SYMBOL(vzalloc_node);
3544 
3545 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3546 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3547 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3548 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3549 #else
3550 /*
3551  * 64b systems should always have either DMA or DMA32 zones. For others
3552  * GFP_DMA32 should do the right thing and use the normal zone.
3553  */
3554 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3555 #endif
3556 
3557 /**
3558  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3559  * @size:	allocation size
3560  *
3561  * Allocate enough 32bit PA addressable pages to cover @size from the
3562  * page level allocator and map them into contiguous kernel virtual space.
3563  *
3564  * Return: pointer to the allocated memory or %NULL on error
3565  */
vmalloc_32(unsigned long size)3566 void *vmalloc_32(unsigned long size)
3567 {
3568 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3569 			__builtin_return_address(0));
3570 }
3571 EXPORT_SYMBOL(vmalloc_32);
3572 
3573 /**
3574  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3575  * @size:	     allocation size
3576  *
3577  * The resulting memory area is 32bit addressable and zeroed so it can be
3578  * mapped to userspace without leaking data.
3579  *
3580  * Return: pointer to the allocated memory or %NULL on error
3581  */
vmalloc_32_user(unsigned long size)3582 void *vmalloc_32_user(unsigned long size)
3583 {
3584 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3585 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3586 				    VM_USERMAP, NUMA_NO_NODE,
3587 				    __builtin_return_address(0));
3588 }
3589 EXPORT_SYMBOL(vmalloc_32_user);
3590 
3591 /*
3592  * Atomically zero bytes in the iterator.
3593  *
3594  * Returns the number of zeroed bytes.
3595  */
zero_iter(struct iov_iter * iter,size_t count)3596 static size_t zero_iter(struct iov_iter *iter, size_t count)
3597 {
3598 	size_t remains = count;
3599 
3600 	while (remains > 0) {
3601 		size_t num, copied;
3602 
3603 		num = min_t(size_t, remains, PAGE_SIZE);
3604 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3605 		remains -= copied;
3606 
3607 		if (copied < num)
3608 			break;
3609 	}
3610 
3611 	return count - remains;
3612 }
3613 
3614 /*
3615  * small helper routine, copy contents to iter from addr.
3616  * If the page is not present, fill zero.
3617  *
3618  * Returns the number of copied bytes.
3619  */
aligned_vread_iter(struct iov_iter * iter,const char * addr,size_t count)3620 static size_t aligned_vread_iter(struct iov_iter *iter,
3621 				 const char *addr, size_t count)
3622 {
3623 	size_t remains = count;
3624 	struct page *page;
3625 
3626 	while (remains > 0) {
3627 		unsigned long offset, length;
3628 		size_t copied = 0;
3629 
3630 		offset = offset_in_page(addr);
3631 		length = PAGE_SIZE - offset;
3632 		if (length > remains)
3633 			length = remains;
3634 		page = vmalloc_to_page(addr);
3635 		/*
3636 		 * To do safe access to this _mapped_ area, we need lock. But
3637 		 * adding lock here means that we need to add overhead of
3638 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3639 		 * used. Instead of that, we'll use an local mapping via
3640 		 * copy_page_to_iter_nofault() and accept a small overhead in
3641 		 * this access function.
3642 		 */
3643 		if (page)
3644 			copied = copy_page_to_iter_nofault(page, offset,
3645 							   length, iter);
3646 		else
3647 			copied = zero_iter(iter, length);
3648 
3649 		addr += copied;
3650 		remains -= copied;
3651 
3652 		if (copied != length)
3653 			break;
3654 	}
3655 
3656 	return count - remains;
3657 }
3658 
3659 /*
3660  * Read from a vm_map_ram region of memory.
3661  *
3662  * Returns the number of copied bytes.
3663  */
vmap_ram_vread_iter(struct iov_iter * iter,const char * addr,size_t count,unsigned long flags)3664 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3665 				  size_t count, unsigned long flags)
3666 {
3667 	char *start;
3668 	struct vmap_block *vb;
3669 	struct xarray *xa;
3670 	unsigned long offset;
3671 	unsigned int rs, re;
3672 	size_t remains, n;
3673 
3674 	/*
3675 	 * If it's area created by vm_map_ram() interface directly, but
3676 	 * not further subdividing and delegating management to vmap_block,
3677 	 * handle it here.
3678 	 */
3679 	if (!(flags & VMAP_BLOCK))
3680 		return aligned_vread_iter(iter, addr, count);
3681 
3682 	remains = count;
3683 
3684 	/*
3685 	 * Area is split into regions and tracked with vmap_block, read out
3686 	 * each region and zero fill the hole between regions.
3687 	 */
3688 	xa = addr_to_vb_xa((unsigned long) addr);
3689 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3690 	if (!vb)
3691 		goto finished_zero;
3692 
3693 	spin_lock(&vb->lock);
3694 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3695 		spin_unlock(&vb->lock);
3696 		goto finished_zero;
3697 	}
3698 
3699 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3700 		size_t copied;
3701 
3702 		if (remains == 0)
3703 			goto finished;
3704 
3705 		start = vmap_block_vaddr(vb->va->va_start, rs);
3706 
3707 		if (addr < start) {
3708 			size_t to_zero = min_t(size_t, start - addr, remains);
3709 			size_t zeroed = zero_iter(iter, to_zero);
3710 
3711 			addr += zeroed;
3712 			remains -= zeroed;
3713 
3714 			if (remains == 0 || zeroed != to_zero)
3715 				goto finished;
3716 		}
3717 
3718 		/*it could start reading from the middle of used region*/
3719 		offset = offset_in_page(addr);
3720 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3721 		if (n > remains)
3722 			n = remains;
3723 
3724 		copied = aligned_vread_iter(iter, start + offset, n);
3725 
3726 		addr += copied;
3727 		remains -= copied;
3728 
3729 		if (copied != n)
3730 			goto finished;
3731 	}
3732 
3733 	spin_unlock(&vb->lock);
3734 
3735 finished_zero:
3736 	/* zero-fill the left dirty or free regions */
3737 	return count - remains + zero_iter(iter, remains);
3738 finished:
3739 	/* We couldn't copy/zero everything */
3740 	spin_unlock(&vb->lock);
3741 	return count - remains;
3742 }
3743 
3744 /**
3745  * vread_iter() - read vmalloc area in a safe way to an iterator.
3746  * @iter:         the iterator to which data should be written.
3747  * @addr:         vm address.
3748  * @count:        number of bytes to be read.
3749  *
3750  * This function checks that addr is a valid vmalloc'ed area, and
3751  * copy data from that area to a given buffer. If the given memory range
3752  * of [addr...addr+count) includes some valid address, data is copied to
3753  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3754  * IOREMAP area is treated as memory hole and no copy is done.
3755  *
3756  * If [addr...addr+count) doesn't includes any intersects with alive
3757  * vm_struct area, returns 0. @buf should be kernel's buffer.
3758  *
3759  * Note: In usual ops, vread() is never necessary because the caller
3760  * should know vmalloc() area is valid and can use memcpy().
3761  * This is for routines which have to access vmalloc area without
3762  * any information, as /proc/kcore.
3763  *
3764  * Return: number of bytes for which addr and buf should be increased
3765  * (same number as @count) or %0 if [addr...addr+count) doesn't
3766  * include any intersection with valid vmalloc area
3767  */
vread_iter(struct iov_iter * iter,const char * addr,size_t count)3768 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3769 {
3770 	struct vmap_area *va;
3771 	struct vm_struct *vm;
3772 	char *vaddr;
3773 	size_t n, size, flags, remains;
3774 
3775 	addr = kasan_reset_tag(addr);
3776 
3777 	/* Don't allow overflow */
3778 	if ((unsigned long) addr + count < count)
3779 		count = -(unsigned long) addr;
3780 
3781 	remains = count;
3782 
3783 	spin_lock(&vmap_area_lock);
3784 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3785 	if (!va)
3786 		goto finished_zero;
3787 
3788 	/* no intersects with alive vmap_area */
3789 	if ((unsigned long)addr + remains <= va->va_start)
3790 		goto finished_zero;
3791 
3792 	list_for_each_entry_from(va, &vmap_area_list, list) {
3793 		size_t copied;
3794 
3795 		if (remains == 0)
3796 			goto finished;
3797 
3798 		vm = va->vm;
3799 		flags = va->flags & VMAP_FLAGS_MASK;
3800 		/*
3801 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3802 		 * be set together with VMAP_RAM.
3803 		 */
3804 		WARN_ON(flags == VMAP_BLOCK);
3805 
3806 		if (!vm && !flags)
3807 			continue;
3808 
3809 		if (vm && (vm->flags & VM_UNINITIALIZED))
3810 			continue;
3811 
3812 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3813 		smp_rmb();
3814 
3815 		vaddr = (char *) va->va_start;
3816 		size = vm ? get_vm_area_size(vm) : va_size(va);
3817 
3818 		if (addr >= vaddr + size)
3819 			continue;
3820 
3821 		if (addr < vaddr) {
3822 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
3823 			size_t zeroed = zero_iter(iter, to_zero);
3824 
3825 			addr += zeroed;
3826 			remains -= zeroed;
3827 
3828 			if (remains == 0 || zeroed != to_zero)
3829 				goto finished;
3830 		}
3831 
3832 		n = vaddr + size - addr;
3833 		if (n > remains)
3834 			n = remains;
3835 
3836 		if (flags & VMAP_RAM)
3837 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
3838 		else if (!(vm->flags & VM_IOREMAP))
3839 			copied = aligned_vread_iter(iter, addr, n);
3840 		else /* IOREMAP area is treated as memory hole */
3841 			copied = zero_iter(iter, n);
3842 
3843 		addr += copied;
3844 		remains -= copied;
3845 
3846 		if (copied != n)
3847 			goto finished;
3848 	}
3849 
3850 finished_zero:
3851 	spin_unlock(&vmap_area_lock);
3852 	/* zero-fill memory holes */
3853 	return count - remains + zero_iter(iter, remains);
3854 finished:
3855 	/* Nothing remains, or We couldn't copy/zero everything. */
3856 	spin_unlock(&vmap_area_lock);
3857 
3858 	return count - remains;
3859 }
3860 
3861 /**
3862  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3863  * @vma:		vma to cover
3864  * @uaddr:		target user address to start at
3865  * @kaddr:		virtual address of vmalloc kernel memory
3866  * @pgoff:		offset from @kaddr to start at
3867  * @size:		size of map area
3868  *
3869  * Returns:	0 for success, -Exxx on failure
3870  *
3871  * This function checks that @kaddr is a valid vmalloc'ed area,
3872  * and that it is big enough to cover the range starting at
3873  * @uaddr in @vma. Will return failure if that criteria isn't
3874  * met.
3875  *
3876  * Similar to remap_pfn_range() (see mm/memory.c)
3877  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)3878 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3879 				void *kaddr, unsigned long pgoff,
3880 				unsigned long size)
3881 {
3882 	struct vm_struct *area;
3883 	unsigned long off;
3884 	unsigned long end_index;
3885 
3886 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3887 		return -EINVAL;
3888 
3889 	size = PAGE_ALIGN(size);
3890 
3891 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3892 		return -EINVAL;
3893 
3894 	area = find_vm_area(kaddr);
3895 	if (!area)
3896 		return -EINVAL;
3897 
3898 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3899 		return -EINVAL;
3900 
3901 	if (check_add_overflow(size, off, &end_index) ||
3902 	    end_index > get_vm_area_size(area))
3903 		return -EINVAL;
3904 	kaddr += off;
3905 
3906 	do {
3907 		struct page *page = vmalloc_to_page(kaddr);
3908 		int ret;
3909 
3910 		ret = vm_insert_page(vma, uaddr, page);
3911 		if (ret)
3912 			return ret;
3913 
3914 		uaddr += PAGE_SIZE;
3915 		kaddr += PAGE_SIZE;
3916 		size -= PAGE_SIZE;
3917 	} while (size > 0);
3918 
3919 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3920 
3921 	return 0;
3922 }
3923 
3924 /**
3925  * remap_vmalloc_range - map vmalloc pages to userspace
3926  * @vma:		vma to cover (map full range of vma)
3927  * @addr:		vmalloc memory
3928  * @pgoff:		number of pages into addr before first page to map
3929  *
3930  * Returns:	0 for success, -Exxx on failure
3931  *
3932  * This function checks that addr is a valid vmalloc'ed area, and
3933  * that it is big enough to cover the vma. Will return failure if
3934  * that criteria isn't met.
3935  *
3936  * Similar to remap_pfn_range() (see mm/memory.c)
3937  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)3938 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3939 						unsigned long pgoff)
3940 {
3941 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3942 					   addr, pgoff,
3943 					   vma->vm_end - vma->vm_start);
3944 }
3945 EXPORT_SYMBOL(remap_vmalloc_range);
3946 
free_vm_area(struct vm_struct * area)3947 void free_vm_area(struct vm_struct *area)
3948 {
3949 	struct vm_struct *ret;
3950 	ret = remove_vm_area(area->addr);
3951 	BUG_ON(ret != area);
3952 	kfree(area);
3953 }
3954 EXPORT_SYMBOL_GPL(free_vm_area);
3955 
3956 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)3957 static struct vmap_area *node_to_va(struct rb_node *n)
3958 {
3959 	return rb_entry_safe(n, struct vmap_area, rb_node);
3960 }
3961 
3962 /**
3963  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3964  * @addr: target address
3965  *
3966  * Returns: vmap_area if it is found. If there is no such area
3967  *   the first highest(reverse order) vmap_area is returned
3968  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3969  *   if there are no any areas before @addr.
3970  */
3971 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)3972 pvm_find_va_enclose_addr(unsigned long addr)
3973 {
3974 	struct vmap_area *va, *tmp;
3975 	struct rb_node *n;
3976 
3977 	n = free_vmap_area_root.rb_node;
3978 	va = NULL;
3979 
3980 	while (n) {
3981 		tmp = rb_entry(n, struct vmap_area, rb_node);
3982 		if (tmp->va_start <= addr) {
3983 			va = tmp;
3984 			if (tmp->va_end >= addr)
3985 				break;
3986 
3987 			n = n->rb_right;
3988 		} else {
3989 			n = n->rb_left;
3990 		}
3991 	}
3992 
3993 	return va;
3994 }
3995 
3996 /**
3997  * pvm_determine_end_from_reverse - find the highest aligned address
3998  * of free block below VMALLOC_END
3999  * @va:
4000  *   in - the VA we start the search(reverse order);
4001  *   out - the VA with the highest aligned end address.
4002  * @align: alignment for required highest address
4003  *
4004  * Returns: determined end address within vmap_area
4005  */
4006 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)4007 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4008 {
4009 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4010 	unsigned long addr;
4011 
4012 	if (likely(*va)) {
4013 		list_for_each_entry_from_reverse((*va),
4014 				&free_vmap_area_list, list) {
4015 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4016 			if ((*va)->va_start < addr)
4017 				return addr;
4018 		}
4019 	}
4020 
4021 	return 0;
4022 }
4023 
4024 /**
4025  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4026  * @offsets: array containing offset of each area
4027  * @sizes: array containing size of each area
4028  * @nr_vms: the number of areas to allocate
4029  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4030  *
4031  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4032  *	    vm_structs on success, %NULL on failure
4033  *
4034  * Percpu allocator wants to use congruent vm areas so that it can
4035  * maintain the offsets among percpu areas.  This function allocates
4036  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4037  * be scattered pretty far, distance between two areas easily going up
4038  * to gigabytes.  To avoid interacting with regular vmallocs, these
4039  * areas are allocated from top.
4040  *
4041  * Despite its complicated look, this allocator is rather simple. It
4042  * does everything top-down and scans free blocks from the end looking
4043  * for matching base. While scanning, if any of the areas do not fit the
4044  * base address is pulled down to fit the area. Scanning is repeated till
4045  * all the areas fit and then all necessary data structures are inserted
4046  * and the result is returned.
4047  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)4048 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4049 				     const size_t *sizes, int nr_vms,
4050 				     size_t align)
4051 {
4052 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4053 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4054 	struct vmap_area **vas, *va;
4055 	struct vm_struct **vms;
4056 	int area, area2, last_area, term_area;
4057 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4058 	bool purged = false;
4059 
4060 	/* verify parameters and allocate data structures */
4061 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4062 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4063 		start = offsets[area];
4064 		end = start + sizes[area];
4065 
4066 		/* is everything aligned properly? */
4067 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4068 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4069 
4070 		/* detect the area with the highest address */
4071 		if (start > offsets[last_area])
4072 			last_area = area;
4073 
4074 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4075 			unsigned long start2 = offsets[area2];
4076 			unsigned long end2 = start2 + sizes[area2];
4077 
4078 			BUG_ON(start2 < end && start < end2);
4079 		}
4080 	}
4081 	last_end = offsets[last_area] + sizes[last_area];
4082 
4083 	if (vmalloc_end - vmalloc_start < last_end) {
4084 		WARN_ON(true);
4085 		return NULL;
4086 	}
4087 
4088 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4089 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4090 	if (!vas || !vms)
4091 		goto err_free2;
4092 
4093 	for (area = 0; area < nr_vms; area++) {
4094 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4095 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4096 		if (!vas[area] || !vms[area])
4097 			goto err_free;
4098 	}
4099 retry:
4100 	spin_lock(&free_vmap_area_lock);
4101 
4102 	/* start scanning - we scan from the top, begin with the last area */
4103 	area = term_area = last_area;
4104 	start = offsets[area];
4105 	end = start + sizes[area];
4106 
4107 	va = pvm_find_va_enclose_addr(vmalloc_end);
4108 	base = pvm_determine_end_from_reverse(&va, align) - end;
4109 
4110 	while (true) {
4111 		/*
4112 		 * base might have underflowed, add last_end before
4113 		 * comparing.
4114 		 */
4115 		if (base + last_end < vmalloc_start + last_end)
4116 			goto overflow;
4117 
4118 		/*
4119 		 * Fitting base has not been found.
4120 		 */
4121 		if (va == NULL)
4122 			goto overflow;
4123 
4124 		/*
4125 		 * If required width exceeds current VA block, move
4126 		 * base downwards and then recheck.
4127 		 */
4128 		if (base + end > va->va_end) {
4129 			base = pvm_determine_end_from_reverse(&va, align) - end;
4130 			term_area = area;
4131 			continue;
4132 		}
4133 
4134 		/*
4135 		 * If this VA does not fit, move base downwards and recheck.
4136 		 */
4137 		if (base + start < va->va_start) {
4138 			va = node_to_va(rb_prev(&va->rb_node));
4139 			base = pvm_determine_end_from_reverse(&va, align) - end;
4140 			term_area = area;
4141 			continue;
4142 		}
4143 
4144 		/*
4145 		 * This area fits, move on to the previous one.  If
4146 		 * the previous one is the terminal one, we're done.
4147 		 */
4148 		area = (area + nr_vms - 1) % nr_vms;
4149 		if (area == term_area)
4150 			break;
4151 
4152 		start = offsets[area];
4153 		end = start + sizes[area];
4154 		va = pvm_find_va_enclose_addr(base + end);
4155 	}
4156 
4157 	/* we've found a fitting base, insert all va's */
4158 	for (area = 0; area < nr_vms; area++) {
4159 		int ret;
4160 
4161 		start = base + offsets[area];
4162 		size = sizes[area];
4163 
4164 		va = pvm_find_va_enclose_addr(start);
4165 		if (WARN_ON_ONCE(va == NULL))
4166 			/* It is a BUG(), but trigger recovery instead. */
4167 			goto recovery;
4168 
4169 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
4170 					    &free_vmap_area_list,
4171 					    va, start, size);
4172 		if (WARN_ON_ONCE(unlikely(ret)))
4173 			/* It is a BUG(), but trigger recovery instead. */
4174 			goto recovery;
4175 
4176 		/* Allocated area. */
4177 		va = vas[area];
4178 		va->va_start = start;
4179 		va->va_end = start + size;
4180 	}
4181 
4182 	spin_unlock(&free_vmap_area_lock);
4183 
4184 	/* populate the kasan shadow space */
4185 	for (area = 0; area < nr_vms; area++) {
4186 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4187 			goto err_free_shadow;
4188 	}
4189 
4190 	/* insert all vm's */
4191 	spin_lock(&vmap_area_lock);
4192 	for (area = 0; area < nr_vms; area++) {
4193 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4194 
4195 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4196 				 pcpu_get_vm_areas);
4197 	}
4198 	spin_unlock(&vmap_area_lock);
4199 
4200 	/*
4201 	 * Mark allocated areas as accessible. Do it now as a best-effort
4202 	 * approach, as they can be mapped outside of vmalloc code.
4203 	 * With hardware tag-based KASAN, marking is skipped for
4204 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4205 	 */
4206 	for (area = 0; area < nr_vms; area++)
4207 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4208 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4209 
4210 	kfree(vas);
4211 	return vms;
4212 
4213 recovery:
4214 	/*
4215 	 * Remove previously allocated areas. There is no
4216 	 * need in removing these areas from the busy tree,
4217 	 * because they are inserted only on the final step
4218 	 * and when pcpu_get_vm_areas() is success.
4219 	 */
4220 	while (area--) {
4221 		orig_start = vas[area]->va_start;
4222 		orig_end = vas[area]->va_end;
4223 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4224 				&free_vmap_area_list);
4225 		if (va)
4226 			kasan_release_vmalloc(orig_start, orig_end,
4227 				va->va_start, va->va_end);
4228 		vas[area] = NULL;
4229 	}
4230 
4231 overflow:
4232 	spin_unlock(&free_vmap_area_lock);
4233 	if (!purged) {
4234 		reclaim_and_purge_vmap_areas();
4235 		purged = true;
4236 
4237 		/* Before "retry", check if we recover. */
4238 		for (area = 0; area < nr_vms; area++) {
4239 			if (vas[area])
4240 				continue;
4241 
4242 			vas[area] = kmem_cache_zalloc(
4243 				vmap_area_cachep, GFP_KERNEL);
4244 			if (!vas[area])
4245 				goto err_free;
4246 		}
4247 
4248 		goto retry;
4249 	}
4250 
4251 err_free:
4252 	for (area = 0; area < nr_vms; area++) {
4253 		if (vas[area])
4254 			kmem_cache_free(vmap_area_cachep, vas[area]);
4255 
4256 		kfree(vms[area]);
4257 	}
4258 err_free2:
4259 	kfree(vas);
4260 	kfree(vms);
4261 	return NULL;
4262 
4263 err_free_shadow:
4264 	spin_lock(&free_vmap_area_lock);
4265 	/*
4266 	 * We release all the vmalloc shadows, even the ones for regions that
4267 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4268 	 * being able to tolerate this case.
4269 	 */
4270 	for (area = 0; area < nr_vms; area++) {
4271 		orig_start = vas[area]->va_start;
4272 		orig_end = vas[area]->va_end;
4273 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4274 				&free_vmap_area_list);
4275 		if (va)
4276 			kasan_release_vmalloc(orig_start, orig_end,
4277 				va->va_start, va->va_end);
4278 		vas[area] = NULL;
4279 		kfree(vms[area]);
4280 	}
4281 	spin_unlock(&free_vmap_area_lock);
4282 	kfree(vas);
4283 	kfree(vms);
4284 	return NULL;
4285 }
4286 
4287 /**
4288  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4289  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4290  * @nr_vms: the number of allocated areas
4291  *
4292  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4293  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)4294 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4295 {
4296 	int i;
4297 
4298 	for (i = 0; i < nr_vms; i++)
4299 		free_vm_area(vms[i]);
4300 	kfree(vms);
4301 }
4302 #endif	/* CONFIG_SMP */
4303 
4304 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)4305 bool vmalloc_dump_obj(void *object)
4306 {
4307 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4308 	const void *caller;
4309 	struct vm_struct *vm;
4310 	struct vmap_area *va;
4311 	unsigned long addr;
4312 	unsigned int nr_pages;
4313 
4314 	if (!spin_trylock(&vmap_area_lock))
4315 		return false;
4316 	va = __find_vmap_area((unsigned long)objp, &vmap_area_root);
4317 	if (!va) {
4318 		spin_unlock(&vmap_area_lock);
4319 		return false;
4320 	}
4321 
4322 	vm = va->vm;
4323 	if (!vm) {
4324 		spin_unlock(&vmap_area_lock);
4325 		return false;
4326 	}
4327 	addr = (unsigned long)vm->addr;
4328 	caller = vm->caller;
4329 	nr_pages = vm->nr_pages;
4330 	spin_unlock(&vmap_area_lock);
4331 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4332 		nr_pages, addr, caller);
4333 	return true;
4334 }
4335 #endif
4336 
4337 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)4338 static void *s_start(struct seq_file *m, loff_t *pos)
4339 	__acquires(&vmap_purge_lock)
4340 	__acquires(&vmap_area_lock)
4341 {
4342 	mutex_lock(&vmap_purge_lock);
4343 	spin_lock(&vmap_area_lock);
4344 
4345 	return seq_list_start(&vmap_area_list, *pos);
4346 }
4347 
s_next(struct seq_file * m,void * p,loff_t * pos)4348 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4349 {
4350 	return seq_list_next(p, &vmap_area_list, pos);
4351 }
4352 
s_stop(struct seq_file * m,void * p)4353 static void s_stop(struct seq_file *m, void *p)
4354 	__releases(&vmap_area_lock)
4355 	__releases(&vmap_purge_lock)
4356 {
4357 	spin_unlock(&vmap_area_lock);
4358 	mutex_unlock(&vmap_purge_lock);
4359 }
4360 
show_numa_info(struct seq_file * m,struct vm_struct * v)4361 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4362 {
4363 	if (IS_ENABLED(CONFIG_NUMA)) {
4364 		unsigned int nr, *counters = m->private;
4365 		unsigned int step = 1U << vm_area_page_order(v);
4366 
4367 		if (!counters)
4368 			return;
4369 
4370 		if (v->flags & VM_UNINITIALIZED)
4371 			return;
4372 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4373 		smp_rmb();
4374 
4375 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4376 
4377 		for (nr = 0; nr < v->nr_pages; nr += step)
4378 			counters[page_to_nid(v->pages[nr])] += step;
4379 		for_each_node_state(nr, N_HIGH_MEMORY)
4380 			if (counters[nr])
4381 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4382 	}
4383 }
4384 
show_purge_info(struct seq_file * m)4385 static void show_purge_info(struct seq_file *m)
4386 {
4387 	struct vmap_area *va;
4388 
4389 	spin_lock(&purge_vmap_area_lock);
4390 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4391 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4392 			(void *)va->va_start, (void *)va->va_end,
4393 			va->va_end - va->va_start);
4394 	}
4395 	spin_unlock(&purge_vmap_area_lock);
4396 }
4397 
s_show(struct seq_file * m,void * p)4398 static int s_show(struct seq_file *m, void *p)
4399 {
4400 	struct vmap_area *va;
4401 	struct vm_struct *v;
4402 
4403 	va = list_entry(p, struct vmap_area, list);
4404 
4405 	if (!va->vm) {
4406 		if (va->flags & VMAP_RAM)
4407 			seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4408 				(void *)va->va_start, (void *)va->va_end,
4409 				va->va_end - va->va_start);
4410 
4411 		goto final;
4412 	}
4413 
4414 	v = va->vm;
4415 
4416 	seq_printf(m, "0x%pK-0x%pK %7ld",
4417 		v->addr, v->addr + v->size, v->size);
4418 
4419 	if (v->caller)
4420 		seq_printf(m, " %pS", v->caller);
4421 
4422 	if (v->nr_pages)
4423 		seq_printf(m, " pages=%d", v->nr_pages);
4424 
4425 	if (v->phys_addr)
4426 		seq_printf(m, " phys=%pa", &v->phys_addr);
4427 
4428 	if (v->flags & VM_IOREMAP)
4429 		seq_puts(m, " ioremap");
4430 
4431 	if (v->flags & VM_ALLOC)
4432 		seq_puts(m, " vmalloc");
4433 
4434 	if (v->flags & VM_MAP)
4435 		seq_puts(m, " vmap");
4436 
4437 	if (v->flags & VM_USERMAP)
4438 		seq_puts(m, " user");
4439 
4440 	if (v->flags & VM_DMA_COHERENT)
4441 		seq_puts(m, " dma-coherent");
4442 
4443 	if (is_vmalloc_addr(v->pages))
4444 		seq_puts(m, " vpages");
4445 
4446 	show_numa_info(m, v);
4447 	trace_android_vh_show_stack_hash(m, v);
4448 	seq_putc(m, '\n');
4449 
4450 	/*
4451 	 * As a final step, dump "unpurged" areas.
4452 	 */
4453 final:
4454 	if (list_is_last(&va->list, &vmap_area_list))
4455 		show_purge_info(m);
4456 
4457 	return 0;
4458 }
4459 
4460 static const struct seq_operations vmalloc_op = {
4461 	.start = s_start,
4462 	.next = s_next,
4463 	.stop = s_stop,
4464 	.show = s_show,
4465 };
4466 
proc_vmalloc_init(void)4467 static int __init proc_vmalloc_init(void)
4468 {
4469 	if (IS_ENABLED(CONFIG_NUMA))
4470 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4471 				&vmalloc_op,
4472 				nr_node_ids * sizeof(unsigned int), NULL);
4473 	else
4474 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4475 	return 0;
4476 }
4477 module_init(proc_vmalloc_init);
4478 
4479 #endif
4480 
vmalloc_init(void)4481 void __init vmalloc_init(void)
4482 {
4483 	struct vmap_area *va;
4484 	struct vm_struct *tmp;
4485 	int i;
4486 
4487 	/*
4488 	 * Create the cache for vmap_area objects.
4489 	 */
4490 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4491 
4492 	for_each_possible_cpu(i) {
4493 		struct vmap_block_queue *vbq;
4494 		struct vfree_deferred *p;
4495 
4496 		vbq = &per_cpu(vmap_block_queue, i);
4497 		spin_lock_init(&vbq->lock);
4498 		INIT_LIST_HEAD(&vbq->free);
4499 		p = &per_cpu(vfree_deferred, i);
4500 		init_llist_head(&p->list);
4501 		INIT_WORK(&p->wq, delayed_vfree_work);
4502 		xa_init(&vbq->vmap_blocks);
4503 	}
4504 
4505 	/* Import existing vmlist entries. */
4506 	for (tmp = vmlist; tmp; tmp = tmp->next) {
4507 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4508 		if (WARN_ON_ONCE(!va))
4509 			continue;
4510 
4511 		va->va_start = (unsigned long)tmp->addr;
4512 		va->va_end = va->va_start + tmp->size;
4513 		va->vm = tmp;
4514 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4515 	}
4516 
4517 	/*
4518 	 * Now we can initialize a free vmap space.
4519 	 */
4520 	vmap_init_free_space();
4521 	vmap_initialized = true;
4522 }
4523