1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic pidhash and scalable, time-bounded PID allocator
4 *
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
8 *
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
12 *
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
16 *
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 *
23 * Pid namespaces:
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
27 *
28 */
29
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <net/sock.h>
46 #include <uapi/linux/pidfd.h>
47
48 struct pid init_struct_pid = {
49 .count = REFCOUNT_INIT(1),
50 .tasks = {
51 { .first = NULL },
52 { .first = NULL },
53 { .first = NULL },
54 },
55 .level = 0,
56 .numbers = { {
57 .nr = 0,
58 .ns = &init_pid_ns,
59 }, }
60 };
61
62 int pid_max = PID_MAX_DEFAULT;
63
64 #define RESERVED_PIDS 300
65
66 int pid_max_min = RESERVED_PIDS + 1;
67 int pid_max_max = PID_MAX_LIMIT;
68
69 /*
70 * PID-map pages start out as NULL, they get allocated upon
71 * first use and are never deallocated. This way a low pid_max
72 * value does not cause lots of bitmaps to be allocated, but
73 * the scheme scales to up to 4 million PIDs, runtime.
74 */
75 struct pid_namespace init_pid_ns = {
76 .ns.count = REFCOUNT_INIT(2),
77 .idr = IDR_INIT(init_pid_ns.idr),
78 .pid_allocated = PIDNS_ADDING,
79 .level = 0,
80 .child_reaper = &init_task,
81 .user_ns = &init_user_ns,
82 .ns.inum = PROC_PID_INIT_INO,
83 #ifdef CONFIG_PID_NS
84 .ns.ops = &pidns_operations,
85 #endif
86 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
87 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
88 #endif
89 };
90 EXPORT_SYMBOL_GPL(init_pid_ns);
91
92 /*
93 * Note: disable interrupts while the pidmap_lock is held as an
94 * interrupt might come in and do read_lock(&tasklist_lock).
95 *
96 * If we don't disable interrupts there is a nasty deadlock between
97 * detach_pid()->free_pid() and another cpu that does
98 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
99 * read_lock(&tasklist_lock);
100 *
101 * After we clean up the tasklist_lock and know there are no
102 * irq handlers that take it we can leave the interrupts enabled.
103 * For now it is easier to be safe than to prove it can't happen.
104 */
105
106 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
107
put_pid(struct pid * pid)108 void put_pid(struct pid *pid)
109 {
110 struct pid_namespace *ns;
111
112 if (!pid)
113 return;
114
115 ns = pid->numbers[pid->level].ns;
116 if (refcount_dec_and_test(&pid->count)) {
117 kmem_cache_free(ns->pid_cachep, pid);
118 put_pid_ns(ns);
119 }
120 }
121 EXPORT_SYMBOL_GPL(put_pid);
122
delayed_put_pid(struct rcu_head * rhp)123 static void delayed_put_pid(struct rcu_head *rhp)
124 {
125 struct pid *pid = container_of(rhp, struct pid, rcu);
126 put_pid(pid);
127 }
128
free_pid(struct pid * pid)129 void free_pid(struct pid *pid)
130 {
131 /* We can be called with write_lock_irq(&tasklist_lock) held */
132 int i;
133 unsigned long flags;
134
135 spin_lock_irqsave(&pidmap_lock, flags);
136 for (i = 0; i <= pid->level; i++) {
137 struct upid *upid = pid->numbers + i;
138 struct pid_namespace *ns = upid->ns;
139 switch (--ns->pid_allocated) {
140 case 2:
141 case 1:
142 /* When all that is left in the pid namespace
143 * is the reaper wake up the reaper. The reaper
144 * may be sleeping in zap_pid_ns_processes().
145 */
146 wake_up_process(ns->child_reaper);
147 break;
148 case PIDNS_ADDING:
149 /* Handle a fork failure of the first process */
150 WARN_ON(ns->child_reaper);
151 ns->pid_allocated = 0;
152 break;
153 }
154
155 idr_remove(&ns->idr, upid->nr);
156 }
157 spin_unlock_irqrestore(&pidmap_lock, flags);
158
159 call_rcu(&pid->rcu, delayed_put_pid);
160 }
161
alloc_pid(struct pid_namespace * ns,pid_t * set_tid,size_t set_tid_size)162 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
163 size_t set_tid_size)
164 {
165 struct pid *pid;
166 enum pid_type type;
167 int i, nr;
168 struct pid_namespace *tmp;
169 struct upid *upid;
170 int retval = -ENOMEM;
171
172 /*
173 * set_tid_size contains the size of the set_tid array. Starting at
174 * the most nested currently active PID namespace it tells alloc_pid()
175 * which PID to set for a process in that most nested PID namespace
176 * up to set_tid_size PID namespaces. It does not have to set the PID
177 * for a process in all nested PID namespaces but set_tid_size must
178 * never be greater than the current ns->level + 1.
179 */
180 if (set_tid_size > ns->level + 1)
181 return ERR_PTR(-EINVAL);
182
183 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
184 if (!pid)
185 return ERR_PTR(retval);
186
187 tmp = ns;
188 pid->level = ns->level;
189
190 for (i = ns->level; i >= 0; i--) {
191 int tid = 0;
192
193 if (set_tid_size) {
194 tid = set_tid[ns->level - i];
195
196 retval = -EINVAL;
197 if (tid < 1 || tid >= pid_max)
198 goto out_free;
199 /*
200 * Also fail if a PID != 1 is requested and
201 * no PID 1 exists.
202 */
203 if (tid != 1 && !tmp->child_reaper)
204 goto out_free;
205 retval = -EPERM;
206 if (!checkpoint_restore_ns_capable(tmp->user_ns))
207 goto out_free;
208 set_tid_size--;
209 }
210
211 idr_preload(GFP_KERNEL);
212 spin_lock_irq(&pidmap_lock);
213
214 if (tid) {
215 nr = idr_alloc(&tmp->idr, NULL, tid,
216 tid + 1, GFP_ATOMIC);
217 /*
218 * If ENOSPC is returned it means that the PID is
219 * alreay in use. Return EEXIST in that case.
220 */
221 if (nr == -ENOSPC)
222 nr = -EEXIST;
223 } else {
224 int pid_min = 1;
225 /*
226 * init really needs pid 1, but after reaching the
227 * maximum wrap back to RESERVED_PIDS
228 */
229 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
230 pid_min = RESERVED_PIDS;
231
232 /*
233 * Store a null pointer so find_pid_ns does not find
234 * a partially initialized PID (see below).
235 */
236 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
237 pid_max, GFP_ATOMIC);
238 }
239 spin_unlock_irq(&pidmap_lock);
240 idr_preload_end();
241
242 if (nr < 0) {
243 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
244 goto out_free;
245 }
246
247 pid->numbers[i].nr = nr;
248 pid->numbers[i].ns = tmp;
249 tmp = tmp->parent;
250 }
251
252 /*
253 * ENOMEM is not the most obvious choice especially for the case
254 * where the child subreaper has already exited and the pid
255 * namespace denies the creation of any new processes. But ENOMEM
256 * is what we have exposed to userspace for a long time and it is
257 * documented behavior for pid namespaces. So we can't easily
258 * change it even if there were an error code better suited.
259 */
260 retval = -ENOMEM;
261
262 get_pid_ns(ns);
263 refcount_set(&pid->count, 1);
264 spin_lock_init(&pid->lock);
265 for (type = 0; type < PIDTYPE_MAX; ++type)
266 INIT_HLIST_HEAD(&pid->tasks[type]);
267
268 init_waitqueue_head(&pid->wait_pidfd);
269 INIT_HLIST_HEAD(&pid->inodes);
270
271 upid = pid->numbers + ns->level;
272 spin_lock_irq(&pidmap_lock);
273 if (!(ns->pid_allocated & PIDNS_ADDING))
274 goto out_unlock;
275 for ( ; upid >= pid->numbers; --upid) {
276 /* Make the PID visible to find_pid_ns. */
277 idr_replace(&upid->ns->idr, pid, upid->nr);
278 upid->ns->pid_allocated++;
279 }
280 spin_unlock_irq(&pidmap_lock);
281
282 return pid;
283
284 out_unlock:
285 spin_unlock_irq(&pidmap_lock);
286 put_pid_ns(ns);
287
288 out_free:
289 spin_lock_irq(&pidmap_lock);
290 while (++i <= ns->level) {
291 upid = pid->numbers + i;
292 idr_remove(&upid->ns->idr, upid->nr);
293 }
294
295 /* On failure to allocate the first pid, reset the state */
296 if (ns->pid_allocated == PIDNS_ADDING)
297 idr_set_cursor(&ns->idr, 0);
298
299 spin_unlock_irq(&pidmap_lock);
300
301 kmem_cache_free(ns->pid_cachep, pid);
302 return ERR_PTR(retval);
303 }
304
disable_pid_allocation(struct pid_namespace * ns)305 void disable_pid_allocation(struct pid_namespace *ns)
306 {
307 spin_lock_irq(&pidmap_lock);
308 ns->pid_allocated &= ~PIDNS_ADDING;
309 spin_unlock_irq(&pidmap_lock);
310 }
311
find_pid_ns(int nr,struct pid_namespace * ns)312 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
313 {
314 return idr_find(&ns->idr, nr);
315 }
316 EXPORT_SYMBOL_GPL(find_pid_ns);
317
find_vpid(int nr)318 struct pid *find_vpid(int nr)
319 {
320 return find_pid_ns(nr, task_active_pid_ns(current));
321 }
322 EXPORT_SYMBOL_GPL(find_vpid);
323
task_pid_ptr(struct task_struct * task,enum pid_type type)324 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
325 {
326 return (type == PIDTYPE_PID) ?
327 &task->thread_pid :
328 &task->signal->pids[type];
329 }
330
331 /*
332 * attach_pid() must be called with the tasklist_lock write-held.
333 */
attach_pid(struct task_struct * task,enum pid_type type)334 void attach_pid(struct task_struct *task, enum pid_type type)
335 {
336 struct pid *pid = *task_pid_ptr(task, type);
337 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
338 }
339
__change_pid(struct task_struct * task,enum pid_type type,struct pid * new)340 static void __change_pid(struct task_struct *task, enum pid_type type,
341 struct pid *new)
342 {
343 struct pid **pid_ptr = task_pid_ptr(task, type);
344 struct pid *pid;
345 int tmp;
346
347 pid = *pid_ptr;
348
349 hlist_del_rcu(&task->pid_links[type]);
350 *pid_ptr = new;
351
352 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
353 if (pid_has_task(pid, tmp))
354 return;
355
356 free_pid(pid);
357 }
358
detach_pid(struct task_struct * task,enum pid_type type)359 void detach_pid(struct task_struct *task, enum pid_type type)
360 {
361 __change_pid(task, type, NULL);
362 }
363
change_pid(struct task_struct * task,enum pid_type type,struct pid * pid)364 void change_pid(struct task_struct *task, enum pid_type type,
365 struct pid *pid)
366 {
367 __change_pid(task, type, pid);
368 attach_pid(task, type);
369 }
370
exchange_tids(struct task_struct * left,struct task_struct * right)371 void exchange_tids(struct task_struct *left, struct task_struct *right)
372 {
373 struct pid *pid1 = left->thread_pid;
374 struct pid *pid2 = right->thread_pid;
375 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
376 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
377
378 /* Swap the single entry tid lists */
379 hlists_swap_heads_rcu(head1, head2);
380
381 /* Swap the per task_struct pid */
382 rcu_assign_pointer(left->thread_pid, pid2);
383 rcu_assign_pointer(right->thread_pid, pid1);
384
385 /* Swap the cached value */
386 WRITE_ONCE(left->pid, pid_nr(pid2));
387 WRITE_ONCE(right->pid, pid_nr(pid1));
388 }
389
390 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)391 void transfer_pid(struct task_struct *old, struct task_struct *new,
392 enum pid_type type)
393 {
394 if (type == PIDTYPE_PID)
395 new->thread_pid = old->thread_pid;
396 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
397 }
398
pid_task(struct pid * pid,enum pid_type type)399 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
400 {
401 struct task_struct *result = NULL;
402 if (pid) {
403 struct hlist_node *first;
404 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
405 lockdep_tasklist_lock_is_held());
406 if (first)
407 result = hlist_entry(first, struct task_struct, pid_links[(type)]);
408 }
409 return result;
410 }
411 EXPORT_SYMBOL(pid_task);
412
413 /*
414 * Must be called under rcu_read_lock().
415 */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)416 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
417 {
418 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
419 "find_task_by_pid_ns() needs rcu_read_lock() protection");
420 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
421 }
422
find_task_by_vpid(pid_t vnr)423 struct task_struct *find_task_by_vpid(pid_t vnr)
424 {
425 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
426 }
427 EXPORT_SYMBOL_GPL(find_task_by_vpid);
428
find_get_task_by_vpid(pid_t nr)429 struct task_struct *find_get_task_by_vpid(pid_t nr)
430 {
431 struct task_struct *task;
432
433 rcu_read_lock();
434 task = find_task_by_vpid(nr);
435 if (task)
436 get_task_struct(task);
437 rcu_read_unlock();
438
439 return task;
440 }
441
get_task_pid(struct task_struct * task,enum pid_type type)442 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
443 {
444 struct pid *pid;
445 rcu_read_lock();
446 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
447 rcu_read_unlock();
448 return pid;
449 }
450 EXPORT_SYMBOL_GPL(get_task_pid);
451
get_pid_task(struct pid * pid,enum pid_type type)452 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
453 {
454 struct task_struct *result;
455 rcu_read_lock();
456 result = pid_task(pid, type);
457 if (result)
458 get_task_struct(result);
459 rcu_read_unlock();
460 return result;
461 }
462 EXPORT_SYMBOL_GPL(get_pid_task);
463
find_get_pid(pid_t nr)464 struct pid *find_get_pid(pid_t nr)
465 {
466 struct pid *pid;
467
468 rcu_read_lock();
469 pid = get_pid(find_vpid(nr));
470 rcu_read_unlock();
471
472 return pid;
473 }
474 EXPORT_SYMBOL_GPL(find_get_pid);
475
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)476 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
477 {
478 struct upid *upid;
479 pid_t nr = 0;
480
481 if (pid && ns->level <= pid->level) {
482 upid = &pid->numbers[ns->level];
483 if (upid->ns == ns)
484 nr = upid->nr;
485 }
486 return nr;
487 }
488 EXPORT_SYMBOL_GPL(pid_nr_ns);
489
pid_vnr(struct pid * pid)490 pid_t pid_vnr(struct pid *pid)
491 {
492 return pid_nr_ns(pid, task_active_pid_ns(current));
493 }
494 EXPORT_SYMBOL_GPL(pid_vnr);
495
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)496 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
497 struct pid_namespace *ns)
498 {
499 pid_t nr = 0;
500
501 rcu_read_lock();
502 if (!ns)
503 ns = task_active_pid_ns(current);
504 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
505 rcu_read_unlock();
506
507 return nr;
508 }
509 EXPORT_SYMBOL(__task_pid_nr_ns);
510
task_active_pid_ns(struct task_struct * tsk)511 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
512 {
513 return ns_of_pid(task_pid(tsk));
514 }
515 EXPORT_SYMBOL_GPL(task_active_pid_ns);
516
517 /*
518 * Used by proc to find the first pid that is greater than or equal to nr.
519 *
520 * If there is a pid at nr this function is exactly the same as find_pid_ns.
521 */
find_ge_pid(int nr,struct pid_namespace * ns)522 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
523 {
524 return idr_get_next(&ns->idr, &nr);
525 }
526 EXPORT_SYMBOL_GPL(find_ge_pid);
527
pidfd_get_pid(unsigned int fd,unsigned int * flags)528 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
529 {
530 struct fd f;
531 struct pid *pid;
532
533 f = fdget(fd);
534 if (!f.file)
535 return ERR_PTR(-EBADF);
536
537 pid = pidfd_pid(f.file);
538 if (!IS_ERR(pid)) {
539 get_pid(pid);
540 *flags = f.file->f_flags;
541 }
542
543 fdput(f);
544 return pid;
545 }
546 EXPORT_SYMBOL_GPL(pidfd_get_pid);
547
548 /**
549 * pidfd_get_task() - Get the task associated with a pidfd
550 *
551 * @pidfd: pidfd for which to get the task
552 * @flags: flags associated with this pidfd
553 *
554 * Return the task associated with @pidfd. The function takes a reference on
555 * the returned task. The caller is responsible for releasing that reference.
556 *
557 * Currently, the process identified by @pidfd is always a thread-group leader.
558 * This restriction currently exists for all aspects of pidfds including pidfd
559 * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling
560 * (only supports thread group leaders).
561 *
562 * Return: On success, the task_struct associated with the pidfd.
563 * On error, a negative errno number will be returned.
564 */
pidfd_get_task(int pidfd,unsigned int * flags)565 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
566 {
567 unsigned int f_flags;
568 struct pid *pid;
569 struct task_struct *task;
570
571 pid = pidfd_get_pid(pidfd, &f_flags);
572 if (IS_ERR(pid))
573 return ERR_CAST(pid);
574
575 task = get_pid_task(pid, PIDTYPE_TGID);
576 put_pid(pid);
577 if (!task)
578 return ERR_PTR(-ESRCH);
579
580 *flags = f_flags;
581 return task;
582 }
583
584 /**
585 * pidfd_create() - Create a new pid file descriptor.
586 *
587 * @pid: struct pid that the pidfd will reference
588 * @flags: flags to pass
589 *
590 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
591 *
592 * Note, that this function can only be called after the fd table has
593 * been unshared to avoid leaking the pidfd to the new process.
594 *
595 * This symbol should not be explicitly exported to loadable modules.
596 *
597 * Return: On success, a cloexec pidfd is returned.
598 * On error, a negative errno number will be returned.
599 */
pidfd_create(struct pid * pid,unsigned int flags)600 int pidfd_create(struct pid *pid, unsigned int flags)
601 {
602 int pidfd;
603 struct file *pidfd_file;
604
605 pidfd = pidfd_prepare(pid, flags, &pidfd_file);
606 if (pidfd < 0)
607 return pidfd;
608
609 fd_install(pidfd, pidfd_file);
610 return pidfd;
611 }
612
613 /**
614 * sys_pidfd_open() - Open new pid file descriptor.
615 *
616 * @pid: pid for which to retrieve a pidfd
617 * @flags: flags to pass
618 *
619 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
620 * the process identified by @pid. Currently, the process identified by
621 * @pid must be a thread-group leader. This restriction currently exists
622 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
623 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
624 * leaders).
625 *
626 * Return: On success, a cloexec pidfd is returned.
627 * On error, a negative errno number will be returned.
628 */
SYSCALL_DEFINE2(pidfd_open,pid_t,pid,unsigned int,flags)629 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
630 {
631 int fd;
632 struct pid *p;
633
634 if (flags & ~PIDFD_NONBLOCK)
635 return -EINVAL;
636
637 if (pid <= 0)
638 return -EINVAL;
639
640 p = find_get_pid(pid);
641 if (!p)
642 return -ESRCH;
643
644 fd = pidfd_create(p, flags);
645
646 put_pid(p);
647 return fd;
648 }
649
pid_idr_init(void)650 void __init pid_idr_init(void)
651 {
652 /* Verify no one has done anything silly: */
653 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
654
655 /* bump default and minimum pid_max based on number of cpus */
656 pid_max = min(pid_max_max, max_t(int, pid_max,
657 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
658 pid_max_min = max_t(int, pid_max_min,
659 PIDS_PER_CPU_MIN * num_possible_cpus());
660 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
661
662 idr_init(&init_pid_ns.idr);
663
664 init_pid_ns.pid_cachep = kmem_cache_create("pid",
665 struct_size_t(struct pid, numbers, 1),
666 __alignof__(struct pid),
667 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
668 NULL);
669 }
670
__pidfd_fget(struct task_struct * task,int fd)671 static struct file *__pidfd_fget(struct task_struct *task, int fd)
672 {
673 struct file *file;
674 int ret;
675
676 ret = down_read_killable(&task->signal->exec_update_lock);
677 if (ret)
678 return ERR_PTR(ret);
679
680 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
681 file = fget_task(task, fd);
682 else
683 file = ERR_PTR(-EPERM);
684
685 up_read(&task->signal->exec_update_lock);
686
687 return file ?: ERR_PTR(-EBADF);
688 }
689
pidfd_getfd(struct pid * pid,int fd)690 static int pidfd_getfd(struct pid *pid, int fd)
691 {
692 struct task_struct *task;
693 struct file *file;
694 int ret;
695
696 task = get_pid_task(pid, PIDTYPE_PID);
697 if (!task)
698 return -ESRCH;
699
700 file = __pidfd_fget(task, fd);
701 put_task_struct(task);
702 if (IS_ERR(file))
703 return PTR_ERR(file);
704
705 ret = receive_fd(file, O_CLOEXEC);
706 fput(file);
707
708 return ret;
709 }
710
711 /**
712 * sys_pidfd_getfd() - Get a file descriptor from another process
713 *
714 * @pidfd: the pidfd file descriptor of the process
715 * @fd: the file descriptor number to get
716 * @flags: flags on how to get the fd (reserved)
717 *
718 * This syscall gets a copy of a file descriptor from another process
719 * based on the pidfd, and file descriptor number. It requires that
720 * the calling process has the ability to ptrace the process represented
721 * by the pidfd. The process which is having its file descriptor copied
722 * is otherwise unaffected.
723 *
724 * Return: On success, a cloexec file descriptor is returned.
725 * On error, a negative errno number will be returned.
726 */
SYSCALL_DEFINE3(pidfd_getfd,int,pidfd,int,fd,unsigned int,flags)727 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
728 unsigned int, flags)
729 {
730 struct pid *pid;
731 struct fd f;
732 int ret;
733
734 /* flags is currently unused - make sure it's unset */
735 if (flags)
736 return -EINVAL;
737
738 f = fdget(pidfd);
739 if (!f.file)
740 return -EBADF;
741
742 pid = pidfd_pid(f.file);
743 if (IS_ERR(pid))
744 ret = PTR_ERR(pid);
745 else
746 ret = pidfd_getfd(pid, fd);
747
748 fdput(f);
749 return ret;
750 }
751