1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 stat_dec_atomic_inode(inode);
203
204 F2FS_I(inode)->atomic_write_task = NULL;
205
206 if (clean) {
207 f2fs_i_size_write(inode, fi->original_i_size);
208 fi->original_i_size = 0;
209 }
210 /* avoid stale dirty inode during eviction */
211 sync_inode_metadata(inode, 0);
212 }
213
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)214 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
215 block_t new_addr, block_t *old_addr, bool recover)
216 {
217 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
218 struct dnode_of_data dn;
219 struct node_info ni;
220 int err;
221
222 retry:
223 set_new_dnode(&dn, inode, NULL, NULL, 0);
224 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
225 if (err) {
226 if (err == -ENOMEM) {
227 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
228 goto retry;
229 }
230 return err;
231 }
232
233 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
234 if (err) {
235 f2fs_put_dnode(&dn);
236 return err;
237 }
238
239 if (recover) {
240 /* dn.data_blkaddr is always valid */
241 if (!__is_valid_data_blkaddr(new_addr)) {
242 if (new_addr == NULL_ADDR)
243 dec_valid_block_count(sbi, inode, 1);
244 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
245 f2fs_update_data_blkaddr(&dn, new_addr);
246 } else {
247 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
248 new_addr, ni.version, true, true);
249 }
250 } else {
251 blkcnt_t count = 1;
252
253 err = inc_valid_block_count(sbi, inode, &count, true);
254 if (err) {
255 f2fs_put_dnode(&dn);
256 return err;
257 }
258
259 *old_addr = dn.data_blkaddr;
260 f2fs_truncate_data_blocks_range(&dn, 1);
261 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
262
263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
264 ni.version, true, false);
265 }
266
267 f2fs_put_dnode(&dn);
268
269 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
270 index, old_addr ? *old_addr : 0, new_addr, recover);
271 return 0;
272 }
273
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)274 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
275 bool revoke)
276 {
277 struct revoke_entry *cur, *tmp;
278 pgoff_t start_index = 0;
279 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
280
281 list_for_each_entry_safe(cur, tmp, head, list) {
282 if (revoke) {
283 __replace_atomic_write_block(inode, cur->index,
284 cur->old_addr, NULL, true);
285 } else if (truncate) {
286 f2fs_truncate_hole(inode, start_index, cur->index);
287 start_index = cur->index + 1;
288 }
289
290 list_del(&cur->list);
291 kmem_cache_free(revoke_entry_slab, cur);
292 }
293
294 if (!revoke && truncate)
295 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
296 }
297
__f2fs_commit_atomic_write(struct inode * inode)298 static int __f2fs_commit_atomic_write(struct inode *inode)
299 {
300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 struct f2fs_inode_info *fi = F2FS_I(inode);
302 struct inode *cow_inode = fi->cow_inode;
303 struct revoke_entry *new;
304 struct list_head revoke_list;
305 block_t blkaddr;
306 struct dnode_of_data dn;
307 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
308 pgoff_t off = 0, blen, index;
309 int ret = 0, i;
310
311 INIT_LIST_HEAD(&revoke_list);
312
313 while (len) {
314 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
315
316 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
317 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
318 if (ret && ret != -ENOENT) {
319 goto out;
320 } else if (ret == -ENOENT) {
321 ret = 0;
322 if (dn.max_level == 0)
323 goto out;
324 goto next;
325 }
326
327 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
328 len);
329 index = off;
330 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
331 blkaddr = f2fs_data_blkaddr(&dn);
332
333 if (!__is_valid_data_blkaddr(blkaddr)) {
334 continue;
335 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
336 DATA_GENERIC_ENHANCE)) {
337 f2fs_put_dnode(&dn);
338 ret = -EFSCORRUPTED;
339 goto out;
340 }
341
342 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343 true, NULL);
344
345 ret = __replace_atomic_write_block(inode, index, blkaddr,
346 &new->old_addr, false);
347 if (ret) {
348 f2fs_put_dnode(&dn);
349 kmem_cache_free(revoke_entry_slab, new);
350 goto out;
351 }
352
353 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354 new->index = index;
355 list_add_tail(&new->list, &revoke_list);
356 }
357 f2fs_put_dnode(&dn);
358 next:
359 off += blen;
360 len -= blen;
361 }
362
363 out:
364 if (ret) {
365 sbi->revoked_atomic_block += fi->atomic_write_cnt;
366 } else {
367 sbi->committed_atomic_block += fi->atomic_write_cnt;
368 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
369 }
370
371 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
372
373 return ret;
374 }
375
f2fs_commit_atomic_write(struct inode * inode)376 int f2fs_commit_atomic_write(struct inode *inode)
377 {
378 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379 struct f2fs_inode_info *fi = F2FS_I(inode);
380 int err;
381
382 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383 if (err)
384 return err;
385
386 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387 f2fs_lock_op(sbi);
388
389 err = __f2fs_commit_atomic_write(inode);
390
391 f2fs_unlock_op(sbi);
392 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
393
394 return err;
395 }
396
397 /*
398 * This function balances dirty node and dentry pages.
399 * In addition, it controls garbage collection.
400 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
402 {
403 if (f2fs_cp_error(sbi))
404 return;
405
406 if (time_to_inject(sbi, FAULT_CHECKPOINT))
407 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
408
409 /* balance_fs_bg is able to be pending */
410 if (need && excess_cached_nats(sbi))
411 f2fs_balance_fs_bg(sbi, false);
412
413 if (!f2fs_is_checkpoint_ready(sbi))
414 return;
415
416 /*
417 * We should do GC or end up with checkpoint, if there are so many dirty
418 * dir/node pages without enough free segments.
419 */
420 if (has_enough_free_secs(sbi, 0, 0))
421 return;
422
423 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
424 sbi->gc_thread->f2fs_gc_task) {
425 DEFINE_WAIT(wait);
426
427 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
428 TASK_UNINTERRUPTIBLE);
429 wake_up(&sbi->gc_thread->gc_wait_queue_head);
430 io_schedule();
431 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
432 } else {
433 struct f2fs_gc_control gc_control = {
434 .victim_segno = NULL_SEGNO,
435 .init_gc_type = BG_GC,
436 .no_bg_gc = true,
437 .should_migrate_blocks = false,
438 .err_gc_skipped = false,
439 .nr_free_secs = 1 };
440 f2fs_down_write(&sbi->gc_lock);
441 stat_inc_gc_call_count(sbi, FOREGROUND);
442 f2fs_gc(sbi, &gc_control);
443 }
444 }
445
excess_dirty_threshold(struct f2fs_sb_info * sbi)446 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
447 {
448 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
449 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
450 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
451 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
452 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
453 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
454 unsigned int threshold =
455 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
456 unsigned int global_threshold = threshold * 3 / 2;
457
458 if (dents >= threshold || qdata >= threshold ||
459 nodes >= threshold || meta >= threshold ||
460 imeta >= threshold)
461 return true;
462 return dents + qdata + nodes + meta + imeta > global_threshold;
463 }
464
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)465 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
466 {
467 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
468 return;
469
470 /* try to shrink extent cache when there is no enough memory */
471 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
472 f2fs_shrink_read_extent_tree(sbi,
473 READ_EXTENT_CACHE_SHRINK_NUMBER);
474
475 /* try to shrink age extent cache when there is no enough memory */
476 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
477 f2fs_shrink_age_extent_tree(sbi,
478 AGE_EXTENT_CACHE_SHRINK_NUMBER);
479
480 /* check the # of cached NAT entries */
481 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
482 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
483
484 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
485 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
486 else
487 f2fs_build_free_nids(sbi, false, false);
488
489 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
490 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
491 goto do_sync;
492
493 /* there is background inflight IO or foreground operation recently */
494 if (is_inflight_io(sbi, REQ_TIME) ||
495 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
496 return;
497
498 /* exceed periodical checkpoint timeout threshold */
499 if (f2fs_time_over(sbi, CP_TIME))
500 goto do_sync;
501
502 /* checkpoint is the only way to shrink partial cached entries */
503 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
504 f2fs_available_free_memory(sbi, INO_ENTRIES))
505 return;
506
507 do_sync:
508 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
509 struct blk_plug plug;
510
511 mutex_lock(&sbi->flush_lock);
512
513 blk_start_plug(&plug);
514 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
515 blk_finish_plug(&plug);
516
517 mutex_unlock(&sbi->flush_lock);
518 }
519 stat_inc_cp_call_count(sbi, BACKGROUND);
520 f2fs_sync_fs(sbi->sb, 1);
521 }
522
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)523 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
524 struct block_device *bdev)
525 {
526 int ret = blkdev_issue_flush(bdev);
527
528 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
529 test_opt(sbi, FLUSH_MERGE), ret);
530 if (!ret)
531 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
532 return ret;
533 }
534
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)535 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
536 {
537 int ret = 0;
538 int i;
539
540 if (!f2fs_is_multi_device(sbi))
541 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
542
543 for (i = 0; i < sbi->s_ndevs; i++) {
544 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
545 continue;
546 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
547 if (ret)
548 break;
549 }
550 return ret;
551 }
552
issue_flush_thread(void * data)553 static int issue_flush_thread(void *data)
554 {
555 struct f2fs_sb_info *sbi = data;
556 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
557 wait_queue_head_t *q = &fcc->flush_wait_queue;
558 repeat:
559 if (kthread_should_stop())
560 return 0;
561
562 if (!llist_empty(&fcc->issue_list)) {
563 struct flush_cmd *cmd, *next;
564 int ret;
565
566 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
567 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
568
569 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
570
571 ret = submit_flush_wait(sbi, cmd->ino);
572 atomic_inc(&fcc->issued_flush);
573
574 llist_for_each_entry_safe(cmd, next,
575 fcc->dispatch_list, llnode) {
576 cmd->ret = ret;
577 complete(&cmd->wait);
578 }
579 fcc->dispatch_list = NULL;
580 }
581
582 wait_event_interruptible(*q,
583 kthread_should_stop() || !llist_empty(&fcc->issue_list));
584 goto repeat;
585 }
586
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
588 {
589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590 struct flush_cmd cmd;
591 int ret;
592
593 if (test_opt(sbi, NOBARRIER))
594 return 0;
595
596 if (!test_opt(sbi, FLUSH_MERGE)) {
597 atomic_inc(&fcc->queued_flush);
598 ret = submit_flush_wait(sbi, ino);
599 atomic_dec(&fcc->queued_flush);
600 atomic_inc(&fcc->issued_flush);
601 return ret;
602 }
603
604 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
605 f2fs_is_multi_device(sbi)) {
606 ret = submit_flush_wait(sbi, ino);
607 atomic_dec(&fcc->queued_flush);
608
609 atomic_inc(&fcc->issued_flush);
610 return ret;
611 }
612
613 cmd.ino = ino;
614 init_completion(&cmd.wait);
615
616 llist_add(&cmd.llnode, &fcc->issue_list);
617
618 /*
619 * update issue_list before we wake up issue_flush thread, this
620 * smp_mb() pairs with another barrier in ___wait_event(), see
621 * more details in comments of waitqueue_active().
622 */
623 smp_mb();
624
625 if (waitqueue_active(&fcc->flush_wait_queue))
626 wake_up(&fcc->flush_wait_queue);
627
628 if (fcc->f2fs_issue_flush) {
629 wait_for_completion(&cmd.wait);
630 atomic_dec(&fcc->queued_flush);
631 } else {
632 struct llist_node *list;
633
634 list = llist_del_all(&fcc->issue_list);
635 if (!list) {
636 wait_for_completion(&cmd.wait);
637 atomic_dec(&fcc->queued_flush);
638 } else {
639 struct flush_cmd *tmp, *next;
640
641 ret = submit_flush_wait(sbi, ino);
642
643 llist_for_each_entry_safe(tmp, next, list, llnode) {
644 if (tmp == &cmd) {
645 cmd.ret = ret;
646 atomic_dec(&fcc->queued_flush);
647 continue;
648 }
649 tmp->ret = ret;
650 complete(&tmp->wait);
651 }
652 }
653 }
654
655 return cmd.ret;
656 }
657
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)658 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
659 {
660 dev_t dev = sbi->sb->s_bdev->bd_dev;
661 struct flush_cmd_control *fcc;
662
663 if (SM_I(sbi)->fcc_info) {
664 fcc = SM_I(sbi)->fcc_info;
665 if (fcc->f2fs_issue_flush)
666 return 0;
667 goto init_thread;
668 }
669
670 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
671 if (!fcc)
672 return -ENOMEM;
673 atomic_set(&fcc->issued_flush, 0);
674 atomic_set(&fcc->queued_flush, 0);
675 init_waitqueue_head(&fcc->flush_wait_queue);
676 init_llist_head(&fcc->issue_list);
677 SM_I(sbi)->fcc_info = fcc;
678 if (!test_opt(sbi, FLUSH_MERGE))
679 return 0;
680
681 init_thread:
682 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
683 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
684 if (IS_ERR(fcc->f2fs_issue_flush)) {
685 int err = PTR_ERR(fcc->f2fs_issue_flush);
686
687 fcc->f2fs_issue_flush = NULL;
688 return err;
689 }
690
691 return 0;
692 }
693
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)694 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
695 {
696 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
697
698 if (fcc && fcc->f2fs_issue_flush) {
699 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
700
701 fcc->f2fs_issue_flush = NULL;
702 kthread_stop(flush_thread);
703 }
704 if (free) {
705 kfree(fcc);
706 SM_I(sbi)->fcc_info = NULL;
707 }
708 }
709
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)710 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
711 {
712 int ret = 0, i;
713
714 if (!f2fs_is_multi_device(sbi))
715 return 0;
716
717 if (test_opt(sbi, NOBARRIER))
718 return 0;
719
720 for (i = 1; i < sbi->s_ndevs; i++) {
721 int count = DEFAULT_RETRY_IO_COUNT;
722
723 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
724 continue;
725
726 do {
727 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
728 if (ret)
729 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
730 } while (ret && --count);
731
732 if (ret) {
733 f2fs_stop_checkpoint(sbi, false,
734 STOP_CP_REASON_FLUSH_FAIL);
735 break;
736 }
737
738 spin_lock(&sbi->dev_lock);
739 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
740 spin_unlock(&sbi->dev_lock);
741 }
742
743 return ret;
744 }
745
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)746 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
747 enum dirty_type dirty_type)
748 {
749 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
750
751 /* need not be added */
752 if (IS_CURSEG(sbi, segno))
753 return;
754
755 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
756 dirty_i->nr_dirty[dirty_type]++;
757
758 if (dirty_type == DIRTY) {
759 struct seg_entry *sentry = get_seg_entry(sbi, segno);
760 enum dirty_type t = sentry->type;
761
762 if (unlikely(t >= DIRTY)) {
763 f2fs_bug_on(sbi, 1);
764 return;
765 }
766 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
767 dirty_i->nr_dirty[t]++;
768
769 if (__is_large_section(sbi)) {
770 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
771 block_t valid_blocks =
772 get_valid_blocks(sbi, segno, true);
773
774 f2fs_bug_on(sbi,
775 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
776 !valid_blocks) ||
777 valid_blocks == CAP_BLKS_PER_SEC(sbi));
778
779 if (!IS_CURSEC(sbi, secno))
780 set_bit(secno, dirty_i->dirty_secmap);
781 }
782 }
783 }
784
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)785 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
786 enum dirty_type dirty_type)
787 {
788 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
789 block_t valid_blocks;
790
791 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
792 dirty_i->nr_dirty[dirty_type]--;
793
794 if (dirty_type == DIRTY) {
795 struct seg_entry *sentry = get_seg_entry(sbi, segno);
796 enum dirty_type t = sentry->type;
797
798 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
799 dirty_i->nr_dirty[t]--;
800
801 valid_blocks = get_valid_blocks(sbi, segno, true);
802 if (valid_blocks == 0) {
803 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
804 dirty_i->victim_secmap);
805 #ifdef CONFIG_F2FS_CHECK_FS
806 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
807 #endif
808 }
809 if (__is_large_section(sbi)) {
810 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
811
812 if (!valid_blocks ||
813 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
814 clear_bit(secno, dirty_i->dirty_secmap);
815 return;
816 }
817
818 if (!IS_CURSEC(sbi, secno))
819 set_bit(secno, dirty_i->dirty_secmap);
820 }
821 }
822 }
823
824 /*
825 * Should not occur error such as -ENOMEM.
826 * Adding dirty entry into seglist is not critical operation.
827 * If a given segment is one of current working segments, it won't be added.
828 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)829 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
830 {
831 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
832 unsigned short valid_blocks, ckpt_valid_blocks;
833 unsigned int usable_blocks;
834
835 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
836 return;
837
838 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
839 mutex_lock(&dirty_i->seglist_lock);
840
841 valid_blocks = get_valid_blocks(sbi, segno, false);
842 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
843
844 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
845 ckpt_valid_blocks == usable_blocks)) {
846 __locate_dirty_segment(sbi, segno, PRE);
847 __remove_dirty_segment(sbi, segno, DIRTY);
848 } else if (valid_blocks < usable_blocks) {
849 __locate_dirty_segment(sbi, segno, DIRTY);
850 } else {
851 /* Recovery routine with SSR needs this */
852 __remove_dirty_segment(sbi, segno, DIRTY);
853 }
854
855 mutex_unlock(&dirty_i->seglist_lock);
856 }
857
858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
860 {
861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862 unsigned int segno;
863
864 mutex_lock(&dirty_i->seglist_lock);
865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866 if (get_valid_blocks(sbi, segno, false))
867 continue;
868 if (IS_CURSEG(sbi, segno))
869 continue;
870 __locate_dirty_segment(sbi, segno, PRE);
871 __remove_dirty_segment(sbi, segno, DIRTY);
872 }
873 mutex_unlock(&dirty_i->seglist_lock);
874 }
875
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
877 {
878 int ovp_hole_segs =
879 (overprovision_segments(sbi) - reserved_segments(sbi));
880 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882 block_t holes[2] = {0, 0}; /* DATA and NODE */
883 block_t unusable;
884 struct seg_entry *se;
885 unsigned int segno;
886
887 mutex_lock(&dirty_i->seglist_lock);
888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889 se = get_seg_entry(sbi, segno);
890 if (IS_NODESEG(se->type))
891 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
892 se->valid_blocks;
893 else
894 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
895 se->valid_blocks;
896 }
897 mutex_unlock(&dirty_i->seglist_lock);
898
899 unusable = max(holes[DATA], holes[NODE]);
900 if (unusable > ovp_holes)
901 return unusable - ovp_holes;
902 return 0;
903 }
904
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)905 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
906 {
907 int ovp_hole_segs =
908 (overprovision_segments(sbi) - reserved_segments(sbi));
909
910 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
911 return 0;
912 if (unusable > F2FS_OPTION(sbi).unusable_cap)
913 return -EAGAIN;
914 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
915 dirty_segments(sbi) > ovp_hole_segs)
916 return -EAGAIN;
917 if (has_not_enough_free_secs(sbi, 0, 0))
918 return -EAGAIN;
919 return 0;
920 }
921
922 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)923 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
924 {
925 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
926 unsigned int segno = 0;
927
928 mutex_lock(&dirty_i->seglist_lock);
929 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
930 if (get_valid_blocks(sbi, segno, false))
931 continue;
932 if (get_ckpt_valid_blocks(sbi, segno, false))
933 continue;
934 mutex_unlock(&dirty_i->seglist_lock);
935 return segno;
936 }
937 mutex_unlock(&dirty_i->seglist_lock);
938 return NULL_SEGNO;
939 }
940
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)941 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
942 struct block_device *bdev, block_t lstart,
943 block_t start, block_t len)
944 {
945 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
946 struct list_head *pend_list;
947 struct discard_cmd *dc;
948
949 f2fs_bug_on(sbi, !len);
950
951 pend_list = &dcc->pend_list[plist_idx(len)];
952
953 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
954 INIT_LIST_HEAD(&dc->list);
955 dc->bdev = bdev;
956 dc->di.lstart = lstart;
957 dc->di.start = start;
958 dc->di.len = len;
959 dc->ref = 0;
960 dc->state = D_PREP;
961 dc->queued = 0;
962 dc->error = 0;
963 init_completion(&dc->wait);
964 list_add_tail(&dc->list, pend_list);
965 spin_lock_init(&dc->lock);
966 dc->bio_ref = 0;
967 atomic_inc(&dcc->discard_cmd_cnt);
968 dcc->undiscard_blks += len;
969
970 return dc;
971 }
972
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)973 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
974 {
975 #ifdef CONFIG_F2FS_CHECK_FS
976 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
977 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
978 struct discard_cmd *cur_dc, *next_dc;
979
980 while (cur) {
981 next = rb_next(cur);
982 if (!next)
983 return true;
984
985 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
986 next_dc = rb_entry(next, struct discard_cmd, rb_node);
987
988 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
989 f2fs_info(sbi, "broken discard_rbtree, "
990 "cur(%u, %u) next(%u, %u)",
991 cur_dc->di.lstart, cur_dc->di.len,
992 next_dc->di.lstart, next_dc->di.len);
993 return false;
994 }
995 cur = next;
996 }
997 #endif
998 return true;
999 }
1000
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1001 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1002 block_t blkaddr)
1003 {
1004 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1005 struct rb_node *node = dcc->root.rb_root.rb_node;
1006 struct discard_cmd *dc;
1007
1008 while (node) {
1009 dc = rb_entry(node, struct discard_cmd, rb_node);
1010
1011 if (blkaddr < dc->di.lstart)
1012 node = node->rb_left;
1013 else if (blkaddr >= dc->di.lstart + dc->di.len)
1014 node = node->rb_right;
1015 else
1016 return dc;
1017 }
1018 return NULL;
1019 }
1020
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1021 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1022 block_t blkaddr,
1023 struct discard_cmd **prev_entry,
1024 struct discard_cmd **next_entry,
1025 struct rb_node ***insert_p,
1026 struct rb_node **insert_parent)
1027 {
1028 struct rb_node **pnode = &root->rb_root.rb_node;
1029 struct rb_node *parent = NULL, *tmp_node;
1030 struct discard_cmd *dc;
1031
1032 *insert_p = NULL;
1033 *insert_parent = NULL;
1034 *prev_entry = NULL;
1035 *next_entry = NULL;
1036
1037 if (RB_EMPTY_ROOT(&root->rb_root))
1038 return NULL;
1039
1040 while (*pnode) {
1041 parent = *pnode;
1042 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1043
1044 if (blkaddr < dc->di.lstart)
1045 pnode = &(*pnode)->rb_left;
1046 else if (blkaddr >= dc->di.lstart + dc->di.len)
1047 pnode = &(*pnode)->rb_right;
1048 else
1049 goto lookup_neighbors;
1050 }
1051
1052 *insert_p = pnode;
1053 *insert_parent = parent;
1054
1055 dc = rb_entry(parent, struct discard_cmd, rb_node);
1056 tmp_node = parent;
1057 if (parent && blkaddr > dc->di.lstart)
1058 tmp_node = rb_next(parent);
1059 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1060
1061 tmp_node = parent;
1062 if (parent && blkaddr < dc->di.lstart)
1063 tmp_node = rb_prev(parent);
1064 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065 return NULL;
1066
1067 lookup_neighbors:
1068 /* lookup prev node for merging backward later */
1069 tmp_node = rb_prev(&dc->rb_node);
1070 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1071
1072 /* lookup next node for merging frontward later */
1073 tmp_node = rb_next(&dc->rb_node);
1074 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1075 return dc;
1076 }
1077
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1078 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1079 struct discard_cmd *dc)
1080 {
1081 if (dc->state == D_DONE)
1082 atomic_sub(dc->queued, &dcc->queued_discard);
1083
1084 list_del(&dc->list);
1085 rb_erase_cached(&dc->rb_node, &dcc->root);
1086 dcc->undiscard_blks -= dc->di.len;
1087
1088 kmem_cache_free(discard_cmd_slab, dc);
1089
1090 atomic_dec(&dcc->discard_cmd_cnt);
1091 }
1092
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1093 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1094 struct discard_cmd *dc)
1095 {
1096 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1097 unsigned long flags;
1098
1099 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1100
1101 spin_lock_irqsave(&dc->lock, flags);
1102 if (dc->bio_ref) {
1103 spin_unlock_irqrestore(&dc->lock, flags);
1104 return;
1105 }
1106 spin_unlock_irqrestore(&dc->lock, flags);
1107
1108 f2fs_bug_on(sbi, dc->ref);
1109
1110 if (dc->error == -EOPNOTSUPP)
1111 dc->error = 0;
1112
1113 if (dc->error)
1114 f2fs_info_ratelimited(sbi,
1115 "Issue discard(%u, %u, %u) failed, ret: %d",
1116 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1117 __detach_discard_cmd(dcc, dc);
1118 }
1119
f2fs_submit_discard_endio(struct bio * bio)1120 static void f2fs_submit_discard_endio(struct bio *bio)
1121 {
1122 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1123 unsigned long flags;
1124
1125 spin_lock_irqsave(&dc->lock, flags);
1126 if (!dc->error)
1127 dc->error = blk_status_to_errno(bio->bi_status);
1128 dc->bio_ref--;
1129 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1130 dc->state = D_DONE;
1131 complete_all(&dc->wait);
1132 }
1133 spin_unlock_irqrestore(&dc->lock, flags);
1134 bio_put(bio);
1135 }
1136
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1137 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1138 block_t start, block_t end)
1139 {
1140 #ifdef CONFIG_F2FS_CHECK_FS
1141 struct seg_entry *sentry;
1142 unsigned int segno;
1143 block_t blk = start;
1144 unsigned long offset, size, *map;
1145
1146 while (blk < end) {
1147 segno = GET_SEGNO(sbi, blk);
1148 sentry = get_seg_entry(sbi, segno);
1149 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1150
1151 if (end < START_BLOCK(sbi, segno + 1))
1152 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1153 else
1154 size = BLKS_PER_SEG(sbi);
1155 map = (unsigned long *)(sentry->cur_valid_map);
1156 offset = __find_rev_next_bit(map, size, offset);
1157 f2fs_bug_on(sbi, offset != size);
1158 blk = START_BLOCK(sbi, segno + 1);
1159 }
1160 #endif
1161 }
1162
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1163 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1164 struct discard_policy *dpolicy,
1165 int discard_type, unsigned int granularity)
1166 {
1167 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1168
1169 /* common policy */
1170 dpolicy->type = discard_type;
1171 dpolicy->sync = true;
1172 dpolicy->ordered = false;
1173 dpolicy->granularity = granularity;
1174
1175 dpolicy->max_requests = dcc->max_discard_request;
1176 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1177 dpolicy->timeout = false;
1178
1179 if (discard_type == DPOLICY_BG) {
1180 dpolicy->min_interval = dcc->min_discard_issue_time;
1181 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1182 dpolicy->max_interval = dcc->max_discard_issue_time;
1183 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1184 dpolicy->io_aware = true;
1185 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1186 dpolicy->io_aware = false;
1187 dpolicy->sync = false;
1188 dpolicy->ordered = true;
1189 if (utilization(sbi) > dcc->discard_urgent_util) {
1190 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1191 if (atomic_read(&dcc->discard_cmd_cnt))
1192 dpolicy->max_interval =
1193 dcc->min_discard_issue_time;
1194 }
1195 } else if (discard_type == DPOLICY_FORCE) {
1196 dpolicy->min_interval = dcc->min_discard_issue_time;
1197 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1198 dpolicy->max_interval = dcc->max_discard_issue_time;
1199 dpolicy->io_aware = false;
1200 } else if (discard_type == DPOLICY_FSTRIM) {
1201 dpolicy->io_aware = false;
1202 } else if (discard_type == DPOLICY_UMOUNT) {
1203 dpolicy->io_aware = false;
1204 /* we need to issue all to keep CP_TRIMMED_FLAG */
1205 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1206 dpolicy->timeout = true;
1207 }
1208 }
1209
1210 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1211 struct block_device *bdev, block_t lstart,
1212 block_t start, block_t len);
1213
1214 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1215 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1216 struct discard_cmd *dc, blk_opf_t flag,
1217 struct list_head *wait_list,
1218 unsigned int *issued)
1219 {
1220 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1221 struct block_device *bdev = dc->bdev;
1222 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1223 unsigned long flags;
1224
1225 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1226
1227 spin_lock_irqsave(&dc->lock, flags);
1228 dc->state = D_SUBMIT;
1229 dc->bio_ref++;
1230 spin_unlock_irqrestore(&dc->lock, flags);
1231
1232 if (issued)
1233 (*issued)++;
1234
1235 atomic_inc(&dcc->queued_discard);
1236 dc->queued++;
1237 list_move_tail(&dc->list, wait_list);
1238
1239 /* sanity check on discard range */
1240 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1241
1242 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1243 bio->bi_private = dc;
1244 bio->bi_end_io = f2fs_submit_discard_endio;
1245 submit_bio(bio);
1246
1247 atomic_inc(&dcc->issued_discard);
1248 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1249 }
1250 #endif
1251
1252 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1253 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1254 struct discard_policy *dpolicy,
1255 struct discard_cmd *dc, int *issued)
1256 {
1257 struct block_device *bdev = dc->bdev;
1258 unsigned int max_discard_blocks =
1259 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1260 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1261 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1262 &(dcc->fstrim_list) : &(dcc->wait_list);
1263 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1264 block_t lstart, start, len, total_len;
1265 int err = 0;
1266
1267 if (dc->state != D_PREP)
1268 return 0;
1269
1270 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1271 return 0;
1272
1273 #ifdef CONFIG_BLK_DEV_ZONED
1274 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1275 int devi = f2fs_bdev_index(sbi, bdev);
1276
1277 if (devi < 0)
1278 return -EINVAL;
1279
1280 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1281 __submit_zone_reset_cmd(sbi, dc, flag,
1282 wait_list, issued);
1283 return 0;
1284 }
1285 }
1286 #endif
1287
1288 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1289
1290 lstart = dc->di.lstart;
1291 start = dc->di.start;
1292 len = dc->di.len;
1293 total_len = len;
1294
1295 dc->di.len = 0;
1296
1297 while (total_len && *issued < dpolicy->max_requests && !err) {
1298 struct bio *bio = NULL;
1299 unsigned long flags;
1300 bool last = true;
1301
1302 if (len > max_discard_blocks) {
1303 len = max_discard_blocks;
1304 last = false;
1305 }
1306
1307 (*issued)++;
1308 if (*issued == dpolicy->max_requests)
1309 last = true;
1310
1311 dc->di.len += len;
1312
1313 if (time_to_inject(sbi, FAULT_DISCARD)) {
1314 err = -EIO;
1315 } else {
1316 err = __blkdev_issue_discard(bdev,
1317 SECTOR_FROM_BLOCK(start),
1318 SECTOR_FROM_BLOCK(len),
1319 GFP_NOFS, &bio);
1320 }
1321 if (err) {
1322 spin_lock_irqsave(&dc->lock, flags);
1323 if (dc->state == D_PARTIAL)
1324 dc->state = D_SUBMIT;
1325 spin_unlock_irqrestore(&dc->lock, flags);
1326
1327 break;
1328 }
1329
1330 f2fs_bug_on(sbi, !bio);
1331
1332 /*
1333 * should keep before submission to avoid D_DONE
1334 * right away
1335 */
1336 spin_lock_irqsave(&dc->lock, flags);
1337 if (last)
1338 dc->state = D_SUBMIT;
1339 else
1340 dc->state = D_PARTIAL;
1341 dc->bio_ref++;
1342 spin_unlock_irqrestore(&dc->lock, flags);
1343
1344 atomic_inc(&dcc->queued_discard);
1345 dc->queued++;
1346 list_move_tail(&dc->list, wait_list);
1347
1348 /* sanity check on discard range */
1349 __check_sit_bitmap(sbi, lstart, lstart + len);
1350
1351 bio->bi_private = dc;
1352 bio->bi_end_io = f2fs_submit_discard_endio;
1353 bio->bi_opf |= flag;
1354 submit_bio(bio);
1355
1356 atomic_inc(&dcc->issued_discard);
1357
1358 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1359
1360 lstart += len;
1361 start += len;
1362 total_len -= len;
1363 len = total_len;
1364 }
1365
1366 if (!err && len) {
1367 dcc->undiscard_blks -= len;
1368 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1369 }
1370 return err;
1371 }
1372
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1373 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1374 struct block_device *bdev, block_t lstart,
1375 block_t start, block_t len)
1376 {
1377 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1378 struct rb_node **p = &dcc->root.rb_root.rb_node;
1379 struct rb_node *parent = NULL;
1380 struct discard_cmd *dc;
1381 bool leftmost = true;
1382
1383 /* look up rb tree to find parent node */
1384 while (*p) {
1385 parent = *p;
1386 dc = rb_entry(parent, struct discard_cmd, rb_node);
1387
1388 if (lstart < dc->di.lstart) {
1389 p = &(*p)->rb_left;
1390 } else if (lstart >= dc->di.lstart + dc->di.len) {
1391 p = &(*p)->rb_right;
1392 leftmost = false;
1393 } else {
1394 /* Let's skip to add, if exists */
1395 return;
1396 }
1397 }
1398
1399 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1400
1401 rb_link_node(&dc->rb_node, parent, p);
1402 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1403 }
1404
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1405 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1406 struct discard_cmd *dc)
1407 {
1408 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1409 }
1410
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1411 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1412 struct discard_cmd *dc, block_t blkaddr)
1413 {
1414 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1415 struct discard_info di = dc->di;
1416 bool modified = false;
1417
1418 if (dc->state == D_DONE || dc->di.len == 1) {
1419 __remove_discard_cmd(sbi, dc);
1420 return;
1421 }
1422
1423 dcc->undiscard_blks -= di.len;
1424
1425 if (blkaddr > di.lstart) {
1426 dc->di.len = blkaddr - dc->di.lstart;
1427 dcc->undiscard_blks += dc->di.len;
1428 __relocate_discard_cmd(dcc, dc);
1429 modified = true;
1430 }
1431
1432 if (blkaddr < di.lstart + di.len - 1) {
1433 if (modified) {
1434 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1435 di.start + blkaddr + 1 - di.lstart,
1436 di.lstart + di.len - 1 - blkaddr);
1437 } else {
1438 dc->di.lstart++;
1439 dc->di.len--;
1440 dc->di.start++;
1441 dcc->undiscard_blks += dc->di.len;
1442 __relocate_discard_cmd(dcc, dc);
1443 }
1444 }
1445 }
1446
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1447 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1448 struct block_device *bdev, block_t lstart,
1449 block_t start, block_t len)
1450 {
1451 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1452 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1453 struct discard_cmd *dc;
1454 struct discard_info di = {0};
1455 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1456 unsigned int max_discard_blocks =
1457 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1458 block_t end = lstart + len;
1459
1460 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1461 &prev_dc, &next_dc, &insert_p, &insert_parent);
1462 if (dc)
1463 prev_dc = dc;
1464
1465 if (!prev_dc) {
1466 di.lstart = lstart;
1467 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1468 di.len = min(di.len, len);
1469 di.start = start;
1470 }
1471
1472 while (1) {
1473 struct rb_node *node;
1474 bool merged = false;
1475 struct discard_cmd *tdc = NULL;
1476
1477 if (prev_dc) {
1478 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1479 if (di.lstart < lstart)
1480 di.lstart = lstart;
1481 if (di.lstart >= end)
1482 break;
1483
1484 if (!next_dc || next_dc->di.lstart > end)
1485 di.len = end - di.lstart;
1486 else
1487 di.len = next_dc->di.lstart - di.lstart;
1488 di.start = start + di.lstart - lstart;
1489 }
1490
1491 if (!di.len)
1492 goto next;
1493
1494 if (prev_dc && prev_dc->state == D_PREP &&
1495 prev_dc->bdev == bdev &&
1496 __is_discard_back_mergeable(&di, &prev_dc->di,
1497 max_discard_blocks)) {
1498 prev_dc->di.len += di.len;
1499 dcc->undiscard_blks += di.len;
1500 __relocate_discard_cmd(dcc, prev_dc);
1501 di = prev_dc->di;
1502 tdc = prev_dc;
1503 merged = true;
1504 }
1505
1506 if (next_dc && next_dc->state == D_PREP &&
1507 next_dc->bdev == bdev &&
1508 __is_discard_front_mergeable(&di, &next_dc->di,
1509 max_discard_blocks)) {
1510 next_dc->di.lstart = di.lstart;
1511 next_dc->di.len += di.len;
1512 next_dc->di.start = di.start;
1513 dcc->undiscard_blks += di.len;
1514 __relocate_discard_cmd(dcc, next_dc);
1515 if (tdc)
1516 __remove_discard_cmd(sbi, tdc);
1517 merged = true;
1518 }
1519
1520 if (!merged)
1521 __insert_discard_cmd(sbi, bdev,
1522 di.lstart, di.start, di.len);
1523 next:
1524 prev_dc = next_dc;
1525 if (!prev_dc)
1526 break;
1527
1528 node = rb_next(&prev_dc->rb_node);
1529 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1530 }
1531 }
1532
1533 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1534 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1535 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1536 block_t blklen)
1537 {
1538 trace_f2fs_queue_reset_zone(bdev, blkstart);
1539
1540 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1541 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1542 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1543 }
1544 #endif
1545
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1546 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1547 struct block_device *bdev, block_t blkstart, block_t blklen)
1548 {
1549 block_t lblkstart = blkstart;
1550
1551 if (!f2fs_bdev_support_discard(bdev))
1552 return;
1553
1554 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1555
1556 if (f2fs_is_multi_device(sbi)) {
1557 int devi = f2fs_target_device_index(sbi, blkstart);
1558
1559 blkstart -= FDEV(devi).start_blk;
1560 }
1561 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1562 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1563 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1564 }
1565
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1566 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1567 struct discard_policy *dpolicy, int *issued)
1568 {
1569 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1570 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1571 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1572 struct discard_cmd *dc;
1573 struct blk_plug plug;
1574 bool io_interrupted = false;
1575
1576 mutex_lock(&dcc->cmd_lock);
1577 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1578 &prev_dc, &next_dc, &insert_p, &insert_parent);
1579 if (!dc)
1580 dc = next_dc;
1581
1582 blk_start_plug(&plug);
1583
1584 while (dc) {
1585 struct rb_node *node;
1586 int err = 0;
1587
1588 if (dc->state != D_PREP)
1589 goto next;
1590
1591 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1592 io_interrupted = true;
1593 break;
1594 }
1595
1596 dcc->next_pos = dc->di.lstart + dc->di.len;
1597 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1598
1599 if (*issued >= dpolicy->max_requests)
1600 break;
1601 next:
1602 node = rb_next(&dc->rb_node);
1603 if (err)
1604 __remove_discard_cmd(sbi, dc);
1605 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1606 }
1607
1608 blk_finish_plug(&plug);
1609
1610 if (!dc)
1611 dcc->next_pos = 0;
1612
1613 mutex_unlock(&dcc->cmd_lock);
1614
1615 if (!(*issued) && io_interrupted)
1616 *issued = -1;
1617 }
1618 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1619 struct discard_policy *dpolicy);
1620
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1621 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1622 struct discard_policy *dpolicy)
1623 {
1624 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1625 struct list_head *pend_list;
1626 struct discard_cmd *dc, *tmp;
1627 struct blk_plug plug;
1628 int i, issued;
1629 bool io_interrupted = false;
1630
1631 if (dpolicy->timeout)
1632 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1633
1634 retry:
1635 issued = 0;
1636 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1637 if (dpolicy->timeout &&
1638 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1639 break;
1640
1641 if (i + 1 < dpolicy->granularity)
1642 break;
1643
1644 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1645 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1646 return issued;
1647 }
1648
1649 pend_list = &dcc->pend_list[i];
1650
1651 mutex_lock(&dcc->cmd_lock);
1652 if (list_empty(pend_list))
1653 goto next;
1654 if (unlikely(dcc->rbtree_check))
1655 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1656 blk_start_plug(&plug);
1657 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1658 f2fs_bug_on(sbi, dc->state != D_PREP);
1659
1660 if (dpolicy->timeout &&
1661 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1662 break;
1663
1664 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1665 !is_idle(sbi, DISCARD_TIME)) {
1666 io_interrupted = true;
1667 break;
1668 }
1669
1670 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1671
1672 if (issued >= dpolicy->max_requests)
1673 break;
1674 }
1675 blk_finish_plug(&plug);
1676 next:
1677 mutex_unlock(&dcc->cmd_lock);
1678
1679 if (issued >= dpolicy->max_requests || io_interrupted)
1680 break;
1681 }
1682
1683 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1684 __wait_all_discard_cmd(sbi, dpolicy);
1685 goto retry;
1686 }
1687
1688 if (!issued && io_interrupted)
1689 issued = -1;
1690
1691 return issued;
1692 }
1693
__drop_discard_cmd(struct f2fs_sb_info * sbi)1694 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1695 {
1696 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 struct list_head *pend_list;
1698 struct discard_cmd *dc, *tmp;
1699 int i;
1700 bool dropped = false;
1701
1702 mutex_lock(&dcc->cmd_lock);
1703 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1704 pend_list = &dcc->pend_list[i];
1705 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1706 f2fs_bug_on(sbi, dc->state != D_PREP);
1707 __remove_discard_cmd(sbi, dc);
1708 dropped = true;
1709 }
1710 }
1711 mutex_unlock(&dcc->cmd_lock);
1712
1713 return dropped;
1714 }
1715
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1716 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1717 {
1718 __drop_discard_cmd(sbi);
1719 }
1720
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1721 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1722 struct discard_cmd *dc)
1723 {
1724 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1725 unsigned int len = 0;
1726
1727 wait_for_completion_io(&dc->wait);
1728 mutex_lock(&dcc->cmd_lock);
1729 f2fs_bug_on(sbi, dc->state != D_DONE);
1730 dc->ref--;
1731 if (!dc->ref) {
1732 if (!dc->error)
1733 len = dc->di.len;
1734 __remove_discard_cmd(sbi, dc);
1735 }
1736 mutex_unlock(&dcc->cmd_lock);
1737
1738 return len;
1739 }
1740
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1741 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1742 struct discard_policy *dpolicy,
1743 block_t start, block_t end)
1744 {
1745 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1746 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1747 &(dcc->fstrim_list) : &(dcc->wait_list);
1748 struct discard_cmd *dc = NULL, *iter, *tmp;
1749 unsigned int trimmed = 0;
1750
1751 next:
1752 dc = NULL;
1753
1754 mutex_lock(&dcc->cmd_lock);
1755 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1756 if (iter->di.lstart + iter->di.len <= start ||
1757 end <= iter->di.lstart)
1758 continue;
1759 if (iter->di.len < dpolicy->granularity)
1760 continue;
1761 if (iter->state == D_DONE && !iter->ref) {
1762 wait_for_completion_io(&iter->wait);
1763 if (!iter->error)
1764 trimmed += iter->di.len;
1765 __remove_discard_cmd(sbi, iter);
1766 } else {
1767 iter->ref++;
1768 dc = iter;
1769 break;
1770 }
1771 }
1772 mutex_unlock(&dcc->cmd_lock);
1773
1774 if (dc) {
1775 trimmed += __wait_one_discard_bio(sbi, dc);
1776 goto next;
1777 }
1778
1779 return trimmed;
1780 }
1781
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1782 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1783 struct discard_policy *dpolicy)
1784 {
1785 struct discard_policy dp;
1786 unsigned int discard_blks;
1787
1788 if (dpolicy)
1789 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1790
1791 /* wait all */
1792 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1793 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1794 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1795 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1796
1797 return discard_blks;
1798 }
1799
1800 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1801 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1802 {
1803 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1804 struct discard_cmd *dc;
1805 bool need_wait = false;
1806
1807 mutex_lock(&dcc->cmd_lock);
1808 dc = __lookup_discard_cmd(sbi, blkaddr);
1809 #ifdef CONFIG_BLK_DEV_ZONED
1810 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1811 int devi = f2fs_bdev_index(sbi, dc->bdev);
1812
1813 if (devi < 0) {
1814 mutex_unlock(&dcc->cmd_lock);
1815 return;
1816 }
1817
1818 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1819 /* force submit zone reset */
1820 if (dc->state == D_PREP)
1821 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1822 &dcc->wait_list, NULL);
1823 dc->ref++;
1824 mutex_unlock(&dcc->cmd_lock);
1825 /* wait zone reset */
1826 __wait_one_discard_bio(sbi, dc);
1827 return;
1828 }
1829 }
1830 #endif
1831 if (dc) {
1832 if (dc->state == D_PREP) {
1833 __punch_discard_cmd(sbi, dc, blkaddr);
1834 } else {
1835 dc->ref++;
1836 need_wait = true;
1837 }
1838 }
1839 mutex_unlock(&dcc->cmd_lock);
1840
1841 if (need_wait)
1842 __wait_one_discard_bio(sbi, dc);
1843 }
1844
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1845 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1846 {
1847 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1848
1849 if (dcc && dcc->f2fs_issue_discard) {
1850 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1851
1852 dcc->f2fs_issue_discard = NULL;
1853 kthread_stop(discard_thread);
1854 }
1855 }
1856
1857 /**
1858 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1859 * @sbi: the f2fs_sb_info data for discard cmd to issue
1860 *
1861 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1862 *
1863 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1864 */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1865 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1866 {
1867 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1868 struct discard_policy dpolicy;
1869 bool dropped;
1870
1871 if (!atomic_read(&dcc->discard_cmd_cnt))
1872 return true;
1873
1874 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1875 dcc->discard_granularity);
1876 __issue_discard_cmd(sbi, &dpolicy);
1877 dropped = __drop_discard_cmd(sbi);
1878
1879 /* just to make sure there is no pending discard commands */
1880 __wait_all_discard_cmd(sbi, NULL);
1881
1882 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1883 return !dropped;
1884 }
1885
issue_discard_thread(void * data)1886 static int issue_discard_thread(void *data)
1887 {
1888 struct f2fs_sb_info *sbi = data;
1889 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1890 wait_queue_head_t *q = &dcc->discard_wait_queue;
1891 struct discard_policy dpolicy;
1892 unsigned int wait_ms = dcc->min_discard_issue_time;
1893 int issued;
1894
1895 set_freezable();
1896
1897 do {
1898 wait_event_freezable_timeout(*q,
1899 kthread_should_stop() || dcc->discard_wake,
1900 msecs_to_jiffies(wait_ms));
1901
1902 if (sbi->gc_mode == GC_URGENT_HIGH ||
1903 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1904 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1905 MIN_DISCARD_GRANULARITY);
1906 else
1907 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1908 dcc->discard_granularity);
1909
1910 if (dcc->discard_wake)
1911 dcc->discard_wake = false;
1912
1913 /* clean up pending candidates before going to sleep */
1914 if (atomic_read(&dcc->queued_discard))
1915 __wait_all_discard_cmd(sbi, NULL);
1916
1917 if (f2fs_readonly(sbi->sb))
1918 continue;
1919 if (kthread_should_stop())
1920 return 0;
1921 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1922 !atomic_read(&dcc->discard_cmd_cnt)) {
1923 wait_ms = dpolicy.max_interval;
1924 continue;
1925 }
1926
1927 sb_start_intwrite(sbi->sb);
1928
1929 issued = __issue_discard_cmd(sbi, &dpolicy);
1930 if (issued > 0) {
1931 __wait_all_discard_cmd(sbi, &dpolicy);
1932 wait_ms = dpolicy.min_interval;
1933 } else if (issued == -1) {
1934 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1935 if (!wait_ms)
1936 wait_ms = dpolicy.mid_interval;
1937 } else {
1938 wait_ms = dpolicy.max_interval;
1939 }
1940 if (!atomic_read(&dcc->discard_cmd_cnt))
1941 wait_ms = dpolicy.max_interval;
1942
1943 sb_end_intwrite(sbi->sb);
1944
1945 } while (!kthread_should_stop());
1946 return 0;
1947 }
1948
1949 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1950 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1951 struct block_device *bdev, block_t blkstart, block_t blklen)
1952 {
1953 sector_t sector, nr_sects;
1954 block_t lblkstart = blkstart;
1955 int devi = 0;
1956 u64 remainder = 0;
1957
1958 if (f2fs_is_multi_device(sbi)) {
1959 devi = f2fs_target_device_index(sbi, blkstart);
1960 if (blkstart < FDEV(devi).start_blk ||
1961 blkstart > FDEV(devi).end_blk) {
1962 f2fs_err(sbi, "Invalid block %x", blkstart);
1963 return -EIO;
1964 }
1965 blkstart -= FDEV(devi).start_blk;
1966 }
1967
1968 /* For sequential zones, reset the zone write pointer */
1969 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1970 sector = SECTOR_FROM_BLOCK(blkstart);
1971 nr_sects = SECTOR_FROM_BLOCK(blklen);
1972 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1973
1974 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1975 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1976 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1977 blkstart, blklen);
1978 return -EIO;
1979 }
1980
1981 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1982 trace_f2fs_issue_reset_zone(bdev, blkstart);
1983 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1984 sector, nr_sects, GFP_NOFS);
1985 }
1986
1987 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1988 return 0;
1989 }
1990
1991 /* For conventional zones, use regular discard if supported */
1992 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1993 return 0;
1994 }
1995 #endif
1996
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1997 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1998 struct block_device *bdev, block_t blkstart, block_t blklen)
1999 {
2000 #ifdef CONFIG_BLK_DEV_ZONED
2001 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2002 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2003 #endif
2004 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2005 return 0;
2006 }
2007
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2008 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2009 block_t blkstart, block_t blklen)
2010 {
2011 sector_t start = blkstart, len = 0;
2012 struct block_device *bdev;
2013 struct seg_entry *se;
2014 unsigned int offset;
2015 block_t i;
2016 int err = 0;
2017
2018 bdev = f2fs_target_device(sbi, blkstart, NULL);
2019
2020 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2021 if (i != start) {
2022 struct block_device *bdev2 =
2023 f2fs_target_device(sbi, i, NULL);
2024
2025 if (bdev2 != bdev) {
2026 err = __issue_discard_async(sbi, bdev,
2027 start, len);
2028 if (err)
2029 return err;
2030 bdev = bdev2;
2031 start = i;
2032 len = 0;
2033 }
2034 }
2035
2036 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2037 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2038
2039 if (f2fs_block_unit_discard(sbi) &&
2040 !f2fs_test_and_set_bit(offset, se->discard_map))
2041 sbi->discard_blks--;
2042 }
2043
2044 if (len)
2045 err = __issue_discard_async(sbi, bdev, start, len);
2046 return err;
2047 }
2048
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2049 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2050 bool check_only)
2051 {
2052 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2053 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2054 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2055 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2056 unsigned long *discard_map = (unsigned long *)se->discard_map;
2057 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2058 unsigned int start = 0, end = -1;
2059 bool force = (cpc->reason & CP_DISCARD);
2060 struct discard_entry *de = NULL;
2061 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2062 int i;
2063
2064 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2065 !f2fs_hw_support_discard(sbi) ||
2066 !f2fs_block_unit_discard(sbi))
2067 return false;
2068
2069 if (!force) {
2070 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2071 SM_I(sbi)->dcc_info->nr_discards >=
2072 SM_I(sbi)->dcc_info->max_discards)
2073 return false;
2074 }
2075
2076 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2077 for (i = 0; i < entries; i++)
2078 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2079 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2080
2081 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2082 SM_I(sbi)->dcc_info->max_discards) {
2083 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2084 if (start >= BLKS_PER_SEG(sbi))
2085 break;
2086
2087 end = __find_rev_next_zero_bit(dmap,
2088 BLKS_PER_SEG(sbi), start + 1);
2089 if (force && start && end != BLKS_PER_SEG(sbi) &&
2090 (end - start) < cpc->trim_minlen)
2091 continue;
2092
2093 if (check_only)
2094 return true;
2095
2096 if (!de) {
2097 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2098 GFP_F2FS_ZERO, true, NULL);
2099 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2100 list_add_tail(&de->list, head);
2101 }
2102
2103 for (i = start; i < end; i++)
2104 __set_bit_le(i, (void *)de->discard_map);
2105
2106 SM_I(sbi)->dcc_info->nr_discards += end - start;
2107 }
2108 return false;
2109 }
2110
release_discard_addr(struct discard_entry * entry)2111 static void release_discard_addr(struct discard_entry *entry)
2112 {
2113 list_del(&entry->list);
2114 kmem_cache_free(discard_entry_slab, entry);
2115 }
2116
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2117 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2118 {
2119 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2120 struct discard_entry *entry, *this;
2121
2122 /* drop caches */
2123 list_for_each_entry_safe(entry, this, head, list)
2124 release_discard_addr(entry);
2125 }
2126
2127 /*
2128 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2129 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2130 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2131 {
2132 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2133 unsigned int segno;
2134
2135 mutex_lock(&dirty_i->seglist_lock);
2136 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2137 __set_test_and_free(sbi, segno, false);
2138 mutex_unlock(&dirty_i->seglist_lock);
2139 }
2140
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2141 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2142 struct cp_control *cpc)
2143 {
2144 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145 struct list_head *head = &dcc->entry_list;
2146 struct discard_entry *entry, *this;
2147 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2148 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2149 unsigned int start = 0, end = -1;
2150 unsigned int secno, start_segno;
2151 bool force = (cpc->reason & CP_DISCARD);
2152 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2153 DISCARD_UNIT_SECTION;
2154
2155 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2156 section_alignment = true;
2157
2158 mutex_lock(&dirty_i->seglist_lock);
2159
2160 while (1) {
2161 int i;
2162
2163 if (section_alignment && end != -1)
2164 end--;
2165 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2166 if (start >= MAIN_SEGS(sbi))
2167 break;
2168 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2169 start + 1);
2170
2171 if (section_alignment) {
2172 start = rounddown(start, SEGS_PER_SEC(sbi));
2173 end = roundup(end, SEGS_PER_SEC(sbi));
2174 }
2175
2176 for (i = start; i < end; i++) {
2177 if (test_and_clear_bit(i, prefree_map))
2178 dirty_i->nr_dirty[PRE]--;
2179 }
2180
2181 if (!f2fs_realtime_discard_enable(sbi))
2182 continue;
2183
2184 if (force && start >= cpc->trim_start &&
2185 (end - 1) <= cpc->trim_end)
2186 continue;
2187
2188 /* Should cover 2MB zoned device for zone-based reset */
2189 if (!f2fs_sb_has_blkzoned(sbi) &&
2190 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2191 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2192 SEGS_TO_BLKS(sbi, end - start));
2193 continue;
2194 }
2195 next:
2196 secno = GET_SEC_FROM_SEG(sbi, start);
2197 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2198 if (!IS_CURSEC(sbi, secno) &&
2199 !get_valid_blocks(sbi, start, true))
2200 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2201 BLKS_PER_SEC(sbi));
2202
2203 start = start_segno + SEGS_PER_SEC(sbi);
2204 if (start < end)
2205 goto next;
2206 else
2207 end = start - 1;
2208 }
2209 mutex_unlock(&dirty_i->seglist_lock);
2210
2211 if (!f2fs_block_unit_discard(sbi))
2212 goto wakeup;
2213
2214 /* send small discards */
2215 list_for_each_entry_safe(entry, this, head, list) {
2216 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2217 bool is_valid = test_bit_le(0, entry->discard_map);
2218
2219 find_next:
2220 if (is_valid) {
2221 next_pos = find_next_zero_bit_le(entry->discard_map,
2222 BLKS_PER_SEG(sbi), cur_pos);
2223 len = next_pos - cur_pos;
2224
2225 if (f2fs_sb_has_blkzoned(sbi) ||
2226 (force && len < cpc->trim_minlen))
2227 goto skip;
2228
2229 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2230 len);
2231 total_len += len;
2232 } else {
2233 next_pos = find_next_bit_le(entry->discard_map,
2234 BLKS_PER_SEG(sbi), cur_pos);
2235 }
2236 skip:
2237 cur_pos = next_pos;
2238 is_valid = !is_valid;
2239
2240 if (cur_pos < BLKS_PER_SEG(sbi))
2241 goto find_next;
2242
2243 release_discard_addr(entry);
2244 dcc->nr_discards -= total_len;
2245 }
2246
2247 wakeup:
2248 wake_up_discard_thread(sbi, false);
2249 }
2250
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2251 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2252 {
2253 dev_t dev = sbi->sb->s_bdev->bd_dev;
2254 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2255 int err = 0;
2256
2257 if (f2fs_sb_has_readonly(sbi)) {
2258 f2fs_info(sbi,
2259 "Skip to start discard thread for readonly image");
2260 return 0;
2261 }
2262
2263 if (!f2fs_realtime_discard_enable(sbi))
2264 return 0;
2265
2266 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2267 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2268 if (IS_ERR(dcc->f2fs_issue_discard)) {
2269 err = PTR_ERR(dcc->f2fs_issue_discard);
2270 dcc->f2fs_issue_discard = NULL;
2271 }
2272
2273 return err;
2274 }
2275
create_discard_cmd_control(struct f2fs_sb_info * sbi)2276 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2277 {
2278 struct discard_cmd_control *dcc;
2279 int err = 0, i;
2280
2281 if (SM_I(sbi)->dcc_info) {
2282 dcc = SM_I(sbi)->dcc_info;
2283 goto init_thread;
2284 }
2285
2286 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2287 if (!dcc)
2288 return -ENOMEM;
2289
2290 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2291 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2292 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2293 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2294 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2295 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2296 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2297 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2298
2299 INIT_LIST_HEAD(&dcc->entry_list);
2300 for (i = 0; i < MAX_PLIST_NUM; i++)
2301 INIT_LIST_HEAD(&dcc->pend_list[i]);
2302 INIT_LIST_HEAD(&dcc->wait_list);
2303 INIT_LIST_HEAD(&dcc->fstrim_list);
2304 mutex_init(&dcc->cmd_lock);
2305 atomic_set(&dcc->issued_discard, 0);
2306 atomic_set(&dcc->queued_discard, 0);
2307 atomic_set(&dcc->discard_cmd_cnt, 0);
2308 dcc->nr_discards = 0;
2309 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2310 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2311 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2312 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2313 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2314 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2315 dcc->undiscard_blks = 0;
2316 dcc->next_pos = 0;
2317 dcc->root = RB_ROOT_CACHED;
2318 dcc->rbtree_check = false;
2319
2320 init_waitqueue_head(&dcc->discard_wait_queue);
2321 SM_I(sbi)->dcc_info = dcc;
2322 init_thread:
2323 err = f2fs_start_discard_thread(sbi);
2324 if (err) {
2325 kfree(dcc);
2326 SM_I(sbi)->dcc_info = NULL;
2327 }
2328
2329 return err;
2330 }
2331
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2332 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2333 {
2334 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2335
2336 if (!dcc)
2337 return;
2338
2339 f2fs_stop_discard_thread(sbi);
2340
2341 /*
2342 * Recovery can cache discard commands, so in error path of
2343 * fill_super(), it needs to give a chance to handle them.
2344 */
2345 f2fs_issue_discard_timeout(sbi);
2346
2347 kfree(dcc);
2348 SM_I(sbi)->dcc_info = NULL;
2349 }
2350
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2351 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2352 {
2353 struct sit_info *sit_i = SIT_I(sbi);
2354
2355 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2356 sit_i->dirty_sentries++;
2357 return false;
2358 }
2359
2360 return true;
2361 }
2362
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2363 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2364 unsigned int segno, int modified)
2365 {
2366 struct seg_entry *se = get_seg_entry(sbi, segno);
2367
2368 se->type = type;
2369 if (modified)
2370 __mark_sit_entry_dirty(sbi, segno);
2371 }
2372
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2373 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2374 block_t blkaddr)
2375 {
2376 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2377
2378 if (segno == NULL_SEGNO)
2379 return 0;
2380 return get_seg_entry(sbi, segno)->mtime;
2381 }
2382
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2383 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2384 unsigned long long old_mtime)
2385 {
2386 struct seg_entry *se;
2387 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2388 unsigned long long ctime = get_mtime(sbi, false);
2389 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2390
2391 if (segno == NULL_SEGNO)
2392 return;
2393
2394 se = get_seg_entry(sbi, segno);
2395
2396 if (!se->mtime)
2397 se->mtime = mtime;
2398 else
2399 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2400 se->valid_blocks + 1);
2401
2402 if (ctime > SIT_I(sbi)->max_mtime)
2403 SIT_I(sbi)->max_mtime = ctime;
2404 }
2405
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2406 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2407 {
2408 struct seg_entry *se;
2409 unsigned int segno, offset;
2410 long int new_vblocks;
2411 bool exist;
2412 #ifdef CONFIG_F2FS_CHECK_FS
2413 bool mir_exist;
2414 #endif
2415
2416 segno = GET_SEGNO(sbi, blkaddr);
2417 if (segno == NULL_SEGNO)
2418 return;
2419
2420 se = get_seg_entry(sbi, segno);
2421 new_vblocks = se->valid_blocks + del;
2422 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2423
2424 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2425 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2426
2427 se->valid_blocks = new_vblocks;
2428
2429 /* Update valid block bitmap */
2430 if (del > 0) {
2431 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2432 #ifdef CONFIG_F2FS_CHECK_FS
2433 mir_exist = f2fs_test_and_set_bit(offset,
2434 se->cur_valid_map_mir);
2435 if (unlikely(exist != mir_exist)) {
2436 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2437 blkaddr, exist);
2438 f2fs_bug_on(sbi, 1);
2439 }
2440 #endif
2441 if (unlikely(exist)) {
2442 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2443 blkaddr);
2444 f2fs_bug_on(sbi, 1);
2445 se->valid_blocks--;
2446 del = 0;
2447 }
2448
2449 if (f2fs_block_unit_discard(sbi) &&
2450 !f2fs_test_and_set_bit(offset, se->discard_map))
2451 sbi->discard_blks--;
2452
2453 /*
2454 * SSR should never reuse block which is checkpointed
2455 * or newly invalidated.
2456 */
2457 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2458 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2459 se->ckpt_valid_blocks++;
2460 }
2461 } else {
2462 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2463 #ifdef CONFIG_F2FS_CHECK_FS
2464 mir_exist = f2fs_test_and_clear_bit(offset,
2465 se->cur_valid_map_mir);
2466 if (unlikely(exist != mir_exist)) {
2467 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2468 blkaddr, exist);
2469 f2fs_bug_on(sbi, 1);
2470 }
2471 #endif
2472 if (unlikely(!exist)) {
2473 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2474 blkaddr);
2475 f2fs_bug_on(sbi, 1);
2476 se->valid_blocks++;
2477 del = 0;
2478 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2479 /*
2480 * If checkpoints are off, we must not reuse data that
2481 * was used in the previous checkpoint. If it was used
2482 * before, we must track that to know how much space we
2483 * really have.
2484 */
2485 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2486 spin_lock(&sbi->stat_lock);
2487 sbi->unusable_block_count++;
2488 spin_unlock(&sbi->stat_lock);
2489 }
2490 }
2491
2492 if (f2fs_block_unit_discard(sbi) &&
2493 f2fs_test_and_clear_bit(offset, se->discard_map))
2494 sbi->discard_blks++;
2495 }
2496 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2497 se->ckpt_valid_blocks += del;
2498
2499 __mark_sit_entry_dirty(sbi, segno);
2500
2501 /* update total number of valid blocks to be written in ckpt area */
2502 SIT_I(sbi)->written_valid_blocks += del;
2503
2504 if (__is_large_section(sbi))
2505 get_sec_entry(sbi, segno)->valid_blocks += del;
2506 }
2507
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2508 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2509 {
2510 unsigned int segno = GET_SEGNO(sbi, addr);
2511 struct sit_info *sit_i = SIT_I(sbi);
2512
2513 f2fs_bug_on(sbi, addr == NULL_ADDR);
2514 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2515 return;
2516
2517 f2fs_invalidate_internal_cache(sbi, addr);
2518
2519 /* add it into sit main buffer */
2520 down_write(&sit_i->sentry_lock);
2521
2522 update_segment_mtime(sbi, addr, 0);
2523 update_sit_entry(sbi, addr, -1);
2524
2525 /* add it into dirty seglist */
2526 locate_dirty_segment(sbi, segno);
2527
2528 up_write(&sit_i->sentry_lock);
2529 }
2530
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2531 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2532 {
2533 struct sit_info *sit_i = SIT_I(sbi);
2534 unsigned int segno, offset;
2535 struct seg_entry *se;
2536 bool is_cp = false;
2537
2538 if (!__is_valid_data_blkaddr(blkaddr))
2539 return true;
2540
2541 down_read(&sit_i->sentry_lock);
2542
2543 segno = GET_SEGNO(sbi, blkaddr);
2544 se = get_seg_entry(sbi, segno);
2545 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2546
2547 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2548 is_cp = true;
2549
2550 up_read(&sit_i->sentry_lock);
2551
2552 return is_cp;
2553 }
2554
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2555 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2556 {
2557 struct curseg_info *curseg = CURSEG_I(sbi, type);
2558
2559 if (sbi->ckpt->alloc_type[type] == SSR)
2560 return BLKS_PER_SEG(sbi);
2561 return curseg->next_blkoff;
2562 }
2563
2564 /*
2565 * Calculate the number of current summary pages for writing
2566 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2567 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2568 {
2569 int valid_sum_count = 0;
2570 int i, sum_in_page;
2571
2572 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2573 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2574 valid_sum_count +=
2575 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2576 else
2577 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2578 }
2579
2580 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2581 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2582 if (valid_sum_count <= sum_in_page)
2583 return 1;
2584 else if ((valid_sum_count - sum_in_page) <=
2585 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2586 return 2;
2587 return 3;
2588 }
2589
2590 /*
2591 * Caller should put this summary page
2592 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2593 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2594 {
2595 if (unlikely(f2fs_cp_error(sbi)))
2596 return ERR_PTR(-EIO);
2597 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2598 }
2599
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2600 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2601 void *src, block_t blk_addr)
2602 {
2603 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2604
2605 memcpy(page_address(page), src, PAGE_SIZE);
2606 set_page_dirty(page);
2607 f2fs_put_page(page, 1);
2608 }
2609
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2610 static void write_sum_page(struct f2fs_sb_info *sbi,
2611 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2612 {
2613 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2614 }
2615
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2616 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2617 int type, block_t blk_addr)
2618 {
2619 struct curseg_info *curseg = CURSEG_I(sbi, type);
2620 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2621 struct f2fs_summary_block *src = curseg->sum_blk;
2622 struct f2fs_summary_block *dst;
2623
2624 dst = (struct f2fs_summary_block *)page_address(page);
2625 memset(dst, 0, PAGE_SIZE);
2626
2627 mutex_lock(&curseg->curseg_mutex);
2628
2629 down_read(&curseg->journal_rwsem);
2630 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2631 up_read(&curseg->journal_rwsem);
2632
2633 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2634 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2635
2636 mutex_unlock(&curseg->curseg_mutex);
2637
2638 set_page_dirty(page);
2639 f2fs_put_page(page, 1);
2640 }
2641
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2642 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2643 struct curseg_info *curseg)
2644 {
2645 unsigned int segno = curseg->segno + 1;
2646 struct free_segmap_info *free_i = FREE_I(sbi);
2647
2648 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2649 return !test_bit(segno, free_i->free_segmap);
2650 return 0;
2651 }
2652
2653 /*
2654 * Find a new segment from the free segments bitmap to right order
2655 * This function should be returned with success, otherwise BUG
2656 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2657 static int get_new_segment(struct f2fs_sb_info *sbi,
2658 unsigned int *newseg, bool new_sec, bool pinning)
2659 {
2660 struct free_segmap_info *free_i = FREE_I(sbi);
2661 unsigned int segno, secno, zoneno;
2662 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2663 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2664 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2665 bool init = true;
2666 int i;
2667 int ret = 0;
2668
2669 spin_lock(&free_i->segmap_lock);
2670
2671 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2672 ret = -ENOSPC;
2673 goto out_unlock;
2674 }
2675
2676 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2677 segno = find_next_zero_bit(free_i->free_segmap,
2678 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2679 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2680 goto got_it;
2681 }
2682
2683 /*
2684 * If we format f2fs on zoned storage, let's try to get pinned sections
2685 * from beginning of the storage, which should be a conventional one.
2686 */
2687 if (f2fs_sb_has_blkzoned(sbi)) {
2688 segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg);
2689 hint = GET_SEC_FROM_SEG(sbi, segno);
2690 }
2691
2692 find_other_zone:
2693 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2694 if (secno >= MAIN_SECS(sbi)) {
2695 secno = find_first_zero_bit(free_i->free_secmap,
2696 MAIN_SECS(sbi));
2697 if (secno >= MAIN_SECS(sbi)) {
2698 ret = -ENOSPC;
2699 goto out_unlock;
2700 }
2701 }
2702 segno = GET_SEG_FROM_SEC(sbi, secno);
2703 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2704
2705 /* give up on finding another zone */
2706 if (!init)
2707 goto got_it;
2708 if (sbi->secs_per_zone == 1)
2709 goto got_it;
2710 if (zoneno == old_zoneno)
2711 goto got_it;
2712 for (i = 0; i < NR_CURSEG_TYPE; i++)
2713 if (CURSEG_I(sbi, i)->zone == zoneno)
2714 break;
2715
2716 if (i < NR_CURSEG_TYPE) {
2717 /* zone is in user, try another */
2718 if (zoneno + 1 >= total_zones)
2719 hint = 0;
2720 else
2721 hint = (zoneno + 1) * sbi->secs_per_zone;
2722 init = false;
2723 goto find_other_zone;
2724 }
2725 got_it:
2726 /* set it as dirty segment in free segmap */
2727 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2728
2729 /* no free section in conventional zone */
2730 if (new_sec && pinning &&
2731 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2732 ret = -EAGAIN;
2733 goto out_unlock;
2734 }
2735 __set_inuse(sbi, segno);
2736 *newseg = segno;
2737 out_unlock:
2738 spin_unlock(&free_i->segmap_lock);
2739
2740 if (ret == -ENOSPC) {
2741 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2742 f2fs_bug_on(sbi, 1);
2743 }
2744 return ret;
2745 }
2746
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2747 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2748 {
2749 struct curseg_info *curseg = CURSEG_I(sbi, type);
2750 struct summary_footer *sum_footer;
2751 unsigned short seg_type = curseg->seg_type;
2752
2753 /* only happen when get_new_segment() fails */
2754 if (curseg->next_segno == NULL_SEGNO)
2755 return;
2756
2757 curseg->inited = true;
2758 curseg->segno = curseg->next_segno;
2759 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2760 curseg->next_blkoff = 0;
2761 curseg->next_segno = NULL_SEGNO;
2762
2763 sum_footer = &(curseg->sum_blk->footer);
2764 memset(sum_footer, 0, sizeof(struct summary_footer));
2765
2766 sanity_check_seg_type(sbi, seg_type);
2767
2768 if (IS_DATASEG(seg_type))
2769 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2770 if (IS_NODESEG(seg_type))
2771 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2772 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2773 }
2774
__get_next_segno(struct f2fs_sb_info * sbi,int type)2775 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2776 {
2777 struct curseg_info *curseg = CURSEG_I(sbi, type);
2778 unsigned short seg_type = curseg->seg_type;
2779
2780 sanity_check_seg_type(sbi, seg_type);
2781 if (__is_large_section(sbi)) {
2782 if (f2fs_need_rand_seg(sbi)) {
2783 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2784
2785 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2786 return curseg->segno;
2787 return get_random_u32_inclusive(curseg->segno + 1,
2788 GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2789 }
2790 return curseg->segno;
2791 } else if (f2fs_need_rand_seg(sbi)) {
2792 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2793 }
2794
2795 /* inmem log may not locate on any segment after mount */
2796 if (!curseg->inited)
2797 return 0;
2798
2799 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2800 return 0;
2801
2802 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2803 return 0;
2804
2805 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2806 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2807
2808 /* find segments from 0 to reuse freed segments */
2809 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2810 return 0;
2811
2812 return curseg->segno;
2813 }
2814
2815 /*
2816 * Allocate a current working segment.
2817 * This function always allocates a free segment in LFS manner.
2818 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2819 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2820 {
2821 struct curseg_info *curseg = CURSEG_I(sbi, type);
2822 unsigned int segno = curseg->segno;
2823 bool pinning = type == CURSEG_COLD_DATA_PINNED;
2824 int ret;
2825
2826 if (curseg->inited)
2827 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2828
2829 segno = __get_next_segno(sbi, type);
2830 ret = get_new_segment(sbi, &segno, new_sec, pinning);
2831 if (ret) {
2832 if (ret == -ENOSPC)
2833 curseg->segno = NULL_SEGNO;
2834 return ret;
2835 }
2836
2837 curseg->next_segno = segno;
2838 reset_curseg(sbi, type, 1);
2839 curseg->alloc_type = LFS;
2840 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2841 curseg->fragment_remained_chunk =
2842 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2843 return 0;
2844 }
2845
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2846 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2847 int segno, block_t start)
2848 {
2849 struct seg_entry *se = get_seg_entry(sbi, segno);
2850 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2851 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2852 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2853 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2854 int i;
2855
2856 for (i = 0; i < entries; i++)
2857 target_map[i] = ckpt_map[i] | cur_map[i];
2858
2859 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2860 }
2861
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)2862 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2863 struct curseg_info *seg)
2864 {
2865 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2866 }
2867
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2868 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2869 {
2870 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2871 }
2872
2873 /*
2874 * This function always allocates a used segment(from dirty seglist) by SSR
2875 * manner, so it should recover the existing segment information of valid blocks
2876 */
change_curseg(struct f2fs_sb_info * sbi,int type)2877 static int change_curseg(struct f2fs_sb_info *sbi, int type)
2878 {
2879 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2880 struct curseg_info *curseg = CURSEG_I(sbi, type);
2881 unsigned int new_segno = curseg->next_segno;
2882 struct f2fs_summary_block *sum_node;
2883 struct page *sum_page;
2884
2885 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2886
2887 __set_test_and_inuse(sbi, new_segno);
2888
2889 mutex_lock(&dirty_i->seglist_lock);
2890 __remove_dirty_segment(sbi, new_segno, PRE);
2891 __remove_dirty_segment(sbi, new_segno, DIRTY);
2892 mutex_unlock(&dirty_i->seglist_lock);
2893
2894 reset_curseg(sbi, type, 1);
2895 curseg->alloc_type = SSR;
2896 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2897
2898 sum_page = f2fs_get_sum_page(sbi, new_segno);
2899 if (IS_ERR(sum_page)) {
2900 /* GC won't be able to use stale summary pages by cp_error */
2901 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2902 return PTR_ERR(sum_page);
2903 }
2904 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2905 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2906 f2fs_put_page(sum_page, 1);
2907 return 0;
2908 }
2909
2910 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2911 int alloc_mode, unsigned long long age);
2912
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2913 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2914 int target_type, int alloc_mode,
2915 unsigned long long age)
2916 {
2917 struct curseg_info *curseg = CURSEG_I(sbi, type);
2918 int ret = 0;
2919
2920 curseg->seg_type = target_type;
2921
2922 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2923 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2924
2925 curseg->seg_type = se->type;
2926 ret = change_curseg(sbi, type);
2927 } else {
2928 /* allocate cold segment by default */
2929 curseg->seg_type = CURSEG_COLD_DATA;
2930 ret = new_curseg(sbi, type, true);
2931 }
2932 stat_inc_seg_type(sbi, curseg);
2933 return ret;
2934 }
2935
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)2936 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
2937 {
2938 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2939 int ret = 0;
2940
2941 if (!sbi->am.atgc_enabled && !force)
2942 return 0;
2943
2944 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2945
2946 mutex_lock(&curseg->curseg_mutex);
2947 down_write(&SIT_I(sbi)->sentry_lock);
2948
2949 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
2950 CURSEG_COLD_DATA, SSR, 0);
2951
2952 up_write(&SIT_I(sbi)->sentry_lock);
2953 mutex_unlock(&curseg->curseg_mutex);
2954
2955 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2956 return ret;
2957 }
2958
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2959 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2960 {
2961 return __f2fs_init_atgc_curseg(sbi, false);
2962 }
2963
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)2964 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
2965 {
2966 int ret;
2967
2968 if (!test_opt(sbi, ATGC))
2969 return 0;
2970 if (sbi->am.atgc_enabled)
2971 return 0;
2972 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
2973 sbi->am.age_threshold)
2974 return 0;
2975
2976 ret = __f2fs_init_atgc_curseg(sbi, true);
2977 if (!ret) {
2978 sbi->am.atgc_enabled = true;
2979 f2fs_info(sbi, "reenabled age threshold GC");
2980 }
2981 return ret;
2982 }
2983
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2984 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2985 {
2986 struct curseg_info *curseg = CURSEG_I(sbi, type);
2987
2988 mutex_lock(&curseg->curseg_mutex);
2989 if (!curseg->inited)
2990 goto out;
2991
2992 if (get_valid_blocks(sbi, curseg->segno, false)) {
2993 write_sum_page(sbi, curseg->sum_blk,
2994 GET_SUM_BLOCK(sbi, curseg->segno));
2995 } else {
2996 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2997 __set_test_and_free(sbi, curseg->segno, true);
2998 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2999 }
3000 out:
3001 mutex_unlock(&curseg->curseg_mutex);
3002 }
3003
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3004 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3005 {
3006 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3007
3008 if (sbi->am.atgc_enabled)
3009 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3010 }
3011
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3012 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3013 {
3014 struct curseg_info *curseg = CURSEG_I(sbi, type);
3015
3016 mutex_lock(&curseg->curseg_mutex);
3017 if (!curseg->inited)
3018 goto out;
3019 if (get_valid_blocks(sbi, curseg->segno, false))
3020 goto out;
3021
3022 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3023 __set_test_and_inuse(sbi, curseg->segno);
3024 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3025 out:
3026 mutex_unlock(&curseg->curseg_mutex);
3027 }
3028
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3029 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3030 {
3031 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3032
3033 if (sbi->am.atgc_enabled)
3034 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3035 }
3036
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3037 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3038 int alloc_mode, unsigned long long age)
3039 {
3040 struct curseg_info *curseg = CURSEG_I(sbi, type);
3041 unsigned segno = NULL_SEGNO;
3042 unsigned short seg_type = curseg->seg_type;
3043 int i, cnt;
3044 bool reversed = false;
3045
3046 sanity_check_seg_type(sbi, seg_type);
3047
3048 /* f2fs_need_SSR() already forces to do this */
3049 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
3050 curseg->next_segno = segno;
3051 return 1;
3052 }
3053
3054 /* For node segments, let's do SSR more intensively */
3055 if (IS_NODESEG(seg_type)) {
3056 if (seg_type >= CURSEG_WARM_NODE) {
3057 reversed = true;
3058 i = CURSEG_COLD_NODE;
3059 } else {
3060 i = CURSEG_HOT_NODE;
3061 }
3062 cnt = NR_CURSEG_NODE_TYPE;
3063 } else {
3064 if (seg_type >= CURSEG_WARM_DATA) {
3065 reversed = true;
3066 i = CURSEG_COLD_DATA;
3067 } else {
3068 i = CURSEG_HOT_DATA;
3069 }
3070 cnt = NR_CURSEG_DATA_TYPE;
3071 }
3072
3073 for (; cnt-- > 0; reversed ? i-- : i++) {
3074 if (i == seg_type)
3075 continue;
3076 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3077 curseg->next_segno = segno;
3078 return 1;
3079 }
3080 }
3081
3082 /* find valid_blocks=0 in dirty list */
3083 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3084 segno = get_free_segment(sbi);
3085 if (segno != NULL_SEGNO) {
3086 curseg->next_segno = segno;
3087 return 1;
3088 }
3089 }
3090 return 0;
3091 }
3092
need_new_seg(struct f2fs_sb_info * sbi,int type)3093 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3094 {
3095 struct curseg_info *curseg = CURSEG_I(sbi, type);
3096
3097 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3098 curseg->seg_type == CURSEG_WARM_NODE)
3099 return true;
3100 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3101 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3102 return true;
3103 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3104 return true;
3105 return false;
3106 }
3107
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3108 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3109 unsigned int start, unsigned int end)
3110 {
3111 struct curseg_info *curseg = CURSEG_I(sbi, type);
3112 unsigned int segno;
3113 int ret = 0;
3114
3115 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3116 mutex_lock(&curseg->curseg_mutex);
3117 down_write(&SIT_I(sbi)->sentry_lock);
3118
3119 segno = CURSEG_I(sbi, type)->segno;
3120 if (segno < start || segno > end)
3121 goto unlock;
3122
3123 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3124 ret = change_curseg(sbi, type);
3125 else
3126 ret = new_curseg(sbi, type, true);
3127
3128 stat_inc_seg_type(sbi, curseg);
3129
3130 locate_dirty_segment(sbi, segno);
3131 unlock:
3132 up_write(&SIT_I(sbi)->sentry_lock);
3133
3134 if (segno != curseg->segno)
3135 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3136 type, segno, curseg->segno);
3137
3138 mutex_unlock(&curseg->curseg_mutex);
3139 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3140 return ret;
3141 }
3142
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3143 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3144 bool new_sec, bool force)
3145 {
3146 struct curseg_info *curseg = CURSEG_I(sbi, type);
3147 unsigned int old_segno;
3148 int err = 0;
3149
3150 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3151 goto allocate;
3152
3153 if (!force && curseg->inited &&
3154 !curseg->next_blkoff &&
3155 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3156 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3157 return 0;
3158
3159 allocate:
3160 old_segno = curseg->segno;
3161 err = new_curseg(sbi, type, true);
3162 if (err)
3163 return err;
3164 stat_inc_seg_type(sbi, curseg);
3165 locate_dirty_segment(sbi, old_segno);
3166 return 0;
3167 }
3168
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3169 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3170 {
3171 int ret;
3172
3173 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3174 down_write(&SIT_I(sbi)->sentry_lock);
3175 ret = __allocate_new_segment(sbi, type, true, force);
3176 up_write(&SIT_I(sbi)->sentry_lock);
3177 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3178
3179 return ret;
3180 }
3181
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3182 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3183 {
3184 int err;
3185 bool gc_required = true;
3186
3187 retry:
3188 f2fs_lock_op(sbi);
3189 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3190 f2fs_unlock_op(sbi);
3191
3192 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3193 f2fs_down_write(&sbi->gc_lock);
3194 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3195 f2fs_up_write(&sbi->gc_lock);
3196
3197 gc_required = false;
3198 if (!err)
3199 goto retry;
3200 }
3201
3202 return err;
3203 }
3204
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3205 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3206 {
3207 int i;
3208 int err = 0;
3209
3210 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3211 down_write(&SIT_I(sbi)->sentry_lock);
3212 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3213 err += __allocate_new_segment(sbi, i, false, false);
3214 up_write(&SIT_I(sbi)->sentry_lock);
3215 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3216
3217 return err;
3218 }
3219
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3220 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3221 struct cp_control *cpc)
3222 {
3223 __u64 trim_start = cpc->trim_start;
3224 bool has_candidate = false;
3225
3226 down_write(&SIT_I(sbi)->sentry_lock);
3227 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3228 if (add_discard_addrs(sbi, cpc, true)) {
3229 has_candidate = true;
3230 break;
3231 }
3232 }
3233 up_write(&SIT_I(sbi)->sentry_lock);
3234
3235 cpc->trim_start = trim_start;
3236 return has_candidate;
3237 }
3238
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3239 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3240 struct discard_policy *dpolicy,
3241 unsigned int start, unsigned int end)
3242 {
3243 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3244 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3245 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3246 struct discard_cmd *dc;
3247 struct blk_plug plug;
3248 int issued;
3249 unsigned int trimmed = 0;
3250
3251 next:
3252 issued = 0;
3253
3254 mutex_lock(&dcc->cmd_lock);
3255 if (unlikely(dcc->rbtree_check))
3256 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3257
3258 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3259 &prev_dc, &next_dc, &insert_p, &insert_parent);
3260 if (!dc)
3261 dc = next_dc;
3262
3263 blk_start_plug(&plug);
3264
3265 while (dc && dc->di.lstart <= end) {
3266 struct rb_node *node;
3267 int err = 0;
3268
3269 if (dc->di.len < dpolicy->granularity)
3270 goto skip;
3271
3272 if (dc->state != D_PREP) {
3273 list_move_tail(&dc->list, &dcc->fstrim_list);
3274 goto skip;
3275 }
3276
3277 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3278
3279 if (issued >= dpolicy->max_requests) {
3280 start = dc->di.lstart + dc->di.len;
3281
3282 if (err)
3283 __remove_discard_cmd(sbi, dc);
3284
3285 blk_finish_plug(&plug);
3286 mutex_unlock(&dcc->cmd_lock);
3287 trimmed += __wait_all_discard_cmd(sbi, NULL);
3288 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3289 goto next;
3290 }
3291 skip:
3292 node = rb_next(&dc->rb_node);
3293 if (err)
3294 __remove_discard_cmd(sbi, dc);
3295 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3296
3297 if (fatal_signal_pending(current))
3298 break;
3299 }
3300
3301 blk_finish_plug(&plug);
3302 mutex_unlock(&dcc->cmd_lock);
3303
3304 return trimmed;
3305 }
3306
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3307 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3308 {
3309 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3310 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3311 unsigned int start_segno, end_segno;
3312 block_t start_block, end_block;
3313 struct cp_control cpc;
3314 struct discard_policy dpolicy;
3315 unsigned long long trimmed = 0;
3316 int err = 0;
3317 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3318
3319 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3320 return -EINVAL;
3321
3322 if (end < MAIN_BLKADDR(sbi))
3323 goto out;
3324
3325 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3326 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3327 return -EFSCORRUPTED;
3328 }
3329
3330 /* start/end segment number in main_area */
3331 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3332 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3333 GET_SEGNO(sbi, end);
3334 if (need_align) {
3335 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3336 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3337 }
3338
3339 cpc.reason = CP_DISCARD;
3340 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3341 cpc.trim_start = start_segno;
3342 cpc.trim_end = end_segno;
3343
3344 if (sbi->discard_blks == 0)
3345 goto out;
3346
3347 f2fs_down_write(&sbi->gc_lock);
3348 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3349 err = f2fs_write_checkpoint(sbi, &cpc);
3350 f2fs_up_write(&sbi->gc_lock);
3351 if (err)
3352 goto out;
3353
3354 /*
3355 * We filed discard candidates, but actually we don't need to wait for
3356 * all of them, since they'll be issued in idle time along with runtime
3357 * discard option. User configuration looks like using runtime discard
3358 * or periodic fstrim instead of it.
3359 */
3360 if (f2fs_realtime_discard_enable(sbi))
3361 goto out;
3362
3363 start_block = START_BLOCK(sbi, start_segno);
3364 end_block = START_BLOCK(sbi, end_segno + 1);
3365
3366 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3367 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3368 start_block, end_block);
3369
3370 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3371 start_block, end_block);
3372 out:
3373 if (!err)
3374 range->len = F2FS_BLK_TO_BYTES(trimmed);
3375 return err;
3376 }
3377
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3378 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3379 {
3380 if (F2FS_OPTION(sbi).active_logs == 2)
3381 return CURSEG_HOT_DATA;
3382 else if (F2FS_OPTION(sbi).active_logs == 4)
3383 return CURSEG_COLD_DATA;
3384
3385 /* active_log == 6 */
3386 switch (hint) {
3387 case WRITE_LIFE_SHORT:
3388 return CURSEG_HOT_DATA;
3389 case WRITE_LIFE_EXTREME:
3390 return CURSEG_COLD_DATA;
3391 default:
3392 return CURSEG_WARM_DATA;
3393 }
3394 }
3395
3396 /*
3397 * This returns write hints for each segment type. This hints will be
3398 * passed down to block layer as below by default.
3399 *
3400 * User F2FS Block
3401 * ---- ---- -----
3402 * META WRITE_LIFE_NONE|REQ_META
3403 * HOT_NODE WRITE_LIFE_NONE
3404 * WARM_NODE WRITE_LIFE_MEDIUM
3405 * COLD_NODE WRITE_LIFE_LONG
3406 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3407 * extension list " "
3408 *
3409 * -- buffered io
3410 * COLD_DATA WRITE_LIFE_EXTREME
3411 * HOT_DATA WRITE_LIFE_SHORT
3412 * WARM_DATA WRITE_LIFE_NOT_SET
3413 *
3414 * -- direct io
3415 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3416 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3417 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3418 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3419 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3420 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3421 */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3422 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3423 enum page_type type, enum temp_type temp)
3424 {
3425 switch (type) {
3426 case DATA:
3427 switch (temp) {
3428 case WARM:
3429 return WRITE_LIFE_NOT_SET;
3430 case HOT:
3431 return WRITE_LIFE_SHORT;
3432 case COLD:
3433 return WRITE_LIFE_EXTREME;
3434 default:
3435 return WRITE_LIFE_NONE;
3436 }
3437 case NODE:
3438 switch (temp) {
3439 case WARM:
3440 return WRITE_LIFE_MEDIUM;
3441 case HOT:
3442 return WRITE_LIFE_NONE;
3443 case COLD:
3444 return WRITE_LIFE_LONG;
3445 default:
3446 return WRITE_LIFE_NONE;
3447 }
3448 case META:
3449 return WRITE_LIFE_NONE;
3450 default:
3451 return WRITE_LIFE_NONE;
3452 }
3453 }
3454
__get_segment_type_2(struct f2fs_io_info * fio)3455 static int __get_segment_type_2(struct f2fs_io_info *fio)
3456 {
3457 if (fio->type == DATA)
3458 return CURSEG_HOT_DATA;
3459 else
3460 return CURSEG_HOT_NODE;
3461 }
3462
__get_segment_type_4(struct f2fs_io_info * fio)3463 static int __get_segment_type_4(struct f2fs_io_info *fio)
3464 {
3465 if (fio->type == DATA) {
3466 struct inode *inode = fio->page->mapping->host;
3467
3468 if (S_ISDIR(inode->i_mode))
3469 return CURSEG_HOT_DATA;
3470 else
3471 return CURSEG_COLD_DATA;
3472 } else {
3473 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3474 return CURSEG_WARM_NODE;
3475 else
3476 return CURSEG_COLD_NODE;
3477 }
3478 }
3479
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3480 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3481 {
3482 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3483 struct extent_info ei = {};
3484
3485 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3486 if (!ei.age)
3487 return NO_CHECK_TYPE;
3488 if (ei.age <= sbi->hot_data_age_threshold)
3489 return CURSEG_HOT_DATA;
3490 if (ei.age <= sbi->warm_data_age_threshold)
3491 return CURSEG_WARM_DATA;
3492 return CURSEG_COLD_DATA;
3493 }
3494 return NO_CHECK_TYPE;
3495 }
3496
__get_segment_type_6(struct f2fs_io_info * fio)3497 static int __get_segment_type_6(struct f2fs_io_info *fio)
3498 {
3499 if (fio->type == DATA) {
3500 struct inode *inode = fio->page->mapping->host;
3501 int type;
3502
3503 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3504 return CURSEG_COLD_DATA_PINNED;
3505
3506 if (page_private_gcing(fio->page)) {
3507 if (fio->sbi->am.atgc_enabled &&
3508 (fio->io_type == FS_DATA_IO) &&
3509 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3510 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3511 !is_inode_flag_set(inode, FI_OPU_WRITE))
3512 return CURSEG_ALL_DATA_ATGC;
3513 else
3514 return CURSEG_COLD_DATA;
3515 }
3516 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3517 return CURSEG_COLD_DATA;
3518
3519 type = __get_age_segment_type(inode, fio->page->index);
3520 if (type != NO_CHECK_TYPE)
3521 return type;
3522
3523 if (file_is_hot(inode) ||
3524 is_inode_flag_set(inode, FI_HOT_DATA) ||
3525 f2fs_is_cow_file(inode))
3526 return CURSEG_HOT_DATA;
3527 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3528 inode->i_write_hint);
3529 } else {
3530 if (IS_DNODE(fio->page))
3531 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3532 CURSEG_HOT_NODE;
3533 return CURSEG_COLD_NODE;
3534 }
3535 }
3536
f2fs_get_segment_temp(int seg_type)3537 int f2fs_get_segment_temp(int seg_type)
3538 {
3539 if (IS_HOT(seg_type))
3540 return HOT;
3541 else if (IS_WARM(seg_type))
3542 return WARM;
3543 return COLD;
3544 }
3545
__get_segment_type(struct f2fs_io_info * fio)3546 static int __get_segment_type(struct f2fs_io_info *fio)
3547 {
3548 int type = 0;
3549
3550 switch (F2FS_OPTION(fio->sbi).active_logs) {
3551 case 2:
3552 type = __get_segment_type_2(fio);
3553 break;
3554 case 4:
3555 type = __get_segment_type_4(fio);
3556 break;
3557 case 6:
3558 type = __get_segment_type_6(fio);
3559 break;
3560 default:
3561 f2fs_bug_on(fio->sbi, true);
3562 }
3563
3564 fio->temp = f2fs_get_segment_temp(type);
3565
3566 return type;
3567 }
3568
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3569 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3570 struct curseg_info *seg)
3571 {
3572 /* To allocate block chunks in different sizes, use random number */
3573 if (--seg->fragment_remained_chunk > 0)
3574 return;
3575
3576 seg->fragment_remained_chunk =
3577 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3578 seg->next_blkoff +=
3579 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3580 }
3581
reset_curseg_fields(struct curseg_info * curseg)3582 static void reset_curseg_fields(struct curseg_info *curseg)
3583 {
3584 curseg->inited = false;
3585 curseg->segno = NULL_SEGNO;
3586 curseg->next_segno = 0;
3587 }
3588
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3589 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3590 block_t old_blkaddr, block_t *new_blkaddr,
3591 struct f2fs_summary *sum, int type,
3592 struct f2fs_io_info *fio)
3593 {
3594 struct sit_info *sit_i = SIT_I(sbi);
3595 struct curseg_info *curseg = CURSEG_I(sbi, type);
3596 unsigned long long old_mtime;
3597 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3598 struct seg_entry *se = NULL;
3599 bool segment_full = false;
3600 int ret = 0;
3601
3602 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3603
3604 mutex_lock(&curseg->curseg_mutex);
3605 down_write(&sit_i->sentry_lock);
3606
3607 if (curseg->segno == NULL_SEGNO) {
3608 ret = -ENOSPC;
3609 goto out_err;
3610 }
3611
3612 if (from_gc) {
3613 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3614 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3615 sanity_check_seg_type(sbi, se->type);
3616 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3617 }
3618 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3619
3620 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3621
3622 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3623
3624 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3625 if (curseg->alloc_type == SSR) {
3626 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3627 } else {
3628 curseg->next_blkoff++;
3629 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3630 f2fs_randomize_chunk(sbi, curseg);
3631 }
3632 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3633 segment_full = true;
3634 stat_inc_block_count(sbi, curseg);
3635
3636 if (from_gc) {
3637 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3638 } else {
3639 update_segment_mtime(sbi, old_blkaddr, 0);
3640 old_mtime = 0;
3641 }
3642 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3643
3644 /*
3645 * SIT information should be updated before segment allocation,
3646 * since SSR needs latest valid block information.
3647 */
3648 update_sit_entry(sbi, *new_blkaddr, 1);
3649 update_sit_entry(sbi, old_blkaddr, -1);
3650
3651 /*
3652 * If the current segment is full, flush it out and replace it with a
3653 * new segment.
3654 */
3655 if (segment_full) {
3656 if (type == CURSEG_COLD_DATA_PINNED &&
3657 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3658 write_sum_page(sbi, curseg->sum_blk,
3659 GET_SUM_BLOCK(sbi, curseg->segno));
3660 reset_curseg_fields(curseg);
3661 goto skip_new_segment;
3662 }
3663
3664 if (from_gc) {
3665 ret = get_atssr_segment(sbi, type, se->type,
3666 AT_SSR, se->mtime);
3667 } else {
3668 if (need_new_seg(sbi, type))
3669 ret = new_curseg(sbi, type, false);
3670 else
3671 ret = change_curseg(sbi, type);
3672 stat_inc_seg_type(sbi, curseg);
3673 }
3674
3675 if (ret)
3676 goto out_err;
3677 }
3678
3679 skip_new_segment:
3680 /*
3681 * segment dirty status should be updated after segment allocation,
3682 * so we just need to update status only one time after previous
3683 * segment being closed.
3684 */
3685 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3686 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3687
3688 if (IS_DATASEG(curseg->seg_type))
3689 atomic64_inc(&sbi->allocated_data_blocks);
3690
3691 up_write(&sit_i->sentry_lock);
3692
3693 if (page && IS_NODESEG(curseg->seg_type)) {
3694 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3695
3696 f2fs_inode_chksum_set(sbi, page);
3697 }
3698
3699 if (fio) {
3700 struct f2fs_bio_info *io;
3701
3702 INIT_LIST_HEAD(&fio->list);
3703 fio->in_list = 1;
3704 io = sbi->write_io[fio->type] + fio->temp;
3705 spin_lock(&io->io_lock);
3706 list_add_tail(&fio->list, &io->io_list);
3707 spin_unlock(&io->io_lock);
3708 }
3709
3710 mutex_unlock(&curseg->curseg_mutex);
3711 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3712 return 0;
3713
3714 out_err:
3715 *new_blkaddr = NULL_ADDR;
3716 up_write(&sit_i->sentry_lock);
3717 mutex_unlock(&curseg->curseg_mutex);
3718 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3719 return ret;
3720 }
3721
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3722 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3723 block_t blkaddr, unsigned int blkcnt)
3724 {
3725 if (!f2fs_is_multi_device(sbi))
3726 return;
3727
3728 while (1) {
3729 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3730 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3731
3732 /* update device state for fsync */
3733 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3734
3735 /* update device state for checkpoint */
3736 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3737 spin_lock(&sbi->dev_lock);
3738 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3739 spin_unlock(&sbi->dev_lock);
3740 }
3741
3742 if (blkcnt <= blks)
3743 break;
3744 blkcnt -= blks;
3745 blkaddr += blks;
3746 }
3747 }
3748
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3749 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3750 {
3751 int type = __get_segment_type(fio);
3752 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3753
3754 if (keep_order)
3755 f2fs_down_read(&fio->sbi->io_order_lock);
3756
3757 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3758 &fio->new_blkaddr, sum, type, fio)) {
3759 if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host))
3760 fscrypt_finalize_bounce_page(&fio->encrypted_page);
3761 end_page_writeback(fio->page);
3762 if (f2fs_in_warm_node_list(fio->sbi, fio->page))
3763 f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3764 goto out;
3765 }
3766 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3767 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3768
3769 /* writeout dirty page into bdev */
3770 f2fs_submit_page_write(fio);
3771
3772 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3773 out:
3774 if (keep_order)
3775 f2fs_up_read(&fio->sbi->io_order_lock);
3776 }
3777
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3778 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3779 enum iostat_type io_type)
3780 {
3781 struct f2fs_io_info fio = {
3782 .sbi = sbi,
3783 .type = META,
3784 .temp = HOT,
3785 .op = REQ_OP_WRITE,
3786 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3787 .old_blkaddr = page->index,
3788 .new_blkaddr = page->index,
3789 .page = page,
3790 .encrypted_page = NULL,
3791 .in_list = 0,
3792 };
3793
3794 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3795 fio.op_flags &= ~REQ_META;
3796
3797 set_page_writeback(page);
3798 f2fs_submit_page_write(&fio);
3799
3800 stat_inc_meta_count(sbi, page->index);
3801 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3802 }
3803
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3804 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3805 {
3806 struct f2fs_summary sum;
3807
3808 set_summary(&sum, nid, 0, 0);
3809 do_write_page(&sum, fio);
3810
3811 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3812 }
3813
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3814 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3815 struct f2fs_io_info *fio)
3816 {
3817 struct f2fs_sb_info *sbi = fio->sbi;
3818 struct f2fs_summary sum;
3819
3820 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3821 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3822 f2fs_update_age_extent_cache(dn);
3823 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3824 do_write_page(&sum, fio);
3825 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3826
3827 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3828 }
3829
f2fs_inplace_write_data(struct f2fs_io_info * fio)3830 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3831 {
3832 int err;
3833 struct f2fs_sb_info *sbi = fio->sbi;
3834 unsigned int segno;
3835
3836 fio->new_blkaddr = fio->old_blkaddr;
3837 /* i/o temperature is needed for passing down write hints */
3838 __get_segment_type(fio);
3839
3840 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3841
3842 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3843 set_sbi_flag(sbi, SBI_NEED_FSCK);
3844 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3845 __func__, segno);
3846 err = -EFSCORRUPTED;
3847 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3848 goto drop_bio;
3849 }
3850
3851 if (f2fs_cp_error(sbi)) {
3852 err = -EIO;
3853 goto drop_bio;
3854 }
3855
3856 if (fio->meta_gc)
3857 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3858
3859 stat_inc_inplace_blocks(fio->sbi);
3860
3861 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3862 err = f2fs_merge_page_bio(fio);
3863 else
3864 err = f2fs_submit_page_bio(fio);
3865 if (!err) {
3866 f2fs_update_device_state(fio->sbi, fio->ino,
3867 fio->new_blkaddr, 1);
3868 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3869 fio->io_type, F2FS_BLKSIZE);
3870 }
3871
3872 return err;
3873 drop_bio:
3874 if (fio->bio && *(fio->bio)) {
3875 struct bio *bio = *(fio->bio);
3876
3877 bio->bi_status = BLK_STS_IOERR;
3878 bio_endio(bio);
3879 *(fio->bio) = NULL;
3880 }
3881 return err;
3882 }
3883
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3884 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3885 unsigned int segno)
3886 {
3887 int i;
3888
3889 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3890 if (CURSEG_I(sbi, i)->segno == segno)
3891 break;
3892 }
3893 return i;
3894 }
3895
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3896 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3897 block_t old_blkaddr, block_t new_blkaddr,
3898 bool recover_curseg, bool recover_newaddr,
3899 bool from_gc)
3900 {
3901 struct sit_info *sit_i = SIT_I(sbi);
3902 struct curseg_info *curseg;
3903 unsigned int segno, old_cursegno;
3904 struct seg_entry *se;
3905 int type;
3906 unsigned short old_blkoff;
3907 unsigned char old_alloc_type;
3908
3909 segno = GET_SEGNO(sbi, new_blkaddr);
3910 se = get_seg_entry(sbi, segno);
3911 type = se->type;
3912
3913 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3914
3915 if (!recover_curseg) {
3916 /* for recovery flow */
3917 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3918 if (old_blkaddr == NULL_ADDR)
3919 type = CURSEG_COLD_DATA;
3920 else
3921 type = CURSEG_WARM_DATA;
3922 }
3923 } else {
3924 if (IS_CURSEG(sbi, segno)) {
3925 /* se->type is volatile as SSR allocation */
3926 type = __f2fs_get_curseg(sbi, segno);
3927 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3928 } else {
3929 type = CURSEG_WARM_DATA;
3930 }
3931 }
3932
3933 f2fs_bug_on(sbi, !IS_DATASEG(type));
3934 curseg = CURSEG_I(sbi, type);
3935
3936 mutex_lock(&curseg->curseg_mutex);
3937 down_write(&sit_i->sentry_lock);
3938
3939 old_cursegno = curseg->segno;
3940 old_blkoff = curseg->next_blkoff;
3941 old_alloc_type = curseg->alloc_type;
3942
3943 /* change the current segment */
3944 if (segno != curseg->segno) {
3945 curseg->next_segno = segno;
3946 if (change_curseg(sbi, type))
3947 goto out_unlock;
3948 }
3949
3950 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3951 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3952
3953 if (!recover_curseg || recover_newaddr) {
3954 if (!from_gc)
3955 update_segment_mtime(sbi, new_blkaddr, 0);
3956 update_sit_entry(sbi, new_blkaddr, 1);
3957 }
3958 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3959 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3960 if (!from_gc)
3961 update_segment_mtime(sbi, old_blkaddr, 0);
3962 update_sit_entry(sbi, old_blkaddr, -1);
3963 }
3964
3965 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3966 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3967
3968 locate_dirty_segment(sbi, old_cursegno);
3969
3970 if (recover_curseg) {
3971 if (old_cursegno != curseg->segno) {
3972 curseg->next_segno = old_cursegno;
3973 if (change_curseg(sbi, type))
3974 goto out_unlock;
3975 }
3976 curseg->next_blkoff = old_blkoff;
3977 curseg->alloc_type = old_alloc_type;
3978 }
3979
3980 out_unlock:
3981 up_write(&sit_i->sentry_lock);
3982 mutex_unlock(&curseg->curseg_mutex);
3983 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3984 }
3985
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3986 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3987 block_t old_addr, block_t new_addr,
3988 unsigned char version, bool recover_curseg,
3989 bool recover_newaddr)
3990 {
3991 struct f2fs_summary sum;
3992
3993 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3994
3995 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3996 recover_curseg, recover_newaddr, false);
3997
3998 f2fs_update_data_blkaddr(dn, new_addr);
3999 }
4000
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)4001 void f2fs_wait_on_page_writeback(struct page *page,
4002 enum page_type type, bool ordered, bool locked)
4003 {
4004 if (folio_test_writeback(page_folio(page))) {
4005 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
4006
4007 /* submit cached LFS IO */
4008 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
4009 /* submit cached IPU IO */
4010 f2fs_submit_merged_ipu_write(sbi, NULL, page);
4011 if (ordered) {
4012 wait_on_page_writeback(page);
4013 f2fs_bug_on(sbi, locked &&
4014 folio_test_writeback(page_folio(page)));
4015 } else {
4016 wait_for_stable_page(page);
4017 }
4018 }
4019 }
4020
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4021 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4022 {
4023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4024 struct page *cpage;
4025
4026 if (!f2fs_meta_inode_gc_required(inode))
4027 return;
4028
4029 if (!__is_valid_data_blkaddr(blkaddr))
4030 return;
4031
4032 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4033 if (cpage) {
4034 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4035 f2fs_put_page(cpage, 1);
4036 }
4037 }
4038
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4039 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4040 block_t len)
4041 {
4042 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4043 block_t i;
4044
4045 if (!f2fs_meta_inode_gc_required(inode))
4046 return;
4047
4048 for (i = 0; i < len; i++)
4049 f2fs_wait_on_block_writeback(inode, blkaddr + i);
4050
4051 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4052 }
4053
read_compacted_summaries(struct f2fs_sb_info * sbi)4054 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4055 {
4056 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4057 struct curseg_info *seg_i;
4058 unsigned char *kaddr;
4059 struct page *page;
4060 block_t start;
4061 int i, j, offset;
4062
4063 start = start_sum_block(sbi);
4064
4065 page = f2fs_get_meta_page(sbi, start++);
4066 if (IS_ERR(page))
4067 return PTR_ERR(page);
4068 kaddr = (unsigned char *)page_address(page);
4069
4070 /* Step 1: restore nat cache */
4071 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4072 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4073
4074 /* Step 2: restore sit cache */
4075 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4076 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4077 offset = 2 * SUM_JOURNAL_SIZE;
4078
4079 /* Step 3: restore summary entries */
4080 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4081 unsigned short blk_off;
4082 unsigned int segno;
4083
4084 seg_i = CURSEG_I(sbi, i);
4085 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4086 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4087 seg_i->next_segno = segno;
4088 reset_curseg(sbi, i, 0);
4089 seg_i->alloc_type = ckpt->alloc_type[i];
4090 seg_i->next_blkoff = blk_off;
4091
4092 if (seg_i->alloc_type == SSR)
4093 blk_off = BLKS_PER_SEG(sbi);
4094
4095 for (j = 0; j < blk_off; j++) {
4096 struct f2fs_summary *s;
4097
4098 s = (struct f2fs_summary *)(kaddr + offset);
4099 seg_i->sum_blk->entries[j] = *s;
4100 offset += SUMMARY_SIZE;
4101 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4102 SUM_FOOTER_SIZE)
4103 continue;
4104
4105 f2fs_put_page(page, 1);
4106 page = NULL;
4107
4108 page = f2fs_get_meta_page(sbi, start++);
4109 if (IS_ERR(page))
4110 return PTR_ERR(page);
4111 kaddr = (unsigned char *)page_address(page);
4112 offset = 0;
4113 }
4114 }
4115 f2fs_put_page(page, 1);
4116 return 0;
4117 }
4118
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4119 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4120 {
4121 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4122 struct f2fs_summary_block *sum;
4123 struct curseg_info *curseg;
4124 struct page *new;
4125 unsigned short blk_off;
4126 unsigned int segno = 0;
4127 block_t blk_addr = 0;
4128 int err = 0;
4129
4130 /* get segment number and block addr */
4131 if (IS_DATASEG(type)) {
4132 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4133 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4134 CURSEG_HOT_DATA]);
4135 if (__exist_node_summaries(sbi))
4136 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4137 else
4138 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4139 } else {
4140 segno = le32_to_cpu(ckpt->cur_node_segno[type -
4141 CURSEG_HOT_NODE]);
4142 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4143 CURSEG_HOT_NODE]);
4144 if (__exist_node_summaries(sbi))
4145 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4146 type - CURSEG_HOT_NODE);
4147 else
4148 blk_addr = GET_SUM_BLOCK(sbi, segno);
4149 }
4150
4151 new = f2fs_get_meta_page(sbi, blk_addr);
4152 if (IS_ERR(new))
4153 return PTR_ERR(new);
4154 sum = (struct f2fs_summary_block *)page_address(new);
4155
4156 if (IS_NODESEG(type)) {
4157 if (__exist_node_summaries(sbi)) {
4158 struct f2fs_summary *ns = &sum->entries[0];
4159 int i;
4160
4161 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4162 ns->version = 0;
4163 ns->ofs_in_node = 0;
4164 }
4165 } else {
4166 err = f2fs_restore_node_summary(sbi, segno, sum);
4167 if (err)
4168 goto out;
4169 }
4170 }
4171
4172 /* set uncompleted segment to curseg */
4173 curseg = CURSEG_I(sbi, type);
4174 mutex_lock(&curseg->curseg_mutex);
4175
4176 /* update journal info */
4177 down_write(&curseg->journal_rwsem);
4178 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4179 up_write(&curseg->journal_rwsem);
4180
4181 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4182 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4183 curseg->next_segno = segno;
4184 reset_curseg(sbi, type, 0);
4185 curseg->alloc_type = ckpt->alloc_type[type];
4186 curseg->next_blkoff = blk_off;
4187 mutex_unlock(&curseg->curseg_mutex);
4188 out:
4189 f2fs_put_page(new, 1);
4190 return err;
4191 }
4192
restore_curseg_summaries(struct f2fs_sb_info * sbi)4193 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4194 {
4195 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4196 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4197 int type = CURSEG_HOT_DATA;
4198 int err;
4199
4200 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4201 int npages = f2fs_npages_for_summary_flush(sbi, true);
4202
4203 if (npages >= 2)
4204 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4205 META_CP, true);
4206
4207 /* restore for compacted data summary */
4208 err = read_compacted_summaries(sbi);
4209 if (err)
4210 return err;
4211 type = CURSEG_HOT_NODE;
4212 }
4213
4214 if (__exist_node_summaries(sbi))
4215 f2fs_ra_meta_pages(sbi,
4216 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4217 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4218
4219 for (; type <= CURSEG_COLD_NODE; type++) {
4220 err = read_normal_summaries(sbi, type);
4221 if (err)
4222 return err;
4223 }
4224
4225 /* sanity check for summary blocks */
4226 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4227 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4228 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4229 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4230 return -EINVAL;
4231 }
4232
4233 return 0;
4234 }
4235
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4236 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4237 {
4238 struct page *page;
4239 unsigned char *kaddr;
4240 struct f2fs_summary *summary;
4241 struct curseg_info *seg_i;
4242 int written_size = 0;
4243 int i, j;
4244
4245 page = f2fs_grab_meta_page(sbi, blkaddr++);
4246 kaddr = (unsigned char *)page_address(page);
4247 memset(kaddr, 0, PAGE_SIZE);
4248
4249 /* Step 1: write nat cache */
4250 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4251 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4252 written_size += SUM_JOURNAL_SIZE;
4253
4254 /* Step 2: write sit cache */
4255 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4256 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4257 written_size += SUM_JOURNAL_SIZE;
4258
4259 /* Step 3: write summary entries */
4260 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4261 seg_i = CURSEG_I(sbi, i);
4262 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4263 if (!page) {
4264 page = f2fs_grab_meta_page(sbi, blkaddr++);
4265 kaddr = (unsigned char *)page_address(page);
4266 memset(kaddr, 0, PAGE_SIZE);
4267 written_size = 0;
4268 }
4269 summary = (struct f2fs_summary *)(kaddr + written_size);
4270 *summary = seg_i->sum_blk->entries[j];
4271 written_size += SUMMARY_SIZE;
4272
4273 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4274 SUM_FOOTER_SIZE)
4275 continue;
4276
4277 set_page_dirty(page);
4278 f2fs_put_page(page, 1);
4279 page = NULL;
4280 }
4281 }
4282 if (page) {
4283 set_page_dirty(page);
4284 f2fs_put_page(page, 1);
4285 }
4286 }
4287
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4288 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4289 block_t blkaddr, int type)
4290 {
4291 int i, end;
4292
4293 if (IS_DATASEG(type))
4294 end = type + NR_CURSEG_DATA_TYPE;
4295 else
4296 end = type + NR_CURSEG_NODE_TYPE;
4297
4298 for (i = type; i < end; i++)
4299 write_current_sum_page(sbi, i, blkaddr + (i - type));
4300 }
4301
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4302 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4303 {
4304 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4305 write_compacted_summaries(sbi, start_blk);
4306 else
4307 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4308 }
4309
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4310 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4311 {
4312 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4313 }
4314
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4315 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4316 unsigned int val, int alloc)
4317 {
4318 int i;
4319
4320 if (type == NAT_JOURNAL) {
4321 for (i = 0; i < nats_in_cursum(journal); i++) {
4322 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4323 return i;
4324 }
4325 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4326 return update_nats_in_cursum(journal, 1);
4327 } else if (type == SIT_JOURNAL) {
4328 for (i = 0; i < sits_in_cursum(journal); i++)
4329 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4330 return i;
4331 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4332 return update_sits_in_cursum(journal, 1);
4333 }
4334 return -1;
4335 }
4336
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4337 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4338 unsigned int segno)
4339 {
4340 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4341 }
4342
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4343 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4344 unsigned int start)
4345 {
4346 struct sit_info *sit_i = SIT_I(sbi);
4347 struct page *page;
4348 pgoff_t src_off, dst_off;
4349
4350 src_off = current_sit_addr(sbi, start);
4351 dst_off = next_sit_addr(sbi, src_off);
4352
4353 page = f2fs_grab_meta_page(sbi, dst_off);
4354 seg_info_to_sit_page(sbi, page, start);
4355
4356 set_page_dirty(page);
4357 set_to_next_sit(sit_i, start);
4358
4359 return page;
4360 }
4361
grab_sit_entry_set(void)4362 static struct sit_entry_set *grab_sit_entry_set(void)
4363 {
4364 struct sit_entry_set *ses =
4365 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4366 GFP_NOFS, true, NULL);
4367
4368 ses->entry_cnt = 0;
4369 INIT_LIST_HEAD(&ses->set_list);
4370 return ses;
4371 }
4372
release_sit_entry_set(struct sit_entry_set * ses)4373 static void release_sit_entry_set(struct sit_entry_set *ses)
4374 {
4375 list_del(&ses->set_list);
4376 kmem_cache_free(sit_entry_set_slab, ses);
4377 }
4378
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4379 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4380 struct list_head *head)
4381 {
4382 struct sit_entry_set *next = ses;
4383
4384 if (list_is_last(&ses->set_list, head))
4385 return;
4386
4387 list_for_each_entry_continue(next, head, set_list)
4388 if (ses->entry_cnt <= next->entry_cnt) {
4389 list_move_tail(&ses->set_list, &next->set_list);
4390 return;
4391 }
4392
4393 list_move_tail(&ses->set_list, head);
4394 }
4395
add_sit_entry(unsigned int segno,struct list_head * head)4396 static void add_sit_entry(unsigned int segno, struct list_head *head)
4397 {
4398 struct sit_entry_set *ses;
4399 unsigned int start_segno = START_SEGNO(segno);
4400
4401 list_for_each_entry(ses, head, set_list) {
4402 if (ses->start_segno == start_segno) {
4403 ses->entry_cnt++;
4404 adjust_sit_entry_set(ses, head);
4405 return;
4406 }
4407 }
4408
4409 ses = grab_sit_entry_set();
4410
4411 ses->start_segno = start_segno;
4412 ses->entry_cnt++;
4413 list_add(&ses->set_list, head);
4414 }
4415
add_sits_in_set(struct f2fs_sb_info * sbi)4416 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4417 {
4418 struct f2fs_sm_info *sm_info = SM_I(sbi);
4419 struct list_head *set_list = &sm_info->sit_entry_set;
4420 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4421 unsigned int segno;
4422
4423 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4424 add_sit_entry(segno, set_list);
4425 }
4426
remove_sits_in_journal(struct f2fs_sb_info * sbi)4427 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4428 {
4429 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4430 struct f2fs_journal *journal = curseg->journal;
4431 int i;
4432
4433 down_write(&curseg->journal_rwsem);
4434 for (i = 0; i < sits_in_cursum(journal); i++) {
4435 unsigned int segno;
4436 bool dirtied;
4437
4438 segno = le32_to_cpu(segno_in_journal(journal, i));
4439 dirtied = __mark_sit_entry_dirty(sbi, segno);
4440
4441 if (!dirtied)
4442 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4443 }
4444 update_sits_in_cursum(journal, -i);
4445 up_write(&curseg->journal_rwsem);
4446 }
4447
4448 /*
4449 * CP calls this function, which flushes SIT entries including sit_journal,
4450 * and moves prefree segs to free segs.
4451 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4452 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4453 {
4454 struct sit_info *sit_i = SIT_I(sbi);
4455 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4456 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4457 struct f2fs_journal *journal = curseg->journal;
4458 struct sit_entry_set *ses, *tmp;
4459 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4460 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4461 struct seg_entry *se;
4462
4463 down_write(&sit_i->sentry_lock);
4464
4465 if (!sit_i->dirty_sentries)
4466 goto out;
4467
4468 /*
4469 * add and account sit entries of dirty bitmap in sit entry
4470 * set temporarily
4471 */
4472 add_sits_in_set(sbi);
4473
4474 /*
4475 * if there are no enough space in journal to store dirty sit
4476 * entries, remove all entries from journal and add and account
4477 * them in sit entry set.
4478 */
4479 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4480 !to_journal)
4481 remove_sits_in_journal(sbi);
4482
4483 /*
4484 * there are two steps to flush sit entries:
4485 * #1, flush sit entries to journal in current cold data summary block.
4486 * #2, flush sit entries to sit page.
4487 */
4488 list_for_each_entry_safe(ses, tmp, head, set_list) {
4489 struct page *page = NULL;
4490 struct f2fs_sit_block *raw_sit = NULL;
4491 unsigned int start_segno = ses->start_segno;
4492 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4493 (unsigned long)MAIN_SEGS(sbi));
4494 unsigned int segno = start_segno;
4495
4496 if (to_journal &&
4497 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4498 to_journal = false;
4499
4500 if (to_journal) {
4501 down_write(&curseg->journal_rwsem);
4502 } else {
4503 page = get_next_sit_page(sbi, start_segno);
4504 raw_sit = page_address(page);
4505 }
4506
4507 /* flush dirty sit entries in region of current sit set */
4508 for_each_set_bit_from(segno, bitmap, end) {
4509 int offset, sit_offset;
4510
4511 se = get_seg_entry(sbi, segno);
4512 #ifdef CONFIG_F2FS_CHECK_FS
4513 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4514 SIT_VBLOCK_MAP_SIZE))
4515 f2fs_bug_on(sbi, 1);
4516 #endif
4517
4518 /* add discard candidates */
4519 if (!(cpc->reason & CP_DISCARD)) {
4520 cpc->trim_start = segno;
4521 add_discard_addrs(sbi, cpc, false);
4522 }
4523
4524 if (to_journal) {
4525 offset = f2fs_lookup_journal_in_cursum(journal,
4526 SIT_JOURNAL, segno, 1);
4527 f2fs_bug_on(sbi, offset < 0);
4528 segno_in_journal(journal, offset) =
4529 cpu_to_le32(segno);
4530 seg_info_to_raw_sit(se,
4531 &sit_in_journal(journal, offset));
4532 check_block_count(sbi, segno,
4533 &sit_in_journal(journal, offset));
4534 } else {
4535 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4536 seg_info_to_raw_sit(se,
4537 &raw_sit->entries[sit_offset]);
4538 check_block_count(sbi, segno,
4539 &raw_sit->entries[sit_offset]);
4540 }
4541
4542 __clear_bit(segno, bitmap);
4543 sit_i->dirty_sentries--;
4544 ses->entry_cnt--;
4545 }
4546
4547 if (to_journal)
4548 up_write(&curseg->journal_rwsem);
4549 else
4550 f2fs_put_page(page, 1);
4551
4552 f2fs_bug_on(sbi, ses->entry_cnt);
4553 release_sit_entry_set(ses);
4554 }
4555
4556 f2fs_bug_on(sbi, !list_empty(head));
4557 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4558 out:
4559 if (cpc->reason & CP_DISCARD) {
4560 __u64 trim_start = cpc->trim_start;
4561
4562 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4563 add_discard_addrs(sbi, cpc, false);
4564
4565 cpc->trim_start = trim_start;
4566 }
4567 up_write(&sit_i->sentry_lock);
4568
4569 set_prefree_as_free_segments(sbi);
4570 }
4571
build_sit_info(struct f2fs_sb_info * sbi)4572 static int build_sit_info(struct f2fs_sb_info *sbi)
4573 {
4574 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4575 struct sit_info *sit_i;
4576 unsigned int sit_segs, start;
4577 char *src_bitmap, *bitmap;
4578 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4579 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4580
4581 /* allocate memory for SIT information */
4582 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4583 if (!sit_i)
4584 return -ENOMEM;
4585
4586 SM_I(sbi)->sit_info = sit_i;
4587
4588 sit_i->sentries =
4589 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4590 MAIN_SEGS(sbi)),
4591 GFP_KERNEL);
4592 if (!sit_i->sentries)
4593 return -ENOMEM;
4594
4595 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4596 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4597 GFP_KERNEL);
4598 if (!sit_i->dirty_sentries_bitmap)
4599 return -ENOMEM;
4600
4601 #ifdef CONFIG_F2FS_CHECK_FS
4602 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4603 #else
4604 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4605 #endif
4606 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4607 if (!sit_i->bitmap)
4608 return -ENOMEM;
4609
4610 bitmap = sit_i->bitmap;
4611
4612 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4613 sit_i->sentries[start].cur_valid_map = bitmap;
4614 bitmap += SIT_VBLOCK_MAP_SIZE;
4615
4616 sit_i->sentries[start].ckpt_valid_map = bitmap;
4617 bitmap += SIT_VBLOCK_MAP_SIZE;
4618
4619 #ifdef CONFIG_F2FS_CHECK_FS
4620 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4621 bitmap += SIT_VBLOCK_MAP_SIZE;
4622 #endif
4623
4624 if (discard_map) {
4625 sit_i->sentries[start].discard_map = bitmap;
4626 bitmap += SIT_VBLOCK_MAP_SIZE;
4627 }
4628 }
4629
4630 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4631 if (!sit_i->tmp_map)
4632 return -ENOMEM;
4633
4634 if (__is_large_section(sbi)) {
4635 sit_i->sec_entries =
4636 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4637 MAIN_SECS(sbi)),
4638 GFP_KERNEL);
4639 if (!sit_i->sec_entries)
4640 return -ENOMEM;
4641 }
4642
4643 /* get information related with SIT */
4644 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4645
4646 /* setup SIT bitmap from ckeckpoint pack */
4647 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4648 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4649
4650 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4651 if (!sit_i->sit_bitmap)
4652 return -ENOMEM;
4653
4654 #ifdef CONFIG_F2FS_CHECK_FS
4655 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4656 sit_bitmap_size, GFP_KERNEL);
4657 if (!sit_i->sit_bitmap_mir)
4658 return -ENOMEM;
4659
4660 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4661 main_bitmap_size, GFP_KERNEL);
4662 if (!sit_i->invalid_segmap)
4663 return -ENOMEM;
4664 #endif
4665
4666 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4667 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4668 sit_i->written_valid_blocks = 0;
4669 sit_i->bitmap_size = sit_bitmap_size;
4670 sit_i->dirty_sentries = 0;
4671 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4672 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4673 sit_i->mounted_time = ktime_get_boottime_seconds();
4674 init_rwsem(&sit_i->sentry_lock);
4675 return 0;
4676 }
4677
build_free_segmap(struct f2fs_sb_info * sbi)4678 static int build_free_segmap(struct f2fs_sb_info *sbi)
4679 {
4680 struct free_segmap_info *free_i;
4681 unsigned int bitmap_size, sec_bitmap_size;
4682
4683 /* allocate memory for free segmap information */
4684 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4685 if (!free_i)
4686 return -ENOMEM;
4687
4688 SM_I(sbi)->free_info = free_i;
4689
4690 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4691 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4692 if (!free_i->free_segmap)
4693 return -ENOMEM;
4694
4695 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4696 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4697 if (!free_i->free_secmap)
4698 return -ENOMEM;
4699
4700 /* set all segments as dirty temporarily */
4701 memset(free_i->free_segmap, 0xff, bitmap_size);
4702 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4703
4704 /* init free segmap information */
4705 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4706 free_i->free_segments = 0;
4707 free_i->free_sections = 0;
4708 spin_lock_init(&free_i->segmap_lock);
4709 return 0;
4710 }
4711
build_curseg(struct f2fs_sb_info * sbi)4712 static int build_curseg(struct f2fs_sb_info *sbi)
4713 {
4714 struct curseg_info *array;
4715 int i;
4716
4717 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4718 sizeof(*array)), GFP_KERNEL);
4719 if (!array)
4720 return -ENOMEM;
4721
4722 SM_I(sbi)->curseg_array = array;
4723
4724 for (i = 0; i < NO_CHECK_TYPE; i++) {
4725 mutex_init(&array[i].curseg_mutex);
4726 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4727 if (!array[i].sum_blk)
4728 return -ENOMEM;
4729 init_rwsem(&array[i].journal_rwsem);
4730 array[i].journal = f2fs_kzalloc(sbi,
4731 sizeof(struct f2fs_journal), GFP_KERNEL);
4732 if (!array[i].journal)
4733 return -ENOMEM;
4734 if (i < NR_PERSISTENT_LOG)
4735 array[i].seg_type = CURSEG_HOT_DATA + i;
4736 else if (i == CURSEG_COLD_DATA_PINNED)
4737 array[i].seg_type = CURSEG_COLD_DATA;
4738 else if (i == CURSEG_ALL_DATA_ATGC)
4739 array[i].seg_type = CURSEG_COLD_DATA;
4740 reset_curseg_fields(&array[i]);
4741 }
4742 return restore_curseg_summaries(sbi);
4743 }
4744
build_sit_entries(struct f2fs_sb_info * sbi)4745 static int build_sit_entries(struct f2fs_sb_info *sbi)
4746 {
4747 struct sit_info *sit_i = SIT_I(sbi);
4748 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4749 struct f2fs_journal *journal = curseg->journal;
4750 struct seg_entry *se;
4751 struct f2fs_sit_entry sit;
4752 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4753 unsigned int i, start, end;
4754 unsigned int readed, start_blk = 0;
4755 int err = 0;
4756 block_t sit_valid_blocks[2] = {0, 0};
4757
4758 do {
4759 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4760 META_SIT, true);
4761
4762 start = start_blk * sit_i->sents_per_block;
4763 end = (start_blk + readed) * sit_i->sents_per_block;
4764
4765 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4766 struct f2fs_sit_block *sit_blk;
4767 struct page *page;
4768
4769 se = &sit_i->sentries[start];
4770 page = get_current_sit_page(sbi, start);
4771 if (IS_ERR(page))
4772 return PTR_ERR(page);
4773 sit_blk = (struct f2fs_sit_block *)page_address(page);
4774 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4775 f2fs_put_page(page, 1);
4776
4777 err = check_block_count(sbi, start, &sit);
4778 if (err)
4779 return err;
4780 seg_info_from_raw_sit(se, &sit);
4781
4782 if (se->type >= NR_PERSISTENT_LOG) {
4783 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4784 se->type, start);
4785 f2fs_handle_error(sbi,
4786 ERROR_INCONSISTENT_SUM_TYPE);
4787 return -EFSCORRUPTED;
4788 }
4789
4790 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4791
4792 if (!f2fs_block_unit_discard(sbi))
4793 goto init_discard_map_done;
4794
4795 /* build discard map only one time */
4796 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4797 memset(se->discard_map, 0xff,
4798 SIT_VBLOCK_MAP_SIZE);
4799 goto init_discard_map_done;
4800 }
4801 memcpy(se->discard_map, se->cur_valid_map,
4802 SIT_VBLOCK_MAP_SIZE);
4803 sbi->discard_blks += BLKS_PER_SEG(sbi) -
4804 se->valid_blocks;
4805 init_discard_map_done:
4806 if (__is_large_section(sbi))
4807 get_sec_entry(sbi, start)->valid_blocks +=
4808 se->valid_blocks;
4809 }
4810 start_blk += readed;
4811 } while (start_blk < sit_blk_cnt);
4812
4813 down_read(&curseg->journal_rwsem);
4814 for (i = 0; i < sits_in_cursum(journal); i++) {
4815 unsigned int old_valid_blocks;
4816
4817 start = le32_to_cpu(segno_in_journal(journal, i));
4818 if (start >= MAIN_SEGS(sbi)) {
4819 f2fs_err(sbi, "Wrong journal entry on segno %u",
4820 start);
4821 err = -EFSCORRUPTED;
4822 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4823 break;
4824 }
4825
4826 se = &sit_i->sentries[start];
4827 sit = sit_in_journal(journal, i);
4828
4829 old_valid_blocks = se->valid_blocks;
4830
4831 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4832
4833 err = check_block_count(sbi, start, &sit);
4834 if (err)
4835 break;
4836 seg_info_from_raw_sit(se, &sit);
4837
4838 if (se->type >= NR_PERSISTENT_LOG) {
4839 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4840 se->type, start);
4841 err = -EFSCORRUPTED;
4842 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4843 break;
4844 }
4845
4846 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4847
4848 if (f2fs_block_unit_discard(sbi)) {
4849 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4850 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4851 } else {
4852 memcpy(se->discard_map, se->cur_valid_map,
4853 SIT_VBLOCK_MAP_SIZE);
4854 sbi->discard_blks += old_valid_blocks;
4855 sbi->discard_blks -= se->valid_blocks;
4856 }
4857 }
4858
4859 if (__is_large_section(sbi)) {
4860 get_sec_entry(sbi, start)->valid_blocks +=
4861 se->valid_blocks;
4862 get_sec_entry(sbi, start)->valid_blocks -=
4863 old_valid_blocks;
4864 }
4865 }
4866 up_read(&curseg->journal_rwsem);
4867
4868 if (err)
4869 return err;
4870
4871 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4872 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4873 sit_valid_blocks[NODE], valid_node_count(sbi));
4874 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4875 return -EFSCORRUPTED;
4876 }
4877
4878 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4879 valid_user_blocks(sbi)) {
4880 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4881 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4882 valid_user_blocks(sbi));
4883 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4884 return -EFSCORRUPTED;
4885 }
4886
4887 return 0;
4888 }
4889
init_free_segmap(struct f2fs_sb_info * sbi)4890 static void init_free_segmap(struct f2fs_sb_info *sbi)
4891 {
4892 unsigned int start;
4893 int type;
4894 struct seg_entry *sentry;
4895
4896 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4897 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4898 continue;
4899 sentry = get_seg_entry(sbi, start);
4900 if (!sentry->valid_blocks)
4901 __set_free(sbi, start);
4902 else
4903 SIT_I(sbi)->written_valid_blocks +=
4904 sentry->valid_blocks;
4905 }
4906
4907 /* set use the current segments */
4908 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4909 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4910
4911 __set_test_and_inuse(sbi, curseg_t->segno);
4912 }
4913 }
4914
init_dirty_segmap(struct f2fs_sb_info * sbi)4915 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4916 {
4917 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4918 struct free_segmap_info *free_i = FREE_I(sbi);
4919 unsigned int segno = 0, offset = 0, secno;
4920 block_t valid_blocks, usable_blks_in_seg;
4921
4922 while (1) {
4923 /* find dirty segment based on free segmap */
4924 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4925 if (segno >= MAIN_SEGS(sbi))
4926 break;
4927 offset = segno + 1;
4928 valid_blocks = get_valid_blocks(sbi, segno, false);
4929 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4930 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4931 continue;
4932 if (valid_blocks > usable_blks_in_seg) {
4933 f2fs_bug_on(sbi, 1);
4934 continue;
4935 }
4936 mutex_lock(&dirty_i->seglist_lock);
4937 __locate_dirty_segment(sbi, segno, DIRTY);
4938 mutex_unlock(&dirty_i->seglist_lock);
4939 }
4940
4941 if (!__is_large_section(sbi))
4942 return;
4943
4944 mutex_lock(&dirty_i->seglist_lock);
4945 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4946 valid_blocks = get_valid_blocks(sbi, segno, true);
4947 secno = GET_SEC_FROM_SEG(sbi, segno);
4948
4949 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4950 continue;
4951 if (IS_CURSEC(sbi, secno))
4952 continue;
4953 set_bit(secno, dirty_i->dirty_secmap);
4954 }
4955 mutex_unlock(&dirty_i->seglist_lock);
4956 }
4957
init_victim_secmap(struct f2fs_sb_info * sbi)4958 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4959 {
4960 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4961 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4962
4963 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4964 if (!dirty_i->victim_secmap)
4965 return -ENOMEM;
4966
4967 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4968 if (!dirty_i->pinned_secmap)
4969 return -ENOMEM;
4970
4971 dirty_i->pinned_secmap_cnt = 0;
4972 dirty_i->enable_pin_section = true;
4973 return 0;
4974 }
4975
build_dirty_segmap(struct f2fs_sb_info * sbi)4976 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4977 {
4978 struct dirty_seglist_info *dirty_i;
4979 unsigned int bitmap_size, i;
4980
4981 /* allocate memory for dirty segments list information */
4982 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4983 GFP_KERNEL);
4984 if (!dirty_i)
4985 return -ENOMEM;
4986
4987 SM_I(sbi)->dirty_info = dirty_i;
4988 mutex_init(&dirty_i->seglist_lock);
4989
4990 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4991
4992 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4993 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4994 GFP_KERNEL);
4995 if (!dirty_i->dirty_segmap[i])
4996 return -ENOMEM;
4997 }
4998
4999 if (__is_large_section(sbi)) {
5000 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5001 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5002 bitmap_size, GFP_KERNEL);
5003 if (!dirty_i->dirty_secmap)
5004 return -ENOMEM;
5005 }
5006
5007 init_dirty_segmap(sbi);
5008 return init_victim_secmap(sbi);
5009 }
5010
sanity_check_curseg(struct f2fs_sb_info * sbi)5011 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5012 {
5013 int i;
5014
5015 /*
5016 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5017 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5018 */
5019 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5020 struct curseg_info *curseg = CURSEG_I(sbi, i);
5021 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5022 unsigned int blkofs = curseg->next_blkoff;
5023
5024 if (f2fs_sb_has_readonly(sbi) &&
5025 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5026 continue;
5027
5028 sanity_check_seg_type(sbi, curseg->seg_type);
5029
5030 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5031 f2fs_err(sbi,
5032 "Current segment has invalid alloc_type:%d",
5033 curseg->alloc_type);
5034 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5035 return -EFSCORRUPTED;
5036 }
5037
5038 if (f2fs_test_bit(blkofs, se->cur_valid_map))
5039 goto out;
5040
5041 if (curseg->alloc_type == SSR)
5042 continue;
5043
5044 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5045 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5046 continue;
5047 out:
5048 f2fs_err(sbi,
5049 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5050 i, curseg->segno, curseg->alloc_type,
5051 curseg->next_blkoff, blkofs);
5052 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5053 return -EFSCORRUPTED;
5054 }
5055 }
5056 return 0;
5057 }
5058
5059 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5060 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5061 struct f2fs_dev_info *fdev,
5062 struct blk_zone *zone)
5063 {
5064 unsigned int zone_segno;
5065 block_t zone_block, valid_block_cnt;
5066 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5067 int ret;
5068
5069 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5070 return 0;
5071
5072 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5073 zone_segno = GET_SEGNO(sbi, zone_block);
5074
5075 /*
5076 * Skip check of zones cursegs point to, since
5077 * fix_curseg_write_pointer() checks them.
5078 */
5079 if (zone_segno >= MAIN_SEGS(sbi))
5080 return 0;
5081
5082 /*
5083 * Get # of valid block of the zone.
5084 */
5085 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5086 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5087 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5088 zone_segno, valid_block_cnt,
5089 blk_zone_cond_str(zone->cond));
5090 return 0;
5091 }
5092
5093 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5094 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5095 return 0;
5096
5097 if (!valid_block_cnt) {
5098 f2fs_notice(sbi, "Zone without valid block has non-zero write "
5099 "pointer. Reset the write pointer: cond[%s]",
5100 blk_zone_cond_str(zone->cond));
5101 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5102 zone->len >> log_sectors_per_block);
5103 if (ret)
5104 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5105 fdev->path, ret);
5106 return ret;
5107 }
5108
5109 /*
5110 * If there are valid blocks and the write pointer doesn't match
5111 * with them, we need to report the inconsistency and fill
5112 * the zone till the end to close the zone. This inconsistency
5113 * does not cause write error because the zone will not be
5114 * selected for write operation until it get discarded.
5115 */
5116 f2fs_notice(sbi, "Valid blocks are not aligned with write "
5117 "pointer: valid block[0x%x,0x%x] cond[%s]",
5118 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5119
5120 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5121 zone->start, zone->len, GFP_NOFS);
5122 if (ret == -EOPNOTSUPP) {
5123 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5124 zone->len - (zone->wp - zone->start),
5125 GFP_NOFS, 0);
5126 if (ret)
5127 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5128 fdev->path, ret);
5129 } else if (ret) {
5130 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5131 fdev->path, ret);
5132 }
5133
5134 return ret;
5135 }
5136
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5137 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5138 block_t zone_blkaddr)
5139 {
5140 int i;
5141
5142 for (i = 0; i < sbi->s_ndevs; i++) {
5143 if (!bdev_is_zoned(FDEV(i).bdev))
5144 continue;
5145 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5146 zone_blkaddr <= FDEV(i).end_blk))
5147 return &FDEV(i);
5148 }
5149
5150 return NULL;
5151 }
5152
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5153 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5154 void *data)
5155 {
5156 memcpy(data, zone, sizeof(struct blk_zone));
5157 return 0;
5158 }
5159
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5160 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5161 {
5162 struct curseg_info *cs = CURSEG_I(sbi, type);
5163 struct f2fs_dev_info *zbd;
5164 struct blk_zone zone;
5165 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5166 block_t cs_zone_block, wp_block;
5167 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5168 sector_t zone_sector;
5169 int err;
5170
5171 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5172 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5173
5174 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5175 if (!zbd)
5176 return 0;
5177
5178 /* report zone for the sector the curseg points to */
5179 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5180 << log_sectors_per_block;
5181 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5182 report_one_zone_cb, &zone);
5183 if (err != 1) {
5184 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5185 zbd->path, err);
5186 return err;
5187 }
5188
5189 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5190 return 0;
5191
5192 /*
5193 * When safely unmounted in the previous mount, we could use current
5194 * segments. Otherwise, allocate new sections.
5195 */
5196 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5197 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5198 wp_segno = GET_SEGNO(sbi, wp_block);
5199 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5200 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5201
5202 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5203 wp_sector_off == 0)
5204 return 0;
5205
5206 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5207 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5208 cs->next_blkoff, wp_segno, wp_blkoff);
5209 }
5210
5211 /* Allocate a new section if it's not new. */
5212 if (cs->next_blkoff ||
5213 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5214 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5215
5216 f2fs_allocate_new_section(sbi, type, true);
5217 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5218 "[0x%x,0x%x] -> [0x%x,0x%x]",
5219 type, old_segno, old_blkoff,
5220 cs->segno, cs->next_blkoff);
5221 }
5222
5223 /* check consistency of the zone curseg pointed to */
5224 if (check_zone_write_pointer(sbi, zbd, &zone))
5225 return -EIO;
5226
5227 /* check newly assigned zone */
5228 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5229 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5230
5231 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5232 if (!zbd)
5233 return 0;
5234
5235 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5236 << log_sectors_per_block;
5237 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5238 report_one_zone_cb, &zone);
5239 if (err != 1) {
5240 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5241 zbd->path, err);
5242 return err;
5243 }
5244
5245 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5246 return 0;
5247
5248 if (zone.wp != zone.start) {
5249 f2fs_notice(sbi,
5250 "New zone for curseg[%d] is not yet discarded. "
5251 "Reset the zone: curseg[0x%x,0x%x]",
5252 type, cs->segno, cs->next_blkoff);
5253 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5254 zone.len >> log_sectors_per_block);
5255 if (err) {
5256 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5257 zbd->path, err);
5258 return err;
5259 }
5260 }
5261
5262 return 0;
5263 }
5264
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5265 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5266 {
5267 int i, ret;
5268
5269 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5270 ret = fix_curseg_write_pointer(sbi, i);
5271 if (ret)
5272 return ret;
5273 }
5274
5275 return 0;
5276 }
5277
5278 struct check_zone_write_pointer_args {
5279 struct f2fs_sb_info *sbi;
5280 struct f2fs_dev_info *fdev;
5281 };
5282
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5283 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5284 void *data)
5285 {
5286 struct check_zone_write_pointer_args *args;
5287
5288 args = (struct check_zone_write_pointer_args *)data;
5289
5290 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5291 }
5292
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5293 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5294 {
5295 int i, ret;
5296 struct check_zone_write_pointer_args args;
5297
5298 for (i = 0; i < sbi->s_ndevs; i++) {
5299 if (!bdev_is_zoned(FDEV(i).bdev))
5300 continue;
5301
5302 args.sbi = sbi;
5303 args.fdev = &FDEV(i);
5304 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5305 check_zone_write_pointer_cb, &args);
5306 if (ret < 0)
5307 return ret;
5308 }
5309
5310 return 0;
5311 }
5312
5313 /*
5314 * Return the number of usable blocks in a segment. The number of blocks
5315 * returned is always equal to the number of blocks in a segment for
5316 * segments fully contained within a sequential zone capacity or a
5317 * conventional zone. For segments partially contained in a sequential
5318 * zone capacity, the number of usable blocks up to the zone capacity
5319 * is returned. 0 is returned in all other cases.
5320 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5321 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5322 struct f2fs_sb_info *sbi, unsigned int segno)
5323 {
5324 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5325 unsigned int secno;
5326
5327 if (!sbi->unusable_blocks_per_sec)
5328 return BLKS_PER_SEG(sbi);
5329
5330 secno = GET_SEC_FROM_SEG(sbi, segno);
5331 seg_start = START_BLOCK(sbi, segno);
5332 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5333 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5334
5335 /*
5336 * If segment starts before zone capacity and spans beyond
5337 * zone capacity, then usable blocks are from seg start to
5338 * zone capacity. If the segment starts after the zone capacity,
5339 * then there are no usable blocks.
5340 */
5341 if (seg_start >= sec_cap_blkaddr)
5342 return 0;
5343 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5344 return sec_cap_blkaddr - seg_start;
5345
5346 return BLKS_PER_SEG(sbi);
5347 }
5348 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5349 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5350 {
5351 return 0;
5352 }
5353
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5354 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5355 {
5356 return 0;
5357 }
5358
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5359 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5360 unsigned int segno)
5361 {
5362 return 0;
5363 }
5364
5365 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5366 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5367 unsigned int segno)
5368 {
5369 if (f2fs_sb_has_blkzoned(sbi))
5370 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5371
5372 return BLKS_PER_SEG(sbi);
5373 }
5374
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5375 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5376 unsigned int segno)
5377 {
5378 if (f2fs_sb_has_blkzoned(sbi))
5379 return CAP_SEGS_PER_SEC(sbi);
5380
5381 return SEGS_PER_SEC(sbi);
5382 }
5383
5384 /*
5385 * Update min, max modified time for cost-benefit GC algorithm
5386 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5387 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5388 {
5389 struct sit_info *sit_i = SIT_I(sbi);
5390 unsigned int segno;
5391
5392 down_write(&sit_i->sentry_lock);
5393
5394 sit_i->min_mtime = ULLONG_MAX;
5395
5396 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5397 unsigned int i;
5398 unsigned long long mtime = 0;
5399
5400 for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5401 mtime += get_seg_entry(sbi, segno + i)->mtime;
5402
5403 mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5404
5405 if (sit_i->min_mtime > mtime)
5406 sit_i->min_mtime = mtime;
5407 }
5408 sit_i->max_mtime = get_mtime(sbi, false);
5409 sit_i->dirty_max_mtime = 0;
5410 up_write(&sit_i->sentry_lock);
5411 }
5412
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5413 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5414 {
5415 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5416 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5417 struct f2fs_sm_info *sm_info;
5418 int err;
5419
5420 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5421 if (!sm_info)
5422 return -ENOMEM;
5423
5424 /* init sm info */
5425 sbi->sm_info = sm_info;
5426 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5427 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5428 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5429 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5430 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5431 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5432 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5433 sm_info->rec_prefree_segments = sm_info->main_segments *
5434 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5435 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5436 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5437
5438 if (!f2fs_lfs_mode(sbi))
5439 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5440 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5441 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5442 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5443 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5444 sm_info->min_ssr_sections = reserved_sections(sbi);
5445
5446 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5447
5448 init_f2fs_rwsem(&sm_info->curseg_lock);
5449
5450 err = f2fs_create_flush_cmd_control(sbi);
5451 if (err)
5452 return err;
5453
5454 err = create_discard_cmd_control(sbi);
5455 if (err)
5456 return err;
5457
5458 err = build_sit_info(sbi);
5459 if (err)
5460 return err;
5461 err = build_free_segmap(sbi);
5462 if (err)
5463 return err;
5464 err = build_curseg(sbi);
5465 if (err)
5466 return err;
5467
5468 /* reinit free segmap based on SIT */
5469 err = build_sit_entries(sbi);
5470 if (err)
5471 return err;
5472
5473 init_free_segmap(sbi);
5474 err = build_dirty_segmap(sbi);
5475 if (err)
5476 return err;
5477
5478 err = sanity_check_curseg(sbi);
5479 if (err)
5480 return err;
5481
5482 init_min_max_mtime(sbi);
5483 return 0;
5484 }
5485
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5486 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5487 enum dirty_type dirty_type)
5488 {
5489 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5490
5491 mutex_lock(&dirty_i->seglist_lock);
5492 kvfree(dirty_i->dirty_segmap[dirty_type]);
5493 dirty_i->nr_dirty[dirty_type] = 0;
5494 mutex_unlock(&dirty_i->seglist_lock);
5495 }
5496
destroy_victim_secmap(struct f2fs_sb_info * sbi)5497 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5498 {
5499 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5500
5501 kvfree(dirty_i->pinned_secmap);
5502 kvfree(dirty_i->victim_secmap);
5503 }
5504
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5505 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5506 {
5507 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5508 int i;
5509
5510 if (!dirty_i)
5511 return;
5512
5513 /* discard pre-free/dirty segments list */
5514 for (i = 0; i < NR_DIRTY_TYPE; i++)
5515 discard_dirty_segmap(sbi, i);
5516
5517 if (__is_large_section(sbi)) {
5518 mutex_lock(&dirty_i->seglist_lock);
5519 kvfree(dirty_i->dirty_secmap);
5520 mutex_unlock(&dirty_i->seglist_lock);
5521 }
5522
5523 destroy_victim_secmap(sbi);
5524 SM_I(sbi)->dirty_info = NULL;
5525 kfree(dirty_i);
5526 }
5527
destroy_curseg(struct f2fs_sb_info * sbi)5528 static void destroy_curseg(struct f2fs_sb_info *sbi)
5529 {
5530 struct curseg_info *array = SM_I(sbi)->curseg_array;
5531 int i;
5532
5533 if (!array)
5534 return;
5535 SM_I(sbi)->curseg_array = NULL;
5536 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5537 kfree(array[i].sum_blk);
5538 kfree(array[i].journal);
5539 }
5540 kfree(array);
5541 }
5542
destroy_free_segmap(struct f2fs_sb_info * sbi)5543 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5544 {
5545 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5546
5547 if (!free_i)
5548 return;
5549 SM_I(sbi)->free_info = NULL;
5550 kvfree(free_i->free_segmap);
5551 kvfree(free_i->free_secmap);
5552 kfree(free_i);
5553 }
5554
destroy_sit_info(struct f2fs_sb_info * sbi)5555 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5556 {
5557 struct sit_info *sit_i = SIT_I(sbi);
5558
5559 if (!sit_i)
5560 return;
5561
5562 if (sit_i->sentries)
5563 kvfree(sit_i->bitmap);
5564 kfree(sit_i->tmp_map);
5565
5566 kvfree(sit_i->sentries);
5567 kvfree(sit_i->sec_entries);
5568 kvfree(sit_i->dirty_sentries_bitmap);
5569
5570 SM_I(sbi)->sit_info = NULL;
5571 kvfree(sit_i->sit_bitmap);
5572 #ifdef CONFIG_F2FS_CHECK_FS
5573 kvfree(sit_i->sit_bitmap_mir);
5574 kvfree(sit_i->invalid_segmap);
5575 #endif
5576 kfree(sit_i);
5577 }
5578
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5579 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5580 {
5581 struct f2fs_sm_info *sm_info = SM_I(sbi);
5582
5583 if (!sm_info)
5584 return;
5585 f2fs_destroy_flush_cmd_control(sbi, true);
5586 destroy_discard_cmd_control(sbi);
5587 destroy_dirty_segmap(sbi);
5588 destroy_curseg(sbi);
5589 destroy_free_segmap(sbi);
5590 destroy_sit_info(sbi);
5591 sbi->sm_info = NULL;
5592 kfree(sm_info);
5593 }
5594
f2fs_create_segment_manager_caches(void)5595 int __init f2fs_create_segment_manager_caches(void)
5596 {
5597 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5598 sizeof(struct discard_entry));
5599 if (!discard_entry_slab)
5600 goto fail;
5601
5602 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5603 sizeof(struct discard_cmd));
5604 if (!discard_cmd_slab)
5605 goto destroy_discard_entry;
5606
5607 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5608 sizeof(struct sit_entry_set));
5609 if (!sit_entry_set_slab)
5610 goto destroy_discard_cmd;
5611
5612 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5613 sizeof(struct revoke_entry));
5614 if (!revoke_entry_slab)
5615 goto destroy_sit_entry_set;
5616 return 0;
5617
5618 destroy_sit_entry_set:
5619 kmem_cache_destroy(sit_entry_set_slab);
5620 destroy_discard_cmd:
5621 kmem_cache_destroy(discard_cmd_slab);
5622 destroy_discard_entry:
5623 kmem_cache_destroy(discard_entry_slab);
5624 fail:
5625 return -ENOMEM;
5626 }
5627
f2fs_destroy_segment_manager_caches(void)5628 void f2fs_destroy_segment_manager_caches(void)
5629 {
5630 kmem_cache_destroy(sit_entry_set_slab);
5631 kmem_cache_destroy(discard_cmd_slab);
5632 kmem_cache_destroy(discard_entry_slab);
5633 kmem_cache_destroy(revoke_entry_slab);
5634 }
5635