• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <asm/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26 
27 #include "fscrypt_private.h"
28 
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 	/*
32 	 * Lock that protects ->key_hashtable.  It does *not* protect the
33 	 * fscrypt_master_key structs themselves.
34 	 */
35 	spinlock_t lock;
36 
37 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 	struct hlist_head key_hashtable[128];
39 };
40 
wipe_master_key_secret(struct fscrypt_master_key_secret * secret)41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 	fscrypt_destroy_hkdf(&secret->hkdf);
44 	memzero_explicit(secret, sizeof(*secret));
45 }
46 
move_master_key_secret(struct fscrypt_master_key_secret * dst,struct fscrypt_master_key_secret * src)47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 				   struct fscrypt_master_key_secret *src)
49 {
50 	memcpy(dst, src, sizeof(*dst));
51 	memzero_explicit(src, sizeof(*src));
52 }
53 
fscrypt_free_master_key(struct rcu_head * head)54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 	struct fscrypt_master_key *mk =
57 		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 	/*
59 	 * The master key secret and any embedded subkeys should have already
60 	 * been wiped when the last active reference to the fscrypt_master_key
61 	 * struct was dropped; doing it here would be unnecessarily late.
62 	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 	 */
64 	kfree_sensitive(mk);
65 }
66 
fscrypt_put_master_key(struct fscrypt_master_key * mk)67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 		return;
71 	/*
72 	 * No structural references left, so free ->mk_users, and also free the
73 	 * fscrypt_master_key struct itself after an RCU grace period ensures
74 	 * that concurrent keyring lookups can no longer find it.
75 	 */
76 	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
77 	key_put(mk->mk_users);
78 	mk->mk_users = NULL;
79 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80 }
81 
fscrypt_put_master_key_activeref(struct super_block * sb,struct fscrypt_master_key * mk)82 void fscrypt_put_master_key_activeref(struct super_block *sb,
83 				      struct fscrypt_master_key *mk)
84 {
85 	size_t i;
86 
87 	if (!refcount_dec_and_test(&mk->mk_active_refs))
88 		return;
89 	/*
90 	 * No active references left, so complete the full removal of this
91 	 * fscrypt_master_key struct by removing it from the keyring and
92 	 * destroying any subkeys embedded in it.
93 	 */
94 
95 	if (WARN_ON_ONCE(!sb->s_master_keys))
96 		return;
97 	spin_lock(&sb->s_master_keys->lock);
98 	hlist_del_rcu(&mk->mk_node);
99 	spin_unlock(&sb->s_master_keys->lock);
100 
101 	/*
102 	 * ->mk_active_refs == 0 implies that ->mk_present is false and
103 	 * ->mk_decrypted_inodes is empty.
104 	 */
105 	WARN_ON_ONCE(mk->mk_present);
106 	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
107 
108 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
109 		fscrypt_destroy_prepared_key(
110 				sb, &mk->mk_direct_keys[i]);
111 		fscrypt_destroy_prepared_key(
112 				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
113 		fscrypt_destroy_prepared_key(
114 				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
115 	}
116 	memzero_explicit(&mk->mk_ino_hash_key,
117 			 sizeof(mk->mk_ino_hash_key));
118 	mk->mk_ino_hash_key_initialized = false;
119 
120 	/* Drop the structural ref associated with the active refs. */
121 	fscrypt_put_master_key(mk);
122 }
123 
124 /*
125  * This transitions the key state from present to incompletely removed, and then
126  * potentially to absent (depending on whether inodes remain).
127  */
fscrypt_initiate_key_removal(struct super_block * sb,struct fscrypt_master_key * mk)128 static void fscrypt_initiate_key_removal(struct super_block *sb,
129 					 struct fscrypt_master_key *mk)
130 {
131 	WRITE_ONCE(mk->mk_present, false);
132 	wipe_master_key_secret(&mk->mk_secret);
133 	fscrypt_put_master_key_activeref(sb, mk);
134 }
135 
valid_key_spec(const struct fscrypt_key_specifier * spec)136 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
137 {
138 	if (spec->__reserved)
139 		return false;
140 	return master_key_spec_len(spec) != 0;
141 }
142 
fscrypt_user_key_instantiate(struct key * key,struct key_preparsed_payload * prep)143 static int fscrypt_user_key_instantiate(struct key *key,
144 					struct key_preparsed_payload *prep)
145 {
146 	/*
147 	 * We just charge FSCRYPT_MAX_STANDARD_KEY_SIZE bytes to the user's key
148 	 * quota for each key, regardless of the exact key size.  The amount of
149 	 * memory actually used is greater than the size of the raw key anyway.
150 	 */
151 	return key_payload_reserve(key, FSCRYPT_MAX_STANDARD_KEY_SIZE);
152 }
153 
fscrypt_user_key_describe(const struct key * key,struct seq_file * m)154 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
155 {
156 	seq_puts(m, key->description);
157 }
158 
159 /*
160  * Type of key in ->mk_users.  Each key of this type represents a particular
161  * user who has added a particular master key.
162  *
163  * Note that the name of this key type really should be something like
164  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
165  * mainly for simplicity of presentation in /proc/keys when read by a non-root
166  * user.  And it is expected to be rare that a key is actually added by multiple
167  * users, since users should keep their encryption keys confidential.
168  */
169 static struct key_type key_type_fscrypt_user = {
170 	.name			= ".fscrypt",
171 	.instantiate		= fscrypt_user_key_instantiate,
172 	.describe		= fscrypt_user_key_describe,
173 };
174 
175 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
176 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
177 	 CONST_STRLEN("-users") + 1)
178 
179 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
180 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
181 
format_mk_users_keyring_description(char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])182 static void format_mk_users_keyring_description(
183 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
184 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
185 {
186 	sprintf(description, "fscrypt-%*phN-users",
187 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
188 }
189 
format_mk_user_description(char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])190 static void format_mk_user_description(
191 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
192 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
193 {
194 
195 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
196 		mk_identifier, __kuid_val(current_fsuid()));
197 }
198 
199 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
allocate_filesystem_keyring(struct super_block * sb)200 static int allocate_filesystem_keyring(struct super_block *sb)
201 {
202 	struct fscrypt_keyring *keyring;
203 
204 	if (sb->s_master_keys)
205 		return 0;
206 
207 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
208 	if (!keyring)
209 		return -ENOMEM;
210 	spin_lock_init(&keyring->lock);
211 	/*
212 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
213 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
214 	 * concurrent tasks can ACQUIRE it.
215 	 */
216 	smp_store_release(&sb->s_master_keys, keyring);
217 	return 0;
218 }
219 
220 /*
221  * Release all encryption keys that have been added to the filesystem, along
222  * with the keyring that contains them.
223  *
224  * This is called at unmount time, after all potentially-encrypted inodes have
225  * been evicted.  The filesystem's underlying block device(s) are still
226  * available at this time; this is important because after user file accesses
227  * have been allowed, this function may need to evict keys from the keyslots of
228  * an inline crypto engine, which requires the block device(s).
229  */
fscrypt_destroy_keyring(struct super_block * sb)230 void fscrypt_destroy_keyring(struct super_block *sb)
231 {
232 	struct fscrypt_keyring *keyring = sb->s_master_keys;
233 	size_t i;
234 
235 	if (!keyring)
236 		return;
237 
238 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
239 		struct hlist_head *bucket = &keyring->key_hashtable[i];
240 		struct fscrypt_master_key *mk;
241 		struct hlist_node *tmp;
242 
243 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
244 			/*
245 			 * Since all potentially-encrypted inodes were already
246 			 * evicted, every key remaining in the keyring should
247 			 * have an empty inode list, and should only still be in
248 			 * the keyring due to the single active ref associated
249 			 * with ->mk_present.  There should be no structural
250 			 * refs beyond the one associated with the active ref.
251 			 */
252 			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
253 			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
254 			WARN_ON_ONCE(!mk->mk_present);
255 			fscrypt_initiate_key_removal(sb, mk);
256 		}
257 	}
258 	kfree_sensitive(keyring);
259 	sb->s_master_keys = NULL;
260 }
261 
262 static struct hlist_head *
fscrypt_mk_hash_bucket(struct fscrypt_keyring * keyring,const struct fscrypt_key_specifier * mk_spec)263 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
264 		       const struct fscrypt_key_specifier *mk_spec)
265 {
266 	/*
267 	 * Since key specifiers should be "random" values, it is sufficient to
268 	 * use a trivial hash function that just takes the first several bits of
269 	 * the key specifier.
270 	 */
271 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
272 
273 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
274 }
275 
276 /*
277  * Find the specified master key struct in ->s_master_keys and take a structural
278  * ref to it.  The structural ref guarantees that the key struct continues to
279  * exist, but it does *not* guarantee that ->s_master_keys continues to contain
280  * the key struct.  The structural ref needs to be dropped by
281  * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
282  */
283 struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block * sb,const struct fscrypt_key_specifier * mk_spec)284 fscrypt_find_master_key(struct super_block *sb,
285 			const struct fscrypt_key_specifier *mk_spec)
286 {
287 	struct fscrypt_keyring *keyring;
288 	struct hlist_head *bucket;
289 	struct fscrypt_master_key *mk;
290 
291 	/*
292 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
293 	 * I.e., another task can publish ->s_master_keys concurrently,
294 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
295 	 * to safely ACQUIRE the memory the other task published.
296 	 */
297 	keyring = smp_load_acquire(&sb->s_master_keys);
298 	if (keyring == NULL)
299 		return NULL; /* No keyring yet, so no keys yet. */
300 
301 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
302 	rcu_read_lock();
303 	switch (mk_spec->type) {
304 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
305 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
306 			if (mk->mk_spec.type ==
307 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
308 			    memcmp(mk->mk_spec.u.descriptor,
309 				   mk_spec->u.descriptor,
310 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
311 			    refcount_inc_not_zero(&mk->mk_struct_refs))
312 				goto out;
313 		}
314 		break;
315 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
316 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
317 			if (mk->mk_spec.type ==
318 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
319 			    memcmp(mk->mk_spec.u.identifier,
320 				   mk_spec->u.identifier,
321 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
322 			    refcount_inc_not_zero(&mk->mk_struct_refs))
323 				goto out;
324 		}
325 		break;
326 	}
327 	mk = NULL;
328 out:
329 	rcu_read_unlock();
330 	return mk;
331 }
332 
allocate_master_key_users_keyring(struct fscrypt_master_key * mk)333 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
334 {
335 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
336 	struct key *keyring;
337 
338 	format_mk_users_keyring_description(description,
339 					    mk->mk_spec.u.identifier);
340 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
341 				current_cred(), KEY_POS_SEARCH |
342 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
343 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
344 	if (IS_ERR(keyring))
345 		return PTR_ERR(keyring);
346 
347 	mk->mk_users = keyring;
348 	return 0;
349 }
350 
351 /*
352  * Find the current user's "key" in the master key's ->mk_users.
353  * Returns ERR_PTR(-ENOKEY) if not found.
354  */
find_master_key_user(struct fscrypt_master_key * mk)355 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
356 {
357 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
358 	key_ref_t keyref;
359 
360 	format_mk_user_description(description, mk->mk_spec.u.identifier);
361 
362 	/*
363 	 * We need to mark the keyring reference as "possessed" so that we
364 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
365 	 */
366 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
367 				&key_type_fscrypt_user, description, false);
368 	if (IS_ERR(keyref)) {
369 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
370 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
371 			keyref = ERR_PTR(-ENOKEY);
372 		return ERR_CAST(keyref);
373 	}
374 	return key_ref_to_ptr(keyref);
375 }
376 
377 /*
378  * Give the current user a "key" in ->mk_users.  This charges the user's quota
379  * and marks the master key as added by the current user, so that it cannot be
380  * removed by another user with the key.  Either ->mk_sem must be held for
381  * write, or the master key must be still undergoing initialization.
382  */
add_master_key_user(struct fscrypt_master_key * mk)383 static int add_master_key_user(struct fscrypt_master_key *mk)
384 {
385 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
386 	struct key *mk_user;
387 	int err;
388 
389 	format_mk_user_description(description, mk->mk_spec.u.identifier);
390 	mk_user = key_alloc(&key_type_fscrypt_user, description,
391 			    current_fsuid(), current_gid(), current_cred(),
392 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
393 	if (IS_ERR(mk_user))
394 		return PTR_ERR(mk_user);
395 
396 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
397 	key_put(mk_user);
398 	return err;
399 }
400 
401 /*
402  * Remove the current user's "key" from ->mk_users.
403  * ->mk_sem must be held for write.
404  *
405  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
406  */
remove_master_key_user(struct fscrypt_master_key * mk)407 static int remove_master_key_user(struct fscrypt_master_key *mk)
408 {
409 	struct key *mk_user;
410 	int err;
411 
412 	mk_user = find_master_key_user(mk);
413 	if (IS_ERR(mk_user))
414 		return PTR_ERR(mk_user);
415 	err = key_unlink(mk->mk_users, mk_user);
416 	key_put(mk_user);
417 	return err;
418 }
419 
420 /*
421  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
422  * insert it into sb->s_master_keys.
423  */
add_new_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)424 static int add_new_master_key(struct super_block *sb,
425 			      struct fscrypt_master_key_secret *secret,
426 			      const struct fscrypt_key_specifier *mk_spec)
427 {
428 	struct fscrypt_keyring *keyring = sb->s_master_keys;
429 	struct fscrypt_master_key *mk;
430 	int err;
431 
432 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
433 	if (!mk)
434 		return -ENOMEM;
435 
436 	init_rwsem(&mk->mk_sem);
437 	refcount_set(&mk->mk_struct_refs, 1);
438 	mk->mk_spec = *mk_spec;
439 
440 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
441 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
442 
443 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
444 		err = allocate_master_key_users_keyring(mk);
445 		if (err)
446 			goto out_put;
447 		err = add_master_key_user(mk);
448 		if (err)
449 			goto out_put;
450 	}
451 
452 	move_master_key_secret(&mk->mk_secret, secret);
453 	mk->mk_present = true;
454 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
455 
456 	spin_lock(&keyring->lock);
457 	hlist_add_head_rcu(&mk->mk_node,
458 			   fscrypt_mk_hash_bucket(keyring, mk_spec));
459 	spin_unlock(&keyring->lock);
460 	return 0;
461 
462 out_put:
463 	fscrypt_put_master_key(mk);
464 	return err;
465 }
466 
467 #define KEY_DEAD	1
468 
add_existing_master_key(struct fscrypt_master_key * mk,struct fscrypt_master_key_secret * secret)469 static int add_existing_master_key(struct fscrypt_master_key *mk,
470 				   struct fscrypt_master_key_secret *secret)
471 {
472 	int err;
473 
474 	/*
475 	 * If the current user is already in ->mk_users, then there's nothing to
476 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
477 	 * applicable for v1 policy keys, which have NULL ->mk_users.)
478 	 */
479 	if (mk->mk_users) {
480 		struct key *mk_user = find_master_key_user(mk);
481 
482 		if (mk_user != ERR_PTR(-ENOKEY)) {
483 			if (IS_ERR(mk_user))
484 				return PTR_ERR(mk_user);
485 			key_put(mk_user);
486 			return 0;
487 		}
488 		err = add_master_key_user(mk);
489 		if (err)
490 			return err;
491 	}
492 
493 	/* If the key is incompletely removed, make it present again. */
494 	if (!mk->mk_present) {
495 		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
496 			/*
497 			 * Raced with the last active ref being dropped, so the
498 			 * key has become, or is about to become, "absent".
499 			 * Therefore, we need to allocate a new key struct.
500 			 */
501 			return KEY_DEAD;
502 		}
503 		move_master_key_secret(&mk->mk_secret, secret);
504 		WRITE_ONCE(mk->mk_present, true);
505 	}
506 
507 	return 0;
508 }
509 
do_add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)510 static int do_add_master_key(struct super_block *sb,
511 			     struct fscrypt_master_key_secret *secret,
512 			     const struct fscrypt_key_specifier *mk_spec)
513 {
514 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
515 	struct fscrypt_master_key *mk;
516 	int err;
517 
518 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
519 
520 	mk = fscrypt_find_master_key(sb, mk_spec);
521 	if (!mk) {
522 		/* Didn't find the key in ->s_master_keys.  Add it. */
523 		err = allocate_filesystem_keyring(sb);
524 		if (!err)
525 			err = add_new_master_key(sb, secret, mk_spec);
526 	} else {
527 		/*
528 		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
529 		 * if needed, and make the key "present" again if possible.
530 		 */
531 		down_write(&mk->mk_sem);
532 		err = add_existing_master_key(mk, secret);
533 		up_write(&mk->mk_sem);
534 		if (err == KEY_DEAD) {
535 			/*
536 			 * We found a key struct, but it's already been fully
537 			 * removed.  Ignore the old struct and add a new one.
538 			 * fscrypt_add_key_mutex means we don't need to worry
539 			 * about concurrent adds.
540 			 */
541 			err = add_new_master_key(sb, secret, mk_spec);
542 		}
543 		fscrypt_put_master_key(mk);
544 	}
545 	mutex_unlock(&fscrypt_add_key_mutex);
546 	return err;
547 }
548 
add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,struct fscrypt_key_specifier * key_spec)549 static int add_master_key(struct super_block *sb,
550 			  struct fscrypt_master_key_secret *secret,
551 			  struct fscrypt_key_specifier *key_spec)
552 {
553 	int err;
554 
555 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
556 		u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE];
557 		u8 *kdf_key = secret->raw;
558 		unsigned int kdf_key_size = secret->size;
559 		u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER;
560 
561 		/*
562 		 * For standard keys, the fscrypt master key is used directly as
563 		 * the fscrypt KDF key.  For hardware-wrapped keys, we have to
564 		 * pass the master key to the hardware to derive the KDF key,
565 		 * which is then only used to derive non-file-contents subkeys.
566 		 */
567 		if (secret->is_hw_wrapped) {
568 			err = fscrypt_derive_sw_secret(sb, secret->raw,
569 						       secret->size, sw_secret);
570 			if (err)
571 				return err;
572 			kdf_key = sw_secret;
573 			kdf_key_size = sizeof(sw_secret);
574 		}
575 		err = fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size);
576 		/*
577 		 * Now that the KDF context is initialized, the raw KDF key is
578 		 * no longer needed.
579 		 */
580 		memzero_explicit(kdf_key, kdf_key_size);
581 		if (err)
582 			return err;
583 
584 		/* Calculate the key identifier */
585 		err = fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0,
586 					  key_spec->u.identifier,
587 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
588 		if (err)
589 			return err;
590 	}
591 	return do_add_master_key(sb, secret, key_spec);
592 }
593 
fscrypt_provisioning_key_preparse(struct key_preparsed_payload * prep)594 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
595 {
596 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
597 
598 	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
599 	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_ANY_KEY_SIZE)
600 		return -EINVAL;
601 
602 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
603 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
604 		return -EINVAL;
605 
606 	if (payload->__reserved)
607 		return -EINVAL;
608 
609 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
610 	if (!prep->payload.data[0])
611 		return -ENOMEM;
612 
613 	prep->quotalen = prep->datalen;
614 	return 0;
615 }
616 
fscrypt_provisioning_key_free_preparse(struct key_preparsed_payload * prep)617 static void fscrypt_provisioning_key_free_preparse(
618 					struct key_preparsed_payload *prep)
619 {
620 	kfree_sensitive(prep->payload.data[0]);
621 }
622 
fscrypt_provisioning_key_describe(const struct key * key,struct seq_file * m)623 static void fscrypt_provisioning_key_describe(const struct key *key,
624 					      struct seq_file *m)
625 {
626 	seq_puts(m, key->description);
627 	if (key_is_positive(key)) {
628 		const struct fscrypt_provisioning_key_payload *payload =
629 			key->payload.data[0];
630 
631 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
632 	}
633 }
634 
fscrypt_provisioning_key_destroy(struct key * key)635 static void fscrypt_provisioning_key_destroy(struct key *key)
636 {
637 	kfree_sensitive(key->payload.data[0]);
638 }
639 
640 static struct key_type key_type_fscrypt_provisioning = {
641 	.name			= "fscrypt-provisioning",
642 	.preparse		= fscrypt_provisioning_key_preparse,
643 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
644 	.instantiate		= generic_key_instantiate,
645 	.describe		= fscrypt_provisioning_key_describe,
646 	.destroy		= fscrypt_provisioning_key_destroy,
647 };
648 
649 /*
650  * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
651  * store it into 'secret'.
652  *
653  * The key must be of type "fscrypt-provisioning" and must have the field
654  * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
655  * only usable with fscrypt with the particular KDF version identified by
656  * 'type'.  We don't use the "logon" key type because there's no way to
657  * completely restrict the use of such keys; they can be used by any kernel API
658  * that accepts "logon" keys and doesn't require a specific service prefix.
659  *
660  * The ability to specify the key via Linux keyring key is intended for cases
661  * where userspace needs to re-add keys after the filesystem is unmounted and
662  * re-mounted.  Most users should just provide the raw key directly instead.
663  */
get_keyring_key(u32 key_id,u32 type,struct fscrypt_master_key_secret * secret)664 static int get_keyring_key(u32 key_id, u32 type,
665 			   struct fscrypt_master_key_secret *secret)
666 {
667 	key_ref_t ref;
668 	struct key *key;
669 	const struct fscrypt_provisioning_key_payload *payload;
670 	int err;
671 
672 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
673 	if (IS_ERR(ref))
674 		return PTR_ERR(ref);
675 	key = key_ref_to_ptr(ref);
676 
677 	if (key->type != &key_type_fscrypt_provisioning)
678 		goto bad_key;
679 	payload = key->payload.data[0];
680 
681 	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
682 	if (payload->type != type)
683 		goto bad_key;
684 
685 	secret->size = key->datalen - sizeof(*payload);
686 	memcpy(secret->raw, payload->raw, secret->size);
687 	err = 0;
688 	goto out_put;
689 
690 bad_key:
691 	err = -EKEYREJECTED;
692 out_put:
693 	key_ref_put(ref);
694 	return err;
695 }
696 
697 /*
698  * Add a master encryption key to the filesystem, causing all files which were
699  * encrypted with it to appear "unlocked" (decrypted) when accessed.
700  *
701  * When adding a key for use by v1 encryption policies, this ioctl is
702  * privileged, and userspace must provide the 'key_descriptor'.
703  *
704  * When adding a key for use by v2+ encryption policies, this ioctl is
705  * unprivileged.  This is needed, in general, to allow non-root users to use
706  * encryption without encountering the visibility problems of process-subscribed
707  * keyrings and the inability to properly remove keys.  This works by having
708  * each key identified by its cryptographically secure hash --- the
709  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
710  * cannot add the wrong key for a given identifier.  Furthermore, each added key
711  * is charged to the appropriate user's quota for the keyrings service, which
712  * prevents a malicious user from adding too many keys.  Finally, we forbid a
713  * user from removing a key while other users have added it too, which prevents
714  * a user who knows another user's key from causing a denial-of-service by
715  * removing it at an inopportune time.  (We tolerate that a user who knows a key
716  * can prevent other users from removing it.)
717  *
718  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
719  * Documentation/filesystems/fscrypt.rst.
720  */
fscrypt_ioctl_add_key(struct file * filp,void __user * _uarg)721 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
722 {
723 	struct super_block *sb = file_inode(filp)->i_sb;
724 	struct fscrypt_add_key_arg __user *uarg = _uarg;
725 	struct fscrypt_add_key_arg arg;
726 	struct fscrypt_master_key_secret secret;
727 	int err;
728 
729 	if (copy_from_user(&arg, uarg, sizeof(arg)))
730 		return -EFAULT;
731 
732 	if (!valid_key_spec(&arg.key_spec))
733 		return -EINVAL;
734 
735 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
736 		return -EINVAL;
737 
738 	/*
739 	 * Only root can add keys that are identified by an arbitrary descriptor
740 	 * rather than by a cryptographic hash --- since otherwise a malicious
741 	 * user could add the wrong key.
742 	 */
743 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
744 	    !capable(CAP_SYS_ADMIN))
745 		return -EACCES;
746 
747 	memset(&secret, 0, sizeof(secret));
748 
749 	if (arg.__flags) {
750 		if (arg.__flags & ~__FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
751 			return -EINVAL;
752 		if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
753 			return -EINVAL;
754 		secret.is_hw_wrapped = true;
755 	}
756 
757 	if (arg.key_id) {
758 		if (arg.raw_size != 0)
759 			return -EINVAL;
760 		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
761 		if (err)
762 			goto out_wipe_secret;
763 		err = -EINVAL;
764 		if (secret.size > FSCRYPT_MAX_STANDARD_KEY_SIZE &&
765 		    !secret.is_hw_wrapped)
766 			goto out_wipe_secret;
767 	} else {
768 		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
769 		    arg.raw_size > (secret.is_hw_wrapped ?
770 				    FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE :
771 				    FSCRYPT_MAX_STANDARD_KEY_SIZE))
772 			return -EINVAL;
773 		secret.size = arg.raw_size;
774 		err = -EFAULT;
775 		if (copy_from_user(secret.raw, uarg->raw, secret.size))
776 			goto out_wipe_secret;
777 	}
778 
779 	err = add_master_key(sb, &secret, &arg.key_spec);
780 	if (err)
781 		goto out_wipe_secret;
782 
783 	/* Return the key identifier to userspace, if applicable */
784 	err = -EFAULT;
785 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
786 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
787 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
788 		goto out_wipe_secret;
789 	err = 0;
790 out_wipe_secret:
791 	wipe_master_key_secret(&secret);
792 	return err;
793 }
794 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
795 
796 static void
fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret * secret)797 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
798 {
799 	static u8 test_key[FSCRYPT_MAX_STANDARD_KEY_SIZE];
800 
801 	get_random_once(test_key, sizeof(test_key));
802 
803 	memset(secret, 0, sizeof(*secret));
804 	secret->size = sizeof(test_key);
805 	memcpy(secret->raw, test_key, sizeof(test_key));
806 }
807 
fscrypt_get_test_dummy_key_identifier(u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])808 int fscrypt_get_test_dummy_key_identifier(
809 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
810 {
811 	struct fscrypt_master_key_secret secret;
812 	int err;
813 
814 	fscrypt_get_test_dummy_secret(&secret);
815 
816 	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
817 	if (err)
818 		goto out;
819 	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
820 				  NULL, 0, key_identifier,
821 				  FSCRYPT_KEY_IDENTIFIER_SIZE);
822 out:
823 	wipe_master_key_secret(&secret);
824 	return err;
825 }
826 
827 /**
828  * fscrypt_add_test_dummy_key() - add the test dummy encryption key
829  * @sb: the filesystem instance to add the key to
830  * @key_spec: the key specifier of the test dummy encryption key
831  *
832  * Add the key for the test_dummy_encryption mount option to the filesystem.  To
833  * prevent misuse of this mount option, a per-boot random key is used instead of
834  * a hardcoded one.  This makes it so that any encrypted files created using
835  * this option won't be accessible after a reboot.
836  *
837  * Return: 0 on success, -errno on failure
838  */
fscrypt_add_test_dummy_key(struct super_block * sb,struct fscrypt_key_specifier * key_spec)839 int fscrypt_add_test_dummy_key(struct super_block *sb,
840 			       struct fscrypt_key_specifier *key_spec)
841 {
842 	struct fscrypt_master_key_secret secret;
843 	int err;
844 
845 	fscrypt_get_test_dummy_secret(&secret);
846 	err = add_master_key(sb, &secret, key_spec);
847 	wipe_master_key_secret(&secret);
848 	return err;
849 }
850 
851 /*
852  * Verify that the current user has added a master key with the given identifier
853  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
854  * their files using some other user's key which they don't actually know.
855  * Cryptographically this isn't much of a problem, but the semantics of this
856  * would be a bit weird, so it's best to just forbid it.
857  *
858  * The system administrator (CAP_FOWNER) can override this, which should be
859  * enough for any use cases where encryption policies are being set using keys
860  * that were chosen ahead of time but aren't available at the moment.
861  *
862  * Note that the key may have already removed by the time this returns, but
863  * that's okay; we just care whether the key was there at some point.
864  *
865  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
866  */
fscrypt_verify_key_added(struct super_block * sb,const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])867 int fscrypt_verify_key_added(struct super_block *sb,
868 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
869 {
870 	struct fscrypt_key_specifier mk_spec;
871 	struct fscrypt_master_key *mk;
872 	struct key *mk_user;
873 	int err;
874 
875 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
876 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
877 
878 	mk = fscrypt_find_master_key(sb, &mk_spec);
879 	if (!mk) {
880 		err = -ENOKEY;
881 		goto out;
882 	}
883 	down_read(&mk->mk_sem);
884 	mk_user = find_master_key_user(mk);
885 	if (IS_ERR(mk_user)) {
886 		err = PTR_ERR(mk_user);
887 	} else {
888 		key_put(mk_user);
889 		err = 0;
890 	}
891 	up_read(&mk->mk_sem);
892 	fscrypt_put_master_key(mk);
893 out:
894 	if (err == -ENOKEY && capable(CAP_FOWNER))
895 		err = 0;
896 	return err;
897 }
898 
899 /*
900  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
901  * directory, then it can have at most one dentry; however, that dentry may be
902  * pinned by child dentries, so first try to evict the children too.
903  */
shrink_dcache_inode(struct inode * inode)904 static void shrink_dcache_inode(struct inode *inode)
905 {
906 	struct dentry *dentry;
907 
908 	if (S_ISDIR(inode->i_mode)) {
909 		dentry = d_find_any_alias(inode);
910 		if (dentry) {
911 			shrink_dcache_parent(dentry);
912 			dput(dentry);
913 		}
914 	}
915 	d_prune_aliases(inode);
916 }
917 
evict_dentries_for_decrypted_inodes(struct fscrypt_master_key * mk)918 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
919 {
920 	struct fscrypt_inode_info *ci;
921 	struct inode *inode;
922 	struct inode *toput_inode = NULL;
923 
924 	spin_lock(&mk->mk_decrypted_inodes_lock);
925 
926 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
927 		inode = ci->ci_inode;
928 		spin_lock(&inode->i_lock);
929 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
930 			spin_unlock(&inode->i_lock);
931 			continue;
932 		}
933 		__iget(inode);
934 		spin_unlock(&inode->i_lock);
935 		spin_unlock(&mk->mk_decrypted_inodes_lock);
936 
937 		shrink_dcache_inode(inode);
938 		iput(toput_inode);
939 		toput_inode = inode;
940 
941 		spin_lock(&mk->mk_decrypted_inodes_lock);
942 	}
943 
944 	spin_unlock(&mk->mk_decrypted_inodes_lock);
945 	iput(toput_inode);
946 }
947 
check_for_busy_inodes(struct super_block * sb,struct fscrypt_master_key * mk)948 static int check_for_busy_inodes(struct super_block *sb,
949 				 struct fscrypt_master_key *mk)
950 {
951 	struct list_head *pos;
952 	size_t busy_count = 0;
953 	unsigned long ino;
954 	char ino_str[50] = "";
955 
956 	spin_lock(&mk->mk_decrypted_inodes_lock);
957 
958 	list_for_each(pos, &mk->mk_decrypted_inodes)
959 		busy_count++;
960 
961 	if (busy_count == 0) {
962 		spin_unlock(&mk->mk_decrypted_inodes_lock);
963 		return 0;
964 	}
965 
966 	{
967 		/* select an example file to show for debugging purposes */
968 		struct inode *inode =
969 			list_first_entry(&mk->mk_decrypted_inodes,
970 					 struct fscrypt_inode_info,
971 					 ci_master_key_link)->ci_inode;
972 		ino = inode->i_ino;
973 	}
974 	spin_unlock(&mk->mk_decrypted_inodes_lock);
975 
976 	/* If the inode is currently being created, ino may still be 0. */
977 	if (ino)
978 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
979 
980 	fscrypt_warn(NULL,
981 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
982 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
983 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
984 		     ino_str);
985 	return -EBUSY;
986 }
987 
try_to_lock_encrypted_files(struct super_block * sb,struct fscrypt_master_key * mk)988 static int try_to_lock_encrypted_files(struct super_block *sb,
989 				       struct fscrypt_master_key *mk)
990 {
991 	int err1;
992 	int err2;
993 
994 	/*
995 	 * An inode can't be evicted while it is dirty or has dirty pages.
996 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
997 	 *
998 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
999 	 * it works, and it's more important to minimize the amount of caches we
1000 	 * drop than the amount of data we sync.  Also, unprivileged users can
1001 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
1002 	 */
1003 	down_read(&sb->s_umount);
1004 	err1 = sync_filesystem(sb);
1005 	up_read(&sb->s_umount);
1006 	/* If a sync error occurs, still try to evict as much as possible. */
1007 
1008 	/*
1009 	 * Inodes are pinned by their dentries, so we have to evict their
1010 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
1011 	 * and inappropriate for use by unprivileged users.  So instead go
1012 	 * through the inodes' alias lists and try to evict each dentry.
1013 	 */
1014 	evict_dentries_for_decrypted_inodes(mk);
1015 
1016 	/*
1017 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
1018 	 * the list; any inodes for which that dropped the last reference will
1019 	 * have been evicted due to fscrypt_drop_inode() detecting the key
1020 	 * removal and telling the VFS to evict the inode.  So to finish, we
1021 	 * just need to check whether any inodes couldn't be evicted.
1022 	 */
1023 	err2 = check_for_busy_inodes(sb, mk);
1024 
1025 	return err1 ?: err2;
1026 }
1027 
1028 /*
1029  * Try to remove an fscrypt master encryption key.
1030  *
1031  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1032  * claim to the key, then removes the key itself if no other users have claims.
1033  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1034  * key itself.
1035  *
1036  * To "remove the key itself", first we wipe the actual master key secret, so
1037  * that no more inodes can be unlocked with it.  Then we try to evict all cached
1038  * inodes that had been unlocked with the key.
1039  *
1040  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1041  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1042  * state where it tracks the list of remaining inodes.  Userspace can execute
1043  * the ioctl again later to retry eviction, or alternatively can re-add the key.
1044  *
1045  * For more details, see the "Removing keys" section of
1046  * Documentation/filesystems/fscrypt.rst.
1047  */
do_remove_key(struct file * filp,void __user * _uarg,bool all_users)1048 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1049 {
1050 	struct super_block *sb = file_inode(filp)->i_sb;
1051 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1052 	struct fscrypt_remove_key_arg arg;
1053 	struct fscrypt_master_key *mk;
1054 	u32 status_flags = 0;
1055 	int err;
1056 	bool inodes_remain;
1057 
1058 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1059 		return -EFAULT;
1060 
1061 	if (!valid_key_spec(&arg.key_spec))
1062 		return -EINVAL;
1063 
1064 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1065 		return -EINVAL;
1066 
1067 	/*
1068 	 * Only root can add and remove keys that are identified by an arbitrary
1069 	 * descriptor rather than by a cryptographic hash.
1070 	 */
1071 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1072 	    !capable(CAP_SYS_ADMIN))
1073 		return -EACCES;
1074 
1075 	/* Find the key being removed. */
1076 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1077 	if (!mk)
1078 		return -ENOKEY;
1079 	down_write(&mk->mk_sem);
1080 
1081 	/* If relevant, remove current user's (or all users) claim to the key */
1082 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1083 		if (all_users)
1084 			err = keyring_clear(mk->mk_users);
1085 		else
1086 			err = remove_master_key_user(mk);
1087 		if (err) {
1088 			up_write(&mk->mk_sem);
1089 			goto out_put_key;
1090 		}
1091 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1092 			/*
1093 			 * Other users have still added the key too.  We removed
1094 			 * the current user's claim to the key, but we still
1095 			 * can't remove the key itself.
1096 			 */
1097 			status_flags |=
1098 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1099 			err = 0;
1100 			up_write(&mk->mk_sem);
1101 			goto out_put_key;
1102 		}
1103 	}
1104 
1105 	/* No user claims remaining.  Initiate removal of the key. */
1106 	err = -ENOKEY;
1107 	if (mk->mk_present) {
1108 		fscrypt_initiate_key_removal(sb, mk);
1109 		err = 0;
1110 	}
1111 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1112 	up_write(&mk->mk_sem);
1113 
1114 	if (inodes_remain) {
1115 		/* Some inodes still reference this key; try to evict them. */
1116 		err = try_to_lock_encrypted_files(sb, mk);
1117 		if (err == -EBUSY) {
1118 			status_flags |=
1119 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1120 			err = 0;
1121 		}
1122 	}
1123 	/*
1124 	 * We return 0 if we successfully did something: removed a claim to the
1125 	 * key, initiated removal of the key, or tried locking the files again.
1126 	 * Users need to check the informational status flags if they care
1127 	 * whether the key has been fully removed including all files locked.
1128 	 */
1129 out_put_key:
1130 	fscrypt_put_master_key(mk);
1131 	if (err == 0)
1132 		err = put_user(status_flags, &uarg->removal_status_flags);
1133 	return err;
1134 }
1135 
fscrypt_ioctl_remove_key(struct file * filp,void __user * uarg)1136 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1137 {
1138 	return do_remove_key(filp, uarg, false);
1139 }
1140 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1141 
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * uarg)1142 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1143 {
1144 	if (!capable(CAP_SYS_ADMIN))
1145 		return -EACCES;
1146 	return do_remove_key(filp, uarg, true);
1147 }
1148 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1149 
1150 /*
1151  * Retrieve the status of an fscrypt master encryption key.
1152  *
1153  * We set ->status to indicate whether the key is absent, present, or
1154  * incompletely removed.  (For an explanation of what these statuses mean and
1155  * how they are represented internally, see struct fscrypt_master_key.)  This
1156  * field allows applications to easily determine the status of an encrypted
1157  * directory without using a hack such as trying to open a regular file in it
1158  * (which can confuse the "incompletely removed" status with absent or present).
1159  *
1160  * In addition, for v2 policy keys we allow applications to determine, via
1161  * ->status_flags and ->user_count, whether the key has been added by the
1162  * current user, by other users, or by both.  Most applications should not need
1163  * this, since ordinarily only one user should know a given key.  However, if a
1164  * secret key is shared by multiple users, applications may wish to add an
1165  * already-present key to prevent other users from removing it.  This ioctl can
1166  * be used to check whether that really is the case before the work is done to
1167  * add the key --- which might e.g. require prompting the user for a passphrase.
1168  *
1169  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1170  * Documentation/filesystems/fscrypt.rst.
1171  */
fscrypt_ioctl_get_key_status(struct file * filp,void __user * uarg)1172 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1173 {
1174 	struct super_block *sb = file_inode(filp)->i_sb;
1175 	struct fscrypt_get_key_status_arg arg;
1176 	struct fscrypt_master_key *mk;
1177 	int err;
1178 
1179 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1180 		return -EFAULT;
1181 
1182 	if (!valid_key_spec(&arg.key_spec))
1183 		return -EINVAL;
1184 
1185 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1186 		return -EINVAL;
1187 
1188 	arg.status_flags = 0;
1189 	arg.user_count = 0;
1190 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1191 
1192 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1193 	if (!mk) {
1194 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1195 		err = 0;
1196 		goto out;
1197 	}
1198 	down_read(&mk->mk_sem);
1199 
1200 	if (!mk->mk_present) {
1201 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1202 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1203 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1204 		err = 0;
1205 		goto out_release_key;
1206 	}
1207 
1208 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1209 	if (mk->mk_users) {
1210 		struct key *mk_user;
1211 
1212 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1213 		mk_user = find_master_key_user(mk);
1214 		if (!IS_ERR(mk_user)) {
1215 			arg.status_flags |=
1216 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1217 			key_put(mk_user);
1218 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1219 			err = PTR_ERR(mk_user);
1220 			goto out_release_key;
1221 		}
1222 	}
1223 	err = 0;
1224 out_release_key:
1225 	up_read(&mk->mk_sem);
1226 	fscrypt_put_master_key(mk);
1227 out:
1228 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1229 		err = -EFAULT;
1230 	return err;
1231 }
1232 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1233 
fscrypt_init_keyring(void)1234 int __init fscrypt_init_keyring(void)
1235 {
1236 	int err;
1237 
1238 	err = register_key_type(&key_type_fscrypt_user);
1239 	if (err)
1240 		return err;
1241 
1242 	err = register_key_type(&key_type_fscrypt_provisioning);
1243 	if (err)
1244 		goto err_unregister_fscrypt_user;
1245 
1246 	return 0;
1247 
1248 err_unregister_fscrypt_user:
1249 	unregister_key_type(&key_type_fscrypt_user);
1250 	return err;
1251 }
1252