1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bug.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/idr.h>
16 #include <linux/jiffies.h>
17 #include <linux/kobject.h>
18 #include <linux/list.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/random.h>
23 #include <linux/rwsem.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/string.h>
27 #include <linux/workqueue.h>
28
29 #include <linux/atomic.h>
30 #include <asm/byteorder.h>
31
32 #include "core.h"
33
fw_csr_iterator_init(struct fw_csr_iterator * ci,const u32 * p)34 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35 {
36 ci->p = p + 1;
37 ci->end = ci->p + (p[0] >> 16);
38 }
39 EXPORT_SYMBOL(fw_csr_iterator_init);
40
fw_csr_iterator_next(struct fw_csr_iterator * ci,int * key,int * value)41 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42 {
43 *key = *ci->p >> 24;
44 *value = *ci->p & 0xffffff;
45
46 return ci->p++ < ci->end;
47 }
48 EXPORT_SYMBOL(fw_csr_iterator_next);
49
search_leaf(const u32 * directory,int search_key)50 static const u32 *search_leaf(const u32 *directory, int search_key)
51 {
52 struct fw_csr_iterator ci;
53 int last_key = 0, key, value;
54
55 fw_csr_iterator_init(&ci, directory);
56 while (fw_csr_iterator_next(&ci, &key, &value)) {
57 if (last_key == search_key &&
58 key == (CSR_DESCRIPTOR | CSR_LEAF))
59 return ci.p - 1 + value;
60
61 last_key = key;
62 }
63
64 return NULL;
65 }
66
textual_leaf_to_string(const u32 * block,char * buf,size_t size)67 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68 {
69 unsigned int quadlets, i;
70 char c;
71
72 if (!size || !buf)
73 return -EINVAL;
74
75 quadlets = min(block[0] >> 16, 256U);
76 if (quadlets < 2)
77 return -ENODATA;
78
79 if (block[1] != 0 || block[2] != 0)
80 /* unknown language/character set */
81 return -ENODATA;
82
83 block += 3;
84 quadlets -= 2;
85 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86 c = block[i / 4] >> (24 - 8 * (i % 4));
87 if (c == '\0')
88 break;
89 buf[i] = c;
90 }
91 buf[i] = '\0';
92
93 return i;
94 }
95
96 /**
97 * fw_csr_string() - reads a string from the configuration ROM
98 * @directory: e.g. root directory or unit directory
99 * @key: the key of the preceding directory entry
100 * @buf: where to put the string
101 * @size: size of @buf, in bytes
102 *
103 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
104 * @key. The string is zero-terminated. An overlong string is silently truncated such that it
105 * and the zero byte fit into @size.
106 *
107 * Returns strlen(buf) or a negative error code.
108 */
fw_csr_string(const u32 * directory,int key,char * buf,size_t size)109 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
110 {
111 const u32 *leaf = search_leaf(directory, key);
112 if (!leaf)
113 return -ENOENT;
114
115 return textual_leaf_to_string(leaf, buf, size);
116 }
117 EXPORT_SYMBOL(fw_csr_string);
118
get_ids(const u32 * directory,int * id)119 static void get_ids(const u32 *directory, int *id)
120 {
121 struct fw_csr_iterator ci;
122 int key, value;
123
124 fw_csr_iterator_init(&ci, directory);
125 while (fw_csr_iterator_next(&ci, &key, &value)) {
126 switch (key) {
127 case CSR_VENDOR: id[0] = value; break;
128 case CSR_MODEL: id[1] = value; break;
129 case CSR_SPECIFIER_ID: id[2] = value; break;
130 case CSR_VERSION: id[3] = value; break;
131 }
132 }
133 }
134
get_modalias_ids(const struct fw_unit * unit,int * id)135 static void get_modalias_ids(const struct fw_unit *unit, int *id)
136 {
137 get_ids(&fw_parent_device(unit)->config_rom[5], id);
138 get_ids(unit->directory, id);
139 }
140
match_ids(const struct ieee1394_device_id * id_table,int * id)141 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
142 {
143 int match = 0;
144
145 if (id[0] == id_table->vendor_id)
146 match |= IEEE1394_MATCH_VENDOR_ID;
147 if (id[1] == id_table->model_id)
148 match |= IEEE1394_MATCH_MODEL_ID;
149 if (id[2] == id_table->specifier_id)
150 match |= IEEE1394_MATCH_SPECIFIER_ID;
151 if (id[3] == id_table->version)
152 match |= IEEE1394_MATCH_VERSION;
153
154 return (match & id_table->match_flags) == id_table->match_flags;
155 }
156
unit_match(struct device * dev,struct device_driver * drv)157 static const struct ieee1394_device_id *unit_match(struct device *dev,
158 struct device_driver *drv)
159 {
160 const struct ieee1394_device_id *id_table =
161 container_of(drv, struct fw_driver, driver)->id_table;
162 int id[] = {0, 0, 0, 0};
163
164 get_modalias_ids(fw_unit(dev), id);
165
166 for (; id_table->match_flags != 0; id_table++)
167 if (match_ids(id_table, id))
168 return id_table;
169
170 return NULL;
171 }
172
173 static bool is_fw_unit(struct device *dev);
174
fw_unit_match(struct device * dev,struct device_driver * drv)175 static int fw_unit_match(struct device *dev, struct device_driver *drv)
176 {
177 /* We only allow binding to fw_units. */
178 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
179 }
180
fw_unit_probe(struct device * dev)181 static int fw_unit_probe(struct device *dev)
182 {
183 struct fw_driver *driver =
184 container_of(dev->driver, struct fw_driver, driver);
185
186 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
187 }
188
fw_unit_remove(struct device * dev)189 static void fw_unit_remove(struct device *dev)
190 {
191 struct fw_driver *driver =
192 container_of(dev->driver, struct fw_driver, driver);
193
194 driver->remove(fw_unit(dev));
195 }
196
get_modalias(const struct fw_unit * unit,char * buffer,size_t buffer_size)197 static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
198 {
199 int id[] = {0, 0, 0, 0};
200
201 get_modalias_ids(unit, id);
202
203 return snprintf(buffer, buffer_size,
204 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
205 id[0], id[1], id[2], id[3]);
206 }
207
fw_unit_uevent(const struct device * dev,struct kobj_uevent_env * env)208 static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
209 {
210 const struct fw_unit *unit = fw_unit(dev);
211 char modalias[64];
212
213 get_modalias(unit, modalias, sizeof(modalias));
214
215 if (add_uevent_var(env, "MODALIAS=%s", modalias))
216 return -ENOMEM;
217
218 return 0;
219 }
220
221 struct bus_type fw_bus_type = {
222 .name = "firewire",
223 .match = fw_unit_match,
224 .probe = fw_unit_probe,
225 .remove = fw_unit_remove,
226 };
227 EXPORT_SYMBOL(fw_bus_type);
228
fw_device_enable_phys_dma(struct fw_device * device)229 int fw_device_enable_phys_dma(struct fw_device *device)
230 {
231 int generation = device->generation;
232
233 /* device->node_id, accessed below, must not be older than generation */
234 smp_rmb();
235
236 return device->card->driver->enable_phys_dma(device->card,
237 device->node_id,
238 generation);
239 }
240 EXPORT_SYMBOL(fw_device_enable_phys_dma);
241
242 struct config_rom_attribute {
243 struct device_attribute attr;
244 u32 key;
245 };
246
show_immediate(struct device * dev,struct device_attribute * dattr,char * buf)247 static ssize_t show_immediate(struct device *dev,
248 struct device_attribute *dattr, char *buf)
249 {
250 struct config_rom_attribute *attr =
251 container_of(dattr, struct config_rom_attribute, attr);
252 struct fw_csr_iterator ci;
253 const u32 *dir;
254 int key, value, ret = -ENOENT;
255
256 down_read(&fw_device_rwsem);
257
258 if (is_fw_unit(dev))
259 dir = fw_unit(dev)->directory;
260 else
261 dir = fw_device(dev)->config_rom + 5;
262
263 fw_csr_iterator_init(&ci, dir);
264 while (fw_csr_iterator_next(&ci, &key, &value))
265 if (attr->key == key) {
266 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
267 "0x%06x\n", value);
268 break;
269 }
270
271 up_read(&fw_device_rwsem);
272
273 return ret;
274 }
275
276 #define IMMEDIATE_ATTR(name, key) \
277 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
278
show_text_leaf(struct device * dev,struct device_attribute * dattr,char * buf)279 static ssize_t show_text_leaf(struct device *dev,
280 struct device_attribute *dattr, char *buf)
281 {
282 struct config_rom_attribute *attr =
283 container_of(dattr, struct config_rom_attribute, attr);
284 const u32 *dir;
285 size_t bufsize;
286 char dummy_buf[2];
287 int ret;
288
289 down_read(&fw_device_rwsem);
290
291 if (is_fw_unit(dev))
292 dir = fw_unit(dev)->directory;
293 else
294 dir = fw_device(dev)->config_rom + 5;
295
296 if (buf) {
297 bufsize = PAGE_SIZE - 1;
298 } else {
299 buf = dummy_buf;
300 bufsize = 1;
301 }
302
303 ret = fw_csr_string(dir, attr->key, buf, bufsize);
304
305 if (ret >= 0) {
306 /* Strip trailing whitespace and add newline. */
307 while (ret > 0 && isspace(buf[ret - 1]))
308 ret--;
309 strcpy(buf + ret, "\n");
310 ret++;
311 }
312
313 up_read(&fw_device_rwsem);
314
315 return ret;
316 }
317
318 #define TEXT_LEAF_ATTR(name, key) \
319 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
320
321 static struct config_rom_attribute config_rom_attributes[] = {
322 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
323 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
324 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
325 IMMEDIATE_ATTR(version, CSR_VERSION),
326 IMMEDIATE_ATTR(model, CSR_MODEL),
327 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
328 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
329 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
330 };
331
init_fw_attribute_group(struct device * dev,struct device_attribute * attrs,struct fw_attribute_group * group)332 static void init_fw_attribute_group(struct device *dev,
333 struct device_attribute *attrs,
334 struct fw_attribute_group *group)
335 {
336 struct device_attribute *attr;
337 int i, j;
338
339 for (j = 0; attrs[j].attr.name != NULL; j++)
340 group->attrs[j] = &attrs[j].attr;
341
342 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
343 attr = &config_rom_attributes[i].attr;
344 if (attr->show(dev, attr, NULL) < 0)
345 continue;
346 group->attrs[j++] = &attr->attr;
347 }
348
349 group->attrs[j] = NULL;
350 group->groups[0] = &group->group;
351 group->groups[1] = NULL;
352 group->group.attrs = group->attrs;
353 dev->groups = (const struct attribute_group **) group->groups;
354 }
355
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)356 static ssize_t modalias_show(struct device *dev,
357 struct device_attribute *attr, char *buf)
358 {
359 struct fw_unit *unit = fw_unit(dev);
360 int length;
361
362 length = get_modalias(unit, buf, PAGE_SIZE);
363 strcpy(buf + length, "\n");
364
365 return length + 1;
366 }
367
rom_index_show(struct device * dev,struct device_attribute * attr,char * buf)368 static ssize_t rom_index_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
370 {
371 struct fw_device *device = fw_device(dev->parent);
372 struct fw_unit *unit = fw_unit(dev);
373
374 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
375 }
376
377 static struct device_attribute fw_unit_attributes[] = {
378 __ATTR_RO(modalias),
379 __ATTR_RO(rom_index),
380 __ATTR_NULL,
381 };
382
config_rom_show(struct device * dev,struct device_attribute * attr,char * buf)383 static ssize_t config_rom_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385 {
386 struct fw_device *device = fw_device(dev);
387 size_t length;
388
389 down_read(&fw_device_rwsem);
390 length = device->config_rom_length * 4;
391 memcpy(buf, device->config_rom, length);
392 up_read(&fw_device_rwsem);
393
394 return length;
395 }
396
guid_show(struct device * dev,struct device_attribute * attr,char * buf)397 static ssize_t guid_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct fw_device *device = fw_device(dev);
401 int ret;
402
403 down_read(&fw_device_rwsem);
404 ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
405 up_read(&fw_device_rwsem);
406
407 return ret;
408 }
409
is_local_show(struct device * dev,struct device_attribute * attr,char * buf)410 static ssize_t is_local_show(struct device *dev,
411 struct device_attribute *attr, char *buf)
412 {
413 struct fw_device *device = fw_device(dev);
414
415 return sprintf(buf, "%u\n", device->is_local);
416 }
417
units_sprintf(char * buf,const u32 * directory)418 static int units_sprintf(char *buf, const u32 *directory)
419 {
420 struct fw_csr_iterator ci;
421 int key, value;
422 int specifier_id = 0;
423 int version = 0;
424
425 fw_csr_iterator_init(&ci, directory);
426 while (fw_csr_iterator_next(&ci, &key, &value)) {
427 switch (key) {
428 case CSR_SPECIFIER_ID:
429 specifier_id = value;
430 break;
431 case CSR_VERSION:
432 version = value;
433 break;
434 }
435 }
436
437 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
438 }
439
units_show(struct device * dev,struct device_attribute * attr,char * buf)440 static ssize_t units_show(struct device *dev,
441 struct device_attribute *attr, char *buf)
442 {
443 struct fw_device *device = fw_device(dev);
444 struct fw_csr_iterator ci;
445 int key, value, i = 0;
446
447 down_read(&fw_device_rwsem);
448 fw_csr_iterator_init(&ci, &device->config_rom[5]);
449 while (fw_csr_iterator_next(&ci, &key, &value)) {
450 if (key != (CSR_UNIT | CSR_DIRECTORY))
451 continue;
452 i += units_sprintf(&buf[i], ci.p + value - 1);
453 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
454 break;
455 }
456 up_read(&fw_device_rwsem);
457
458 if (i)
459 buf[i - 1] = '\n';
460
461 return i;
462 }
463
464 static struct device_attribute fw_device_attributes[] = {
465 __ATTR_RO(config_rom),
466 __ATTR_RO(guid),
467 __ATTR_RO(is_local),
468 __ATTR_RO(units),
469 __ATTR_NULL,
470 };
471
read_rom(struct fw_device * device,int generation,int index,u32 * data)472 static int read_rom(struct fw_device *device,
473 int generation, int index, u32 *data)
474 {
475 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
476 int i, rcode;
477
478 /* device->node_id, accessed below, must not be older than generation */
479 smp_rmb();
480
481 for (i = 10; i < 100; i += 10) {
482 rcode = fw_run_transaction(device->card,
483 TCODE_READ_QUADLET_REQUEST, device->node_id,
484 generation, device->max_speed, offset, data, 4);
485 if (rcode != RCODE_BUSY)
486 break;
487 msleep(i);
488 }
489 be32_to_cpus(data);
490
491 return rcode;
492 }
493
494 #define MAX_CONFIG_ROM_SIZE 256
495
496 /*
497 * Read the bus info block, perform a speed probe, and read all of the rest of
498 * the config ROM. We do all this with a cached bus generation. If the bus
499 * generation changes under us, read_config_rom will fail and get retried.
500 * It's better to start all over in this case because the node from which we
501 * are reading the ROM may have changed the ROM during the reset.
502 * Returns either a result code or a negative error code.
503 */
read_config_rom(struct fw_device * device,int generation)504 static int read_config_rom(struct fw_device *device, int generation)
505 {
506 struct fw_card *card = device->card;
507 const u32 *old_rom, *new_rom;
508 u32 *rom, *stack;
509 u32 sp, key;
510 int i, end, length, ret;
511
512 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
513 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
514 if (rom == NULL)
515 return -ENOMEM;
516
517 stack = &rom[MAX_CONFIG_ROM_SIZE];
518 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
519
520 device->max_speed = SCODE_100;
521
522 /* First read the bus info block. */
523 for (i = 0; i < 5; i++) {
524 ret = read_rom(device, generation, i, &rom[i]);
525 if (ret != RCODE_COMPLETE)
526 goto out;
527 /*
528 * As per IEEE1212 7.2, during initialization, devices can
529 * reply with a 0 for the first quadlet of the config
530 * rom to indicate that they are booting (for example,
531 * if the firmware is on the disk of a external
532 * harddisk). In that case we just fail, and the
533 * retry mechanism will try again later.
534 */
535 if (i == 0 && rom[i] == 0) {
536 ret = RCODE_BUSY;
537 goto out;
538 }
539 }
540
541 device->max_speed = device->node->max_speed;
542
543 /*
544 * Determine the speed of
545 * - devices with link speed less than PHY speed,
546 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
547 * - all devices if there are 1394b repeaters.
548 * Note, we cannot use the bus info block's link_spd as starting point
549 * because some buggy firmwares set it lower than necessary and because
550 * 1394-1995 nodes do not have the field.
551 */
552 if ((rom[2] & 0x7) < device->max_speed ||
553 device->max_speed == SCODE_BETA ||
554 card->beta_repeaters_present) {
555 u32 dummy;
556
557 /* for S1600 and S3200 */
558 if (device->max_speed == SCODE_BETA)
559 device->max_speed = card->link_speed;
560
561 while (device->max_speed > SCODE_100) {
562 if (read_rom(device, generation, 0, &dummy) ==
563 RCODE_COMPLETE)
564 break;
565 device->max_speed--;
566 }
567 }
568
569 /*
570 * Now parse the config rom. The config rom is a recursive
571 * directory structure so we parse it using a stack of
572 * references to the blocks that make up the structure. We
573 * push a reference to the root directory on the stack to
574 * start things off.
575 */
576 length = i;
577 sp = 0;
578 stack[sp++] = 0xc0000005;
579 while (sp > 0) {
580 /*
581 * Pop the next block reference of the stack. The
582 * lower 24 bits is the offset into the config rom,
583 * the upper 8 bits are the type of the reference the
584 * block.
585 */
586 key = stack[--sp];
587 i = key & 0xffffff;
588 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
589 ret = -ENXIO;
590 goto out;
591 }
592
593 /* Read header quadlet for the block to get the length. */
594 ret = read_rom(device, generation, i, &rom[i]);
595 if (ret != RCODE_COMPLETE)
596 goto out;
597 end = i + (rom[i] >> 16) + 1;
598 if (end > MAX_CONFIG_ROM_SIZE) {
599 /*
600 * This block extends outside the config ROM which is
601 * a firmware bug. Ignore this whole block, i.e.
602 * simply set a fake block length of 0.
603 */
604 fw_err(card, "skipped invalid ROM block %x at %llx\n",
605 rom[i],
606 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
607 rom[i] = 0;
608 end = i;
609 }
610 i++;
611
612 /*
613 * Now read in the block. If this is a directory
614 * block, check the entries as we read them to see if
615 * it references another block, and push it in that case.
616 */
617 for (; i < end; i++) {
618 ret = read_rom(device, generation, i, &rom[i]);
619 if (ret != RCODE_COMPLETE)
620 goto out;
621
622 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
623 continue;
624 /*
625 * Offset points outside the ROM. May be a firmware
626 * bug or an Extended ROM entry (IEEE 1212-2001 clause
627 * 7.7.18). Simply overwrite this pointer here by a
628 * fake immediate entry so that later iterators over
629 * the ROM don't have to check offsets all the time.
630 */
631 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
632 fw_err(card,
633 "skipped unsupported ROM entry %x at %llx\n",
634 rom[i],
635 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
636 rom[i] = 0;
637 continue;
638 }
639 stack[sp++] = i + rom[i];
640 }
641 if (length < i)
642 length = i;
643 }
644
645 old_rom = device->config_rom;
646 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
647 if (new_rom == NULL) {
648 ret = -ENOMEM;
649 goto out;
650 }
651
652 down_write(&fw_device_rwsem);
653 device->config_rom = new_rom;
654 device->config_rom_length = length;
655 up_write(&fw_device_rwsem);
656
657 kfree(old_rom);
658 ret = RCODE_COMPLETE;
659 device->max_rec = rom[2] >> 12 & 0xf;
660 device->cmc = rom[2] >> 30 & 1;
661 device->irmc = rom[2] >> 31 & 1;
662 out:
663 kfree(rom);
664
665 return ret;
666 }
667
fw_unit_release(struct device * dev)668 static void fw_unit_release(struct device *dev)
669 {
670 struct fw_unit *unit = fw_unit(dev);
671
672 fw_device_put(fw_parent_device(unit));
673 kfree(unit);
674 }
675
676 static struct device_type fw_unit_type = {
677 .uevent = fw_unit_uevent,
678 .release = fw_unit_release,
679 };
680
is_fw_unit(struct device * dev)681 static bool is_fw_unit(struct device *dev)
682 {
683 return dev->type == &fw_unit_type;
684 }
685
create_units(struct fw_device * device)686 static void create_units(struct fw_device *device)
687 {
688 struct fw_csr_iterator ci;
689 struct fw_unit *unit;
690 int key, value, i;
691
692 i = 0;
693 fw_csr_iterator_init(&ci, &device->config_rom[5]);
694 while (fw_csr_iterator_next(&ci, &key, &value)) {
695 if (key != (CSR_UNIT | CSR_DIRECTORY))
696 continue;
697
698 /*
699 * Get the address of the unit directory and try to
700 * match the drivers id_tables against it.
701 */
702 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
703 if (unit == NULL)
704 continue;
705
706 unit->directory = ci.p + value - 1;
707 unit->device.bus = &fw_bus_type;
708 unit->device.type = &fw_unit_type;
709 unit->device.parent = &device->device;
710 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
711
712 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
713 ARRAY_SIZE(fw_unit_attributes) +
714 ARRAY_SIZE(config_rom_attributes));
715 init_fw_attribute_group(&unit->device,
716 fw_unit_attributes,
717 &unit->attribute_group);
718
719 fw_device_get(device);
720 if (device_register(&unit->device) < 0) {
721 put_device(&unit->device);
722 continue;
723 }
724 }
725 }
726
shutdown_unit(struct device * device,void * data)727 static int shutdown_unit(struct device *device, void *data)
728 {
729 device_unregister(device);
730
731 return 0;
732 }
733
734 /*
735 * fw_device_rwsem acts as dual purpose mutex:
736 * - serializes accesses to fw_device_idr,
737 * - serializes accesses to fw_device.config_rom/.config_rom_length and
738 * fw_unit.directory, unless those accesses happen at safe occasions
739 */
740 DECLARE_RWSEM(fw_device_rwsem);
741
742 DEFINE_IDR(fw_device_idr);
743 int fw_cdev_major;
744
fw_device_get_by_devt(dev_t devt)745 struct fw_device *fw_device_get_by_devt(dev_t devt)
746 {
747 struct fw_device *device;
748
749 down_read(&fw_device_rwsem);
750 device = idr_find(&fw_device_idr, MINOR(devt));
751 if (device)
752 fw_device_get(device);
753 up_read(&fw_device_rwsem);
754
755 return device;
756 }
757
758 struct workqueue_struct *fw_workqueue;
759 EXPORT_SYMBOL(fw_workqueue);
760
fw_schedule_device_work(struct fw_device * device,unsigned long delay)761 static void fw_schedule_device_work(struct fw_device *device,
762 unsigned long delay)
763 {
764 queue_delayed_work(fw_workqueue, &device->work, delay);
765 }
766
767 /*
768 * These defines control the retry behavior for reading the config
769 * rom. It shouldn't be necessary to tweak these; if the device
770 * doesn't respond to a config rom read within 10 seconds, it's not
771 * going to respond at all. As for the initial delay, a lot of
772 * devices will be able to respond within half a second after bus
773 * reset. On the other hand, it's not really worth being more
774 * aggressive than that, since it scales pretty well; if 10 devices
775 * are plugged in, they're all getting read within one second.
776 */
777
778 #define MAX_RETRIES 10
779 #define RETRY_DELAY (3 * HZ)
780 #define INITIAL_DELAY (HZ / 2)
781 #define SHUTDOWN_DELAY (2 * HZ)
782
fw_device_shutdown(struct work_struct * work)783 static void fw_device_shutdown(struct work_struct *work)
784 {
785 struct fw_device *device =
786 container_of(work, struct fw_device, work.work);
787 int minor = MINOR(device->device.devt);
788
789 if (time_before64(get_jiffies_64(),
790 device->card->reset_jiffies + SHUTDOWN_DELAY)
791 && !list_empty(&device->card->link)) {
792 fw_schedule_device_work(device, SHUTDOWN_DELAY);
793 return;
794 }
795
796 if (atomic_cmpxchg(&device->state,
797 FW_DEVICE_GONE,
798 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
799 return;
800
801 fw_device_cdev_remove(device);
802 device_for_each_child(&device->device, NULL, shutdown_unit);
803 device_unregister(&device->device);
804
805 down_write(&fw_device_rwsem);
806 idr_remove(&fw_device_idr, minor);
807 up_write(&fw_device_rwsem);
808
809 fw_device_put(device);
810 }
811
fw_device_release(struct device * dev)812 static void fw_device_release(struct device *dev)
813 {
814 struct fw_device *device = fw_device(dev);
815 struct fw_card *card = device->card;
816 unsigned long flags;
817
818 /*
819 * Take the card lock so we don't set this to NULL while a
820 * FW_NODE_UPDATED callback is being handled or while the
821 * bus manager work looks at this node.
822 */
823 spin_lock_irqsave(&card->lock, flags);
824 device->node->data = NULL;
825 spin_unlock_irqrestore(&card->lock, flags);
826
827 fw_node_put(device->node);
828 kfree(device->config_rom);
829 kfree(device);
830 fw_card_put(card);
831 }
832
833 static struct device_type fw_device_type = {
834 .release = fw_device_release,
835 };
836
is_fw_device(struct device * dev)837 static bool is_fw_device(struct device *dev)
838 {
839 return dev->type == &fw_device_type;
840 }
841
update_unit(struct device * dev,void * data)842 static int update_unit(struct device *dev, void *data)
843 {
844 struct fw_unit *unit = fw_unit(dev);
845 struct fw_driver *driver = (struct fw_driver *)dev->driver;
846
847 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
848 device_lock(dev);
849 driver->update(unit);
850 device_unlock(dev);
851 }
852
853 return 0;
854 }
855
fw_device_update(struct work_struct * work)856 static void fw_device_update(struct work_struct *work)
857 {
858 struct fw_device *device =
859 container_of(work, struct fw_device, work.work);
860
861 fw_device_cdev_update(device);
862 device_for_each_child(&device->device, NULL, update_unit);
863 }
864
865 /*
866 * If a device was pending for deletion because its node went away but its
867 * bus info block and root directory header matches that of a newly discovered
868 * device, revive the existing fw_device.
869 * The newly allocated fw_device becomes obsolete instead.
870 */
lookup_existing_device(struct device * dev,void * data)871 static int lookup_existing_device(struct device *dev, void *data)
872 {
873 struct fw_device *old = fw_device(dev);
874 struct fw_device *new = data;
875 struct fw_card *card = new->card;
876 int match = 0;
877
878 if (!is_fw_device(dev))
879 return 0;
880
881 down_read(&fw_device_rwsem); /* serialize config_rom access */
882 spin_lock_irq(&card->lock); /* serialize node access */
883
884 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
885 atomic_cmpxchg(&old->state,
886 FW_DEVICE_GONE,
887 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
888 struct fw_node *current_node = new->node;
889 struct fw_node *obsolete_node = old->node;
890
891 new->node = obsolete_node;
892 new->node->data = new;
893 old->node = current_node;
894 old->node->data = old;
895
896 old->max_speed = new->max_speed;
897 old->node_id = current_node->node_id;
898 smp_wmb(); /* update node_id before generation */
899 old->generation = card->generation;
900 old->config_rom_retries = 0;
901 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
902
903 old->workfn = fw_device_update;
904 fw_schedule_device_work(old, 0);
905
906 if (current_node == card->root_node)
907 fw_schedule_bm_work(card, 0);
908
909 match = 1;
910 }
911
912 spin_unlock_irq(&card->lock);
913 up_read(&fw_device_rwsem);
914
915 return match;
916 }
917
918 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
919
set_broadcast_channel(struct fw_device * device,int generation)920 static void set_broadcast_channel(struct fw_device *device, int generation)
921 {
922 struct fw_card *card = device->card;
923 __be32 data;
924 int rcode;
925
926 if (!card->broadcast_channel_allocated)
927 return;
928
929 /*
930 * The Broadcast_Channel Valid bit is required by nodes which want to
931 * transmit on this channel. Such transmissions are practically
932 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
933 * to be IRM capable and have a max_rec of 8 or more. We use this fact
934 * to narrow down to which nodes we send Broadcast_Channel updates.
935 */
936 if (!device->irmc || device->max_rec < 8)
937 return;
938
939 /*
940 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
941 * Perform a read test first.
942 */
943 if (device->bc_implemented == BC_UNKNOWN) {
944 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
945 device->node_id, generation, device->max_speed,
946 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
947 &data, 4);
948 switch (rcode) {
949 case RCODE_COMPLETE:
950 if (data & cpu_to_be32(1 << 31)) {
951 device->bc_implemented = BC_IMPLEMENTED;
952 break;
953 }
954 fallthrough; /* to case address error */
955 case RCODE_ADDRESS_ERROR:
956 device->bc_implemented = BC_UNIMPLEMENTED;
957 }
958 }
959
960 if (device->bc_implemented == BC_IMPLEMENTED) {
961 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
962 BROADCAST_CHANNEL_VALID);
963 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
964 device->node_id, generation, device->max_speed,
965 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
966 &data, 4);
967 }
968 }
969
fw_device_set_broadcast_channel(struct device * dev,void * gen)970 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
971 {
972 if (is_fw_device(dev))
973 set_broadcast_channel(fw_device(dev), (long)gen);
974
975 return 0;
976 }
977
fw_device_init(struct work_struct * work)978 static void fw_device_init(struct work_struct *work)
979 {
980 struct fw_device *device =
981 container_of(work, struct fw_device, work.work);
982 struct fw_card *card = device->card;
983 struct device *revived_dev;
984 int minor, ret;
985
986 /*
987 * All failure paths here set node->data to NULL, so that we
988 * don't try to do device_for_each_child() on a kfree()'d
989 * device.
990 */
991
992 ret = read_config_rom(device, device->generation);
993 if (ret != RCODE_COMPLETE) {
994 if (device->config_rom_retries < MAX_RETRIES &&
995 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
996 device->config_rom_retries++;
997 fw_schedule_device_work(device, RETRY_DELAY);
998 } else {
999 if (device->node->link_on)
1000 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1001 device->node_id,
1002 fw_rcode_string(ret));
1003 if (device->node == card->root_node)
1004 fw_schedule_bm_work(card, 0);
1005 fw_device_release(&device->device);
1006 }
1007 return;
1008 }
1009
1010 revived_dev = device_find_child(card->device,
1011 device, lookup_existing_device);
1012 if (revived_dev) {
1013 put_device(revived_dev);
1014 fw_device_release(&device->device);
1015
1016 return;
1017 }
1018
1019 device_initialize(&device->device);
1020
1021 fw_device_get(device);
1022 down_write(&fw_device_rwsem);
1023 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1024 GFP_KERNEL);
1025 up_write(&fw_device_rwsem);
1026
1027 if (minor < 0)
1028 goto error;
1029
1030 device->device.bus = &fw_bus_type;
1031 device->device.type = &fw_device_type;
1032 device->device.parent = card->device;
1033 device->device.devt = MKDEV(fw_cdev_major, minor);
1034 dev_set_name(&device->device, "fw%d", minor);
1035
1036 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1037 ARRAY_SIZE(fw_device_attributes) +
1038 ARRAY_SIZE(config_rom_attributes));
1039 init_fw_attribute_group(&device->device,
1040 fw_device_attributes,
1041 &device->attribute_group);
1042
1043 if (device_add(&device->device)) {
1044 fw_err(card, "failed to add device\n");
1045 goto error_with_cdev;
1046 }
1047
1048 create_units(device);
1049
1050 /*
1051 * Transition the device to running state. If it got pulled
1052 * out from under us while we did the initialization work, we
1053 * have to shut down the device again here. Normally, though,
1054 * fw_node_event will be responsible for shutting it down when
1055 * necessary. We have to use the atomic cmpxchg here to avoid
1056 * racing with the FW_NODE_DESTROYED case in
1057 * fw_node_event().
1058 */
1059 if (atomic_cmpxchg(&device->state,
1060 FW_DEVICE_INITIALIZING,
1061 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1062 device->workfn = fw_device_shutdown;
1063 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1064 } else {
1065 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1066 dev_name(&device->device),
1067 device->config_rom[3], device->config_rom[4],
1068 1 << device->max_speed);
1069 device->config_rom_retries = 0;
1070
1071 set_broadcast_channel(device, device->generation);
1072
1073 add_device_randomness(&device->config_rom[3], 8);
1074 }
1075
1076 /*
1077 * Reschedule the IRM work if we just finished reading the
1078 * root node config rom. If this races with a bus reset we
1079 * just end up running the IRM work a couple of extra times -
1080 * pretty harmless.
1081 */
1082 if (device->node == card->root_node)
1083 fw_schedule_bm_work(card, 0);
1084
1085 return;
1086
1087 error_with_cdev:
1088 down_write(&fw_device_rwsem);
1089 idr_remove(&fw_device_idr, minor);
1090 up_write(&fw_device_rwsem);
1091 error:
1092 fw_device_put(device); /* fw_device_idr's reference */
1093
1094 put_device(&device->device); /* our reference */
1095 }
1096
1097 /* Reread and compare bus info block and header of root directory */
reread_config_rom(struct fw_device * device,int generation,bool * changed)1098 static int reread_config_rom(struct fw_device *device, int generation,
1099 bool *changed)
1100 {
1101 u32 q;
1102 int i, rcode;
1103
1104 for (i = 0; i < 6; i++) {
1105 rcode = read_rom(device, generation, i, &q);
1106 if (rcode != RCODE_COMPLETE)
1107 return rcode;
1108
1109 if (i == 0 && q == 0)
1110 /* inaccessible (see read_config_rom); retry later */
1111 return RCODE_BUSY;
1112
1113 if (q != device->config_rom[i]) {
1114 *changed = true;
1115 return RCODE_COMPLETE;
1116 }
1117 }
1118
1119 *changed = false;
1120 return RCODE_COMPLETE;
1121 }
1122
fw_device_refresh(struct work_struct * work)1123 static void fw_device_refresh(struct work_struct *work)
1124 {
1125 struct fw_device *device =
1126 container_of(work, struct fw_device, work.work);
1127 struct fw_card *card = device->card;
1128 int ret, node_id = device->node_id;
1129 bool changed;
1130
1131 ret = reread_config_rom(device, device->generation, &changed);
1132 if (ret != RCODE_COMPLETE)
1133 goto failed_config_rom;
1134
1135 if (!changed) {
1136 if (atomic_cmpxchg(&device->state,
1137 FW_DEVICE_INITIALIZING,
1138 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1139 goto gone;
1140
1141 fw_device_update(work);
1142 device->config_rom_retries = 0;
1143 goto out;
1144 }
1145
1146 /*
1147 * Something changed. We keep things simple and don't investigate
1148 * further. We just destroy all previous units and create new ones.
1149 */
1150 device_for_each_child(&device->device, NULL, shutdown_unit);
1151
1152 ret = read_config_rom(device, device->generation);
1153 if (ret != RCODE_COMPLETE)
1154 goto failed_config_rom;
1155
1156 fw_device_cdev_update(device);
1157 create_units(device);
1158
1159 /* Userspace may want to re-read attributes. */
1160 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1161
1162 if (atomic_cmpxchg(&device->state,
1163 FW_DEVICE_INITIALIZING,
1164 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1165 goto gone;
1166
1167 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1168 device->config_rom_retries = 0;
1169 goto out;
1170
1171 failed_config_rom:
1172 if (device->config_rom_retries < MAX_RETRIES &&
1173 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1174 device->config_rom_retries++;
1175 fw_schedule_device_work(device, RETRY_DELAY);
1176 return;
1177 }
1178
1179 fw_notice(card, "giving up on refresh of device %s: %s\n",
1180 dev_name(&device->device), fw_rcode_string(ret));
1181 gone:
1182 atomic_set(&device->state, FW_DEVICE_GONE);
1183 device->workfn = fw_device_shutdown;
1184 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1185 out:
1186 if (node_id == card->root_node->node_id)
1187 fw_schedule_bm_work(card, 0);
1188 }
1189
fw_device_workfn(struct work_struct * work)1190 static void fw_device_workfn(struct work_struct *work)
1191 {
1192 struct fw_device *device = container_of(to_delayed_work(work),
1193 struct fw_device, work);
1194 device->workfn(work);
1195 }
1196
fw_node_event(struct fw_card * card,struct fw_node * node,int event)1197 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1198 {
1199 struct fw_device *device;
1200
1201 switch (event) {
1202 case FW_NODE_CREATED:
1203 /*
1204 * Attempt to scan the node, regardless whether its self ID has
1205 * the L (link active) flag set or not. Some broken devices
1206 * send L=0 but have an up-and-running link; others send L=1
1207 * without actually having a link.
1208 */
1209 create:
1210 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1211 if (device == NULL)
1212 break;
1213
1214 /*
1215 * Do minimal initialization of the device here, the
1216 * rest will happen in fw_device_init().
1217 *
1218 * Attention: A lot of things, even fw_device_get(),
1219 * cannot be done before fw_device_init() finished!
1220 * You can basically just check device->state and
1221 * schedule work until then, but only while holding
1222 * card->lock.
1223 */
1224 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1225 device->card = fw_card_get(card);
1226 device->node = fw_node_get(node);
1227 device->node_id = node->node_id;
1228 device->generation = card->generation;
1229 device->is_local = node == card->local_node;
1230 mutex_init(&device->client_list_mutex);
1231 INIT_LIST_HEAD(&device->client_list);
1232
1233 /*
1234 * Set the node data to point back to this device so
1235 * FW_NODE_UPDATED callbacks can update the node_id
1236 * and generation for the device.
1237 */
1238 node->data = device;
1239
1240 /*
1241 * Many devices are slow to respond after bus resets,
1242 * especially if they are bus powered and go through
1243 * power-up after getting plugged in. We schedule the
1244 * first config rom scan half a second after bus reset.
1245 */
1246 device->workfn = fw_device_init;
1247 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1248 fw_schedule_device_work(device, INITIAL_DELAY);
1249 break;
1250
1251 case FW_NODE_INITIATED_RESET:
1252 case FW_NODE_LINK_ON:
1253 device = node->data;
1254 if (device == NULL)
1255 goto create;
1256
1257 device->node_id = node->node_id;
1258 smp_wmb(); /* update node_id before generation */
1259 device->generation = card->generation;
1260 if (atomic_cmpxchg(&device->state,
1261 FW_DEVICE_RUNNING,
1262 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1263 device->workfn = fw_device_refresh;
1264 fw_schedule_device_work(device,
1265 device->is_local ? 0 : INITIAL_DELAY);
1266 }
1267 break;
1268
1269 case FW_NODE_UPDATED:
1270 device = node->data;
1271 if (device == NULL)
1272 break;
1273
1274 device->node_id = node->node_id;
1275 smp_wmb(); /* update node_id before generation */
1276 device->generation = card->generation;
1277 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1278 device->workfn = fw_device_update;
1279 fw_schedule_device_work(device, 0);
1280 }
1281 break;
1282
1283 case FW_NODE_DESTROYED:
1284 case FW_NODE_LINK_OFF:
1285 if (!node->data)
1286 break;
1287
1288 /*
1289 * Destroy the device associated with the node. There
1290 * are two cases here: either the device is fully
1291 * initialized (FW_DEVICE_RUNNING) or we're in the
1292 * process of reading its config rom
1293 * (FW_DEVICE_INITIALIZING). If it is fully
1294 * initialized we can reuse device->work to schedule a
1295 * full fw_device_shutdown(). If not, there's work
1296 * scheduled to read it's config rom, and we just put
1297 * the device in shutdown state to have that code fail
1298 * to create the device.
1299 */
1300 device = node->data;
1301 if (atomic_xchg(&device->state,
1302 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1303 device->workfn = fw_device_shutdown;
1304 fw_schedule_device_work(device,
1305 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1306 }
1307 break;
1308 }
1309 }
1310