• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * main.c - Multi purpose firmware loading support
4  *
5  * Copyright (c) 2003 Manuel Estrada Sainz
6  *
7  * Please see Documentation/driver-api/firmware/ for more information.
8  *
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/zstd.h>
39 #include <linux/xz.h>
40 
41 #include <generated/utsrelease.h>
42 
43 #include "../base.h"
44 #include "firmware.h"
45 #include "fallback.h"
46 
47 MODULE_AUTHOR("Manuel Estrada Sainz");
48 MODULE_DESCRIPTION("Multi purpose firmware loading support");
49 MODULE_LICENSE("GPL");
50 
51 struct firmware_cache {
52 	/* firmware_buf instance will be added into the below list */
53 	spinlock_t lock;
54 	struct list_head head;
55 	int state;
56 
57 #ifdef CONFIG_FW_CACHE
58 	/*
59 	 * Names of firmware images which have been cached successfully
60 	 * will be added into the below list so that device uncache
61 	 * helper can trace which firmware images have been cached
62 	 * before.
63 	 */
64 	spinlock_t name_lock;
65 	struct list_head fw_names;
66 
67 	struct delayed_work work;
68 
69 	struct notifier_block   pm_notify;
70 #endif
71 };
72 
73 struct fw_cache_entry {
74 	struct list_head list;
75 	const char *name;
76 };
77 
78 struct fw_name_devm {
79 	unsigned long magic;
80 	const char *name;
81 };
82 
to_fw_priv(struct kref * ref)83 static inline struct fw_priv *to_fw_priv(struct kref *ref)
84 {
85 	return container_of(ref, struct fw_priv, ref);
86 }
87 
88 #define	FW_LOADER_NO_CACHE	0
89 #define	FW_LOADER_START_CACHE	1
90 
91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92  * guarding for corner cases a global lock should be OK */
93 DEFINE_MUTEX(fw_lock);
94 
95 struct firmware_cache fw_cache;
96 
fw_state_init(struct fw_priv * fw_priv)97 void fw_state_init(struct fw_priv *fw_priv)
98 {
99 	struct fw_state *fw_st = &fw_priv->fw_st;
100 
101 	init_completion(&fw_st->completion);
102 	fw_st->status = FW_STATUS_UNKNOWN;
103 }
104 
fw_state_wait(struct fw_priv * fw_priv)105 static inline int fw_state_wait(struct fw_priv *fw_priv)
106 {
107 	return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
108 }
109 
110 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
111 
__allocate_fw_priv(const char * fw_name,struct firmware_cache * fwc,void * dbuf,size_t size,size_t offset,u32 opt_flags)112 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
113 					  struct firmware_cache *fwc,
114 					  void *dbuf,
115 					  size_t size,
116 					  size_t offset,
117 					  u32 opt_flags)
118 {
119 	struct fw_priv *fw_priv;
120 
121 	/* For a partial read, the buffer must be preallocated. */
122 	if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
123 		return NULL;
124 
125 	/* Only partial reads are allowed to use an offset. */
126 	if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
127 		return NULL;
128 
129 	fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
130 	if (!fw_priv)
131 		return NULL;
132 
133 	fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
134 	if (!fw_priv->fw_name) {
135 		kfree(fw_priv);
136 		return NULL;
137 	}
138 
139 	kref_init(&fw_priv->ref);
140 	fw_priv->fwc = fwc;
141 	fw_priv->data = dbuf;
142 	fw_priv->allocated_size = size;
143 	fw_priv->offset = offset;
144 	fw_priv->opt_flags = opt_flags;
145 	fw_state_init(fw_priv);
146 #ifdef CONFIG_FW_LOADER_USER_HELPER
147 	INIT_LIST_HEAD(&fw_priv->pending_list);
148 #endif
149 
150 	pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
151 
152 	return fw_priv;
153 }
154 
__lookup_fw_priv(const char * fw_name)155 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
156 {
157 	struct fw_priv *tmp;
158 	struct firmware_cache *fwc = &fw_cache;
159 
160 	list_for_each_entry(tmp, &fwc->head, list)
161 		if (!strcmp(tmp->fw_name, fw_name))
162 			return tmp;
163 	return NULL;
164 }
165 
166 /* Returns 1 for batching firmware requests with the same name */
alloc_lookup_fw_priv(const char * fw_name,struct firmware_cache * fwc,struct fw_priv ** fw_priv,void * dbuf,size_t size,size_t offset,u32 opt_flags)167 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
168 			 struct fw_priv **fw_priv, void *dbuf, size_t size,
169 			 size_t offset, u32 opt_flags)
170 {
171 	struct fw_priv *tmp;
172 
173 	spin_lock(&fwc->lock);
174 	/*
175 	 * Do not merge requests that are marked to be non-cached or
176 	 * are performing partial reads.
177 	 */
178 	if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
179 		tmp = __lookup_fw_priv(fw_name);
180 		if (tmp) {
181 			kref_get(&tmp->ref);
182 			spin_unlock(&fwc->lock);
183 			*fw_priv = tmp;
184 			pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
185 			return 1;
186 		}
187 	}
188 
189 	tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
190 	if (tmp) {
191 		INIT_LIST_HEAD(&tmp->list);
192 		if (!(opt_flags & FW_OPT_NOCACHE))
193 			list_add(&tmp->list, &fwc->head);
194 	}
195 	spin_unlock(&fwc->lock);
196 
197 	*fw_priv = tmp;
198 
199 	return tmp ? 0 : -ENOMEM;
200 }
201 
__free_fw_priv(struct kref * ref)202 static void __free_fw_priv(struct kref *ref)
203 	__releases(&fwc->lock)
204 {
205 	struct fw_priv *fw_priv = to_fw_priv(ref);
206 	struct firmware_cache *fwc = fw_priv->fwc;
207 
208 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
209 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
210 		 (unsigned int)fw_priv->size);
211 
212 	list_del(&fw_priv->list);
213 	spin_unlock(&fwc->lock);
214 
215 	if (fw_is_paged_buf(fw_priv))
216 		fw_free_paged_buf(fw_priv);
217 	else if (!fw_priv->allocated_size)
218 		vfree(fw_priv->data);
219 
220 	kfree_const(fw_priv->fw_name);
221 	kfree(fw_priv);
222 }
223 
free_fw_priv(struct fw_priv * fw_priv)224 void free_fw_priv(struct fw_priv *fw_priv)
225 {
226 	struct firmware_cache *fwc = fw_priv->fwc;
227 	spin_lock(&fwc->lock);
228 	if (!kref_put(&fw_priv->ref, __free_fw_priv))
229 		spin_unlock(&fwc->lock);
230 }
231 
232 #ifdef CONFIG_FW_LOADER_PAGED_BUF
fw_is_paged_buf(struct fw_priv * fw_priv)233 bool fw_is_paged_buf(struct fw_priv *fw_priv)
234 {
235 	return fw_priv->is_paged_buf;
236 }
237 
fw_free_paged_buf(struct fw_priv * fw_priv)238 void fw_free_paged_buf(struct fw_priv *fw_priv)
239 {
240 	int i;
241 
242 	if (!fw_priv->pages)
243 		return;
244 
245 	vunmap(fw_priv->data);
246 
247 	for (i = 0; i < fw_priv->nr_pages; i++)
248 		__free_page(fw_priv->pages[i]);
249 	kvfree(fw_priv->pages);
250 	fw_priv->pages = NULL;
251 	fw_priv->page_array_size = 0;
252 	fw_priv->nr_pages = 0;
253 	fw_priv->data = NULL;
254 	fw_priv->size = 0;
255 }
256 
fw_grow_paged_buf(struct fw_priv * fw_priv,int pages_needed)257 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
258 {
259 	/* If the array of pages is too small, grow it */
260 	if (fw_priv->page_array_size < pages_needed) {
261 		int new_array_size = max(pages_needed,
262 					 fw_priv->page_array_size * 2);
263 		struct page **new_pages;
264 
265 		new_pages = kvmalloc_array(new_array_size, sizeof(void *),
266 					   GFP_KERNEL);
267 		if (!new_pages)
268 			return -ENOMEM;
269 		memcpy(new_pages, fw_priv->pages,
270 		       fw_priv->page_array_size * sizeof(void *));
271 		memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
272 		       (new_array_size - fw_priv->page_array_size));
273 		kvfree(fw_priv->pages);
274 		fw_priv->pages = new_pages;
275 		fw_priv->page_array_size = new_array_size;
276 	}
277 
278 	while (fw_priv->nr_pages < pages_needed) {
279 		fw_priv->pages[fw_priv->nr_pages] =
280 			alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
281 
282 		if (!fw_priv->pages[fw_priv->nr_pages])
283 			return -ENOMEM;
284 		fw_priv->nr_pages++;
285 	}
286 
287 	return 0;
288 }
289 
fw_map_paged_buf(struct fw_priv * fw_priv)290 int fw_map_paged_buf(struct fw_priv *fw_priv)
291 {
292 	/* one pages buffer should be mapped/unmapped only once */
293 	if (!fw_priv->pages)
294 		return 0;
295 
296 	vunmap(fw_priv->data);
297 	fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
298 			     PAGE_KERNEL_RO);
299 	if (!fw_priv->data)
300 		return -ENOMEM;
301 
302 	return 0;
303 }
304 #endif
305 
306 /*
307  * ZSTD-compressed firmware support
308  */
309 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
fw_decompress_zstd(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)310 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
311 			      size_t in_size, const void *in_buffer)
312 {
313 	size_t len, out_size, workspace_size;
314 	void *workspace, *out_buf;
315 	zstd_dctx *ctx;
316 	int err;
317 
318 	if (fw_priv->allocated_size) {
319 		out_size = fw_priv->allocated_size;
320 		out_buf = fw_priv->data;
321 	} else {
322 		zstd_frame_header params;
323 
324 		if (zstd_get_frame_header(&params, in_buffer, in_size) ||
325 		    params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
326 			dev_dbg(dev, "%s: invalid zstd header\n", __func__);
327 			return -EINVAL;
328 		}
329 		out_size = params.frameContentSize;
330 		out_buf = vzalloc(out_size);
331 		if (!out_buf)
332 			return -ENOMEM;
333 	}
334 
335 	workspace_size = zstd_dctx_workspace_bound();
336 	workspace = kvzalloc(workspace_size, GFP_KERNEL);
337 	if (!workspace) {
338 		err = -ENOMEM;
339 		goto error;
340 	}
341 
342 	ctx = zstd_init_dctx(workspace, workspace_size);
343 	if (!ctx) {
344 		dev_dbg(dev, "%s: failed to initialize context\n", __func__);
345 		err = -EINVAL;
346 		goto error;
347 	}
348 
349 	len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
350 	if (zstd_is_error(len)) {
351 		dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
352 			zstd_get_error_code(len));
353 		err = -EINVAL;
354 		goto error;
355 	}
356 
357 	if (!fw_priv->allocated_size)
358 		fw_priv->data = out_buf;
359 	fw_priv->size = len;
360 	err = 0;
361 
362  error:
363 	kvfree(workspace);
364 	if (err && !fw_priv->allocated_size)
365 		vfree(out_buf);
366 	return err;
367 }
368 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
369 
370 /*
371  * XZ-compressed firmware support
372  */
373 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
374 /* show an error and return the standard error code */
fw_decompress_xz_error(struct device * dev,enum xz_ret xz_ret)375 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
376 {
377 	if (xz_ret != XZ_STREAM_END) {
378 		dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
379 		return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
380 	}
381 	return 0;
382 }
383 
384 /* single-shot decompression onto the pre-allocated buffer */
fw_decompress_xz_single(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)385 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
386 				   size_t in_size, const void *in_buffer)
387 {
388 	struct xz_dec *xz_dec;
389 	struct xz_buf xz_buf;
390 	enum xz_ret xz_ret;
391 
392 	xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
393 	if (!xz_dec)
394 		return -ENOMEM;
395 
396 	xz_buf.in_size = in_size;
397 	xz_buf.in = in_buffer;
398 	xz_buf.in_pos = 0;
399 	xz_buf.out_size = fw_priv->allocated_size;
400 	xz_buf.out = fw_priv->data;
401 	xz_buf.out_pos = 0;
402 
403 	xz_ret = xz_dec_run(xz_dec, &xz_buf);
404 	xz_dec_end(xz_dec);
405 
406 	fw_priv->size = xz_buf.out_pos;
407 	return fw_decompress_xz_error(dev, xz_ret);
408 }
409 
410 /* decompression on paged buffer and map it */
fw_decompress_xz_pages(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)411 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
412 				  size_t in_size, const void *in_buffer)
413 {
414 	struct xz_dec *xz_dec;
415 	struct xz_buf xz_buf;
416 	enum xz_ret xz_ret;
417 	struct page *page;
418 	int err = 0;
419 
420 	xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
421 	if (!xz_dec)
422 		return -ENOMEM;
423 
424 	xz_buf.in_size = in_size;
425 	xz_buf.in = in_buffer;
426 	xz_buf.in_pos = 0;
427 
428 	fw_priv->is_paged_buf = true;
429 	fw_priv->size = 0;
430 	do {
431 		if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
432 			err = -ENOMEM;
433 			goto out;
434 		}
435 
436 		/* decompress onto the new allocated page */
437 		page = fw_priv->pages[fw_priv->nr_pages - 1];
438 		xz_buf.out = kmap_local_page(page);
439 		xz_buf.out_pos = 0;
440 		xz_buf.out_size = PAGE_SIZE;
441 		xz_ret = xz_dec_run(xz_dec, &xz_buf);
442 		kunmap_local(xz_buf.out);
443 		fw_priv->size += xz_buf.out_pos;
444 		/* partial decompression means either end or error */
445 		if (xz_buf.out_pos != PAGE_SIZE)
446 			break;
447 	} while (xz_ret == XZ_OK);
448 
449 	err = fw_decompress_xz_error(dev, xz_ret);
450 	if (!err)
451 		err = fw_map_paged_buf(fw_priv);
452 
453  out:
454 	xz_dec_end(xz_dec);
455 	return err;
456 }
457 
fw_decompress_xz(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)458 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
459 			    size_t in_size, const void *in_buffer)
460 {
461 	/* if the buffer is pre-allocated, we can perform in single-shot mode */
462 	if (fw_priv->data)
463 		return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
464 	else
465 		return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
466 }
467 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
468 
469 /* direct firmware loading support */
470 #define CUSTOM_FW_PATH_COUNT	10
471 #define PATH_SIZE		255
472 static char fw_path_para[CUSTOM_FW_PATH_COUNT][PATH_SIZE];
473 static const char * const fw_path[] = {
474 	fw_path_para[0],
475 	fw_path_para[1],
476 	fw_path_para[2],
477 	fw_path_para[3],
478 	fw_path_para[4],
479 	fw_path_para[5],
480 	fw_path_para[6],
481 	fw_path_para[7],
482 	fw_path_para[8],
483 	fw_path_para[9],
484 	"/lib/firmware/updates/" UTS_RELEASE,
485 	"/lib/firmware/updates",
486 	"/lib/firmware/" UTS_RELEASE,
487 	"/lib/firmware"
488 };
489 
490 static char strpath[PATH_SIZE * CUSTOM_FW_PATH_COUNT];
firmware_param_path_set(const char * val,const struct kernel_param * kp)491 static int firmware_param_path_set(const char *val, const struct kernel_param *kp)
492 {
493 	int i;
494 	char *path, *end;
495 
496 	strscpy(strpath, val, sizeof(strpath));
497 	/* Remove leading and trailing spaces from path */
498 	path = strim(strpath);
499 	for (i = 0; path && i < CUSTOM_FW_PATH_COUNT; i++) {
500 		end = strchr(path, ',');
501 
502 		/* Skip continuous token case, for example ',,,' */
503 		if (end == path) {
504 			i--;
505 			path = ++end;
506 			continue;
507 		}
508 
509 		if (end != NULL)
510 			*end = '\0';
511 		else {
512 			/* end of the string reached and no other tockens ','  */
513 			strscpy(fw_path_para[i], path, PATH_SIZE);
514 			break;
515 		}
516 
517 		strscpy(fw_path_para[i], path, PATH_SIZE);
518 		path = ++end;
519 	}
520 
521 	return 0;
522 }
523 
firmware_param_path_get(char * buffer,const struct kernel_param * kp)524 static int firmware_param_path_get(char *buffer, const struct kernel_param *kp)
525 {
526 	int count = 0, i;
527 
528 	for (i = 0; i < CUSTOM_FW_PATH_COUNT; i++) {
529 		if (strlen(fw_path_para[i]) != 0)
530 			count += scnprintf(buffer + count, PATH_SIZE, "%s%s", fw_path_para[i], ",");
531 	}
532 
533 	buffer[count - 1] = '\0';
534 
535 	return count - 1;
536 }
537 /*
538  * Typical usage is that passing 'firmware_class.path=/vendor,/firwmare_mnt'
539  * from kernel command line because firmware_class is generally built in
540  * kernel instead of module. ',' is used as delimiter for setting 10
541  * custom paths for firmware loader.
542  */
543 
544 static const struct kernel_param_ops firmware_param_ops = {
545 	.set = firmware_param_path_set,
546 	.get = firmware_param_path_get,
547 };
548 module_param_cb(path, &firmware_param_ops, NULL, 0644);
549 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
550 
551 static int
fw_get_filesystem_firmware(struct device * device,struct fw_priv * fw_priv,const char * suffix,int (* decompress)(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer))552 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
553 			   const char *suffix,
554 			   int (*decompress)(struct device *dev,
555 					     struct fw_priv *fw_priv,
556 					     size_t in_size,
557 					     const void *in_buffer))
558 {
559 	size_t size;
560 	int i, len, maxlen = 0;
561 	int rc = -ENOENT;
562 	char *path, *nt = NULL;
563 	size_t msize = INT_MAX;
564 	void *buffer = NULL;
565 
566 	/* Already populated data member means we're loading into a buffer */
567 	if (!decompress && fw_priv->data) {
568 		buffer = fw_priv->data;
569 		msize = fw_priv->allocated_size;
570 	}
571 
572 	path = __getname();
573 	if (!path)
574 		return -ENOMEM;
575 
576 	wait_for_initramfs();
577 	for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
578 		size_t file_size = 0;
579 		size_t *file_size_ptr = NULL;
580 
581 		/* skip the unset customized path */
582 		if (!fw_path[i][0])
583 			continue;
584 
585 		/* strip off \n from customized path */
586 		maxlen = strlen(fw_path[i]);
587 		if (i == 0) {
588 			nt = strchr(fw_path[i], '\n');
589 			if (nt)
590 				maxlen = nt - fw_path[i];
591 		}
592 
593 		len = snprintf(path, PATH_MAX, "%.*s/%s%s",
594 			       maxlen, fw_path[i],
595 			       fw_priv->fw_name, suffix);
596 		if (len >= PATH_MAX) {
597 			rc = -ENAMETOOLONG;
598 			break;
599 		}
600 
601 		fw_priv->size = 0;
602 
603 		/*
604 		 * The total file size is only examined when doing a partial
605 		 * read; the "full read" case needs to fail if the whole
606 		 * firmware was not completely loaded.
607 		 */
608 		if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
609 			file_size_ptr = &file_size;
610 
611 		/* load firmware files from the mount namespace of init */
612 		rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
613 						       &buffer, msize,
614 						       file_size_ptr,
615 						       READING_FIRMWARE);
616 		if (rc < 0) {
617 			if (!(fw_priv->opt_flags & FW_OPT_NO_WARN)) {
618 				if (rc != -ENOENT)
619 					dev_warn(device,
620 						 "loading %s failed with error %d\n",
621 						 path, rc);
622 				else
623 					dev_dbg(device,
624 						"loading %s failed for no such file or directory.\n",
625 						path);
626 			}
627 			continue;
628 		}
629 		size = rc;
630 		rc = 0;
631 
632 		dev_dbg(device, "Loading firmware from %s\n", path);
633 		if (decompress) {
634 			dev_dbg(device, "f/w decompressing %s\n",
635 				fw_priv->fw_name);
636 			rc = decompress(device, fw_priv, size, buffer);
637 			/* discard the superfluous original content */
638 			vfree(buffer);
639 			buffer = NULL;
640 			if (rc) {
641 				fw_free_paged_buf(fw_priv);
642 				continue;
643 			}
644 		} else {
645 			dev_dbg(device, "direct-loading %s\n",
646 				fw_priv->fw_name);
647 			if (!fw_priv->data)
648 				fw_priv->data = buffer;
649 			fw_priv->size = size;
650 		}
651 		fw_state_done(fw_priv);
652 		break;
653 	}
654 	__putname(path);
655 
656 	return rc;
657 }
658 
659 /* firmware holds the ownership of pages */
firmware_free_data(const struct firmware * fw)660 static void firmware_free_data(const struct firmware *fw)
661 {
662 	/* Loaded directly? */
663 	if (!fw->priv) {
664 		vfree(fw->data);
665 		return;
666 	}
667 	free_fw_priv(fw->priv);
668 }
669 
670 /* store the pages buffer info firmware from buf */
fw_set_page_data(struct fw_priv * fw_priv,struct firmware * fw)671 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
672 {
673 	fw->priv = fw_priv;
674 	fw->size = fw_priv->size;
675 	fw->data = fw_priv->data;
676 
677 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
678 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
679 		 (unsigned int)fw_priv->size);
680 }
681 
682 #ifdef CONFIG_FW_CACHE
fw_name_devm_release(struct device * dev,void * res)683 static void fw_name_devm_release(struct device *dev, void *res)
684 {
685 	struct fw_name_devm *fwn = res;
686 
687 	if (fwn->magic == (unsigned long)&fw_cache)
688 		pr_debug("%s: fw_name-%s devm-%p released\n",
689 				__func__, fwn->name, res);
690 	kfree_const(fwn->name);
691 }
692 
fw_devm_match(struct device * dev,void * res,void * match_data)693 static int fw_devm_match(struct device *dev, void *res,
694 		void *match_data)
695 {
696 	struct fw_name_devm *fwn = res;
697 
698 	return (fwn->magic == (unsigned long)&fw_cache) &&
699 		!strcmp(fwn->name, match_data);
700 }
701 
fw_find_devm_name(struct device * dev,const char * name)702 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
703 		const char *name)
704 {
705 	struct fw_name_devm *fwn;
706 
707 	fwn = devres_find(dev, fw_name_devm_release,
708 			  fw_devm_match, (void *)name);
709 	return fwn;
710 }
711 
fw_cache_is_setup(struct device * dev,const char * name)712 static bool fw_cache_is_setup(struct device *dev, const char *name)
713 {
714 	struct fw_name_devm *fwn;
715 
716 	fwn = fw_find_devm_name(dev, name);
717 	if (fwn)
718 		return true;
719 
720 	return false;
721 }
722 
723 /* add firmware name into devres list */
fw_add_devm_name(struct device * dev,const char * name)724 static int fw_add_devm_name(struct device *dev, const char *name)
725 {
726 	struct fw_name_devm *fwn;
727 
728 	if (fw_cache_is_setup(dev, name))
729 		return 0;
730 
731 	fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
732 			   GFP_KERNEL);
733 	if (!fwn)
734 		return -ENOMEM;
735 	fwn->name = kstrdup_const(name, GFP_KERNEL);
736 	if (!fwn->name) {
737 		devres_free(fwn);
738 		return -ENOMEM;
739 	}
740 
741 	fwn->magic = (unsigned long)&fw_cache;
742 	devres_add(dev, fwn);
743 
744 	return 0;
745 }
746 #else
fw_cache_is_setup(struct device * dev,const char * name)747 static bool fw_cache_is_setup(struct device *dev, const char *name)
748 {
749 	return false;
750 }
751 
fw_add_devm_name(struct device * dev,const char * name)752 static int fw_add_devm_name(struct device *dev, const char *name)
753 {
754 	return 0;
755 }
756 #endif
757 
assign_fw(struct firmware * fw,struct device * device)758 int assign_fw(struct firmware *fw, struct device *device)
759 {
760 	struct fw_priv *fw_priv = fw->priv;
761 	int ret;
762 
763 	mutex_lock(&fw_lock);
764 	if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
765 		mutex_unlock(&fw_lock);
766 		return -ENOENT;
767 	}
768 
769 	/*
770 	 * add firmware name into devres list so that we can auto cache
771 	 * and uncache firmware for device.
772 	 *
773 	 * device may has been deleted already, but the problem
774 	 * should be fixed in devres or driver core.
775 	 */
776 	/* don't cache firmware handled without uevent */
777 	if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
778 	    !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
779 		ret = fw_add_devm_name(device, fw_priv->fw_name);
780 		if (ret) {
781 			mutex_unlock(&fw_lock);
782 			return ret;
783 		}
784 	}
785 
786 	/*
787 	 * After caching firmware image is started, let it piggyback
788 	 * on request firmware.
789 	 */
790 	if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
791 	    fw_priv->fwc->state == FW_LOADER_START_CACHE)
792 		fw_cache_piggyback_on_request(fw_priv);
793 
794 	/* pass the pages buffer to driver at the last minute */
795 	fw_set_page_data(fw_priv, fw);
796 	mutex_unlock(&fw_lock);
797 	return 0;
798 }
799 
800 /* prepare firmware and firmware_buf structs;
801  * return 0 if a firmware is already assigned, 1 if need to load one,
802  * or a negative error code
803  */
804 static int
_request_firmware_prepare(struct firmware ** firmware_p,const char * name,struct device * device,void * dbuf,size_t size,size_t offset,u32 opt_flags)805 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
806 			  struct device *device, void *dbuf, size_t size,
807 			  size_t offset, u32 opt_flags)
808 {
809 	struct firmware *firmware;
810 	struct fw_priv *fw_priv;
811 	int ret;
812 
813 	*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
814 	if (!firmware) {
815 		dev_err(device, "%s: kmalloc(struct firmware) failed\n",
816 			__func__);
817 		return -ENOMEM;
818 	}
819 
820 	if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
821 		dev_dbg(device, "using built-in %s\n", name);
822 		return 0; /* assigned */
823 	}
824 
825 	ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
826 				   offset, opt_flags);
827 
828 	/*
829 	 * bind with 'priv' now to avoid warning in failure path
830 	 * of requesting firmware.
831 	 */
832 	firmware->priv = fw_priv;
833 
834 	if (ret > 0) {
835 		ret = fw_state_wait(fw_priv);
836 		if (!ret) {
837 			fw_set_page_data(fw_priv, firmware);
838 			return 0; /* assigned */
839 		}
840 	}
841 
842 	if (ret < 0)
843 		return ret;
844 	return 1; /* need to load */
845 }
846 
847 /*
848  * Batched requests need only one wake, we need to do this step last due to the
849  * fallback mechanism. The buf is protected with kref_get(), and it won't be
850  * released until the last user calls release_firmware().
851  *
852  * Failed batched requests are possible as well, in such cases we just share
853  * the struct fw_priv and won't release it until all requests are woken
854  * and have gone through this same path.
855  */
fw_abort_batch_reqs(struct firmware * fw)856 static void fw_abort_batch_reqs(struct firmware *fw)
857 {
858 	struct fw_priv *fw_priv;
859 
860 	/* Loaded directly? */
861 	if (!fw || !fw->priv)
862 		return;
863 
864 	fw_priv = fw->priv;
865 	mutex_lock(&fw_lock);
866 	if (!fw_state_is_aborted(fw_priv))
867 		fw_state_aborted(fw_priv);
868 	mutex_unlock(&fw_lock);
869 }
870 
871 #if defined(CONFIG_FW_LOADER_DEBUG)
872 #include <crypto/hash.h>
873 #include <crypto/sha2.h>
874 
fw_log_firmware_info(const struct firmware * fw,const char * name,struct device * device)875 static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
876 {
877 	struct shash_desc *shash;
878 	struct crypto_shash *alg;
879 	u8 *sha256buf;
880 	char *outbuf;
881 
882 	alg = crypto_alloc_shash("sha256", 0, 0);
883 	if (IS_ERR(alg))
884 		return;
885 
886 	sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
887 	outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL);
888 	shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL);
889 	if (!sha256buf || !outbuf || !shash)
890 		goto out_free;
891 
892 	shash->tfm = alg;
893 
894 	if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0)
895 		goto out_shash;
896 
897 	for (int i = 0; i < SHA256_DIGEST_SIZE; i++)
898 		sprintf(&outbuf[i * 2], "%02x", sha256buf[i]);
899 	outbuf[SHA256_BLOCK_SIZE] = 0;
900 	dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf);
901 
902 out_shash:
903 	crypto_free_shash(alg);
904 out_free:
905 	kfree(shash);
906 	kfree(outbuf);
907 	kfree(sha256buf);
908 }
909 #else
fw_log_firmware_info(const struct firmware * fw,const char * name,struct device * device)910 static void fw_log_firmware_info(const struct firmware *fw, const char *name,
911 				 struct device *device)
912 {}
913 #endif
914 
915 /* called from request_firmware() and request_firmware_work_func() */
916 static int
_request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset,u32 opt_flags)917 _request_firmware(const struct firmware **firmware_p, const char *name,
918 		  struct device *device, void *buf, size_t size,
919 		  size_t offset, u32 opt_flags)
920 {
921 	struct firmware *fw = NULL;
922 	struct cred *kern_cred = NULL;
923 	const struct cred *old_cred;
924 	bool nondirect = false;
925 	int ret;
926 
927 	if (!firmware_p)
928 		return -EINVAL;
929 
930 	if (!name || name[0] == '\0') {
931 		ret = -EINVAL;
932 		goto out;
933 	}
934 
935 	ret = _request_firmware_prepare(&fw, name, device, buf, size,
936 					offset, opt_flags);
937 	if (ret <= 0) /* error or already assigned */
938 		goto out;
939 
940 	/*
941 	 * We are about to try to access the firmware file. Because we may have been
942 	 * called by a driver when serving an unrelated request from userland, we use
943 	 * the kernel credentials to read the file.
944 	 */
945 	kern_cred = prepare_kernel_cred(&init_task);
946 	if (!kern_cred) {
947 		ret = -ENOMEM;
948 		goto out;
949 	}
950 	old_cred = override_creds(kern_cred);
951 
952 	ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
953 
954 	/* Only full reads can support decompression, platform, and sysfs. */
955 	if (!(opt_flags & FW_OPT_PARTIAL))
956 		nondirect = true;
957 
958 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
959 	if (ret == -ENOENT && nondirect)
960 		ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
961 						 fw_decompress_zstd);
962 #endif
963 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
964 	if (ret == -ENOENT && nondirect)
965 		ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
966 						 fw_decompress_xz);
967 #endif
968 	if (ret == -ENOENT && nondirect)
969 		ret = firmware_fallback_platform(fw->priv);
970 
971 	if (ret) {
972 		if (!(opt_flags & FW_OPT_NO_WARN))
973 			dev_warn(device,
974 				 "Direct firmware load for %s failed with error %d\n",
975 				 name, ret);
976 		if (nondirect)
977 			ret = firmware_fallback_sysfs(fw, name, device,
978 						      opt_flags, ret);
979 	} else
980 		ret = assign_fw(fw, device);
981 
982 	revert_creds(old_cred);
983 	put_cred(kern_cred);
984 
985 out:
986 	if (ret < 0) {
987 		fw_abort_batch_reqs(fw);
988 		release_firmware(fw);
989 		fw = NULL;
990 	} else {
991 		fw_log_firmware_info(fw, name, device);
992 	}
993 
994 	*firmware_p = fw;
995 	return ret;
996 }
997 
998 /**
999  * request_firmware() - send firmware request and wait for it
1000  * @firmware_p: pointer to firmware image
1001  * @name: name of firmware file
1002  * @device: device for which firmware is being loaded
1003  *
1004  *      @firmware_p will be used to return a firmware image by the name
1005  *      of @name for device @device.
1006  *
1007  *      Should be called from user context where sleeping is allowed.
1008  *
1009  *      @name will be used as $FIRMWARE in the uevent environment and
1010  *      should be distinctive enough not to be confused with any other
1011  *      firmware image for this or any other device.
1012  *
1013  *	Caller must hold the reference count of @device.
1014  *
1015  *	The function can be called safely inside device's suspend and
1016  *	resume callback.
1017  **/
1018 int
request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device)1019 request_firmware(const struct firmware **firmware_p, const char *name,
1020 		 struct device *device)
1021 {
1022 	int ret;
1023 
1024 	/* Need to pin this module until return */
1025 	__module_get(THIS_MODULE);
1026 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1027 				FW_OPT_UEVENT);
1028 	module_put(THIS_MODULE);
1029 	return ret;
1030 }
1031 EXPORT_SYMBOL(request_firmware);
1032 
1033 /**
1034  * firmware_request_nowarn() - request for an optional fw module
1035  * @firmware: pointer to firmware image
1036  * @name: name of firmware file
1037  * @device: device for which firmware is being loaded
1038  *
1039  * This function is similar in behaviour to request_firmware(), except it
1040  * doesn't produce warning messages when the file is not found. The sysfs
1041  * fallback mechanism is enabled if direct filesystem lookup fails. However,
1042  * failures to find the firmware file with it are still suppressed. It is
1043  * therefore up to the driver to check for the return value of this call and to
1044  * decide when to inform the users of errors.
1045  **/
firmware_request_nowarn(const struct firmware ** firmware,const char * name,struct device * device)1046 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
1047 			    struct device *device)
1048 {
1049 	int ret;
1050 
1051 	/* Need to pin this module until return */
1052 	__module_get(THIS_MODULE);
1053 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1054 				FW_OPT_UEVENT | FW_OPT_NO_WARN);
1055 	module_put(THIS_MODULE);
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
1059 
1060 /**
1061  * request_firmware_direct() - load firmware directly without usermode helper
1062  * @firmware_p: pointer to firmware image
1063  * @name: name of firmware file
1064  * @device: device for which firmware is being loaded
1065  *
1066  * This function works pretty much like request_firmware(), but this doesn't
1067  * fall back to usermode helper even if the firmware couldn't be loaded
1068  * directly from fs.  Hence it's useful for loading optional firmwares, which
1069  * aren't always present, without extra long timeouts of udev.
1070  **/
request_firmware_direct(const struct firmware ** firmware_p,const char * name,struct device * device)1071 int request_firmware_direct(const struct firmware **firmware_p,
1072 			    const char *name, struct device *device)
1073 {
1074 	int ret;
1075 
1076 	__module_get(THIS_MODULE);
1077 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1078 				FW_OPT_UEVENT | FW_OPT_NO_WARN |
1079 				FW_OPT_NOFALLBACK_SYSFS);
1080 	module_put(THIS_MODULE);
1081 	return ret;
1082 }
1083 EXPORT_SYMBOL_GPL(request_firmware_direct);
1084 
1085 /**
1086  * firmware_request_platform() - request firmware with platform-fw fallback
1087  * @firmware: pointer to firmware image
1088  * @name: name of firmware file
1089  * @device: device for which firmware is being loaded
1090  *
1091  * This function is similar in behaviour to request_firmware, except that if
1092  * direct filesystem lookup fails, it will fallback to looking for a copy of the
1093  * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1094  **/
firmware_request_platform(const struct firmware ** firmware,const char * name,struct device * device)1095 int firmware_request_platform(const struct firmware **firmware,
1096 			      const char *name, struct device *device)
1097 {
1098 	int ret;
1099 
1100 	/* Need to pin this module until return */
1101 	__module_get(THIS_MODULE);
1102 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1103 				FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1104 	module_put(THIS_MODULE);
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(firmware_request_platform);
1108 
1109 /**
1110  * firmware_request_cache() - cache firmware for suspend so resume can use it
1111  * @name: name of firmware file
1112  * @device: device for which firmware should be cached for
1113  *
1114  * There are some devices with an optimization that enables the device to not
1115  * require loading firmware on system reboot. This optimization may still
1116  * require the firmware present on resume from suspend. This routine can be
1117  * used to ensure the firmware is present on resume from suspend in these
1118  * situations. This helper is not compatible with drivers which use
1119  * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1120  **/
firmware_request_cache(struct device * device,const char * name)1121 int firmware_request_cache(struct device *device, const char *name)
1122 {
1123 	int ret;
1124 
1125 	mutex_lock(&fw_lock);
1126 	ret = fw_add_devm_name(device, name);
1127 	mutex_unlock(&fw_lock);
1128 
1129 	return ret;
1130 }
1131 EXPORT_SYMBOL_GPL(firmware_request_cache);
1132 
1133 /**
1134  * request_firmware_into_buf() - load firmware into a previously allocated buffer
1135  * @firmware_p: pointer to firmware image
1136  * @name: name of firmware file
1137  * @device: device for which firmware is being loaded and DMA region allocated
1138  * @buf: address of buffer to load firmware into
1139  * @size: size of buffer
1140  *
1141  * This function works pretty much like request_firmware(), but it doesn't
1142  * allocate a buffer to hold the firmware data. Instead, the firmware
1143  * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1144  * data member is pointed at @buf.
1145  *
1146  * This function doesn't cache firmware either.
1147  */
1148 int
request_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size)1149 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1150 			  struct device *device, void *buf, size_t size)
1151 {
1152 	int ret;
1153 
1154 	if (fw_cache_is_setup(device, name))
1155 		return -EOPNOTSUPP;
1156 
1157 	__module_get(THIS_MODULE);
1158 	ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1159 				FW_OPT_UEVENT | FW_OPT_NOCACHE);
1160 	module_put(THIS_MODULE);
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL(request_firmware_into_buf);
1164 
1165 /**
1166  * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1167  * @firmware_p: pointer to firmware image
1168  * @name: name of firmware file
1169  * @device: device for which firmware is being loaded and DMA region allocated
1170  * @buf: address of buffer to load firmware into
1171  * @size: size of buffer
1172  * @offset: offset into file to read
1173  *
1174  * This function works pretty much like request_firmware_into_buf except
1175  * it allows a partial read of the file.
1176  */
1177 int
request_partial_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset)1178 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1179 				  const char *name, struct device *device,
1180 				  void *buf, size_t size, size_t offset)
1181 {
1182 	int ret;
1183 
1184 	if (fw_cache_is_setup(device, name))
1185 		return -EOPNOTSUPP;
1186 
1187 	__module_get(THIS_MODULE);
1188 	ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1189 				FW_OPT_UEVENT | FW_OPT_NOCACHE |
1190 				FW_OPT_PARTIAL);
1191 	module_put(THIS_MODULE);
1192 	return ret;
1193 }
1194 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1195 
1196 /**
1197  * release_firmware() - release the resource associated with a firmware image
1198  * @fw: firmware resource to release
1199  **/
release_firmware(const struct firmware * fw)1200 void release_firmware(const struct firmware *fw)
1201 {
1202 	if (fw) {
1203 		if (!firmware_is_builtin(fw))
1204 			firmware_free_data(fw);
1205 		kfree(fw);
1206 	}
1207 }
1208 EXPORT_SYMBOL(release_firmware);
1209 
1210 /* Async support */
1211 struct firmware_work {
1212 	struct work_struct work;
1213 	struct module *module;
1214 	const char *name;
1215 	struct device *device;
1216 	void *context;
1217 	void (*cont)(const struct firmware *fw, void *context);
1218 	u32 opt_flags;
1219 };
1220 
request_firmware_work_func(struct work_struct * work)1221 static void request_firmware_work_func(struct work_struct *work)
1222 {
1223 	struct firmware_work *fw_work;
1224 	const struct firmware *fw;
1225 
1226 	fw_work = container_of(work, struct firmware_work, work);
1227 
1228 	_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1229 			  fw_work->opt_flags);
1230 	fw_work->cont(fw, fw_work->context);
1231 	put_device(fw_work->device); /* taken in request_firmware_nowait() */
1232 
1233 	module_put(fw_work->module);
1234 	kfree_const(fw_work->name);
1235 	kfree(fw_work);
1236 }
1237 
1238 /**
1239  * request_firmware_nowait() - asynchronous version of request_firmware
1240  * @module: module requesting the firmware
1241  * @uevent: sends uevent to copy the firmware image if this flag
1242  *	is non-zero else the firmware copy must be done manually.
1243  * @name: name of firmware file
1244  * @device: device for which firmware is being loaded
1245  * @gfp: allocation flags
1246  * @context: will be passed over to @cont, and
1247  *	@fw may be %NULL if firmware request fails.
1248  * @cont: function will be called asynchronously when the firmware
1249  *	request is over.
1250  *
1251  *	Caller must hold the reference count of @device.
1252  *
1253  *	Asynchronous variant of request_firmware() for user contexts:
1254  *		- sleep for as small periods as possible since it may
1255  *		  increase kernel boot time of built-in device drivers
1256  *		  requesting firmware in their ->probe() methods, if
1257  *		  @gfp is GFP_KERNEL.
1258  *
1259  *		- can't sleep at all if @gfp is GFP_ATOMIC.
1260  **/
1261 int
request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1262 request_firmware_nowait(
1263 	struct module *module, bool uevent,
1264 	const char *name, struct device *device, gfp_t gfp, void *context,
1265 	void (*cont)(const struct firmware *fw, void *context))
1266 {
1267 	struct firmware_work *fw_work;
1268 
1269 	fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1270 	if (!fw_work)
1271 		return -ENOMEM;
1272 
1273 	fw_work->module = module;
1274 	fw_work->name = kstrdup_const(name, gfp);
1275 	if (!fw_work->name) {
1276 		kfree(fw_work);
1277 		return -ENOMEM;
1278 	}
1279 	fw_work->device = device;
1280 	fw_work->context = context;
1281 	fw_work->cont = cont;
1282 	fw_work->opt_flags = FW_OPT_NOWAIT |
1283 		(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1284 
1285 	if (!uevent && fw_cache_is_setup(device, name)) {
1286 		kfree_const(fw_work->name);
1287 		kfree(fw_work);
1288 		return -EOPNOTSUPP;
1289 	}
1290 
1291 	if (!try_module_get(module)) {
1292 		kfree_const(fw_work->name);
1293 		kfree(fw_work);
1294 		return -EFAULT;
1295 	}
1296 
1297 	get_device(fw_work->device);
1298 	INIT_WORK(&fw_work->work, request_firmware_work_func);
1299 	schedule_work(&fw_work->work);
1300 	return 0;
1301 }
1302 EXPORT_SYMBOL(request_firmware_nowait);
1303 
1304 #ifdef CONFIG_FW_CACHE
1305 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1306 
1307 /**
1308  * cache_firmware() - cache one firmware image in kernel memory space
1309  * @fw_name: the firmware image name
1310  *
1311  * Cache firmware in kernel memory so that drivers can use it when
1312  * system isn't ready for them to request firmware image from userspace.
1313  * Once it returns successfully, driver can use request_firmware or its
1314  * nowait version to get the cached firmware without any interacting
1315  * with userspace
1316  *
1317  * Return 0 if the firmware image has been cached successfully
1318  * Return !0 otherwise
1319  *
1320  */
cache_firmware(const char * fw_name)1321 static int cache_firmware(const char *fw_name)
1322 {
1323 	int ret;
1324 	const struct firmware *fw;
1325 
1326 	pr_debug("%s: %s\n", __func__, fw_name);
1327 
1328 	ret = request_firmware(&fw, fw_name, NULL);
1329 	if (!ret)
1330 		kfree(fw);
1331 
1332 	pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1333 
1334 	return ret;
1335 }
1336 
lookup_fw_priv(const char * fw_name)1337 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1338 {
1339 	struct fw_priv *tmp;
1340 	struct firmware_cache *fwc = &fw_cache;
1341 
1342 	spin_lock(&fwc->lock);
1343 	tmp = __lookup_fw_priv(fw_name);
1344 	spin_unlock(&fwc->lock);
1345 
1346 	return tmp;
1347 }
1348 
1349 /**
1350  * uncache_firmware() - remove one cached firmware image
1351  * @fw_name: the firmware image name
1352  *
1353  * Uncache one firmware image which has been cached successfully
1354  * before.
1355  *
1356  * Return 0 if the firmware cache has been removed successfully
1357  * Return !0 otherwise
1358  *
1359  */
uncache_firmware(const char * fw_name)1360 static int uncache_firmware(const char *fw_name)
1361 {
1362 	struct fw_priv *fw_priv;
1363 	struct firmware fw;
1364 
1365 	pr_debug("%s: %s\n", __func__, fw_name);
1366 
1367 	if (firmware_request_builtin(&fw, fw_name))
1368 		return 0;
1369 
1370 	fw_priv = lookup_fw_priv(fw_name);
1371 	if (fw_priv) {
1372 		free_fw_priv(fw_priv);
1373 		return 0;
1374 	}
1375 
1376 	return -EINVAL;
1377 }
1378 
alloc_fw_cache_entry(const char * name)1379 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1380 {
1381 	struct fw_cache_entry *fce;
1382 
1383 	fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1384 	if (!fce)
1385 		goto exit;
1386 
1387 	fce->name = kstrdup_const(name, GFP_ATOMIC);
1388 	if (!fce->name) {
1389 		kfree(fce);
1390 		fce = NULL;
1391 		goto exit;
1392 	}
1393 exit:
1394 	return fce;
1395 }
1396 
__fw_entry_found(const char * name)1397 static int __fw_entry_found(const char *name)
1398 {
1399 	struct firmware_cache *fwc = &fw_cache;
1400 	struct fw_cache_entry *fce;
1401 
1402 	list_for_each_entry(fce, &fwc->fw_names, list) {
1403 		if (!strcmp(fce->name, name))
1404 			return 1;
1405 	}
1406 	return 0;
1407 }
1408 
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1409 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1410 {
1411 	const char *name = fw_priv->fw_name;
1412 	struct firmware_cache *fwc = fw_priv->fwc;
1413 	struct fw_cache_entry *fce;
1414 
1415 	spin_lock(&fwc->name_lock);
1416 	if (__fw_entry_found(name))
1417 		goto found;
1418 
1419 	fce = alloc_fw_cache_entry(name);
1420 	if (fce) {
1421 		list_add(&fce->list, &fwc->fw_names);
1422 		kref_get(&fw_priv->ref);
1423 		pr_debug("%s: fw: %s\n", __func__, name);
1424 	}
1425 found:
1426 	spin_unlock(&fwc->name_lock);
1427 }
1428 
free_fw_cache_entry(struct fw_cache_entry * fce)1429 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1430 {
1431 	kfree_const(fce->name);
1432 	kfree(fce);
1433 }
1434 
__async_dev_cache_fw_image(void * fw_entry,async_cookie_t cookie)1435 static void __async_dev_cache_fw_image(void *fw_entry,
1436 				       async_cookie_t cookie)
1437 {
1438 	struct fw_cache_entry *fce = fw_entry;
1439 	struct firmware_cache *fwc = &fw_cache;
1440 	int ret;
1441 
1442 	ret = cache_firmware(fce->name);
1443 	if (ret) {
1444 		spin_lock(&fwc->name_lock);
1445 		list_del(&fce->list);
1446 		spin_unlock(&fwc->name_lock);
1447 
1448 		free_fw_cache_entry(fce);
1449 	}
1450 }
1451 
1452 /* called with dev->devres_lock held */
dev_create_fw_entry(struct device * dev,void * res,void * data)1453 static void dev_create_fw_entry(struct device *dev, void *res,
1454 				void *data)
1455 {
1456 	struct fw_name_devm *fwn = res;
1457 	const char *fw_name = fwn->name;
1458 	struct list_head *head = data;
1459 	struct fw_cache_entry *fce;
1460 
1461 	fce = alloc_fw_cache_entry(fw_name);
1462 	if (fce)
1463 		list_add(&fce->list, head);
1464 }
1465 
devm_name_match(struct device * dev,void * res,void * match_data)1466 static int devm_name_match(struct device *dev, void *res,
1467 			   void *match_data)
1468 {
1469 	struct fw_name_devm *fwn = res;
1470 	return (fwn->magic == (unsigned long)match_data);
1471 }
1472 
dev_cache_fw_image(struct device * dev,void * data)1473 static void dev_cache_fw_image(struct device *dev, void *data)
1474 {
1475 	LIST_HEAD(todo);
1476 	struct fw_cache_entry *fce;
1477 	struct fw_cache_entry *fce_next;
1478 	struct firmware_cache *fwc = &fw_cache;
1479 
1480 	devres_for_each_res(dev, fw_name_devm_release,
1481 			    devm_name_match, &fw_cache,
1482 			    dev_create_fw_entry, &todo);
1483 
1484 	list_for_each_entry_safe(fce, fce_next, &todo, list) {
1485 		list_del(&fce->list);
1486 
1487 		spin_lock(&fwc->name_lock);
1488 		/* only one cache entry for one firmware */
1489 		if (!__fw_entry_found(fce->name)) {
1490 			list_add(&fce->list, &fwc->fw_names);
1491 		} else {
1492 			free_fw_cache_entry(fce);
1493 			fce = NULL;
1494 		}
1495 		spin_unlock(&fwc->name_lock);
1496 
1497 		if (fce)
1498 			async_schedule_domain(__async_dev_cache_fw_image,
1499 					      (void *)fce,
1500 					      &fw_cache_domain);
1501 	}
1502 }
1503 
__device_uncache_fw_images(void)1504 static void __device_uncache_fw_images(void)
1505 {
1506 	struct firmware_cache *fwc = &fw_cache;
1507 	struct fw_cache_entry *fce;
1508 
1509 	spin_lock(&fwc->name_lock);
1510 	while (!list_empty(&fwc->fw_names)) {
1511 		fce = list_entry(fwc->fw_names.next,
1512 				struct fw_cache_entry, list);
1513 		list_del(&fce->list);
1514 		spin_unlock(&fwc->name_lock);
1515 
1516 		uncache_firmware(fce->name);
1517 		free_fw_cache_entry(fce);
1518 
1519 		spin_lock(&fwc->name_lock);
1520 	}
1521 	spin_unlock(&fwc->name_lock);
1522 }
1523 
1524 /**
1525  * device_cache_fw_images() - cache devices' firmware
1526  *
1527  * If one device called request_firmware or its nowait version
1528  * successfully before, the firmware names are recored into the
1529  * device's devres link list, so device_cache_fw_images can call
1530  * cache_firmware() to cache these firmwares for the device,
1531  * then the device driver can load its firmwares easily at
1532  * time when system is not ready to complete loading firmware.
1533  */
device_cache_fw_images(void)1534 static void device_cache_fw_images(void)
1535 {
1536 	struct firmware_cache *fwc = &fw_cache;
1537 	DEFINE_WAIT(wait);
1538 
1539 	pr_debug("%s\n", __func__);
1540 
1541 	/* cancel uncache work */
1542 	cancel_delayed_work_sync(&fwc->work);
1543 
1544 	fw_fallback_set_cache_timeout();
1545 
1546 	mutex_lock(&fw_lock);
1547 	fwc->state = FW_LOADER_START_CACHE;
1548 	dpm_for_each_dev(NULL, dev_cache_fw_image);
1549 	mutex_unlock(&fw_lock);
1550 
1551 	/* wait for completion of caching firmware for all devices */
1552 	async_synchronize_full_domain(&fw_cache_domain);
1553 
1554 	fw_fallback_set_default_timeout();
1555 }
1556 
1557 /**
1558  * device_uncache_fw_images() - uncache devices' firmware
1559  *
1560  * uncache all firmwares which have been cached successfully
1561  * by device_uncache_fw_images earlier
1562  */
device_uncache_fw_images(void)1563 static void device_uncache_fw_images(void)
1564 {
1565 	pr_debug("%s\n", __func__);
1566 	__device_uncache_fw_images();
1567 }
1568 
device_uncache_fw_images_work(struct work_struct * work)1569 static void device_uncache_fw_images_work(struct work_struct *work)
1570 {
1571 	device_uncache_fw_images();
1572 }
1573 
1574 /**
1575  * device_uncache_fw_images_delay() - uncache devices firmwares
1576  * @delay: number of milliseconds to delay uncache device firmwares
1577  *
1578  * uncache all devices's firmwares which has been cached successfully
1579  * by device_cache_fw_images after @delay milliseconds.
1580  */
device_uncache_fw_images_delay(unsigned long delay)1581 static void device_uncache_fw_images_delay(unsigned long delay)
1582 {
1583 	queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1584 			   msecs_to_jiffies(delay));
1585 }
1586 
fw_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1587 static int fw_pm_notify(struct notifier_block *notify_block,
1588 			unsigned long mode, void *unused)
1589 {
1590 	switch (mode) {
1591 	case PM_HIBERNATION_PREPARE:
1592 	case PM_SUSPEND_PREPARE:
1593 	case PM_RESTORE_PREPARE:
1594 		/*
1595 		 * kill pending fallback requests with a custom fallback
1596 		 * to avoid stalling suspend.
1597 		 */
1598 		kill_pending_fw_fallback_reqs(true);
1599 		device_cache_fw_images();
1600 		break;
1601 
1602 	case PM_POST_SUSPEND:
1603 	case PM_POST_HIBERNATION:
1604 	case PM_POST_RESTORE:
1605 		/*
1606 		 * In case that system sleep failed and syscore_suspend is
1607 		 * not called.
1608 		 */
1609 		mutex_lock(&fw_lock);
1610 		fw_cache.state = FW_LOADER_NO_CACHE;
1611 		mutex_unlock(&fw_lock);
1612 
1613 		device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1614 		break;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 /* stop caching firmware once syscore_suspend is reached */
fw_suspend(void)1621 static int fw_suspend(void)
1622 {
1623 	fw_cache.state = FW_LOADER_NO_CACHE;
1624 	return 0;
1625 }
1626 
1627 static struct syscore_ops fw_syscore_ops = {
1628 	.suspend = fw_suspend,
1629 };
1630 
register_fw_pm_ops(void)1631 static int __init register_fw_pm_ops(void)
1632 {
1633 	int ret;
1634 
1635 	spin_lock_init(&fw_cache.name_lock);
1636 	INIT_LIST_HEAD(&fw_cache.fw_names);
1637 
1638 	INIT_DELAYED_WORK(&fw_cache.work,
1639 			  device_uncache_fw_images_work);
1640 
1641 	fw_cache.pm_notify.notifier_call = fw_pm_notify;
1642 	ret = register_pm_notifier(&fw_cache.pm_notify);
1643 	if (ret)
1644 		return ret;
1645 
1646 	register_syscore_ops(&fw_syscore_ops);
1647 
1648 	return ret;
1649 }
1650 
unregister_fw_pm_ops(void)1651 static inline void unregister_fw_pm_ops(void)
1652 {
1653 	unregister_syscore_ops(&fw_syscore_ops);
1654 	unregister_pm_notifier(&fw_cache.pm_notify);
1655 }
1656 #else
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1657 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1658 {
1659 }
register_fw_pm_ops(void)1660 static inline int register_fw_pm_ops(void)
1661 {
1662 	return 0;
1663 }
unregister_fw_pm_ops(void)1664 static inline void unregister_fw_pm_ops(void)
1665 {
1666 }
1667 #endif
1668 
fw_cache_init(void)1669 static void __init fw_cache_init(void)
1670 {
1671 	spin_lock_init(&fw_cache.lock);
1672 	INIT_LIST_HEAD(&fw_cache.head);
1673 	fw_cache.state = FW_LOADER_NO_CACHE;
1674 }
1675 
fw_shutdown_notify(struct notifier_block * unused1,unsigned long unused2,void * unused3)1676 static int fw_shutdown_notify(struct notifier_block *unused1,
1677 			      unsigned long unused2, void *unused3)
1678 {
1679 	/*
1680 	 * Kill all pending fallback requests to avoid both stalling shutdown,
1681 	 * and avoid a deadlock with the usermode_lock.
1682 	 */
1683 	kill_pending_fw_fallback_reqs(false);
1684 
1685 	return NOTIFY_DONE;
1686 }
1687 
1688 static struct notifier_block fw_shutdown_nb = {
1689 	.notifier_call = fw_shutdown_notify,
1690 };
1691 
firmware_class_init(void)1692 static int __init firmware_class_init(void)
1693 {
1694 	int ret;
1695 
1696 	/* No need to unfold these on exit */
1697 	fw_cache_init();
1698 
1699 	ret = register_fw_pm_ops();
1700 	if (ret)
1701 		return ret;
1702 
1703 	ret = register_reboot_notifier(&fw_shutdown_nb);
1704 	if (ret)
1705 		goto out;
1706 
1707 	return register_sysfs_loader();
1708 
1709 out:
1710 	unregister_fw_pm_ops();
1711 	return ret;
1712 }
1713 
firmware_class_exit(void)1714 static void __exit firmware_class_exit(void)
1715 {
1716 	unregister_fw_pm_ops();
1717 	unregister_reboot_notifier(&fw_shutdown_nb);
1718 	unregister_sysfs_loader();
1719 }
1720 
1721 fs_initcall(firmware_class_init);
1722 module_exit(firmware_class_exit);
1723