• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "priv.h"
23 #include "chan.h"
24 #include "hdmi.h"
25 #include "head.h"
26 #include "ior.h"
27 #include "outp.h"
28 
29 #include <core/client.h>
30 #include <core/gpuobj.h>
31 #include <core/ramht.h>
32 #include <subdev/timer.h>
33 
34 #include <nvif/class.h>
35 #include <nvif/unpack.h>
36 
37 static void
gv100_sor_hda_device_entry(struct nvkm_ior * ior,int head)38 gv100_sor_hda_device_entry(struct nvkm_ior *ior, int head)
39 {
40 	struct nvkm_device *device = ior->disp->engine.subdev.device;
41 	const u32 hoff = 0x800 * head;
42 
43 	nvkm_mask(device, 0x616528 + hoff, 0x00000070, head << 4);
44 }
45 
46 const struct nvkm_ior_func_hda
47 gv100_sor_hda = {
48 	.hpd = gf119_sor_hda_hpd,
49 	.eld = gf119_sor_hda_eld,
50 	.device_entry = gv100_sor_hda_device_entry,
51 };
52 
53 void
gv100_sor_dp_watermark(struct nvkm_ior * sor,int head,u8 watermark)54 gv100_sor_dp_watermark(struct nvkm_ior *sor, int head, u8 watermark)
55 {
56 	struct nvkm_device *device = sor->disp->engine.subdev.device;
57 	const u32 hoff = head * 0x800;
58 
59 	nvkm_mask(device, 0x616550 + hoff, 0x0c00003f, 0x08000000 | watermark);
60 }
61 
62 void
gv100_sor_dp_audio_sym(struct nvkm_ior * sor,int head,u16 h,u32 v)63 gv100_sor_dp_audio_sym(struct nvkm_ior *sor, int head, u16 h, u32 v)
64 {
65 	struct nvkm_device *device = sor->disp->engine.subdev.device;
66 	const u32 hoff = head * 0x800;
67 
68 	nvkm_mask(device, 0x616568 + hoff, 0x0000ffff, h);
69 	nvkm_mask(device, 0x61656c + hoff, 0x00ffffff, v);
70 }
71 
72 void
gv100_sor_dp_audio(struct nvkm_ior * sor,int head,bool enable)73 gv100_sor_dp_audio(struct nvkm_ior *sor, int head, bool enable)
74 {
75 	struct nvkm_device *device = sor->disp->engine.subdev.device;
76 	const u32 hoff = 0x800 * head;
77 	const u32 data = 0x80000000 | (0x00000001 * enable);
78 	const u32 mask = 0x8000000d;
79 
80 	nvkm_mask(device, 0x616560 + hoff, mask, data);
81 	nvkm_msec(device, 2000,
82 		if (!(nvkm_rd32(device, 0x616560 + hoff) & 0x80000000))
83 			break;
84 	);
85 }
86 
87 static const struct nvkm_ior_func_dp
88 gv100_sor_dp = {
89 	.lanes = { 0, 1, 2, 3 },
90 	.links = gf119_sor_dp_links,
91 	.power = g94_sor_dp_power,
92 	.pattern = gm107_sor_dp_pattern,
93 	.drive = gm200_sor_dp_drive,
94 	.audio = gv100_sor_dp_audio,
95 	.audio_sym = gv100_sor_dp_audio_sym,
96 	.watermark = gv100_sor_dp_watermark,
97 };
98 
99 static void
gv100_sor_hdmi_infoframe_vsi(struct nvkm_ior * ior,int head,void * data,u32 size)100 gv100_sor_hdmi_infoframe_vsi(struct nvkm_ior *ior, int head, void *data, u32 size)
101 {
102 	struct nvkm_device *device = ior->disp->engine.subdev.device;
103 	struct packed_hdmi_infoframe vsi;
104 	const u32 hoff = head * 0x400;
105 
106 	pack_hdmi_infoframe(&vsi, data, size);
107 
108 	nvkm_mask(device, 0x6f0100 + hoff, 0x00010001, 0x00000000);
109 	if (!size)
110 		return;
111 
112 	nvkm_wr32(device, 0x6f0108 + hoff, vsi.header);
113 	nvkm_wr32(device, 0x6f010c + hoff, vsi.subpack0_low);
114 	nvkm_wr32(device, 0x6f0110 + hoff, vsi.subpack0_high);
115 	nvkm_wr32(device, 0x6f0114 + hoff, 0x00000000);
116 	nvkm_wr32(device, 0x6f0118 + hoff, 0x00000000);
117 	nvkm_wr32(device, 0x6f011c + hoff, 0x00000000);
118 	nvkm_wr32(device, 0x6f0120 + hoff, 0x00000000);
119 	nvkm_wr32(device, 0x6f0124 + hoff, 0x00000000);
120 	nvkm_mask(device, 0x6f0100 + hoff, 0x00000001, 0x00000001);
121 }
122 
123 static void
gv100_sor_hdmi_infoframe_avi(struct nvkm_ior * ior,int head,void * data,u32 size)124 gv100_sor_hdmi_infoframe_avi(struct nvkm_ior *ior, int head, void *data, u32 size)
125 {
126 	struct nvkm_device *device = ior->disp->engine.subdev.device;
127 	struct packed_hdmi_infoframe avi;
128 	const u32 hoff = head * 0x400;
129 
130 	pack_hdmi_infoframe(&avi, data, size);
131 
132 	nvkm_mask(device, 0x6f0000 + hoff, 0x00000001, 0x00000000);
133 	if (!size)
134 		return;
135 
136 	nvkm_wr32(device, 0x6f0008 + hoff, avi.header);
137 	nvkm_wr32(device, 0x6f000c + hoff, avi.subpack0_low);
138 	nvkm_wr32(device, 0x6f0010 + hoff, avi.subpack0_high);
139 	nvkm_wr32(device, 0x6f0014 + hoff, avi.subpack1_low);
140 	nvkm_wr32(device, 0x6f0018 + hoff, avi.subpack1_high);
141 
142 	nvkm_mask(device, 0x6f0000 + hoff, 0x00000001, 0x00000001);
143 }
144 
145 static void
gv100_sor_hdmi_ctrl(struct nvkm_ior * ior,int head,bool enable,u8 max_ac_packet,u8 rekey)146 gv100_sor_hdmi_ctrl(struct nvkm_ior *ior, int head, bool enable, u8 max_ac_packet, u8 rekey)
147 {
148 	struct nvkm_device *device = ior->disp->engine.subdev.device;
149 	const u32 ctrl = 0x40000000 * enable |
150 			 max_ac_packet << 16 |
151 			 rekey;
152 	const u32 hoff = head * 0x800;
153 	const u32 hdmi = head * 0x400;
154 
155 	if (!(ctrl & 0x40000000)) {
156 		nvkm_mask(device, 0x6165c0 + hoff, 0x40000000, 0x00000000);
157 		nvkm_mask(device, 0x6f0100 + hdmi, 0x00000001, 0x00000000);
158 		nvkm_mask(device, 0x6f00c0 + hdmi, 0x00000001, 0x00000000);
159 		nvkm_mask(device, 0x6f0000 + hdmi, 0x00000001, 0x00000000);
160 		return;
161 	}
162 
163 	/* General Control (GCP). */
164 	nvkm_mask(device, 0x6f00c0 + hdmi, 0x00000001, 0x00000000);
165 	nvkm_wr32(device, 0x6f00cc + hdmi, 0x00000010);
166 	nvkm_mask(device, 0x6f00c0 + hdmi, 0x00000001, 0x00000001);
167 
168 	/* Audio Clock Regeneration (ACR). */
169 	nvkm_wr32(device, 0x6f0080 + hdmi, 0x82000000);
170 
171 	/* NV_PDISP_SF_HDMI_CTRL. */
172 	nvkm_mask(device, 0x6165c0 + hoff, 0x401f007f, ctrl);
173 }
174 
175 const struct nvkm_ior_func_hdmi
176 gv100_sor_hdmi = {
177 	.ctrl = gv100_sor_hdmi_ctrl,
178 	.scdc = gm200_sor_hdmi_scdc,
179 	.infoframe_avi = gv100_sor_hdmi_infoframe_avi,
180 	.infoframe_vsi = gv100_sor_hdmi_infoframe_vsi,
181 };
182 
183 void
gv100_sor_state(struct nvkm_ior * sor,struct nvkm_ior_state * state)184 gv100_sor_state(struct nvkm_ior *sor, struct nvkm_ior_state *state)
185 {
186 	struct nvkm_device *device = sor->disp->engine.subdev.device;
187 	const u32 coff = (state == &sor->arm) * 0x8000 + sor->id * 0x20;
188 	u32 ctrl = nvkm_rd32(device, 0x680300 + coff);
189 
190 	state->proto_evo = (ctrl & 0x00000f00) >> 8;
191 	switch (state->proto_evo) {
192 	case 0: state->proto = LVDS; state->link = 1; break;
193 	case 1: state->proto = TMDS; state->link = 1; break;
194 	case 2: state->proto = TMDS; state->link = 2; break;
195 	case 5: state->proto = TMDS; state->link = 3; break;
196 	case 8: state->proto =   DP; state->link = 1; break;
197 	case 9: state->proto =   DP; state->link = 2; break;
198 	default:
199 		state->proto = UNKNOWN;
200 		break;
201 	}
202 
203 	state->head = ctrl & 0x000000ff;
204 }
205 
206 static const struct nvkm_ior_func
207 gv100_sor = {
208 	.route = {
209 		.get = gm200_sor_route_get,
210 		.set = gm200_sor_route_set,
211 	},
212 	.state = gv100_sor_state,
213 	.power = nv50_sor_power,
214 	.clock = gf119_sor_clock,
215 	.hdmi = &gv100_sor_hdmi,
216 	.dp = &gv100_sor_dp,
217 	.hda = &gv100_sor_hda,
218 };
219 
220 static int
gv100_sor_new(struct nvkm_disp * disp,int id)221 gv100_sor_new(struct nvkm_disp *disp, int id)
222 {
223 	struct nvkm_device *device = disp->engine.subdev.device;
224 	u32 hda;
225 
226 	if (!((hda = nvkm_rd32(device, 0x08a15c)) & 0x40000000))
227 		hda = nvkm_rd32(device, 0x118fb0) >> 8;
228 
229 	return nvkm_ior_new_(&gv100_sor, disp, SOR, id, hda & BIT(id));
230 }
231 
232 int
gv100_sor_cnt(struct nvkm_disp * disp,unsigned long * pmask)233 gv100_sor_cnt(struct nvkm_disp *disp, unsigned long *pmask)
234 {
235 	struct nvkm_device *device = disp->engine.subdev.device;
236 
237 	*pmask = (nvkm_rd32(device, 0x610060) & 0x0000ff00) >> 8;
238 	return (nvkm_rd32(device, 0x610074) & 0x00000f00) >> 8;
239 }
240 
241 static void
gv100_head_vblank_put(struct nvkm_head * head)242 gv100_head_vblank_put(struct nvkm_head *head)
243 {
244 	struct nvkm_device *device = head->disp->engine.subdev.device;
245 	nvkm_mask(device, 0x611d80 + (head->id * 4), 0x00000004, 0x00000000);
246 }
247 
248 static void
gv100_head_vblank_get(struct nvkm_head * head)249 gv100_head_vblank_get(struct nvkm_head *head)
250 {
251 	struct nvkm_device *device = head->disp->engine.subdev.device;
252 	nvkm_mask(device, 0x611d80 + (head->id * 4), 0x00000004, 0x00000004);
253 }
254 
255 static void
gv100_head_rgpos(struct nvkm_head * head,u16 * hline,u16 * vline)256 gv100_head_rgpos(struct nvkm_head *head, u16 *hline, u16 *vline)
257 {
258 	struct nvkm_device *device = head->disp->engine.subdev.device;
259 	const u32 hoff = head->id * 0x800;
260 	/* vline read locks hline. */
261 	*vline = nvkm_rd32(device, 0x616330 + hoff) & 0x0000ffff;
262 	*hline = nvkm_rd32(device, 0x616334 + hoff) & 0x0000ffff;
263 }
264 
265 static void
gv100_head_state(struct nvkm_head * head,struct nvkm_head_state * state)266 gv100_head_state(struct nvkm_head *head, struct nvkm_head_state *state)
267 {
268 	struct nvkm_device *device = head->disp->engine.subdev.device;
269 	const u32 hoff = (state == &head->arm) * 0x8000 + head->id * 0x400;
270 	u32 data;
271 
272 	data = nvkm_rd32(device, 0x682064 + hoff);
273 	state->vtotal = (data & 0xffff0000) >> 16;
274 	state->htotal = (data & 0x0000ffff);
275 	data = nvkm_rd32(device, 0x682068 + hoff);
276 	state->vsynce = (data & 0xffff0000) >> 16;
277 	state->hsynce = (data & 0x0000ffff);
278 	data = nvkm_rd32(device, 0x68206c + hoff);
279 	state->vblanke = (data & 0xffff0000) >> 16;
280 	state->hblanke = (data & 0x0000ffff);
281 	data = nvkm_rd32(device, 0x682070 + hoff);
282 	state->vblanks = (data & 0xffff0000) >> 16;
283 	state->hblanks = (data & 0x0000ffff);
284 	state->hz = nvkm_rd32(device, 0x68200c + hoff);
285 
286 	data = nvkm_rd32(device, 0x682004 + hoff);
287 	switch ((data & 0x000000f0) >> 4) {
288 	case 5: state->or.depth = 30; break;
289 	case 4: state->or.depth = 24; break;
290 	case 1: state->or.depth = 18; break;
291 	default:
292 		state->or.depth = 18;
293 		WARN_ON(1);
294 		break;
295 	}
296 }
297 
298 static const struct nvkm_head_func
299 gv100_head = {
300 	.state = gv100_head_state,
301 	.rgpos = gv100_head_rgpos,
302 	.rgclk = gf119_head_rgclk,
303 	.vblank_get = gv100_head_vblank_get,
304 	.vblank_put = gv100_head_vblank_put,
305 };
306 
307 int
gv100_head_new(struct nvkm_disp * disp,int id)308 gv100_head_new(struct nvkm_disp *disp, int id)
309 {
310 	struct nvkm_device *device = disp->engine.subdev.device;
311 
312 	if (!(nvkm_rd32(device, 0x610060) & (0x00000001 << id)))
313 		return 0;
314 
315 	return nvkm_head_new_(&gv100_head, disp, id);
316 }
317 
318 int
gv100_head_cnt(struct nvkm_disp * disp,unsigned long * pmask)319 gv100_head_cnt(struct nvkm_disp *disp, unsigned long *pmask)
320 {
321 	struct nvkm_device *device = disp->engine.subdev.device;
322 
323 	*pmask = nvkm_rd32(device, 0x610060) & 0x000000ff;
324 	return nvkm_rd32(device, 0x610074) & 0x0000000f;
325 }
326 
327 const struct nvkm_event_func
328 gv100_disp_chan_uevent = {
329 };
330 
331 u64
gv100_disp_chan_user(struct nvkm_disp_chan * chan,u64 * psize)332 gv100_disp_chan_user(struct nvkm_disp_chan *chan, u64 *psize)
333 {
334 	*psize = 0x1000;
335 	return 0x690000 + ((chan->chid.user - 1) * 0x1000);
336 }
337 
338 static int
gv100_disp_dmac_idle(struct nvkm_disp_chan * chan)339 gv100_disp_dmac_idle(struct nvkm_disp_chan *chan)
340 {
341 	struct nvkm_device *device = chan->disp->engine.subdev.device;
342 	const u32 soff = (chan->chid.ctrl - 1) * 0x04;
343 	nvkm_msec(device, 2000,
344 		u32 stat = nvkm_rd32(device, 0x610664 + soff);
345 		if ((stat & 0x000f0000) == 0x00040000)
346 			return 0;
347 	);
348 	return -EBUSY;
349 }
350 
351 int
gv100_disp_dmac_bind(struct nvkm_disp_chan * chan,struct nvkm_object * object,u32 handle)352 gv100_disp_dmac_bind(struct nvkm_disp_chan *chan,
353 		     struct nvkm_object *object, u32 handle)
354 {
355 	return nvkm_ramht_insert(chan->disp->ramht, object, chan->chid.user, -9, handle,
356 				 chan->chid.user << 25 | 0x00000040);
357 }
358 
359 void
gv100_disp_dmac_fini(struct nvkm_disp_chan * chan)360 gv100_disp_dmac_fini(struct nvkm_disp_chan *chan)
361 {
362 	struct nvkm_device *device = chan->disp->engine.subdev.device;
363 	const u32 uoff = (chan->chid.ctrl - 1) * 0x1000;
364 	const u32 coff = chan->chid.ctrl * 0x04;
365 	nvkm_mask(device, 0x6104e0 + coff, 0x00000010, 0x00000000);
366 	gv100_disp_dmac_idle(chan);
367 	nvkm_mask(device, 0x6104e0 + coff, 0x00000002, 0x00000000);
368 	chan->suspend_put = nvkm_rd32(device, 0x690000 + uoff);
369 }
370 
371 int
gv100_disp_dmac_init(struct nvkm_disp_chan * chan)372 gv100_disp_dmac_init(struct nvkm_disp_chan *chan)
373 {
374 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
375 	struct nvkm_device *device = subdev->device;
376 	const u32 uoff = (chan->chid.ctrl - 1) * 0x1000;
377 	const u32 poff = chan->chid.ctrl * 0x10;
378 	const u32 coff = chan->chid.ctrl * 0x04;
379 
380 	nvkm_wr32(device, 0x610b24 + poff, lower_32_bits(chan->push));
381 	nvkm_wr32(device, 0x610b20 + poff, upper_32_bits(chan->push));
382 	nvkm_wr32(device, 0x610b28 + poff, 0x00000001);
383 	nvkm_wr32(device, 0x610b2c + poff, 0x00000040);
384 
385 	nvkm_mask(device, 0x6104e0 + coff, 0x00000010, 0x00000010);
386 	nvkm_wr32(device, 0x690000 + uoff, chan->suspend_put);
387 	nvkm_wr32(device, 0x6104e0 + coff, 0x00000013);
388 	return gv100_disp_dmac_idle(chan);
389 }
390 
391 static void
gv100_disp_wimm_intr(struct nvkm_disp_chan * chan,bool en)392 gv100_disp_wimm_intr(struct nvkm_disp_chan *chan, bool en)
393 {
394 	struct nvkm_device *device = chan->disp->engine.subdev.device;
395 	const u32 mask = 0x00000001 << chan->head;
396 	const u32 data = en ? mask : 0;
397 	nvkm_mask(device, 0x611da8, mask, data);
398 }
399 
400 static const struct nvkm_disp_chan_func
401 gv100_disp_wimm_func = {
402 	.push = nv50_disp_dmac_push,
403 	.init = gv100_disp_dmac_init,
404 	.fini = gv100_disp_dmac_fini,
405 	.intr = gv100_disp_wimm_intr,
406 	.user = gv100_disp_chan_user,
407 };
408 
409 const struct nvkm_disp_chan_user
410 gv100_disp_wimm = {
411 	.func = &gv100_disp_wimm_func,
412 	.ctrl = 33,
413 	.user = 33,
414 };
415 
416 static const struct nvkm_disp_mthd_list
417 gv100_disp_wndw_mthd_base = {
418 	.mthd = 0x0000,
419 	.addr = 0x000000,
420 	.data = {
421 		{ 0x0200, 0x690200 },
422 		{ 0x020c, 0x69020c },
423 		{ 0x0210, 0x690210 },
424 		{ 0x0214, 0x690214 },
425 		{ 0x0218, 0x690218 },
426 		{ 0x021c, 0x69021c },
427 		{ 0x0220, 0x690220 },
428 		{ 0x0224, 0x690224 },
429 		{ 0x0228, 0x690228 },
430 		{ 0x022c, 0x69022c },
431 		{ 0x0230, 0x690230 },
432 		{ 0x0234, 0x690234 },
433 		{ 0x0238, 0x690238 },
434 		{ 0x0240, 0x690240 },
435 		{ 0x0244, 0x690244 },
436 		{ 0x0248, 0x690248 },
437 		{ 0x024c, 0x69024c },
438 		{ 0x0250, 0x690250 },
439 		{ 0x0254, 0x690254 },
440 		{ 0x0260, 0x690260 },
441 		{ 0x0264, 0x690264 },
442 		{ 0x0268, 0x690268 },
443 		{ 0x026c, 0x69026c },
444 		{ 0x0270, 0x690270 },
445 		{ 0x0274, 0x690274 },
446 		{ 0x0280, 0x690280 },
447 		{ 0x0284, 0x690284 },
448 		{ 0x0288, 0x690288 },
449 		{ 0x028c, 0x69028c },
450 		{ 0x0290, 0x690290 },
451 		{ 0x0298, 0x690298 },
452 		{ 0x029c, 0x69029c },
453 		{ 0x02a0, 0x6902a0 },
454 		{ 0x02a4, 0x6902a4 },
455 		{ 0x02a8, 0x6902a8 },
456 		{ 0x02ac, 0x6902ac },
457 		{ 0x02b0, 0x6902b0 },
458 		{ 0x02b4, 0x6902b4 },
459 		{ 0x02b8, 0x6902b8 },
460 		{ 0x02bc, 0x6902bc },
461 		{ 0x02c0, 0x6902c0 },
462 		{ 0x02c4, 0x6902c4 },
463 		{ 0x02c8, 0x6902c8 },
464 		{ 0x02cc, 0x6902cc },
465 		{ 0x02d0, 0x6902d0 },
466 		{ 0x02d4, 0x6902d4 },
467 		{ 0x02d8, 0x6902d8 },
468 		{ 0x02dc, 0x6902dc },
469 		{ 0x02e0, 0x6902e0 },
470 		{ 0x02e4, 0x6902e4 },
471 		{ 0x02e8, 0x6902e8 },
472 		{ 0x02ec, 0x6902ec },
473 		{ 0x02f0, 0x6902f0 },
474 		{ 0x02f4, 0x6902f4 },
475 		{ 0x02f8, 0x6902f8 },
476 		{ 0x02fc, 0x6902fc },
477 		{ 0x0300, 0x690300 },
478 		{ 0x0304, 0x690304 },
479 		{ 0x0308, 0x690308 },
480 		{ 0x0310, 0x690310 },
481 		{ 0x0314, 0x690314 },
482 		{ 0x0318, 0x690318 },
483 		{ 0x031c, 0x69031c },
484 		{ 0x0320, 0x690320 },
485 		{ 0x0324, 0x690324 },
486 		{ 0x0328, 0x690328 },
487 		{ 0x032c, 0x69032c },
488 		{ 0x033c, 0x69033c },
489 		{ 0x0340, 0x690340 },
490 		{ 0x0344, 0x690344 },
491 		{ 0x0348, 0x690348 },
492 		{ 0x034c, 0x69034c },
493 		{ 0x0350, 0x690350 },
494 		{ 0x0354, 0x690354 },
495 		{ 0x0358, 0x690358 },
496 		{ 0x0364, 0x690364 },
497 		{ 0x0368, 0x690368 },
498 		{ 0x036c, 0x69036c },
499 		{ 0x0370, 0x690370 },
500 		{ 0x0374, 0x690374 },
501 		{ 0x0380, 0x690380 },
502 		{}
503 	}
504 };
505 
506 static const struct nvkm_disp_chan_mthd
507 gv100_disp_wndw_mthd = {
508 	.name = "Window",
509 	.addr = 0x001000,
510 	.prev = 0x000800,
511 	.data = {
512 		{ "Global", 1, &gv100_disp_wndw_mthd_base },
513 		{}
514 	}
515 };
516 
517 static void
gv100_disp_wndw_intr(struct nvkm_disp_chan * chan,bool en)518 gv100_disp_wndw_intr(struct nvkm_disp_chan *chan, bool en)
519 {
520 	struct nvkm_device *device = chan->disp->engine.subdev.device;
521 	const u32 mask = 0x00000001 << chan->head;
522 	const u32 data = en ? mask : 0;
523 	nvkm_mask(device, 0x611da4, mask, data);
524 }
525 
526 static const struct nvkm_disp_chan_func
527 gv100_disp_wndw_func = {
528 	.push = nv50_disp_dmac_push,
529 	.init = gv100_disp_dmac_init,
530 	.fini = gv100_disp_dmac_fini,
531 	.intr = gv100_disp_wndw_intr,
532 	.user = gv100_disp_chan_user,
533 	.bind = gv100_disp_dmac_bind,
534 };
535 
536 const struct nvkm_disp_chan_user
537 gv100_disp_wndw = {
538 	.func = &gv100_disp_wndw_func,
539 	.ctrl = 1,
540 	.user = 1,
541 	.mthd = &gv100_disp_wndw_mthd,
542 };
543 
544 int
gv100_disp_wndw_cnt(struct nvkm_disp * disp,unsigned long * pmask)545 gv100_disp_wndw_cnt(struct nvkm_disp *disp, unsigned long *pmask)
546 {
547 	struct nvkm_device *device = disp->engine.subdev.device;
548 
549 	*pmask = nvkm_rd32(device, 0x610064);
550 	return (nvkm_rd32(device, 0x610074) & 0x03f00000) >> 20;
551 }
552 
553 static int
gv100_disp_curs_idle(struct nvkm_disp_chan * chan)554 gv100_disp_curs_idle(struct nvkm_disp_chan *chan)
555 {
556 	struct nvkm_device *device = chan->disp->engine.subdev.device;
557 	const u32 soff = (chan->chid.ctrl - 1) * 0x04;
558 	nvkm_msec(device, 2000,
559 		u32 stat = nvkm_rd32(device, 0x610664 + soff);
560 		if ((stat & 0x00070000) == 0x00040000)
561 			return 0;
562 	);
563 	return -EBUSY;
564 }
565 
566 static void
gv100_disp_curs_intr(struct nvkm_disp_chan * chan,bool en)567 gv100_disp_curs_intr(struct nvkm_disp_chan *chan, bool en)
568 {
569 	struct nvkm_device *device = chan->disp->engine.subdev.device;
570 	const u32 mask = 0x00010000 << chan->head;
571 	const u32 data = en ? mask : 0;
572 	nvkm_mask(device, 0x611dac, mask, data);
573 }
574 
575 static void
gv100_disp_curs_fini(struct nvkm_disp_chan * chan)576 gv100_disp_curs_fini(struct nvkm_disp_chan *chan)
577 {
578 	struct nvkm_device *device = chan->disp->engine.subdev.device;
579 	const u32 hoff = chan->chid.ctrl * 4;
580 	nvkm_mask(device, 0x6104e0 + hoff, 0x00000010, 0x00000010);
581 	gv100_disp_curs_idle(chan);
582 	nvkm_mask(device, 0x6104e0 + hoff, 0x00000001, 0x00000000);
583 }
584 
585 static int
gv100_disp_curs_init(struct nvkm_disp_chan * chan)586 gv100_disp_curs_init(struct nvkm_disp_chan *chan)
587 {
588 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
589 	struct nvkm_device *device = subdev->device;
590 	nvkm_wr32(device, 0x6104e0 + chan->chid.ctrl * 4, 0x00000001);
591 	return gv100_disp_curs_idle(chan);
592 }
593 
594 static const struct nvkm_disp_chan_func
595 gv100_disp_curs_func = {
596 	.init = gv100_disp_curs_init,
597 	.fini = gv100_disp_curs_fini,
598 	.intr = gv100_disp_curs_intr,
599 	.user = gv100_disp_chan_user,
600 };
601 
602 const struct nvkm_disp_chan_user
603 gv100_disp_curs = {
604 	.func = &gv100_disp_curs_func,
605 	.ctrl = 73,
606 	.user = 73,
607 };
608 
609 static const struct nvkm_disp_mthd_list
610 gv100_disp_core_mthd_base = {
611 	.mthd = 0x0000,
612 	.addr = 0x000000,
613 	.data = {
614 		{ 0x0200, 0x680200 },
615 		{ 0x0208, 0x680208 },
616 		{ 0x020c, 0x68020c },
617 		{ 0x0210, 0x680210 },
618 		{ 0x0214, 0x680214 },
619 		{ 0x0218, 0x680218 },
620 		{ 0x021c, 0x68021c },
621 		{}
622 	}
623 };
624 
625 static const struct nvkm_disp_mthd_list
626 gv100_disp_core_mthd_sor = {
627 	.mthd = 0x0020,
628 	.addr = 0x000020,
629 	.data = {
630 		{ 0x0300, 0x680300 },
631 		{ 0x0304, 0x680304 },
632 		{ 0x0308, 0x680308 },
633 		{ 0x030c, 0x68030c },
634 		{}
635 	}
636 };
637 
638 static const struct nvkm_disp_mthd_list
639 gv100_disp_core_mthd_wndw = {
640 	.mthd = 0x0080,
641 	.addr = 0x000080,
642 	.data = {
643 		{ 0x1000, 0x681000 },
644 		{ 0x1004, 0x681004 },
645 		{ 0x1008, 0x681008 },
646 		{ 0x100c, 0x68100c },
647 		{ 0x1010, 0x681010 },
648 		{}
649 	}
650 };
651 
652 static const struct nvkm_disp_mthd_list
653 gv100_disp_core_mthd_head = {
654 	.mthd = 0x0400,
655 	.addr = 0x000400,
656 	.data = {
657 		{ 0x2000, 0x682000 },
658 		{ 0x2004, 0x682004 },
659 		{ 0x2008, 0x682008 },
660 		{ 0x200c, 0x68200c },
661 		{ 0x2014, 0x682014 },
662 		{ 0x2018, 0x682018 },
663 		{ 0x201c, 0x68201c },
664 		{ 0x2020, 0x682020 },
665 		{ 0x2028, 0x682028 },
666 		{ 0x202c, 0x68202c },
667 		{ 0x2030, 0x682030 },
668 		{ 0x2038, 0x682038 },
669 		{ 0x203c, 0x68203c },
670 		{ 0x2048, 0x682048 },
671 		{ 0x204c, 0x68204c },
672 		{ 0x2050, 0x682050 },
673 		{ 0x2054, 0x682054 },
674 		{ 0x2058, 0x682058 },
675 		{ 0x205c, 0x68205c },
676 		{ 0x2060, 0x682060 },
677 		{ 0x2064, 0x682064 },
678 		{ 0x2068, 0x682068 },
679 		{ 0x206c, 0x68206c },
680 		{ 0x2070, 0x682070 },
681 		{ 0x2074, 0x682074 },
682 		{ 0x2078, 0x682078 },
683 		{ 0x207c, 0x68207c },
684 		{ 0x2080, 0x682080 },
685 		{ 0x2088, 0x682088 },
686 		{ 0x2090, 0x682090 },
687 		{ 0x209c, 0x68209c },
688 		{ 0x20a0, 0x6820a0 },
689 		{ 0x20a4, 0x6820a4 },
690 		{ 0x20a8, 0x6820a8 },
691 		{ 0x20ac, 0x6820ac },
692 		{ 0x2180, 0x682180 },
693 		{ 0x2184, 0x682184 },
694 		{ 0x218c, 0x68218c },
695 		{ 0x2194, 0x682194 },
696 		{ 0x2198, 0x682198 },
697 		{ 0x219c, 0x68219c },
698 		{ 0x21a0, 0x6821a0 },
699 		{ 0x21a4, 0x6821a4 },
700 		{ 0x2214, 0x682214 },
701 		{ 0x2218, 0x682218 },
702 		{}
703 	}
704 };
705 
706 static const struct nvkm_disp_chan_mthd
707 gv100_disp_core_mthd = {
708 	.name = "Core",
709 	.addr = 0x000000,
710 	.prev = 0x008000,
711 	.data = {
712 		{ "Global", 1, &gv100_disp_core_mthd_base },
713 		{    "SOR", 4, &gv100_disp_core_mthd_sor  },
714 		{ "WINDOW", 8, &gv100_disp_core_mthd_wndw },
715 		{   "HEAD", 4, &gv100_disp_core_mthd_head },
716 		{}
717 	}
718 };
719 
720 static int
gv100_disp_core_idle(struct nvkm_disp_chan * chan)721 gv100_disp_core_idle(struct nvkm_disp_chan *chan)
722 {
723 	struct nvkm_device *device = chan->disp->engine.subdev.device;
724 	nvkm_msec(device, 2000,
725 		u32 stat = nvkm_rd32(device, 0x610630);
726 		if ((stat & 0x001f0000) == 0x000b0000)
727 			return 0;
728 	);
729 	return -EBUSY;
730 }
731 
732 static u64
gv100_disp_core_user(struct nvkm_disp_chan * chan,u64 * psize)733 gv100_disp_core_user(struct nvkm_disp_chan *chan, u64 *psize)
734 {
735 	*psize = 0x10000;
736 	return 0x680000;
737 }
738 
739 static void
gv100_disp_core_intr(struct nvkm_disp_chan * chan,bool en)740 gv100_disp_core_intr(struct nvkm_disp_chan *chan, bool en)
741 {
742 	struct nvkm_device *device = chan->disp->engine.subdev.device;
743 	const u32 mask = 0x00000001;
744 	const u32 data = en ? mask : 0;
745 	nvkm_mask(device, 0x611dac, mask, data);
746 }
747 
748 static void
gv100_disp_core_fini(struct nvkm_disp_chan * chan)749 gv100_disp_core_fini(struct nvkm_disp_chan *chan)
750 {
751 	struct nvkm_device *device = chan->disp->engine.subdev.device;
752 	nvkm_mask(device, 0x6104e0, 0x00000010, 0x00000000);
753 	gv100_disp_core_idle(chan);
754 	nvkm_mask(device, 0x6104e0, 0x00000002, 0x00000000);
755 	chan->suspend_put = nvkm_rd32(device, 0x680000);
756 }
757 
758 static int
gv100_disp_core_init(struct nvkm_disp_chan * chan)759 gv100_disp_core_init(struct nvkm_disp_chan *chan)
760 {
761 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
762 	struct nvkm_device *device = subdev->device;
763 
764 	nvkm_wr32(device, 0x610b24, lower_32_bits(chan->push));
765 	nvkm_wr32(device, 0x610b20, upper_32_bits(chan->push));
766 	nvkm_wr32(device, 0x610b28, 0x00000001);
767 	nvkm_wr32(device, 0x610b2c, 0x00000040);
768 
769 	nvkm_mask(device, 0x6104e0, 0x00000010, 0x00000010);
770 	nvkm_wr32(device, 0x680000, chan->suspend_put);
771 	nvkm_wr32(device, 0x6104e0, 0x00000013);
772 	return gv100_disp_core_idle(chan);
773 }
774 
775 static const struct nvkm_disp_chan_func
776 gv100_disp_core_func = {
777 	.push = nv50_disp_dmac_push,
778 	.init = gv100_disp_core_init,
779 	.fini = gv100_disp_core_fini,
780 	.intr = gv100_disp_core_intr,
781 	.user = gv100_disp_core_user,
782 	.bind = gv100_disp_dmac_bind,
783 };
784 
785 const struct nvkm_disp_chan_user
786 gv100_disp_core = {
787 	.func = &gv100_disp_core_func,
788 	.ctrl = 0,
789 	.user = 0,
790 	.mthd = &gv100_disp_core_mthd,
791 };
792 
793 #define gv100_disp_caps(p) container_of((p), struct gv100_disp_caps, object)
794 
795 struct gv100_disp_caps {
796 	struct nvkm_object object;
797 	struct nvkm_disp *disp;
798 };
799 
800 static int
gv100_disp_caps_map(struct nvkm_object * object,void * argv,u32 argc,enum nvkm_object_map * type,u64 * addr,u64 * size)801 gv100_disp_caps_map(struct nvkm_object *object, void *argv, u32 argc,
802 		    enum nvkm_object_map *type, u64 *addr, u64 *size)
803 {
804 	struct gv100_disp_caps *caps = gv100_disp_caps(object);
805 	struct nvkm_device *device = caps->disp->engine.subdev.device;
806 	*type = NVKM_OBJECT_MAP_IO;
807 	*addr = 0x640000 + device->func->resource_addr(device, 0);
808 	*size = 0x1000;
809 	return 0;
810 }
811 
812 static const struct nvkm_object_func
813 gv100_disp_caps = {
814 	.map = gv100_disp_caps_map,
815 };
816 
817 int
gv100_disp_caps_new(const struct nvkm_oclass * oclass,void * argv,u32 argc,struct nvkm_object ** pobject)818 gv100_disp_caps_new(const struct nvkm_oclass *oclass, void *argv, u32 argc,
819 		    struct nvkm_object **pobject)
820 {
821 	struct nvkm_disp *disp = nvkm_udisp(oclass->parent);
822 	struct gv100_disp_caps *caps;
823 
824 	if (!(caps = kzalloc(sizeof(*caps), GFP_KERNEL)))
825 		return -ENOMEM;
826 	*pobject = &caps->object;
827 
828 	nvkm_object_ctor(&gv100_disp_caps, oclass, &caps->object);
829 	caps->disp = disp;
830 	return 0;
831 }
832 
833 void
gv100_disp_super(struct work_struct * work)834 gv100_disp_super(struct work_struct *work)
835 {
836 	struct nvkm_disp *disp = container_of(work, struct nvkm_disp, super.work);
837 	struct nvkm_subdev *subdev = &disp->engine.subdev;
838 	struct nvkm_device *device = subdev->device;
839 	struct nvkm_head *head;
840 	u32 stat, mask[4];
841 
842 	mutex_lock(&disp->super.mutex);
843 	stat = nvkm_rd32(device, 0x6107a8);
844 
845 	nvkm_debug(subdev, "supervisor %d: %08x\n", ffs(disp->super.pending), stat);
846 	list_for_each_entry(head, &disp->heads, head) {
847 		mask[head->id] = nvkm_rd32(device, 0x6107ac + (head->id * 4));
848 		HEAD_DBG(head, "%08x", mask[head->id]);
849 	}
850 
851 	if (disp->super.pending & 0x00000001) {
852 		nv50_disp_chan_mthd(disp->chan[0], NV_DBG_DEBUG);
853 		nv50_disp_super_1(disp);
854 		list_for_each_entry(head, &disp->heads, head) {
855 			if (!(mask[head->id] & 0x00001000))
856 				continue;
857 			nv50_disp_super_1_0(disp, head);
858 		}
859 	} else
860 	if (disp->super.pending & 0x00000002) {
861 		list_for_each_entry(head, &disp->heads, head) {
862 			if (!(mask[head->id] & 0x00001000))
863 				continue;
864 			nv50_disp_super_2_0(disp, head);
865 		}
866 		nvkm_outp_route(disp);
867 		list_for_each_entry(head, &disp->heads, head) {
868 			if (!(mask[head->id] & 0x00010000))
869 				continue;
870 			nv50_disp_super_2_1(disp, head);
871 		}
872 		list_for_each_entry(head, &disp->heads, head) {
873 			if (!(mask[head->id] & 0x00001000))
874 				continue;
875 			nv50_disp_super_2_2(disp, head);
876 		}
877 	} else
878 	if (disp->super.pending & 0x00000004) {
879 		list_for_each_entry(head, &disp->heads, head) {
880 			if (!(mask[head->id] & 0x00001000))
881 				continue;
882 			nv50_disp_super_3_0(disp, head);
883 		}
884 	}
885 
886 	list_for_each_entry(head, &disp->heads, head)
887 		nvkm_wr32(device, 0x6107ac + (head->id * 4), 0x00000000);
888 
889 	nvkm_wr32(device, 0x6107a8, 0x80000000);
890 	mutex_unlock(&disp->super.mutex);
891 }
892 
893 static void
gv100_disp_exception(struct nvkm_disp * disp,int chid)894 gv100_disp_exception(struct nvkm_disp *disp, int chid)
895 {
896 	struct nvkm_subdev *subdev = &disp->engine.subdev;
897 	struct nvkm_device *device = subdev->device;
898 	u32 stat = nvkm_rd32(device, 0x611020 + (chid * 12));
899 	u32 type = (stat & 0x00007000) >> 12;
900 	u32 mthd = (stat & 0x00000fff) << 2;
901 	const struct nvkm_enum *reason =
902 		nvkm_enum_find(nv50_disp_intr_error_type, type);
903 
904 	/*TODO: Suspect 33->41 are for WRBK channel exceptions, but we
905 	 *      don't support those currently.
906 	 *
907 	 *      CORE+WIN CHIDs map directly to the FE_EXCEPT() slots.
908 	 */
909 	if (chid <= 32) {
910 		u32 data = nvkm_rd32(device, 0x611024 + (chid * 12));
911 		u32 code = nvkm_rd32(device, 0x611028 + (chid * 12));
912 		nvkm_error(subdev, "chid %d stat %08x reason %d [%s] "
913 				   "mthd %04x data %08x code %08x\n",
914 			   chid, stat, type, reason ? reason->name : "",
915 			   mthd, data, code);
916 	} else {
917 		nvkm_error(subdev, "chid %d stat %08x reason %d [%s] "
918 				   "mthd %04x\n",
919 			   chid, stat, type, reason ? reason->name : "", mthd);
920 	}
921 
922 	if (chid < ARRAY_SIZE(disp->chan) && disp->chan[chid]) {
923 		switch (mthd) {
924 		case 0x0200:
925 			nv50_disp_chan_mthd(disp->chan[chid], NV_DBG_ERROR);
926 			break;
927 		default:
928 			break;
929 		}
930 	}
931 
932 	nvkm_wr32(device, 0x611020 + (chid * 12), 0x90000000);
933 }
934 
935 static void
gv100_disp_intr_ctrl_disp(struct nvkm_disp * disp)936 gv100_disp_intr_ctrl_disp(struct nvkm_disp *disp)
937 {
938 	struct nvkm_subdev *subdev = &disp->engine.subdev;
939 	struct nvkm_device *device = subdev->device;
940 	u32 stat = nvkm_rd32(device, 0x611c30);
941 
942 	if (stat & 0x00000007) {
943 		disp->super.pending = (stat & 0x00000007);
944 		queue_work(disp->super.wq, &disp->super.work);
945 		nvkm_wr32(device, 0x611860, disp->super.pending);
946 		stat &= ~0x00000007;
947 	}
948 
949 	/*TODO: I would guess this is VBIOS_RELEASE, however, NFI how to
950 	 *      ACK it, nor does RM appear to bother.
951 	 */
952 	if (stat & 0x00000008)
953 		stat &= ~0x00000008;
954 
955 	if (stat & 0x00000080) {
956 		u32 error = nvkm_mask(device, 0x611848, 0x00000000, 0x00000000);
957 		nvkm_warn(subdev, "error %08x\n", error);
958 		stat &= ~0x00000080;
959 	}
960 
961 	if (stat & 0x00000100) {
962 		unsigned long wndws = nvkm_rd32(device, 0x611858);
963 		unsigned long other = nvkm_rd32(device, 0x61185c);
964 		int wndw;
965 
966 		nvkm_wr32(device, 0x611858, wndws);
967 		nvkm_wr32(device, 0x61185c, other);
968 
969 		/* AWAKEN_OTHER_CORE. */
970 		if (other & 0x00000001)
971 			nv50_disp_chan_uevent_send(disp, 0);
972 
973 		/* AWAKEN_WIN_CH(n). */
974 		for_each_set_bit(wndw, &wndws, disp->wndw.nr) {
975 			nv50_disp_chan_uevent_send(disp, 1 + wndw);
976 		}
977 	}
978 
979 	if (stat)
980 		nvkm_warn(subdev, "ctrl %08x\n", stat);
981 }
982 
983 static void
gv100_disp_intr_exc_other(struct nvkm_disp * disp)984 gv100_disp_intr_exc_other(struct nvkm_disp *disp)
985 {
986 	struct nvkm_subdev *subdev = &disp->engine.subdev;
987 	struct nvkm_device *device = subdev->device;
988 	u32 stat = nvkm_rd32(device, 0x611854);
989 	unsigned long mask;
990 	int head;
991 
992 	if (stat & 0x00000001) {
993 		nvkm_wr32(device, 0x611854, 0x00000001);
994 		gv100_disp_exception(disp, 0);
995 		stat &= ~0x00000001;
996 	}
997 
998 	if ((mask = (stat & 0x00ff0000) >> 16)) {
999 		for_each_set_bit(head, &mask, disp->wndw.nr) {
1000 			nvkm_wr32(device, 0x611854, 0x00010000 << head);
1001 			gv100_disp_exception(disp, 73 + head);
1002 			stat &= ~(0x00010000 << head);
1003 		}
1004 	}
1005 
1006 	if (stat) {
1007 		nvkm_warn(subdev, "exception %08x\n", stat);
1008 		nvkm_wr32(device, 0x611854, stat);
1009 	}
1010 }
1011 
1012 static void
gv100_disp_intr_exc_winim(struct nvkm_disp * disp)1013 gv100_disp_intr_exc_winim(struct nvkm_disp *disp)
1014 {
1015 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1016 	struct nvkm_device *device = subdev->device;
1017 	unsigned long stat = nvkm_rd32(device, 0x611850);
1018 	int wndw;
1019 
1020 	for_each_set_bit(wndw, &stat, disp->wndw.nr) {
1021 		nvkm_wr32(device, 0x611850, BIT(wndw));
1022 		gv100_disp_exception(disp, 33 + wndw);
1023 		stat &= ~BIT(wndw);
1024 	}
1025 
1026 	if (stat) {
1027 		nvkm_warn(subdev, "wimm %08x\n", (u32)stat);
1028 		nvkm_wr32(device, 0x611850, stat);
1029 	}
1030 }
1031 
1032 static void
gv100_disp_intr_exc_win(struct nvkm_disp * disp)1033 gv100_disp_intr_exc_win(struct nvkm_disp *disp)
1034 {
1035 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1036 	struct nvkm_device *device = subdev->device;
1037 	unsigned long stat = nvkm_rd32(device, 0x61184c);
1038 	int wndw;
1039 
1040 	for_each_set_bit(wndw, &stat, disp->wndw.nr) {
1041 		nvkm_wr32(device, 0x61184c, BIT(wndw));
1042 		gv100_disp_exception(disp, 1 + wndw);
1043 		stat &= ~BIT(wndw);
1044 	}
1045 
1046 	if (stat) {
1047 		nvkm_warn(subdev, "wndw %08x\n", (u32)stat);
1048 		nvkm_wr32(device, 0x61184c, stat);
1049 	}
1050 }
1051 
1052 static void
gv100_disp_intr_head_timing(struct nvkm_disp * disp,int head)1053 gv100_disp_intr_head_timing(struct nvkm_disp *disp, int head)
1054 {
1055 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1056 	struct nvkm_device *device = subdev->device;
1057 	u32 stat = nvkm_rd32(device, 0x611800 + (head * 0x04));
1058 
1059 	/* LAST_DATA, LOADV. */
1060 	if (stat & 0x00000003) {
1061 		nvkm_wr32(device, 0x611800 + (head * 0x04), stat & 0x00000003);
1062 		stat &= ~0x00000003;
1063 	}
1064 
1065 	if (stat & 0x00000004) {
1066 		nvkm_disp_vblank(disp, head);
1067 		nvkm_wr32(device, 0x611800 + (head * 0x04), 0x00000004);
1068 		stat &= ~0x00000004;
1069 	}
1070 
1071 	if (stat) {
1072 		nvkm_warn(subdev, "head %08x\n", stat);
1073 		nvkm_wr32(device, 0x611800 + (head * 0x04), stat);
1074 	}
1075 }
1076 
1077 void
gv100_disp_intr(struct nvkm_disp * disp)1078 gv100_disp_intr(struct nvkm_disp *disp)
1079 {
1080 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1081 	struct nvkm_device *device = subdev->device;
1082 	u32 stat = nvkm_rd32(device, 0x611ec0);
1083 	unsigned long mask;
1084 	int head;
1085 
1086 	if ((mask = (stat & 0x000000ff))) {
1087 		for_each_set_bit(head, &mask, 8) {
1088 			gv100_disp_intr_head_timing(disp, head);
1089 			stat &= ~BIT(head);
1090 		}
1091 	}
1092 
1093 	if (stat & 0x00000200) {
1094 		gv100_disp_intr_exc_win(disp);
1095 		stat &= ~0x00000200;
1096 	}
1097 
1098 	if (stat & 0x00000400) {
1099 		gv100_disp_intr_exc_winim(disp);
1100 		stat &= ~0x00000400;
1101 	}
1102 
1103 	if (stat & 0x00000800) {
1104 		gv100_disp_intr_exc_other(disp);
1105 		stat &= ~0x00000800;
1106 	}
1107 
1108 	if (stat & 0x00001000) {
1109 		gv100_disp_intr_ctrl_disp(disp);
1110 		stat &= ~0x00001000;
1111 	}
1112 
1113 	if (stat)
1114 		nvkm_warn(subdev, "intr %08x\n", stat);
1115 }
1116 
1117 void
gv100_disp_fini(struct nvkm_disp * disp)1118 gv100_disp_fini(struct nvkm_disp *disp)
1119 {
1120 	struct nvkm_device *device = disp->engine.subdev.device;
1121 	nvkm_wr32(device, 0x611db0, 0x00000000);
1122 }
1123 
1124 static int
gv100_disp_init(struct nvkm_disp * disp)1125 gv100_disp_init(struct nvkm_disp *disp)
1126 {
1127 	struct nvkm_device *device = disp->engine.subdev.device;
1128 	struct nvkm_head *head;
1129 	int i, j;
1130 	u32 tmp;
1131 
1132 	/* Claim ownership of display. */
1133 	if (nvkm_rd32(device, 0x6254e8) & 0x00000002) {
1134 		nvkm_mask(device, 0x6254e8, 0x00000001, 0x00000000);
1135 		if (nvkm_msec(device, 2000,
1136 			if (!(nvkm_rd32(device, 0x6254e8) & 0x00000002))
1137 				break;
1138 		) < 0)
1139 			return -EBUSY;
1140 	}
1141 
1142 	/* Lock pin capabilities. */
1143 	tmp = nvkm_rd32(device, 0x610068);
1144 	nvkm_wr32(device, 0x640008, tmp);
1145 
1146 	/* SOR capabilities. */
1147 	for (i = 0; i < disp->sor.nr; i++) {
1148 		tmp = nvkm_rd32(device, 0x61c000 + (i * 0x800));
1149 		nvkm_mask(device, 0x640000, 0x00000100 << i, 0x00000100 << i);
1150 		nvkm_wr32(device, 0x640144 + (i * 0x08), tmp);
1151 	}
1152 
1153 	/* Head capabilities. */
1154 	list_for_each_entry(head, &disp->heads, head) {
1155 		const int id = head->id;
1156 
1157 		/* RG. */
1158 		tmp = nvkm_rd32(device, 0x616300 + (id * 0x800));
1159 		nvkm_wr32(device, 0x640048 + (id * 0x020), tmp);
1160 
1161 		/* POSTCOMP. */
1162 		for (j = 0; j < 6 * 4; j += 4) {
1163 			tmp = nvkm_rd32(device, 0x616100 + (id * 0x800) + j);
1164 			nvkm_wr32(device, 0x640030 + (id * 0x20) + j, tmp);
1165 		}
1166 	}
1167 
1168 	/* Window capabilities. */
1169 	for (i = 0; i < disp->wndw.nr; i++) {
1170 		nvkm_mask(device, 0x640004, 1 << i, 1 << i);
1171 		for (j = 0; j < 6 * 4; j += 4) {
1172 			tmp = nvkm_rd32(device, 0x630050 + (i * 0x800) + j);
1173 			nvkm_wr32(device, 0x6401e4 + (i * 0x20) + j, tmp);
1174 		}
1175 	}
1176 
1177 	/* IHUB capabilities. */
1178 	for (i = 0; i < 4; i++) {
1179 		tmp = nvkm_rd32(device, 0x62e000 + (i * 0x04));
1180 		nvkm_wr32(device, 0x640010 + (i * 0x04), tmp);
1181 	}
1182 
1183 	nvkm_mask(device, 0x610078, 0x00000001, 0x00000001);
1184 
1185 	/* Setup instance memory. */
1186 	switch (nvkm_memory_target(disp->inst->memory)) {
1187 	case NVKM_MEM_TARGET_VRAM: tmp = 0x00000001; break;
1188 	case NVKM_MEM_TARGET_NCOH: tmp = 0x00000002; break;
1189 	case NVKM_MEM_TARGET_HOST: tmp = 0x00000003; break;
1190 	default:
1191 		break;
1192 	}
1193 	nvkm_wr32(device, 0x610010, 0x00000008 | tmp);
1194 	nvkm_wr32(device, 0x610014, disp->inst->addr >> 16);
1195 
1196 	/* CTRL_DISP: AWAKEN, ERROR, SUPERVISOR[1-3]. */
1197 	nvkm_wr32(device, 0x611cf0, 0x00000187); /* MSK. */
1198 	nvkm_wr32(device, 0x611db0, 0x00000187); /* EN. */
1199 
1200 	/* EXC_OTHER: CURSn, CORE. */
1201 	nvkm_wr32(device, 0x611cec, disp->head.mask << 16 |
1202 				    0x00000001); /* MSK. */
1203 	nvkm_wr32(device, 0x611dac, 0x00000000); /* EN. */
1204 
1205 	/* EXC_WINIM. */
1206 	nvkm_wr32(device, 0x611ce8, disp->wndw.mask); /* MSK. */
1207 	nvkm_wr32(device, 0x611da8, 0x00000000); /* EN. */
1208 
1209 	/* EXC_WIN. */
1210 	nvkm_wr32(device, 0x611ce4, disp->wndw.mask); /* MSK. */
1211 	nvkm_wr32(device, 0x611da4, 0x00000000); /* EN. */
1212 
1213 	/* HEAD_TIMING(n): VBLANK. */
1214 	list_for_each_entry(head, &disp->heads, head) {
1215 		const u32 hoff = head->id * 4;
1216 		nvkm_wr32(device, 0x611cc0 + hoff, 0x00000004); /* MSK. */
1217 		nvkm_wr32(device, 0x611d80 + hoff, 0x00000000); /* EN. */
1218 	}
1219 
1220 	/* OR. */
1221 	nvkm_wr32(device, 0x611cf4, 0x00000000); /* MSK. */
1222 	nvkm_wr32(device, 0x611db4, 0x00000000); /* EN. */
1223 	return 0;
1224 }
1225 
1226 static const struct nvkm_disp_func
1227 gv100_disp = {
1228 	.oneinit = nv50_disp_oneinit,
1229 	.init = gv100_disp_init,
1230 	.fini = gv100_disp_fini,
1231 	.intr = gv100_disp_intr,
1232 	.super = gv100_disp_super,
1233 	.uevent = &gv100_disp_chan_uevent,
1234 	.wndw = { .cnt = gv100_disp_wndw_cnt },
1235 	.head = { .cnt = gv100_head_cnt, .new = gv100_head_new },
1236 	.sor = { .cnt = gv100_sor_cnt, .new = gv100_sor_new },
1237 	.ramht_size = 0x2000,
1238 	.root = {  0, 0,GV100_DISP },
1239 	.user = {
1240 		{{-1,-1,GV100_DISP_CAPS                  }, gv100_disp_caps_new },
1241 		{{ 0, 0,GV100_DISP_CURSOR                },  nvkm_disp_chan_new, &gv100_disp_curs },
1242 		{{ 0, 0,GV100_DISP_WINDOW_IMM_CHANNEL_DMA},  nvkm_disp_wndw_new, &gv100_disp_wimm },
1243 		{{ 0, 0,GV100_DISP_CORE_CHANNEL_DMA      },  nvkm_disp_core_new, &gv100_disp_core },
1244 		{{ 0, 0,GV100_DISP_WINDOW_CHANNEL_DMA    },  nvkm_disp_wndw_new, &gv100_disp_wndw },
1245 		{}
1246 	},
1247 };
1248 
1249 int
gv100_disp_new(struct nvkm_device * device,enum nvkm_subdev_type type,int inst,struct nvkm_disp ** pdisp)1250 gv100_disp_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
1251 	       struct nvkm_disp **pdisp)
1252 {
1253 	return nvkm_disp_new_(&gv100_disp, device, type, inst, pdisp);
1254 }
1255