1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2021 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10
11 #include <linux/uaccess.h>
12 #include <linux/slab.h>
13
14 #define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
15 HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
16 HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \
17 HL_CS_FLAGS_ENGINES_COMMAND | HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
18
19
20 #define MAX_TS_ITER_NUM 100
21
22 /**
23 * enum hl_cs_wait_status - cs wait status
24 * @CS_WAIT_STATUS_BUSY: cs was not completed yet
25 * @CS_WAIT_STATUS_COMPLETED: cs completed
26 * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
27 */
28 enum hl_cs_wait_status {
29 CS_WAIT_STATUS_BUSY,
30 CS_WAIT_STATUS_COMPLETED,
31 CS_WAIT_STATUS_GONE
32 };
33
34 static void job_wq_completion(struct work_struct *work);
35 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
36 enum hl_cs_wait_status *status, s64 *timestamp);
37 static void cs_do_release(struct kref *ref);
38
hl_push_cs_outcome(struct hl_device * hdev,struct hl_cs_outcome_store * outcome_store,u64 seq,ktime_t ts,int error)39 static void hl_push_cs_outcome(struct hl_device *hdev,
40 struct hl_cs_outcome_store *outcome_store,
41 u64 seq, ktime_t ts, int error)
42 {
43 struct hl_cs_outcome *node;
44 unsigned long flags;
45
46 /*
47 * CS outcome store supports the following operations:
48 * push outcome - store a recent CS outcome in the store
49 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
50 * It uses 2 lists: used list and free list.
51 * It has a pre-allocated amount of nodes, each node stores
52 * a single CS outcome.
53 * Initially, all the nodes are in the free list.
54 * On push outcome, a node (any) is taken from the free list, its
55 * information is filled in, and the node is moved to the used list.
56 * It is possible, that there are no nodes left in the free list.
57 * In this case, we will lose some information about old outcomes. We
58 * will pop the OLDEST node from the used list, and make it free.
59 * On pop, the node is searched for in the used list (using a search
60 * index).
61 * If found, the node is then removed from the used list, and moved
62 * back to the free list. The outcome data that the node contained is
63 * returned back to the user.
64 */
65
66 spin_lock_irqsave(&outcome_store->db_lock, flags);
67
68 if (list_empty(&outcome_store->free_list)) {
69 node = list_last_entry(&outcome_store->used_list,
70 struct hl_cs_outcome, list_link);
71 hash_del(&node->map_link);
72 dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
73 } else {
74 node = list_last_entry(&outcome_store->free_list,
75 struct hl_cs_outcome, list_link);
76 }
77
78 list_del_init(&node->list_link);
79
80 node->seq = seq;
81 node->ts = ts;
82 node->error = error;
83
84 list_add(&node->list_link, &outcome_store->used_list);
85 hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
86
87 spin_unlock_irqrestore(&outcome_store->db_lock, flags);
88 }
89
hl_pop_cs_outcome(struct hl_cs_outcome_store * outcome_store,u64 seq,ktime_t * ts,int * error)90 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
91 u64 seq, ktime_t *ts, int *error)
92 {
93 struct hl_cs_outcome *node;
94 unsigned long flags;
95
96 spin_lock_irqsave(&outcome_store->db_lock, flags);
97
98 hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
99 if (node->seq == seq) {
100 *ts = node->ts;
101 *error = node->error;
102
103 hash_del(&node->map_link);
104 list_del_init(&node->list_link);
105 list_add(&node->list_link, &outcome_store->free_list);
106
107 spin_unlock_irqrestore(&outcome_store->db_lock, flags);
108
109 return true;
110 }
111
112 spin_unlock_irqrestore(&outcome_store->db_lock, flags);
113
114 return false;
115 }
116
hl_sob_reset(struct kref * ref)117 static void hl_sob_reset(struct kref *ref)
118 {
119 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
120 kref);
121 struct hl_device *hdev = hw_sob->hdev;
122
123 dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
124
125 hdev->asic_funcs->reset_sob(hdev, hw_sob);
126
127 hw_sob->need_reset = false;
128 }
129
hl_sob_reset_error(struct kref * ref)130 void hl_sob_reset_error(struct kref *ref)
131 {
132 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
133 kref);
134 struct hl_device *hdev = hw_sob->hdev;
135
136 dev_crit(hdev->dev,
137 "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
138 hw_sob->q_idx, hw_sob->sob_id);
139 }
140
hw_sob_put(struct hl_hw_sob * hw_sob)141 void hw_sob_put(struct hl_hw_sob *hw_sob)
142 {
143 if (hw_sob)
144 kref_put(&hw_sob->kref, hl_sob_reset);
145 }
146
hw_sob_put_err(struct hl_hw_sob * hw_sob)147 static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
148 {
149 if (hw_sob)
150 kref_put(&hw_sob->kref, hl_sob_reset_error);
151 }
152
hw_sob_get(struct hl_hw_sob * hw_sob)153 void hw_sob_get(struct hl_hw_sob *hw_sob)
154 {
155 if (hw_sob)
156 kref_get(&hw_sob->kref);
157 }
158
159 /**
160 * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
161 * @sob_base: sob base id
162 * @sob_mask: sob user mask, each bit represents a sob offset from sob base
163 * @mask: generated mask
164 *
165 * Return: 0 if given parameters are valid
166 */
hl_gen_sob_mask(u16 sob_base,u8 sob_mask,u8 * mask)167 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
168 {
169 int i;
170
171 if (sob_mask == 0)
172 return -EINVAL;
173
174 if (sob_mask == 0x1) {
175 *mask = ~(1 << (sob_base & 0x7));
176 } else {
177 /* find msb in order to verify sob range is valid */
178 for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
179 if (BIT(i) & sob_mask)
180 break;
181
182 if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
183 return -EINVAL;
184
185 *mask = ~sob_mask;
186 }
187
188 return 0;
189 }
190
hl_fence_release(struct kref * kref)191 static void hl_fence_release(struct kref *kref)
192 {
193 struct hl_fence *fence =
194 container_of(kref, struct hl_fence, refcount);
195 struct hl_cs_compl *hl_cs_cmpl =
196 container_of(fence, struct hl_cs_compl, base_fence);
197
198 kfree(hl_cs_cmpl);
199 }
200
hl_fence_put(struct hl_fence * fence)201 void hl_fence_put(struct hl_fence *fence)
202 {
203 if (IS_ERR_OR_NULL(fence))
204 return;
205 kref_put(&fence->refcount, hl_fence_release);
206 }
207
hl_fences_put(struct hl_fence ** fence,int len)208 void hl_fences_put(struct hl_fence **fence, int len)
209 {
210 int i;
211
212 for (i = 0; i < len; i++, fence++)
213 hl_fence_put(*fence);
214 }
215
hl_fence_get(struct hl_fence * fence)216 void hl_fence_get(struct hl_fence *fence)
217 {
218 if (fence)
219 kref_get(&fence->refcount);
220 }
221
hl_fence_init(struct hl_fence * fence,u64 sequence)222 static void hl_fence_init(struct hl_fence *fence, u64 sequence)
223 {
224 kref_init(&fence->refcount);
225 fence->cs_sequence = sequence;
226 fence->error = 0;
227 fence->timestamp = ktime_set(0, 0);
228 fence->mcs_handling_done = false;
229 init_completion(&fence->completion);
230 }
231
cs_get(struct hl_cs * cs)232 void cs_get(struct hl_cs *cs)
233 {
234 kref_get(&cs->refcount);
235 }
236
cs_get_unless_zero(struct hl_cs * cs)237 static int cs_get_unless_zero(struct hl_cs *cs)
238 {
239 return kref_get_unless_zero(&cs->refcount);
240 }
241
cs_put(struct hl_cs * cs)242 static void cs_put(struct hl_cs *cs)
243 {
244 kref_put(&cs->refcount, cs_do_release);
245 }
246
cs_job_do_release(struct kref * ref)247 static void cs_job_do_release(struct kref *ref)
248 {
249 struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
250
251 kfree(job);
252 }
253
hl_cs_job_put(struct hl_cs_job * job)254 static void hl_cs_job_put(struct hl_cs_job *job)
255 {
256 kref_put(&job->refcount, cs_job_do_release);
257 }
258
cs_needs_completion(struct hl_cs * cs)259 bool cs_needs_completion(struct hl_cs *cs)
260 {
261 /* In case this is a staged CS, only the last CS in sequence should
262 * get a completion, any non staged CS will always get a completion
263 */
264 if (cs->staged_cs && !cs->staged_last)
265 return false;
266
267 return true;
268 }
269
cs_needs_timeout(struct hl_cs * cs)270 bool cs_needs_timeout(struct hl_cs *cs)
271 {
272 /* In case this is a staged CS, only the first CS in sequence should
273 * get a timeout, any non staged CS will always get a timeout
274 */
275 if (cs->staged_cs && !cs->staged_first)
276 return false;
277
278 return true;
279 }
280
is_cb_patched(struct hl_device * hdev,struct hl_cs_job * job)281 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
282 {
283 /* Patched CB is created for external queues jobs */
284 return (job->queue_type == QUEUE_TYPE_EXT);
285 }
286
287 /*
288 * cs_parser - parse the user command submission
289 *
290 * @hpriv : pointer to the private data of the fd
291 * @job : pointer to the job that holds the command submission info
292 *
293 * The function parses the command submission of the user. It calls the
294 * ASIC specific parser, which returns a list of memory blocks to send
295 * to the device as different command buffers
296 *
297 */
cs_parser(struct hl_fpriv * hpriv,struct hl_cs_job * job)298 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
299 {
300 struct hl_device *hdev = hpriv->hdev;
301 struct hl_cs_parser parser;
302 int rc;
303
304 parser.ctx_id = job->cs->ctx->asid;
305 parser.cs_sequence = job->cs->sequence;
306 parser.job_id = job->id;
307
308 parser.hw_queue_id = job->hw_queue_id;
309 parser.job_userptr_list = &job->userptr_list;
310 parser.patched_cb = NULL;
311 parser.user_cb = job->user_cb;
312 parser.user_cb_size = job->user_cb_size;
313 parser.queue_type = job->queue_type;
314 parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
315 job->patched_cb = NULL;
316 parser.completion = cs_needs_completion(job->cs);
317
318 rc = hdev->asic_funcs->cs_parser(hdev, &parser);
319
320 if (is_cb_patched(hdev, job)) {
321 if (!rc) {
322 job->patched_cb = parser.patched_cb;
323 job->job_cb_size = parser.patched_cb_size;
324 job->contains_dma_pkt = parser.contains_dma_pkt;
325 atomic_inc(&job->patched_cb->cs_cnt);
326 }
327
328 /*
329 * Whether the parsing worked or not, we don't need the
330 * original CB anymore because it was already parsed and
331 * won't be accessed again for this CS
332 */
333 atomic_dec(&job->user_cb->cs_cnt);
334 hl_cb_put(job->user_cb);
335 job->user_cb = NULL;
336 } else if (!rc) {
337 job->job_cb_size = job->user_cb_size;
338 }
339
340 return rc;
341 }
342
hl_complete_job(struct hl_device * hdev,struct hl_cs_job * job)343 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
344 {
345 struct hl_cs *cs = job->cs;
346
347 if (is_cb_patched(hdev, job)) {
348 hl_userptr_delete_list(hdev, &job->userptr_list);
349
350 /*
351 * We might arrive here from rollback and patched CB wasn't
352 * created, so we need to check it's not NULL
353 */
354 if (job->patched_cb) {
355 atomic_dec(&job->patched_cb->cs_cnt);
356 hl_cb_put(job->patched_cb);
357 }
358 }
359
360 /* For H/W queue jobs, if a user CB was allocated by driver,
361 * the user CB isn't released in cs_parser() and thus should be
362 * released here. This is also true for INT queues jobs which were
363 * allocated by driver.
364 */
365 if (job->is_kernel_allocated_cb &&
366 (job->queue_type == QUEUE_TYPE_HW || job->queue_type == QUEUE_TYPE_INT)) {
367 atomic_dec(&job->user_cb->cs_cnt);
368 hl_cb_put(job->user_cb);
369 }
370
371 /*
372 * This is the only place where there can be multiple threads
373 * modifying the list at the same time
374 */
375 spin_lock(&cs->job_lock);
376 list_del(&job->cs_node);
377 spin_unlock(&cs->job_lock);
378
379 hl_debugfs_remove_job(hdev, job);
380
381 /* We decrement reference only for a CS that gets completion
382 * because the reference was incremented only for this kind of CS
383 * right before it was scheduled.
384 *
385 * In staged submission, only the last CS marked as 'staged_last'
386 * gets completion, hence its release function will be called from here.
387 * As for all the rest CS's in the staged submission which do not get
388 * completion, their CS reference will be decremented by the
389 * 'staged_last' CS during the CS release flow.
390 * All relevant PQ CI counters will be incremented during the CS release
391 * flow by calling 'hl_hw_queue_update_ci'.
392 */
393 if (cs_needs_completion(cs) &&
394 (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) {
395
396 /* In CS based completions, the timestamp is already available,
397 * so no need to extract it from job
398 */
399 if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB)
400 cs->completion_timestamp = job->timestamp;
401
402 cs_put(cs);
403 }
404
405 hl_cs_job_put(job);
406 }
407
408 /*
409 * hl_staged_cs_find_first - locate the first CS in this staged submission
410 *
411 * @hdev: pointer to device structure
412 * @cs_seq: staged submission sequence number
413 *
414 * @note: This function must be called under 'hdev->cs_mirror_lock'
415 *
416 * Find and return a CS pointer with the given sequence
417 */
hl_staged_cs_find_first(struct hl_device * hdev,u64 cs_seq)418 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
419 {
420 struct hl_cs *cs;
421
422 list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
423 if (cs->staged_cs && cs->staged_first &&
424 cs->sequence == cs_seq)
425 return cs;
426
427 return NULL;
428 }
429
430 /*
431 * is_staged_cs_last_exists - returns true if the last CS in sequence exists
432 *
433 * @hdev: pointer to device structure
434 * @cs: staged submission member
435 *
436 */
is_staged_cs_last_exists(struct hl_device * hdev,struct hl_cs * cs)437 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
438 {
439 struct hl_cs *last_entry;
440
441 last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
442 staged_cs_node);
443
444 if (last_entry->staged_last)
445 return true;
446
447 return false;
448 }
449
450 /*
451 * staged_cs_get - get CS reference if this CS is a part of a staged CS
452 *
453 * @hdev: pointer to device structure
454 * @cs: current CS
455 * @cs_seq: staged submission sequence number
456 *
457 * Increment CS reference for every CS in this staged submission except for
458 * the CS which get completion.
459 */
staged_cs_get(struct hl_device * hdev,struct hl_cs * cs)460 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
461 {
462 /* Only the last CS in this staged submission will get a completion.
463 * We must increment the reference for all other CS's in this
464 * staged submission.
465 * Once we get a completion we will release the whole staged submission.
466 */
467 if (!cs->staged_last)
468 cs_get(cs);
469 }
470
471 /*
472 * staged_cs_put - put a CS in case it is part of staged submission
473 *
474 * @hdev: pointer to device structure
475 * @cs: CS to put
476 *
477 * This function decrements a CS reference (for a non completion CS)
478 */
staged_cs_put(struct hl_device * hdev,struct hl_cs * cs)479 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
480 {
481 /* We release all CS's in a staged submission except the last
482 * CS which we have never incremented its reference.
483 */
484 if (!cs_needs_completion(cs))
485 cs_put(cs);
486 }
487
cs_handle_tdr(struct hl_device * hdev,struct hl_cs * cs)488 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
489 {
490 struct hl_cs *next = NULL, *iter, *first_cs;
491
492 if (!cs_needs_timeout(cs))
493 return;
494
495 spin_lock(&hdev->cs_mirror_lock);
496
497 /* We need to handle tdr only once for the complete staged submission.
498 * Hence, we choose the CS that reaches this function first which is
499 * the CS marked as 'staged_last'.
500 * In case single staged cs was submitted which has both first and last
501 * indications, then "cs_find_first" below will return NULL, since we
502 * removed the cs node from the list before getting here,
503 * in such cases just continue with the cs to cancel it's TDR work.
504 */
505 if (cs->staged_cs && cs->staged_last) {
506 first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
507 if (first_cs)
508 cs = first_cs;
509 }
510
511 spin_unlock(&hdev->cs_mirror_lock);
512
513 /* Don't cancel TDR in case this CS was timedout because we might be
514 * running from the TDR context
515 */
516 if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
517 return;
518
519 if (cs->tdr_active)
520 cancel_delayed_work_sync(&cs->work_tdr);
521
522 spin_lock(&hdev->cs_mirror_lock);
523
524 /* queue TDR for next CS */
525 list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
526 if (cs_needs_timeout(iter)) {
527 next = iter;
528 break;
529 }
530
531 if (next && !next->tdr_active) {
532 next->tdr_active = true;
533 schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
534 }
535
536 spin_unlock(&hdev->cs_mirror_lock);
537 }
538
539 /*
540 * force_complete_multi_cs - complete all contexts that wait on multi-CS
541 *
542 * @hdev: pointer to habanalabs device structure
543 */
force_complete_multi_cs(struct hl_device * hdev)544 static void force_complete_multi_cs(struct hl_device *hdev)
545 {
546 int i;
547
548 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
549 struct multi_cs_completion *mcs_compl;
550
551 mcs_compl = &hdev->multi_cs_completion[i];
552
553 spin_lock(&mcs_compl->lock);
554
555 if (!mcs_compl->used) {
556 spin_unlock(&mcs_compl->lock);
557 continue;
558 }
559
560 /* when calling force complete no context should be waiting on
561 * multi-cS.
562 * We are calling the function as a protection for such case
563 * to free any pending context and print error message
564 */
565 dev_err(hdev->dev,
566 "multi-CS completion context %d still waiting when calling force completion\n",
567 i);
568 complete_all(&mcs_compl->completion);
569 spin_unlock(&mcs_compl->lock);
570 }
571 }
572
573 /*
574 * complete_multi_cs - complete all waiting entities on multi-CS
575 *
576 * @hdev: pointer to habanalabs device structure
577 * @cs: CS structure
578 * The function signals a waiting entity that has an overlapping stream masters
579 * with the completed CS.
580 * For example:
581 * - a completed CS worked on stream master QID 4, multi CS completion
582 * is actively waiting on stream master QIDs 3, 5. don't send signal as no
583 * common stream master QID
584 * - a completed CS worked on stream master QID 4, multi CS completion
585 * is actively waiting on stream master QIDs 3, 4. send signal as stream
586 * master QID 4 is common
587 */
complete_multi_cs(struct hl_device * hdev,struct hl_cs * cs)588 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
589 {
590 struct hl_fence *fence = cs->fence;
591 int i;
592
593 /* in case of multi CS check for completion only for the first CS */
594 if (cs->staged_cs && !cs->staged_first)
595 return;
596
597 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
598 struct multi_cs_completion *mcs_compl;
599
600 mcs_compl = &hdev->multi_cs_completion[i];
601 if (!mcs_compl->used)
602 continue;
603
604 spin_lock(&mcs_compl->lock);
605
606 /*
607 * complete if:
608 * 1. still waiting for completion
609 * 2. the completed CS has at least one overlapping stream
610 * master with the stream masters in the completion
611 */
612 if (mcs_compl->used &&
613 (fence->stream_master_qid_map &
614 mcs_compl->stream_master_qid_map)) {
615 /* extract the timestamp only of first completed CS */
616 if (!mcs_compl->timestamp)
617 mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
618
619 complete_all(&mcs_compl->completion);
620
621 /*
622 * Setting mcs_handling_done inside the lock ensures
623 * at least one fence have mcs_handling_done set to
624 * true before wait for mcs finish. This ensures at
625 * least one CS will be set as completed when polling
626 * mcs fences.
627 */
628 fence->mcs_handling_done = true;
629 }
630
631 spin_unlock(&mcs_compl->lock);
632 }
633 /* In case CS completed without mcs completion initialized */
634 fence->mcs_handling_done = true;
635 }
636
cs_release_sob_reset_handler(struct hl_device * hdev,struct hl_cs * cs,struct hl_cs_compl * hl_cs_cmpl)637 static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
638 struct hl_cs *cs,
639 struct hl_cs_compl *hl_cs_cmpl)
640 {
641 /* Skip this handler if the cs wasn't submitted, to avoid putting
642 * the hw_sob twice, since this case already handled at this point,
643 * also skip if the hw_sob pointer wasn't set.
644 */
645 if (!hl_cs_cmpl->hw_sob || !cs->submitted)
646 return;
647
648 spin_lock(&hl_cs_cmpl->lock);
649
650 /*
651 * we get refcount upon reservation of signals or signal/wait cs for the
652 * hw_sob object, and need to put it when the first staged cs
653 * (which contains the encaps signals) or cs signal/wait is completed.
654 */
655 if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
656 (hl_cs_cmpl->type == CS_TYPE_WAIT) ||
657 (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
658 (!!hl_cs_cmpl->encaps_signals)) {
659 dev_dbg(hdev->dev,
660 "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
661 hl_cs_cmpl->cs_seq,
662 hl_cs_cmpl->type,
663 hl_cs_cmpl->hw_sob->sob_id,
664 hl_cs_cmpl->sob_val);
665
666 hw_sob_put(hl_cs_cmpl->hw_sob);
667
668 if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
669 hdev->asic_funcs->reset_sob_group(hdev,
670 hl_cs_cmpl->sob_group);
671 }
672
673 spin_unlock(&hl_cs_cmpl->lock);
674 }
675
cs_do_release(struct kref * ref)676 static void cs_do_release(struct kref *ref)
677 {
678 struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
679 struct hl_device *hdev = cs->ctx->hdev;
680 struct hl_cs_job *job, *tmp;
681 struct hl_cs_compl *hl_cs_cmpl =
682 container_of(cs->fence, struct hl_cs_compl, base_fence);
683
684 cs->completed = true;
685
686 /*
687 * Although if we reached here it means that all external jobs have
688 * finished, because each one of them took refcnt to CS, we still
689 * need to go over the internal jobs and complete them. Otherwise, we
690 * will have leaked memory and what's worse, the CS object (and
691 * potentially the CTX object) could be released, while the JOB
692 * still holds a pointer to them (but no reference).
693 */
694 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
695 hl_complete_job(hdev, job);
696
697 if (!cs->submitted) {
698 /*
699 * In case the wait for signal CS was submitted, the fence put
700 * occurs in init_signal_wait_cs() or collective_wait_init_cs()
701 * right before hanging on the PQ.
702 */
703 if (cs->type == CS_TYPE_WAIT ||
704 cs->type == CS_TYPE_COLLECTIVE_WAIT)
705 hl_fence_put(cs->signal_fence);
706
707 goto out;
708 }
709
710 /* Need to update CI for all queue jobs that does not get completion */
711 hl_hw_queue_update_ci(cs);
712
713 /* remove CS from CS mirror list */
714 spin_lock(&hdev->cs_mirror_lock);
715 list_del_init(&cs->mirror_node);
716 spin_unlock(&hdev->cs_mirror_lock);
717
718 cs_handle_tdr(hdev, cs);
719
720 if (cs->staged_cs) {
721 /* the completion CS decrements reference for the entire
722 * staged submission
723 */
724 if (cs->staged_last) {
725 struct hl_cs *staged_cs, *tmp_cs;
726
727 list_for_each_entry_safe(staged_cs, tmp_cs,
728 &cs->staged_cs_node, staged_cs_node)
729 staged_cs_put(hdev, staged_cs);
730 }
731
732 /* A staged CS will be a member in the list only after it
733 * was submitted. We used 'cs_mirror_lock' when inserting
734 * it to list so we will use it again when removing it
735 */
736 if (cs->submitted) {
737 spin_lock(&hdev->cs_mirror_lock);
738 list_del(&cs->staged_cs_node);
739 spin_unlock(&hdev->cs_mirror_lock);
740 }
741
742 /* decrement refcount to handle when first staged cs
743 * with encaps signals is completed.
744 */
745 if (hl_cs_cmpl->encaps_signals)
746 kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
747 hl_encaps_release_handle_and_put_ctx);
748 }
749
750 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals)
751 kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
752
753 out:
754 /* Must be called before hl_ctx_put because inside we use ctx to get
755 * the device
756 */
757 hl_debugfs_remove_cs(cs);
758
759 hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
760
761 /* We need to mark an error for not submitted because in that case
762 * the hl fence release flow is different. Mainly, we don't need
763 * to handle hw_sob for signal/wait
764 */
765 if (cs->timedout)
766 cs->fence->error = -ETIMEDOUT;
767 else if (cs->aborted)
768 cs->fence->error = -EIO;
769 else if (!cs->submitted)
770 cs->fence->error = -EBUSY;
771
772 if (unlikely(cs->skip_reset_on_timeout)) {
773 dev_err(hdev->dev,
774 "Command submission %llu completed after %llu (s)\n",
775 cs->sequence,
776 div_u64(jiffies - cs->submission_time_jiffies, HZ));
777 }
778
779 if (cs->timestamp) {
780 cs->fence->timestamp = cs->completion_timestamp;
781 hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence,
782 cs->fence->timestamp, cs->fence->error);
783 }
784
785 hl_ctx_put(cs->ctx);
786
787 complete_all(&cs->fence->completion);
788 complete_multi_cs(hdev, cs);
789
790 cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
791
792 hl_fence_put(cs->fence);
793
794 kfree(cs->jobs_in_queue_cnt);
795 kfree(cs);
796 }
797
cs_timedout(struct work_struct * work)798 static void cs_timedout(struct work_struct *work)
799 {
800 struct hl_cs *cs = container_of(work, struct hl_cs, work_tdr.work);
801 bool skip_reset_on_timeout, device_reset = false;
802 struct hl_device *hdev;
803 u64 event_mask = 0x0;
804 uint timeout_sec;
805 int rc;
806
807 skip_reset_on_timeout = cs->skip_reset_on_timeout;
808
809 rc = cs_get_unless_zero(cs);
810 if (!rc)
811 return;
812
813 if ((!cs->submitted) || (cs->completed)) {
814 cs_put(cs);
815 return;
816 }
817
818 hdev = cs->ctx->hdev;
819
820 if (likely(!skip_reset_on_timeout)) {
821 if (hdev->reset_on_lockup)
822 device_reset = true;
823 else
824 hdev->reset_info.needs_reset = true;
825
826 /* Mark the CS is timed out so we won't try to cancel its TDR */
827 cs->timedout = true;
828 }
829
830 /* Save only the first CS timeout parameters */
831 rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0);
832 if (rc) {
833 hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
834 hdev->captured_err_info.cs_timeout.seq = cs->sequence;
835 event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT;
836 }
837
838 timeout_sec = jiffies_to_msecs(hdev->timeout_jiffies) / 1000;
839
840 switch (cs->type) {
841 case CS_TYPE_SIGNAL:
842 dev_err(hdev->dev,
843 "Signal command submission %llu has not finished in %u seconds!\n",
844 cs->sequence, timeout_sec);
845 break;
846
847 case CS_TYPE_WAIT:
848 dev_err(hdev->dev,
849 "Wait command submission %llu has not finished in %u seconds!\n",
850 cs->sequence, timeout_sec);
851 break;
852
853 case CS_TYPE_COLLECTIVE_WAIT:
854 dev_err(hdev->dev,
855 "Collective Wait command submission %llu has not finished in %u seconds!\n",
856 cs->sequence, timeout_sec);
857 break;
858
859 default:
860 dev_err(hdev->dev,
861 "Command submission %llu has not finished in %u seconds!\n",
862 cs->sequence, timeout_sec);
863 break;
864 }
865
866 rc = hl_state_dump(hdev);
867 if (rc)
868 dev_err(hdev->dev, "Error during system state dump %d\n", rc);
869
870 cs_put(cs);
871
872 if (device_reset) {
873 event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
874 hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask);
875 } else if (event_mask) {
876 hl_notifier_event_send_all(hdev, event_mask);
877 }
878 }
879
allocate_cs(struct hl_device * hdev,struct hl_ctx * ctx,enum hl_cs_type cs_type,u64 user_sequence,struct hl_cs ** cs_new,u32 flags,u32 timeout)880 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
881 enum hl_cs_type cs_type, u64 user_sequence,
882 struct hl_cs **cs_new, u32 flags, u32 timeout)
883 {
884 struct hl_cs_counters_atomic *cntr;
885 struct hl_fence *other = NULL;
886 struct hl_cs_compl *cs_cmpl;
887 struct hl_cs *cs;
888 int rc;
889
890 cntr = &hdev->aggregated_cs_counters;
891
892 cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
893 if (!cs)
894 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
895
896 if (!cs) {
897 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
898 atomic64_inc(&cntr->out_of_mem_drop_cnt);
899 return -ENOMEM;
900 }
901
902 /* increment refcnt for context */
903 hl_ctx_get(ctx);
904
905 cs->ctx = ctx;
906 cs->submitted = false;
907 cs->completed = false;
908 cs->type = cs_type;
909 cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
910 cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
911 cs->timeout_jiffies = timeout;
912 cs->skip_reset_on_timeout =
913 hdev->reset_info.skip_reset_on_timeout ||
914 !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
915 cs->submission_time_jiffies = jiffies;
916 INIT_LIST_HEAD(&cs->job_list);
917 INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
918 kref_init(&cs->refcount);
919 spin_lock_init(&cs->job_lock);
920
921 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
922 if (!cs_cmpl)
923 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
924
925 if (!cs_cmpl) {
926 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
927 atomic64_inc(&cntr->out_of_mem_drop_cnt);
928 rc = -ENOMEM;
929 goto free_cs;
930 }
931
932 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
933 sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
934 if (!cs->jobs_in_queue_cnt)
935 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
936 sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
937
938 if (!cs->jobs_in_queue_cnt) {
939 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
940 atomic64_inc(&cntr->out_of_mem_drop_cnt);
941 rc = -ENOMEM;
942 goto free_cs_cmpl;
943 }
944
945 cs_cmpl->hdev = hdev;
946 cs_cmpl->type = cs->type;
947 spin_lock_init(&cs_cmpl->lock);
948 cs->fence = &cs_cmpl->base_fence;
949
950 spin_lock(&ctx->cs_lock);
951
952 cs_cmpl->cs_seq = ctx->cs_sequence;
953 other = ctx->cs_pending[cs_cmpl->cs_seq &
954 (hdev->asic_prop.max_pending_cs - 1)];
955
956 if (other && !completion_done(&other->completion)) {
957 /* If the following statement is true, it means we have reached
958 * a point in which only part of the staged submission was
959 * submitted and we don't have enough room in the 'cs_pending'
960 * array for the rest of the submission.
961 * This causes a deadlock because this CS will never be
962 * completed as it depends on future CS's for completion.
963 */
964 if (other->cs_sequence == user_sequence)
965 dev_crit_ratelimited(hdev->dev,
966 "Staged CS %llu deadlock due to lack of resources",
967 user_sequence);
968
969 dev_dbg_ratelimited(hdev->dev,
970 "Rejecting CS because of too many in-flights CS\n");
971 atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
972 atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
973 rc = -EAGAIN;
974 goto free_fence;
975 }
976
977 /* init hl_fence */
978 hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
979
980 cs->sequence = cs_cmpl->cs_seq;
981
982 ctx->cs_pending[cs_cmpl->cs_seq &
983 (hdev->asic_prop.max_pending_cs - 1)] =
984 &cs_cmpl->base_fence;
985 ctx->cs_sequence++;
986
987 hl_fence_get(&cs_cmpl->base_fence);
988
989 hl_fence_put(other);
990
991 spin_unlock(&ctx->cs_lock);
992
993 *cs_new = cs;
994
995 return 0;
996
997 free_fence:
998 spin_unlock(&ctx->cs_lock);
999 kfree(cs->jobs_in_queue_cnt);
1000 free_cs_cmpl:
1001 kfree(cs_cmpl);
1002 free_cs:
1003 kfree(cs);
1004 hl_ctx_put(ctx);
1005 return rc;
1006 }
1007
cs_rollback(struct hl_device * hdev,struct hl_cs * cs)1008 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
1009 {
1010 struct hl_cs_job *job, *tmp;
1011
1012 staged_cs_put(hdev, cs);
1013
1014 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1015 hl_complete_job(hdev, job);
1016 }
1017
1018 /*
1019 * release_reserved_encaps_signals() - release reserved encapsulated signals.
1020 * @hdev: pointer to habanalabs device structure
1021 *
1022 * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with
1023 * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back.
1024 * For these signals need also to put the refcount of the H/W SOB which was taken at the
1025 * reservation.
1026 */
release_reserved_encaps_signals(struct hl_device * hdev)1027 static void release_reserved_encaps_signals(struct hl_device *hdev)
1028 {
1029 struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
1030 struct hl_cs_encaps_sig_handle *handle;
1031 struct hl_encaps_signals_mgr *mgr;
1032 u32 id;
1033
1034 if (!ctx)
1035 return;
1036
1037 mgr = &ctx->sig_mgr;
1038
1039 idr_for_each_entry(&mgr->handles, handle, id)
1040 if (handle->cs_seq == ULLONG_MAX)
1041 kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx);
1042
1043 hl_ctx_put(ctx);
1044 }
1045
hl_cs_rollback_all(struct hl_device * hdev,bool skip_wq_flush)1046 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
1047 {
1048 int i;
1049 struct hl_cs *cs, *tmp;
1050
1051 if (!skip_wq_flush) {
1052 flush_workqueue(hdev->ts_free_obj_wq);
1053
1054 /* flush all completions before iterating over the CS mirror list in
1055 * order to avoid a race with the release functions
1056 */
1057 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1058 flush_workqueue(hdev->cq_wq[i]);
1059
1060 flush_workqueue(hdev->cs_cmplt_wq);
1061 }
1062
1063 /* Make sure we don't have leftovers in the CS mirror list */
1064 list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
1065 cs_get(cs);
1066 cs->aborted = true;
1067 dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
1068 cs->ctx->asid, cs->sequence);
1069 cs_rollback(hdev, cs);
1070 cs_put(cs);
1071 }
1072
1073 force_complete_multi_cs(hdev);
1074
1075 release_reserved_encaps_signals(hdev);
1076 }
1077
1078 static void
wake_pending_user_interrupt_threads(struct hl_user_interrupt * interrupt)1079 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
1080 {
1081 struct hl_user_pending_interrupt *pend, *temp;
1082
1083 spin_lock(&interrupt->wait_list_lock);
1084 list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) {
1085 if (pend->ts_reg_info.buf) {
1086 list_del(&pend->wait_list_node);
1087 hl_mmap_mem_buf_put(pend->ts_reg_info.buf);
1088 hl_cb_put(pend->ts_reg_info.cq_cb);
1089 } else {
1090 pend->fence.error = -EIO;
1091 complete_all(&pend->fence.completion);
1092 }
1093 }
1094 spin_unlock(&interrupt->wait_list_lock);
1095 }
1096
hl_release_pending_user_interrupts(struct hl_device * hdev)1097 void hl_release_pending_user_interrupts(struct hl_device *hdev)
1098 {
1099 struct asic_fixed_properties *prop = &hdev->asic_prop;
1100 struct hl_user_interrupt *interrupt;
1101 int i;
1102
1103 if (!prop->user_interrupt_count)
1104 return;
1105
1106 /* We iterate through the user interrupt requests and waking up all
1107 * user threads waiting for interrupt completion. We iterate the
1108 * list under a lock, this is why all user threads, once awake,
1109 * will wait on the same lock and will release the waiting object upon
1110 * unlock.
1111 */
1112
1113 for (i = 0 ; i < prop->user_interrupt_count ; i++) {
1114 interrupt = &hdev->user_interrupt[i];
1115 wake_pending_user_interrupt_threads(interrupt);
1116 }
1117
1118 interrupt = &hdev->common_user_cq_interrupt;
1119 wake_pending_user_interrupt_threads(interrupt);
1120
1121 interrupt = &hdev->common_decoder_interrupt;
1122 wake_pending_user_interrupt_threads(interrupt);
1123 }
1124
force_complete_cs(struct hl_device * hdev)1125 static void force_complete_cs(struct hl_device *hdev)
1126 {
1127 struct hl_cs *cs;
1128
1129 spin_lock(&hdev->cs_mirror_lock);
1130
1131 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) {
1132 cs->fence->error = -EIO;
1133 complete_all(&cs->fence->completion);
1134 }
1135
1136 spin_unlock(&hdev->cs_mirror_lock);
1137 }
1138
hl_abort_waiting_for_cs_completions(struct hl_device * hdev)1139 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev)
1140 {
1141 force_complete_cs(hdev);
1142 force_complete_multi_cs(hdev);
1143 }
1144
job_wq_completion(struct work_struct * work)1145 static void job_wq_completion(struct work_struct *work)
1146 {
1147 struct hl_cs_job *job = container_of(work, struct hl_cs_job,
1148 finish_work);
1149 struct hl_cs *cs = job->cs;
1150 struct hl_device *hdev = cs->ctx->hdev;
1151
1152 /* job is no longer needed */
1153 hl_complete_job(hdev, job);
1154 }
1155
cs_completion(struct work_struct * work)1156 static void cs_completion(struct work_struct *work)
1157 {
1158 struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
1159 struct hl_device *hdev = cs->ctx->hdev;
1160 struct hl_cs_job *job, *tmp;
1161
1162 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1163 hl_complete_job(hdev, job);
1164 }
1165
hl_get_active_cs_num(struct hl_device * hdev)1166 u32 hl_get_active_cs_num(struct hl_device *hdev)
1167 {
1168 u32 active_cs_num = 0;
1169 struct hl_cs *cs;
1170
1171 spin_lock(&hdev->cs_mirror_lock);
1172
1173 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node)
1174 if (!cs->completed)
1175 active_cs_num++;
1176
1177 spin_unlock(&hdev->cs_mirror_lock);
1178
1179 return active_cs_num;
1180 }
1181
validate_queue_index(struct hl_device * hdev,struct hl_cs_chunk * chunk,enum hl_queue_type * queue_type,bool * is_kernel_allocated_cb)1182 static int validate_queue_index(struct hl_device *hdev,
1183 struct hl_cs_chunk *chunk,
1184 enum hl_queue_type *queue_type,
1185 bool *is_kernel_allocated_cb)
1186 {
1187 struct asic_fixed_properties *asic = &hdev->asic_prop;
1188 struct hw_queue_properties *hw_queue_prop;
1189
1190 /* This must be checked here to prevent out-of-bounds access to
1191 * hw_queues_props array
1192 */
1193 if (chunk->queue_index >= asic->max_queues) {
1194 dev_err(hdev->dev, "Queue index %d is invalid\n",
1195 chunk->queue_index);
1196 return -EINVAL;
1197 }
1198
1199 hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
1200
1201 if (hw_queue_prop->type == QUEUE_TYPE_NA) {
1202 dev_err(hdev->dev, "Queue index %d is not applicable\n",
1203 chunk->queue_index);
1204 return -EINVAL;
1205 }
1206
1207 if (hw_queue_prop->binned) {
1208 dev_err(hdev->dev, "Queue index %d is binned out\n",
1209 chunk->queue_index);
1210 return -EINVAL;
1211 }
1212
1213 if (hw_queue_prop->driver_only) {
1214 dev_err(hdev->dev,
1215 "Queue index %d is restricted for the kernel driver\n",
1216 chunk->queue_index);
1217 return -EINVAL;
1218 }
1219
1220 /* When hw queue type isn't QUEUE_TYPE_HW,
1221 * USER_ALLOC_CB flag shall be referred as "don't care".
1222 */
1223 if (hw_queue_prop->type == QUEUE_TYPE_HW) {
1224 if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
1225 if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
1226 dev_err(hdev->dev,
1227 "Queue index %d doesn't support user CB\n",
1228 chunk->queue_index);
1229 return -EINVAL;
1230 }
1231
1232 *is_kernel_allocated_cb = false;
1233 } else {
1234 if (!(hw_queue_prop->cb_alloc_flags &
1235 CB_ALLOC_KERNEL)) {
1236 dev_err(hdev->dev,
1237 "Queue index %d doesn't support kernel CB\n",
1238 chunk->queue_index);
1239 return -EINVAL;
1240 }
1241
1242 *is_kernel_allocated_cb = true;
1243 }
1244 } else {
1245 *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
1246 & CB_ALLOC_KERNEL);
1247 }
1248
1249 *queue_type = hw_queue_prop->type;
1250 return 0;
1251 }
1252
get_cb_from_cs_chunk(struct hl_device * hdev,struct hl_mem_mgr * mmg,struct hl_cs_chunk * chunk)1253 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
1254 struct hl_mem_mgr *mmg,
1255 struct hl_cs_chunk *chunk)
1256 {
1257 struct hl_cb *cb;
1258
1259 cb = hl_cb_get(mmg, chunk->cb_handle);
1260 if (!cb) {
1261 dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
1262 return NULL;
1263 }
1264
1265 if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
1266 dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
1267 goto release_cb;
1268 }
1269
1270 atomic_inc(&cb->cs_cnt);
1271
1272 return cb;
1273
1274 release_cb:
1275 hl_cb_put(cb);
1276 return NULL;
1277 }
1278
hl_cs_allocate_job(struct hl_device * hdev,enum hl_queue_type queue_type,bool is_kernel_allocated_cb)1279 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1280 enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
1281 {
1282 struct hl_cs_job *job;
1283
1284 job = kzalloc(sizeof(*job), GFP_ATOMIC);
1285 if (!job)
1286 job = kzalloc(sizeof(*job), GFP_KERNEL);
1287
1288 if (!job)
1289 return NULL;
1290
1291 kref_init(&job->refcount);
1292 job->queue_type = queue_type;
1293 job->is_kernel_allocated_cb = is_kernel_allocated_cb;
1294
1295 if (is_cb_patched(hdev, job))
1296 INIT_LIST_HEAD(&job->userptr_list);
1297
1298 if (job->queue_type == QUEUE_TYPE_EXT)
1299 INIT_WORK(&job->finish_work, job_wq_completion);
1300
1301 return job;
1302 }
1303
hl_cs_get_cs_type(u32 cs_type_flags)1304 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
1305 {
1306 if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
1307 return CS_TYPE_SIGNAL;
1308 else if (cs_type_flags & HL_CS_FLAGS_WAIT)
1309 return CS_TYPE_WAIT;
1310 else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
1311 return CS_TYPE_COLLECTIVE_WAIT;
1312 else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
1313 return CS_RESERVE_SIGNALS;
1314 else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
1315 return CS_UNRESERVE_SIGNALS;
1316 else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
1317 return CS_TYPE_ENGINE_CORE;
1318 else if (cs_type_flags & HL_CS_FLAGS_ENGINES_COMMAND)
1319 return CS_TYPE_ENGINES;
1320 else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
1321 return CS_TYPE_FLUSH_PCI_HBW_WRITES;
1322 else
1323 return CS_TYPE_DEFAULT;
1324 }
1325
hl_cs_sanity_checks(struct hl_fpriv * hpriv,union hl_cs_args * args)1326 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
1327 {
1328 struct hl_device *hdev = hpriv->hdev;
1329 struct hl_ctx *ctx = hpriv->ctx;
1330 u32 cs_type_flags, num_chunks;
1331 enum hl_device_status status;
1332 enum hl_cs_type cs_type;
1333 bool is_sync_stream;
1334 int i;
1335
1336 for (i = 0 ; i < sizeof(args->in.pad) ; i++)
1337 if (args->in.pad[i]) {
1338 dev_dbg(hdev->dev, "Padding bytes must be 0\n");
1339 return -EINVAL;
1340 }
1341
1342 if (!hl_device_operational(hdev, &status)) {
1343 return -EBUSY;
1344 }
1345
1346 if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1347 !hdev->supports_staged_submission) {
1348 dev_err(hdev->dev, "staged submission not supported");
1349 return -EPERM;
1350 }
1351
1352 cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
1353
1354 if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
1355 dev_err(hdev->dev,
1356 "CS type flags are mutually exclusive, context %d\n",
1357 ctx->asid);
1358 return -EINVAL;
1359 }
1360
1361 cs_type = hl_cs_get_cs_type(cs_type_flags);
1362 num_chunks = args->in.num_chunks_execute;
1363
1364 is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
1365 cs_type == CS_TYPE_COLLECTIVE_WAIT);
1366
1367 if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
1368 dev_err(hdev->dev, "Sync stream CS is not supported\n");
1369 return -EINVAL;
1370 }
1371
1372 if (cs_type == CS_TYPE_DEFAULT) {
1373 if (!num_chunks) {
1374 dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
1375 return -EINVAL;
1376 }
1377 } else if (is_sync_stream && num_chunks != 1) {
1378 dev_err(hdev->dev,
1379 "Sync stream CS mandates one chunk only, context %d\n",
1380 ctx->asid);
1381 return -EINVAL;
1382 }
1383
1384 return 0;
1385 }
1386
hl_cs_copy_chunk_array(struct hl_device * hdev,struct hl_cs_chunk ** cs_chunk_array,void __user * chunks,u32 num_chunks,struct hl_ctx * ctx)1387 static int hl_cs_copy_chunk_array(struct hl_device *hdev,
1388 struct hl_cs_chunk **cs_chunk_array,
1389 void __user *chunks, u32 num_chunks,
1390 struct hl_ctx *ctx)
1391 {
1392 u32 size_to_copy;
1393
1394 if (num_chunks > HL_MAX_JOBS_PER_CS) {
1395 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1396 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1397 dev_err(hdev->dev,
1398 "Number of chunks can NOT be larger than %d\n",
1399 HL_MAX_JOBS_PER_CS);
1400 return -EINVAL;
1401 }
1402
1403 *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
1404 GFP_ATOMIC);
1405 if (!*cs_chunk_array)
1406 *cs_chunk_array = kmalloc_array(num_chunks,
1407 sizeof(**cs_chunk_array), GFP_KERNEL);
1408 if (!*cs_chunk_array) {
1409 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1410 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1411 return -ENOMEM;
1412 }
1413
1414 size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
1415 if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
1416 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1417 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1418 dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
1419 kfree(*cs_chunk_array);
1420 return -EFAULT;
1421 }
1422
1423 return 0;
1424 }
1425
cs_staged_submission(struct hl_device * hdev,struct hl_cs * cs,u64 sequence,u32 flags,u32 encaps_signal_handle)1426 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
1427 u64 sequence, u32 flags,
1428 u32 encaps_signal_handle)
1429 {
1430 if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
1431 return 0;
1432
1433 cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
1434 cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
1435
1436 if (cs->staged_first) {
1437 /* Staged CS sequence is the first CS sequence */
1438 INIT_LIST_HEAD(&cs->staged_cs_node);
1439 cs->staged_sequence = cs->sequence;
1440
1441 if (cs->encaps_signals)
1442 cs->encaps_sig_hdl_id = encaps_signal_handle;
1443 } else {
1444 /* User sequence will be validated in 'hl_hw_queue_schedule_cs'
1445 * under the cs_mirror_lock
1446 */
1447 cs->staged_sequence = sequence;
1448 }
1449
1450 /* Increment CS reference if needed */
1451 staged_cs_get(hdev, cs);
1452
1453 cs->staged_cs = true;
1454
1455 return 0;
1456 }
1457
get_stream_master_qid_mask(struct hl_device * hdev,u32 qid)1458 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
1459 {
1460 int i;
1461
1462 for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
1463 if (qid == hdev->stream_master_qid_arr[i])
1464 return BIT(i);
1465
1466 return 0;
1467 }
1468
cs_ioctl_default(struct hl_fpriv * hpriv,void __user * chunks,u32 num_chunks,u64 * cs_seq,u32 flags,u32 encaps_signals_handle,u32 timeout,u16 * signal_initial_sob_count)1469 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
1470 u32 num_chunks, u64 *cs_seq, u32 flags,
1471 u32 encaps_signals_handle, u32 timeout,
1472 u16 *signal_initial_sob_count)
1473 {
1474 bool staged_mid, int_queues_only = true, using_hw_queues = false;
1475 struct hl_device *hdev = hpriv->hdev;
1476 struct hl_cs_chunk *cs_chunk_array;
1477 struct hl_cs_counters_atomic *cntr;
1478 struct hl_ctx *ctx = hpriv->ctx;
1479 struct hl_cs_job *job;
1480 struct hl_cs *cs;
1481 struct hl_cb *cb;
1482 u64 user_sequence;
1483 u8 stream_master_qid_map = 0;
1484 int rc, i;
1485
1486 cntr = &hdev->aggregated_cs_counters;
1487 user_sequence = *cs_seq;
1488 *cs_seq = ULLONG_MAX;
1489
1490 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
1491 hpriv->ctx);
1492 if (rc)
1493 goto out;
1494
1495 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1496 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
1497 staged_mid = true;
1498 else
1499 staged_mid = false;
1500
1501 rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
1502 staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
1503 timeout);
1504 if (rc)
1505 goto free_cs_chunk_array;
1506
1507 *cs_seq = cs->sequence;
1508
1509 hl_debugfs_add_cs(cs);
1510
1511 rc = cs_staged_submission(hdev, cs, user_sequence, flags,
1512 encaps_signals_handle);
1513 if (rc)
1514 goto free_cs_object;
1515
1516 /* If this is a staged submission we must return the staged sequence
1517 * rather than the internal CS sequence
1518 */
1519 if (cs->staged_cs)
1520 *cs_seq = cs->staged_sequence;
1521
1522 /* Validate ALL the CS chunks before submitting the CS */
1523 for (i = 0 ; i < num_chunks ; i++) {
1524 struct hl_cs_chunk *chunk = &cs_chunk_array[i];
1525 enum hl_queue_type queue_type;
1526 bool is_kernel_allocated_cb;
1527
1528 rc = validate_queue_index(hdev, chunk, &queue_type,
1529 &is_kernel_allocated_cb);
1530 if (rc) {
1531 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1532 atomic64_inc(&cntr->validation_drop_cnt);
1533 goto free_cs_object;
1534 }
1535
1536 if (is_kernel_allocated_cb) {
1537 cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk);
1538 if (!cb) {
1539 atomic64_inc(
1540 &ctx->cs_counters.validation_drop_cnt);
1541 atomic64_inc(&cntr->validation_drop_cnt);
1542 rc = -EINVAL;
1543 goto free_cs_object;
1544 }
1545 } else {
1546 cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
1547 }
1548
1549 if (queue_type == QUEUE_TYPE_EXT ||
1550 queue_type == QUEUE_TYPE_HW) {
1551 int_queues_only = false;
1552
1553 /*
1554 * store which stream are being used for external/HW
1555 * queues of this CS
1556 */
1557 if (hdev->supports_wait_for_multi_cs)
1558 stream_master_qid_map |=
1559 get_stream_master_qid_mask(hdev,
1560 chunk->queue_index);
1561 }
1562
1563 if (queue_type == QUEUE_TYPE_HW)
1564 using_hw_queues = true;
1565
1566 job = hl_cs_allocate_job(hdev, queue_type,
1567 is_kernel_allocated_cb);
1568 if (!job) {
1569 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1570 atomic64_inc(&cntr->out_of_mem_drop_cnt);
1571 dev_err(hdev->dev, "Failed to allocate a new job\n");
1572 rc = -ENOMEM;
1573 if (is_kernel_allocated_cb)
1574 goto release_cb;
1575
1576 goto free_cs_object;
1577 }
1578
1579 job->id = i + 1;
1580 job->cs = cs;
1581 job->user_cb = cb;
1582 job->user_cb_size = chunk->cb_size;
1583 job->hw_queue_id = chunk->queue_index;
1584
1585 cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1586 cs->jobs_cnt++;
1587
1588 list_add_tail(&job->cs_node, &cs->job_list);
1589
1590 /*
1591 * Increment CS reference. When CS reference is 0, CS is
1592 * done and can be signaled to user and free all its resources
1593 * Only increment for JOB on external or H/W queues, because
1594 * only for those JOBs we get completion
1595 */
1596 if (cs_needs_completion(cs) &&
1597 (job->queue_type == QUEUE_TYPE_EXT ||
1598 job->queue_type == QUEUE_TYPE_HW))
1599 cs_get(cs);
1600
1601 hl_debugfs_add_job(hdev, job);
1602
1603 rc = cs_parser(hpriv, job);
1604 if (rc) {
1605 atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
1606 atomic64_inc(&cntr->parsing_drop_cnt);
1607 dev_err(hdev->dev,
1608 "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
1609 cs->ctx->asid, cs->sequence, job->id, rc);
1610 goto free_cs_object;
1611 }
1612 }
1613
1614 /* We allow a CS with any queue type combination as long as it does
1615 * not get a completion
1616 */
1617 if (int_queues_only && cs_needs_completion(cs)) {
1618 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1619 atomic64_inc(&cntr->validation_drop_cnt);
1620 dev_err(hdev->dev,
1621 "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
1622 cs->ctx->asid, cs->sequence);
1623 rc = -EINVAL;
1624 goto free_cs_object;
1625 }
1626
1627 if (using_hw_queues)
1628 INIT_WORK(&cs->finish_work, cs_completion);
1629
1630 /*
1631 * store the (external/HW queues) streams used by the CS in the
1632 * fence object for multi-CS completion
1633 */
1634 if (hdev->supports_wait_for_multi_cs)
1635 cs->fence->stream_master_qid_map = stream_master_qid_map;
1636
1637 rc = hl_hw_queue_schedule_cs(cs);
1638 if (rc) {
1639 if (rc != -EAGAIN)
1640 dev_err(hdev->dev,
1641 "Failed to submit CS %d.%llu to H/W queues, error %d\n",
1642 cs->ctx->asid, cs->sequence, rc);
1643 goto free_cs_object;
1644 }
1645
1646 *signal_initial_sob_count = cs->initial_sob_count;
1647
1648 rc = HL_CS_STATUS_SUCCESS;
1649 goto put_cs;
1650
1651 release_cb:
1652 atomic_dec(&cb->cs_cnt);
1653 hl_cb_put(cb);
1654 free_cs_object:
1655 cs_rollback(hdev, cs);
1656 *cs_seq = ULLONG_MAX;
1657 /* The path below is both for good and erroneous exits */
1658 put_cs:
1659 /* We finished with the CS in this function, so put the ref */
1660 cs_put(cs);
1661 free_cs_chunk_array:
1662 kfree(cs_chunk_array);
1663 out:
1664 return rc;
1665 }
1666
hl_cs_ctx_switch(struct hl_fpriv * hpriv,union hl_cs_args * args,u64 * cs_seq)1667 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
1668 u64 *cs_seq)
1669 {
1670 struct hl_device *hdev = hpriv->hdev;
1671 struct hl_ctx *ctx = hpriv->ctx;
1672 bool need_soft_reset = false;
1673 int rc = 0, do_ctx_switch = 0;
1674 void __user *chunks;
1675 u32 num_chunks, tmp;
1676 u16 sob_count;
1677 int ret;
1678
1679 if (hdev->supports_ctx_switch)
1680 do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
1681
1682 if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
1683 mutex_lock(&hpriv->restore_phase_mutex);
1684
1685 if (do_ctx_switch) {
1686 rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
1687 if (rc) {
1688 dev_err_ratelimited(hdev->dev,
1689 "Failed to switch to context %d, rejecting CS! %d\n",
1690 ctx->asid, rc);
1691 /*
1692 * If we timedout, or if the device is not IDLE
1693 * while we want to do context-switch (-EBUSY),
1694 * we need to soft-reset because QMAN is
1695 * probably stuck. However, we can't call to
1696 * reset here directly because of deadlock, so
1697 * need to do it at the very end of this
1698 * function
1699 */
1700 if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
1701 need_soft_reset = true;
1702 mutex_unlock(&hpriv->restore_phase_mutex);
1703 goto out;
1704 }
1705 }
1706
1707 hdev->asic_funcs->restore_phase_topology(hdev);
1708
1709 chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
1710 num_chunks = args->in.num_chunks_restore;
1711
1712 if (!num_chunks) {
1713 dev_dbg(hdev->dev,
1714 "Need to run restore phase but restore CS is empty\n");
1715 rc = 0;
1716 } else {
1717 rc = cs_ioctl_default(hpriv, chunks, num_chunks,
1718 cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
1719 }
1720
1721 mutex_unlock(&hpriv->restore_phase_mutex);
1722
1723 if (rc) {
1724 dev_err(hdev->dev,
1725 "Failed to submit restore CS for context %d (%d)\n",
1726 ctx->asid, rc);
1727 goto out;
1728 }
1729
1730 /* Need to wait for restore completion before execution phase */
1731 if (num_chunks) {
1732 enum hl_cs_wait_status status;
1733 wait_again:
1734 ret = _hl_cs_wait_ioctl(hdev, ctx,
1735 jiffies_to_usecs(hdev->timeout_jiffies),
1736 *cs_seq, &status, NULL);
1737 if (ret) {
1738 if (ret == -ERESTARTSYS) {
1739 usleep_range(100, 200);
1740 goto wait_again;
1741 }
1742
1743 dev_err(hdev->dev,
1744 "Restore CS for context %d failed to complete %d\n",
1745 ctx->asid, ret);
1746 rc = -ENOEXEC;
1747 goto out;
1748 }
1749 }
1750
1751 if (hdev->supports_ctx_switch)
1752 ctx->thread_ctx_switch_wait_token = 1;
1753
1754 } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
1755 rc = hl_poll_timeout_memory(hdev,
1756 &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
1757 100, jiffies_to_usecs(hdev->timeout_jiffies), false);
1758
1759 if (rc == -ETIMEDOUT) {
1760 dev_err(hdev->dev,
1761 "context switch phase timeout (%d)\n", tmp);
1762 goto out;
1763 }
1764 }
1765
1766 out:
1767 if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
1768 hl_device_reset(hdev, 0);
1769
1770 return rc;
1771 }
1772
1773 /*
1774 * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
1775 * if the SOB value reaches the max value move to the other SOB reserved
1776 * to the queue.
1777 * @hdev: pointer to device structure
1778 * @q_idx: stream queue index
1779 * @hw_sob: the H/W SOB used in this signal CS.
1780 * @count: signals count
1781 * @encaps_sig: tells whether it's reservation for encaps signals or not.
1782 *
1783 * Note that this function must be called while hw_queues_lock is taken.
1784 */
hl_cs_signal_sob_wraparound_handler(struct hl_device * hdev,u32 q_idx,struct hl_hw_sob ** hw_sob,u32 count,bool encaps_sig)1785 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
1786 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
1787
1788 {
1789 struct hl_sync_stream_properties *prop;
1790 struct hl_hw_sob *sob = *hw_sob, *other_sob;
1791 u8 other_sob_offset;
1792
1793 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1794
1795 hw_sob_get(sob);
1796
1797 /* check for wraparound */
1798 if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
1799 /*
1800 * Decrement as we reached the max value.
1801 * The release function won't be called here as we've
1802 * just incremented the refcount right before calling this
1803 * function.
1804 */
1805 hw_sob_put_err(sob);
1806
1807 /*
1808 * check the other sob value, if it still in use then fail
1809 * otherwise make the switch
1810 */
1811 other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
1812 other_sob = &prop->hw_sob[other_sob_offset];
1813
1814 if (kref_read(&other_sob->kref) != 1) {
1815 dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
1816 q_idx);
1817 return -EINVAL;
1818 }
1819
1820 /*
1821 * next_sob_val always points to the next available signal
1822 * in the sob, so in encaps signals it will be the next one
1823 * after reserving the required amount.
1824 */
1825 if (encaps_sig)
1826 prop->next_sob_val = count + 1;
1827 else
1828 prop->next_sob_val = count;
1829
1830 /* only two SOBs are currently in use */
1831 prop->curr_sob_offset = other_sob_offset;
1832 *hw_sob = other_sob;
1833
1834 /*
1835 * check if other_sob needs reset, then do it before using it
1836 * for the reservation or the next signal cs.
1837 * we do it here, and for both encaps and regular signal cs
1838 * cases in order to avoid possible races of two kref_put
1839 * of the sob which can occur at the same time if we move the
1840 * sob reset(kref_put) to cs_do_release function.
1841 * in addition, if we have combination of cs signal and
1842 * encaps, and at the point we need to reset the sob there was
1843 * no more reservations and only signal cs keep coming,
1844 * in such case we need signal_cs to put the refcount and
1845 * reset the sob.
1846 */
1847 if (other_sob->need_reset)
1848 hw_sob_put(other_sob);
1849
1850 if (encaps_sig) {
1851 /* set reset indication for the sob */
1852 sob->need_reset = true;
1853 hw_sob_get(other_sob);
1854 }
1855
1856 dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
1857 prop->curr_sob_offset, q_idx);
1858 } else {
1859 prop->next_sob_val += count;
1860 }
1861
1862 return 0;
1863 }
1864
cs_ioctl_extract_signal_seq(struct hl_device * hdev,struct hl_cs_chunk * chunk,u64 * signal_seq,struct hl_ctx * ctx,bool encaps_signals)1865 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
1866 struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
1867 bool encaps_signals)
1868 {
1869 u64 *signal_seq_arr = NULL;
1870 u32 size_to_copy, signal_seq_arr_len;
1871 int rc = 0;
1872
1873 if (encaps_signals) {
1874 *signal_seq = chunk->encaps_signal_seq;
1875 return 0;
1876 }
1877
1878 signal_seq_arr_len = chunk->num_signal_seq_arr;
1879
1880 /* currently only one signal seq is supported */
1881 if (signal_seq_arr_len != 1) {
1882 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1883 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1884 dev_err(hdev->dev,
1885 "Wait for signal CS supports only one signal CS seq\n");
1886 return -EINVAL;
1887 }
1888
1889 signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1890 sizeof(*signal_seq_arr),
1891 GFP_ATOMIC);
1892 if (!signal_seq_arr)
1893 signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1894 sizeof(*signal_seq_arr),
1895 GFP_KERNEL);
1896 if (!signal_seq_arr) {
1897 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1898 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1899 return -ENOMEM;
1900 }
1901
1902 size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
1903 if (copy_from_user(signal_seq_arr,
1904 u64_to_user_ptr(chunk->signal_seq_arr),
1905 size_to_copy)) {
1906 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1907 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1908 dev_err(hdev->dev,
1909 "Failed to copy signal seq array from user\n");
1910 rc = -EFAULT;
1911 goto out;
1912 }
1913
1914 /* currently it is guaranteed to have only one signal seq */
1915 *signal_seq = signal_seq_arr[0];
1916
1917 out:
1918 kfree(signal_seq_arr);
1919
1920 return rc;
1921 }
1922
cs_ioctl_signal_wait_create_jobs(struct hl_device * hdev,struct hl_ctx * ctx,struct hl_cs * cs,enum hl_queue_type q_type,u32 q_idx,u32 encaps_signal_offset)1923 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
1924 struct hl_ctx *ctx, struct hl_cs *cs,
1925 enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
1926 {
1927 struct hl_cs_counters_atomic *cntr;
1928 struct hl_cs_job *job;
1929 struct hl_cb *cb;
1930 u32 cb_size;
1931
1932 cntr = &hdev->aggregated_cs_counters;
1933
1934 job = hl_cs_allocate_job(hdev, q_type, true);
1935 if (!job) {
1936 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1937 atomic64_inc(&cntr->out_of_mem_drop_cnt);
1938 dev_err(hdev->dev, "Failed to allocate a new job\n");
1939 return -ENOMEM;
1940 }
1941
1942 if (cs->type == CS_TYPE_WAIT)
1943 cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
1944 else
1945 cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
1946
1947 cb = hl_cb_kernel_create(hdev, cb_size, q_type == QUEUE_TYPE_HW);
1948 if (!cb) {
1949 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1950 atomic64_inc(&cntr->out_of_mem_drop_cnt);
1951 kfree(job);
1952 return -EFAULT;
1953 }
1954
1955 job->id = 0;
1956 job->cs = cs;
1957 job->user_cb = cb;
1958 atomic_inc(&job->user_cb->cs_cnt);
1959 job->user_cb_size = cb_size;
1960 job->hw_queue_id = q_idx;
1961
1962 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
1963 && cs->encaps_signals)
1964 job->encaps_sig_wait_offset = encaps_signal_offset;
1965 /*
1966 * No need in parsing, user CB is the patched CB.
1967 * We call hl_cb_destroy() out of two reasons - we don't need the CB in
1968 * the CB idr anymore and to decrement its refcount as it was
1969 * incremented inside hl_cb_kernel_create().
1970 */
1971 job->patched_cb = job->user_cb;
1972 job->job_cb_size = job->user_cb_size;
1973 hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
1974
1975 /* increment refcount as for external queues we get completion */
1976 cs_get(cs);
1977
1978 cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1979 cs->jobs_cnt++;
1980
1981 list_add_tail(&job->cs_node, &cs->job_list);
1982
1983 hl_debugfs_add_job(hdev, job);
1984
1985 return 0;
1986 }
1987
cs_ioctl_reserve_signals(struct hl_fpriv * hpriv,u32 q_idx,u32 count,u32 * handle_id,u32 * sob_addr,u32 * signals_count)1988 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
1989 u32 q_idx, u32 count,
1990 u32 *handle_id, u32 *sob_addr,
1991 u32 *signals_count)
1992 {
1993 struct hw_queue_properties *hw_queue_prop;
1994 struct hl_sync_stream_properties *prop;
1995 struct hl_device *hdev = hpriv->hdev;
1996 struct hl_cs_encaps_sig_handle *handle;
1997 struct hl_encaps_signals_mgr *mgr;
1998 struct hl_hw_sob *hw_sob;
1999 int hdl_id;
2000 int rc = 0;
2001
2002 if (count >= HL_MAX_SOB_VAL) {
2003 dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
2004 count);
2005 rc = -EINVAL;
2006 goto out;
2007 }
2008
2009 if (q_idx >= hdev->asic_prop.max_queues) {
2010 dev_err(hdev->dev, "Queue index %d is invalid\n",
2011 q_idx);
2012 rc = -EINVAL;
2013 goto out;
2014 }
2015
2016 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2017
2018 if (!hw_queue_prop->supports_sync_stream) {
2019 dev_err(hdev->dev,
2020 "Queue index %d does not support sync stream operations\n",
2021 q_idx);
2022 rc = -EINVAL;
2023 goto out;
2024 }
2025
2026 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2027
2028 handle = kzalloc(sizeof(*handle), GFP_KERNEL);
2029 if (!handle) {
2030 rc = -ENOMEM;
2031 goto out;
2032 }
2033
2034 handle->count = count;
2035
2036 hl_ctx_get(hpriv->ctx);
2037 handle->ctx = hpriv->ctx;
2038 mgr = &hpriv->ctx->sig_mgr;
2039
2040 spin_lock(&mgr->lock);
2041 hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
2042 spin_unlock(&mgr->lock);
2043
2044 if (hdl_id < 0) {
2045 dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
2046 rc = -EINVAL;
2047 goto put_ctx;
2048 }
2049
2050 handle->id = hdl_id;
2051 handle->q_idx = q_idx;
2052 handle->hdev = hdev;
2053 kref_init(&handle->refcount);
2054
2055 hdev->asic_funcs->hw_queues_lock(hdev);
2056
2057 hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2058
2059 /*
2060 * Increment the SOB value by count by user request
2061 * to reserve those signals
2062 * check if the signals amount to reserve is not exceeding the max sob
2063 * value, if yes then switch sob.
2064 */
2065 rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
2066 true);
2067 if (rc) {
2068 dev_err(hdev->dev, "Failed to switch SOB\n");
2069 hdev->asic_funcs->hw_queues_unlock(hdev);
2070 rc = -EINVAL;
2071 goto remove_idr;
2072 }
2073 /* set the hw_sob to the handle after calling the sob wraparound handler
2074 * since sob could have changed.
2075 */
2076 handle->hw_sob = hw_sob;
2077
2078 /* store the current sob value for unreserve validity check, and
2079 * signal offset support
2080 */
2081 handle->pre_sob_val = prop->next_sob_val - handle->count;
2082
2083 handle->cs_seq = ULLONG_MAX;
2084
2085 *signals_count = prop->next_sob_val;
2086 hdev->asic_funcs->hw_queues_unlock(hdev);
2087
2088 *sob_addr = handle->hw_sob->sob_addr;
2089 *handle_id = hdl_id;
2090
2091 dev_dbg(hdev->dev,
2092 "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
2093 hw_sob->sob_id, handle->hw_sob->sob_addr,
2094 prop->next_sob_val - 1, q_idx, hdl_id);
2095 goto out;
2096
2097 remove_idr:
2098 spin_lock(&mgr->lock);
2099 idr_remove(&mgr->handles, hdl_id);
2100 spin_unlock(&mgr->lock);
2101
2102 put_ctx:
2103 hl_ctx_put(handle->ctx);
2104 kfree(handle);
2105
2106 out:
2107 return rc;
2108 }
2109
cs_ioctl_unreserve_signals(struct hl_fpriv * hpriv,u32 handle_id)2110 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
2111 {
2112 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2113 struct hl_sync_stream_properties *prop;
2114 struct hl_device *hdev = hpriv->hdev;
2115 struct hl_encaps_signals_mgr *mgr;
2116 struct hl_hw_sob *hw_sob;
2117 u32 q_idx, sob_addr;
2118 int rc = 0;
2119
2120 mgr = &hpriv->ctx->sig_mgr;
2121
2122 spin_lock(&mgr->lock);
2123 encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
2124 if (encaps_sig_hdl) {
2125 dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
2126 handle_id, encaps_sig_hdl->hw_sob->sob_addr,
2127 encaps_sig_hdl->count);
2128
2129 hdev->asic_funcs->hw_queues_lock(hdev);
2130
2131 q_idx = encaps_sig_hdl->q_idx;
2132 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2133 hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2134 sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
2135
2136 /* Check if sob_val got out of sync due to other
2137 * signal submission requests which were handled
2138 * between the reserve-unreserve calls or SOB switch
2139 * upon reaching SOB max value.
2140 */
2141 if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
2142 != prop->next_sob_val ||
2143 sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
2144 dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
2145 encaps_sig_hdl->pre_sob_val,
2146 (prop->next_sob_val - encaps_sig_hdl->count));
2147
2148 hdev->asic_funcs->hw_queues_unlock(hdev);
2149 rc = -EINVAL;
2150 goto out_unlock;
2151 }
2152
2153 /*
2154 * Decrement the SOB value by count by user request
2155 * to unreserve those signals
2156 */
2157 prop->next_sob_val -= encaps_sig_hdl->count;
2158
2159 hdev->asic_funcs->hw_queues_unlock(hdev);
2160
2161 hw_sob_put(hw_sob);
2162
2163 /* Release the id and free allocated memory of the handle */
2164 idr_remove(&mgr->handles, handle_id);
2165
2166 /* unlock before calling ctx_put, where we might sleep */
2167 spin_unlock(&mgr->lock);
2168 hl_ctx_put(encaps_sig_hdl->ctx);
2169 kfree(encaps_sig_hdl);
2170 goto out;
2171 } else {
2172 rc = -EINVAL;
2173 dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
2174 }
2175
2176 out_unlock:
2177 spin_unlock(&mgr->lock);
2178
2179 out:
2180 return rc;
2181 }
2182
cs_ioctl_signal_wait(struct hl_fpriv * hpriv,enum hl_cs_type cs_type,void __user * chunks,u32 num_chunks,u64 * cs_seq,u32 flags,u32 timeout,u32 * signal_sob_addr_offset,u16 * signal_initial_sob_count)2183 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
2184 void __user *chunks, u32 num_chunks,
2185 u64 *cs_seq, u32 flags, u32 timeout,
2186 u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
2187 {
2188 struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
2189 bool handle_found = false, is_wait_cs = false,
2190 wait_cs_submitted = false,
2191 cs_encaps_signals = false;
2192 struct hl_cs_chunk *cs_chunk_array, *chunk;
2193 bool staged_cs_with_encaps_signals = false;
2194 struct hw_queue_properties *hw_queue_prop;
2195 struct hl_device *hdev = hpriv->hdev;
2196 struct hl_cs_compl *sig_waitcs_cmpl;
2197 u32 q_idx, collective_engine_id = 0;
2198 struct hl_cs_counters_atomic *cntr;
2199 struct hl_fence *sig_fence = NULL;
2200 struct hl_ctx *ctx = hpriv->ctx;
2201 enum hl_queue_type q_type;
2202 struct hl_cs *cs;
2203 u64 signal_seq;
2204 int rc;
2205
2206 cntr = &hdev->aggregated_cs_counters;
2207 *cs_seq = ULLONG_MAX;
2208
2209 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
2210 ctx);
2211 if (rc)
2212 goto out;
2213
2214 /* currently it is guaranteed to have only one chunk */
2215 chunk = &cs_chunk_array[0];
2216
2217 if (chunk->queue_index >= hdev->asic_prop.max_queues) {
2218 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2219 atomic64_inc(&cntr->validation_drop_cnt);
2220 dev_err(hdev->dev, "Queue index %d is invalid\n",
2221 chunk->queue_index);
2222 rc = -EINVAL;
2223 goto free_cs_chunk_array;
2224 }
2225
2226 q_idx = chunk->queue_index;
2227 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2228 q_type = hw_queue_prop->type;
2229
2230 if (!hw_queue_prop->supports_sync_stream) {
2231 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2232 atomic64_inc(&cntr->validation_drop_cnt);
2233 dev_err(hdev->dev,
2234 "Queue index %d does not support sync stream operations\n",
2235 q_idx);
2236 rc = -EINVAL;
2237 goto free_cs_chunk_array;
2238 }
2239
2240 if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
2241 if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
2242 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2243 atomic64_inc(&cntr->validation_drop_cnt);
2244 dev_err(hdev->dev,
2245 "Queue index %d is invalid\n", q_idx);
2246 rc = -EINVAL;
2247 goto free_cs_chunk_array;
2248 }
2249
2250 if (!hdev->nic_ports_mask) {
2251 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2252 atomic64_inc(&cntr->validation_drop_cnt);
2253 dev_err(hdev->dev,
2254 "Collective operations not supported when NIC ports are disabled");
2255 rc = -EINVAL;
2256 goto free_cs_chunk_array;
2257 }
2258
2259 collective_engine_id = chunk->collective_engine_id;
2260 }
2261
2262 is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
2263 cs_type == CS_TYPE_COLLECTIVE_WAIT);
2264
2265 cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
2266
2267 if (is_wait_cs) {
2268 rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
2269 ctx, cs_encaps_signals);
2270 if (rc)
2271 goto free_cs_chunk_array;
2272
2273 if (cs_encaps_signals) {
2274 /* check if cs sequence has encapsulated
2275 * signals handle
2276 */
2277 struct idr *idp;
2278 u32 id;
2279
2280 spin_lock(&ctx->sig_mgr.lock);
2281 idp = &ctx->sig_mgr.handles;
2282 idr_for_each_entry(idp, encaps_sig_hdl, id) {
2283 if (encaps_sig_hdl->cs_seq == signal_seq) {
2284 /* get refcount to protect removing this handle from idr,
2285 * needed when multiple wait cs are used with offset
2286 * to wait on reserved encaps signals.
2287 * Since kref_put of this handle is executed outside the
2288 * current lock, it is possible that the handle refcount
2289 * is 0 but it yet to be removed from the list. In this
2290 * case need to consider the handle as not valid.
2291 */
2292 if (kref_get_unless_zero(&encaps_sig_hdl->refcount))
2293 handle_found = true;
2294 break;
2295 }
2296 }
2297 spin_unlock(&ctx->sig_mgr.lock);
2298
2299 if (!handle_found) {
2300 /* treat as signal CS already finished */
2301 dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
2302 signal_seq);
2303 rc = 0;
2304 goto free_cs_chunk_array;
2305 }
2306
2307 /* validate also the signal offset value */
2308 if (chunk->encaps_signal_offset >
2309 encaps_sig_hdl->count) {
2310 dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
2311 chunk->encaps_signal_offset,
2312 encaps_sig_hdl->count);
2313 rc = -EINVAL;
2314 goto free_cs_chunk_array;
2315 }
2316 }
2317
2318 sig_fence = hl_ctx_get_fence(ctx, signal_seq);
2319 if (IS_ERR(sig_fence)) {
2320 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2321 atomic64_inc(&cntr->validation_drop_cnt);
2322 dev_err(hdev->dev,
2323 "Failed to get signal CS with seq 0x%llx\n",
2324 signal_seq);
2325 rc = PTR_ERR(sig_fence);
2326 goto free_cs_chunk_array;
2327 }
2328
2329 if (!sig_fence) {
2330 /* signal CS already finished */
2331 rc = 0;
2332 goto free_cs_chunk_array;
2333 }
2334
2335 sig_waitcs_cmpl =
2336 container_of(sig_fence, struct hl_cs_compl, base_fence);
2337
2338 staged_cs_with_encaps_signals = !!
2339 (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
2340 (flags & HL_CS_FLAGS_ENCAP_SIGNALS));
2341
2342 if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
2343 !staged_cs_with_encaps_signals) {
2344 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2345 atomic64_inc(&cntr->validation_drop_cnt);
2346 dev_err(hdev->dev,
2347 "CS seq 0x%llx is not of a signal/encaps-signal CS\n",
2348 signal_seq);
2349 hl_fence_put(sig_fence);
2350 rc = -EINVAL;
2351 goto free_cs_chunk_array;
2352 }
2353
2354 if (completion_done(&sig_fence->completion)) {
2355 /* signal CS already finished */
2356 hl_fence_put(sig_fence);
2357 rc = 0;
2358 goto free_cs_chunk_array;
2359 }
2360 }
2361
2362 rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
2363 if (rc) {
2364 if (is_wait_cs)
2365 hl_fence_put(sig_fence);
2366
2367 goto free_cs_chunk_array;
2368 }
2369
2370 /*
2371 * Save the signal CS fence for later initialization right before
2372 * hanging the wait CS on the queue.
2373 * for encaps signals case, we save the cs sequence and handle pointer
2374 * for later initialization.
2375 */
2376 if (is_wait_cs) {
2377 cs->signal_fence = sig_fence;
2378 /* store the handle pointer, so we don't have to
2379 * look for it again, later on the flow
2380 * when we need to set SOB info in hw_queue.
2381 */
2382 if (cs->encaps_signals)
2383 cs->encaps_sig_hdl = encaps_sig_hdl;
2384 }
2385
2386 hl_debugfs_add_cs(cs);
2387
2388 *cs_seq = cs->sequence;
2389
2390 if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
2391 rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
2392 q_idx, chunk->encaps_signal_offset);
2393 else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
2394 rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
2395 cs, q_idx, collective_engine_id,
2396 chunk->encaps_signal_offset);
2397 else {
2398 atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2399 atomic64_inc(&cntr->validation_drop_cnt);
2400 rc = -EINVAL;
2401 }
2402
2403 if (rc)
2404 goto free_cs_object;
2405
2406 if (q_type == QUEUE_TYPE_HW)
2407 INIT_WORK(&cs->finish_work, cs_completion);
2408
2409 rc = hl_hw_queue_schedule_cs(cs);
2410 if (rc) {
2411 /* In case wait cs failed here, it means the signal cs
2412 * already completed. we want to free all it's related objects
2413 * but we don't want to fail the ioctl.
2414 */
2415 if (is_wait_cs)
2416 rc = 0;
2417 else if (rc != -EAGAIN)
2418 dev_err(hdev->dev,
2419 "Failed to submit CS %d.%llu to H/W queues, error %d\n",
2420 ctx->asid, cs->sequence, rc);
2421 goto free_cs_object;
2422 }
2423
2424 *signal_sob_addr_offset = cs->sob_addr_offset;
2425 *signal_initial_sob_count = cs->initial_sob_count;
2426
2427 rc = HL_CS_STATUS_SUCCESS;
2428 if (is_wait_cs)
2429 wait_cs_submitted = true;
2430 goto put_cs;
2431
2432 free_cs_object:
2433 cs_rollback(hdev, cs);
2434 *cs_seq = ULLONG_MAX;
2435 /* The path below is both for good and erroneous exits */
2436 put_cs:
2437 /* We finished with the CS in this function, so put the ref */
2438 cs_put(cs);
2439 free_cs_chunk_array:
2440 if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs)
2441 kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
2442 kfree(cs_chunk_array);
2443 out:
2444 return rc;
2445 }
2446
cs_ioctl_engine_cores(struct hl_fpriv * hpriv,u64 engine_cores,u32 num_engine_cores,u32 core_command)2447 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
2448 u32 num_engine_cores, u32 core_command)
2449 {
2450 struct hl_device *hdev = hpriv->hdev;
2451 void __user *engine_cores_arr;
2452 u32 *cores;
2453 int rc;
2454
2455 if (!hdev->asic_prop.supports_engine_modes)
2456 return -EPERM;
2457
2458 if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
2459 dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
2460 return -EINVAL;
2461 }
2462
2463 if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
2464 dev_err(hdev->dev, "Engine core command is invalid\n");
2465 return -EINVAL;
2466 }
2467
2468 engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
2469 cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL);
2470 if (!cores)
2471 return -ENOMEM;
2472
2473 if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) {
2474 dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
2475 kfree(cores);
2476 return -EFAULT;
2477 }
2478
2479 rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
2480 kfree(cores);
2481
2482 return rc;
2483 }
2484
cs_ioctl_engines(struct hl_fpriv * hpriv,u64 engines_arr_user_addr,u32 num_engines,enum hl_engine_command command)2485 static int cs_ioctl_engines(struct hl_fpriv *hpriv, u64 engines_arr_user_addr,
2486 u32 num_engines, enum hl_engine_command command)
2487 {
2488 struct hl_device *hdev = hpriv->hdev;
2489 u32 *engines, max_num_of_engines;
2490 void __user *engines_arr;
2491 int rc;
2492
2493 if (!hdev->asic_prop.supports_engine_modes)
2494 return -EPERM;
2495
2496 if (command >= HL_ENGINE_COMMAND_MAX) {
2497 dev_err(hdev->dev, "Engine command is invalid\n");
2498 return -EINVAL;
2499 }
2500
2501 max_num_of_engines = hdev->asic_prop.max_num_of_engines;
2502 if (command == HL_ENGINE_CORE_RUN || command == HL_ENGINE_CORE_HALT)
2503 max_num_of_engines = hdev->asic_prop.num_engine_cores;
2504
2505 if (!num_engines || num_engines > max_num_of_engines) {
2506 dev_err(hdev->dev, "Number of engines %d is invalid\n", num_engines);
2507 return -EINVAL;
2508 }
2509
2510 engines_arr = (void __user *) (uintptr_t) engines_arr_user_addr;
2511 engines = kmalloc_array(num_engines, sizeof(u32), GFP_KERNEL);
2512 if (!engines)
2513 return -ENOMEM;
2514
2515 if (copy_from_user(engines, engines_arr, num_engines * sizeof(u32))) {
2516 dev_err(hdev->dev, "Failed to copy engine-ids array from user\n");
2517 kfree(engines);
2518 return -EFAULT;
2519 }
2520
2521 rc = hdev->asic_funcs->set_engines(hdev, engines, num_engines, command);
2522 kfree(engines);
2523
2524 return rc;
2525 }
2526
cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv * hpriv)2527 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv)
2528 {
2529 struct hl_device *hdev = hpriv->hdev;
2530 struct asic_fixed_properties *prop = &hdev->asic_prop;
2531
2532 if (!prop->hbw_flush_reg) {
2533 dev_dbg(hdev->dev, "HBW flush is not supported\n");
2534 return -EOPNOTSUPP;
2535 }
2536
2537 RREG32(prop->hbw_flush_reg);
2538
2539 return 0;
2540 }
2541
hl_cs_ioctl(struct hl_fpriv * hpriv,void * data)2542 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
2543 {
2544 union hl_cs_args *args = data;
2545 enum hl_cs_type cs_type = 0;
2546 u64 cs_seq = ULONG_MAX;
2547 void __user *chunks;
2548 u32 num_chunks, flags, timeout,
2549 signals_count = 0, sob_addr = 0, handle_id = 0;
2550 u16 sob_initial_count = 0;
2551 int rc;
2552
2553 rc = hl_cs_sanity_checks(hpriv, args);
2554 if (rc)
2555 goto out;
2556
2557 rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
2558 if (rc)
2559 goto out;
2560
2561 cs_type = hl_cs_get_cs_type(args->in.cs_flags &
2562 ~HL_CS_FLAGS_FORCE_RESTORE);
2563 chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
2564 num_chunks = args->in.num_chunks_execute;
2565 flags = args->in.cs_flags;
2566
2567 /* In case this is a staged CS, user should supply the CS sequence */
2568 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
2569 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
2570 cs_seq = args->in.seq;
2571
2572 timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
2573 ? msecs_to_jiffies(args->in.timeout * 1000)
2574 : hpriv->hdev->timeout_jiffies;
2575
2576 switch (cs_type) {
2577 case CS_TYPE_SIGNAL:
2578 case CS_TYPE_WAIT:
2579 case CS_TYPE_COLLECTIVE_WAIT:
2580 rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
2581 &cs_seq, args->in.cs_flags, timeout,
2582 &sob_addr, &sob_initial_count);
2583 break;
2584 case CS_RESERVE_SIGNALS:
2585 rc = cs_ioctl_reserve_signals(hpriv,
2586 args->in.encaps_signals_q_idx,
2587 args->in.encaps_signals_count,
2588 &handle_id, &sob_addr, &signals_count);
2589 break;
2590 case CS_UNRESERVE_SIGNALS:
2591 rc = cs_ioctl_unreserve_signals(hpriv,
2592 args->in.encaps_sig_handle_id);
2593 break;
2594 case CS_TYPE_ENGINE_CORE:
2595 rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores,
2596 args->in.num_engine_cores, args->in.core_command);
2597 break;
2598 case CS_TYPE_ENGINES:
2599 rc = cs_ioctl_engines(hpriv, args->in.engines,
2600 args->in.num_engines, args->in.engine_command);
2601 break;
2602 case CS_TYPE_FLUSH_PCI_HBW_WRITES:
2603 rc = cs_ioctl_flush_pci_hbw_writes(hpriv);
2604 break;
2605 default:
2606 rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
2607 args->in.cs_flags,
2608 args->in.encaps_sig_handle_id,
2609 timeout, &sob_initial_count);
2610 break;
2611 }
2612 out:
2613 if (rc != -EAGAIN) {
2614 memset(args, 0, sizeof(*args));
2615
2616 switch (cs_type) {
2617 case CS_RESERVE_SIGNALS:
2618 args->out.handle_id = handle_id;
2619 args->out.sob_base_addr_offset = sob_addr;
2620 args->out.count = signals_count;
2621 break;
2622 case CS_TYPE_SIGNAL:
2623 args->out.sob_base_addr_offset = sob_addr;
2624 args->out.sob_count_before_submission = sob_initial_count;
2625 args->out.seq = cs_seq;
2626 break;
2627 case CS_TYPE_DEFAULT:
2628 args->out.sob_count_before_submission = sob_initial_count;
2629 args->out.seq = cs_seq;
2630 break;
2631 default:
2632 args->out.seq = cs_seq;
2633 break;
2634 }
2635
2636 args->out.status = rc;
2637 }
2638
2639 return rc;
2640 }
2641
hl_wait_for_fence(struct hl_ctx * ctx,u64 seq,struct hl_fence * fence,enum hl_cs_wait_status * status,u64 timeout_us,s64 * timestamp)2642 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
2643 enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
2644 {
2645 struct hl_device *hdev = ctx->hdev;
2646 ktime_t timestamp_kt;
2647 long completion_rc;
2648 int rc = 0, error;
2649
2650 if (IS_ERR(fence)) {
2651 rc = PTR_ERR(fence);
2652 if (rc == -EINVAL)
2653 dev_notice_ratelimited(hdev->dev,
2654 "Can't wait on CS %llu because current CS is at seq %llu\n",
2655 seq, ctx->cs_sequence);
2656 return rc;
2657 }
2658
2659 if (!fence) {
2660 if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, ×tamp_kt, &error)) {
2661 dev_dbg(hdev->dev,
2662 "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
2663 seq, ctx->cs_sequence);
2664 *status = CS_WAIT_STATUS_GONE;
2665 return 0;
2666 }
2667
2668 completion_rc = 1;
2669 goto report_results;
2670 }
2671
2672 if (!timeout_us) {
2673 completion_rc = completion_done(&fence->completion);
2674 } else {
2675 unsigned long timeout;
2676
2677 timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
2678 timeout_us : usecs_to_jiffies(timeout_us);
2679 completion_rc =
2680 wait_for_completion_interruptible_timeout(
2681 &fence->completion, timeout);
2682 }
2683
2684 error = fence->error;
2685 timestamp_kt = fence->timestamp;
2686
2687 report_results:
2688 if (completion_rc > 0) {
2689 *status = CS_WAIT_STATUS_COMPLETED;
2690 if (timestamp)
2691 *timestamp = ktime_to_ns(timestamp_kt);
2692 } else {
2693 *status = CS_WAIT_STATUS_BUSY;
2694 }
2695
2696 if (completion_rc == -ERESTARTSYS)
2697 rc = completion_rc;
2698 else if (error == -ETIMEDOUT || error == -EIO)
2699 rc = error;
2700
2701 return rc;
2702 }
2703
2704 /*
2705 * hl_cs_poll_fences - iterate CS fences to check for CS completion
2706 *
2707 * @mcs_data: multi-CS internal data
2708 * @mcs_compl: multi-CS completion structure
2709 *
2710 * @return 0 on success, otherwise non 0 error code
2711 *
2712 * The function iterates on all CS sequence in the list and set bit in
2713 * completion_bitmap for each completed CS.
2714 * While iterating, the function sets the stream map of each fence in the fence
2715 * array in the completion QID stream map to be used by CSs to perform
2716 * completion to the multi-CS context.
2717 * This function shall be called after taking context ref
2718 */
hl_cs_poll_fences(struct multi_cs_data * mcs_data,struct multi_cs_completion * mcs_compl)2719 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
2720 {
2721 struct hl_fence **fence_ptr = mcs_data->fence_arr;
2722 struct hl_device *hdev = mcs_data->ctx->hdev;
2723 int i, rc, arr_len = mcs_data->arr_len;
2724 u64 *seq_arr = mcs_data->seq_arr;
2725 ktime_t max_ktime, first_cs_time;
2726 enum hl_cs_wait_status status;
2727
2728 memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
2729
2730 /* get all fences under the same lock */
2731 rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
2732 if (rc)
2733 return rc;
2734
2735 /*
2736 * re-initialize the completion here to handle 2 possible cases:
2737 * 1. CS will complete the multi-CS prior clearing the completion. in which
2738 * case the fence iteration is guaranteed to catch the CS completion.
2739 * 2. the completion will occur after re-init of the completion.
2740 * in which case we will wake up immediately in wait_for_completion.
2741 */
2742 reinit_completion(&mcs_compl->completion);
2743
2744 /*
2745 * set to maximum time to verify timestamp is valid: if at the end
2746 * this value is maintained- no timestamp was updated
2747 */
2748 max_ktime = ktime_set(KTIME_SEC_MAX, 0);
2749 first_cs_time = max_ktime;
2750
2751 for (i = 0; i < arr_len; i++, fence_ptr++) {
2752 struct hl_fence *fence = *fence_ptr;
2753
2754 /*
2755 * In order to prevent case where we wait until timeout even though a CS associated
2756 * with the multi-CS actually completed we do things in the below order:
2757 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way
2758 * any CS can, potentially, complete the multi CS for the specific QID (note
2759 * that once completion is initialized, calling complete* and then wait on the
2760 * completion will cause it to return at once)
2761 * 2. only after allowing multi-CS completion for the specific QID we check whether
2762 * the specific CS already completed (and thus the wait for completion part will
2763 * be skipped). if the CS not completed it is guaranteed that completing CS will
2764 * wake up the completion.
2765 */
2766 if (fence)
2767 mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
2768
2769 /*
2770 * function won't sleep as it is called with timeout 0 (i.e.
2771 * poll the fence)
2772 */
2773 rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL);
2774 if (rc) {
2775 dev_err(hdev->dev,
2776 "wait_for_fence error :%d for CS seq %llu\n",
2777 rc, seq_arr[i]);
2778 break;
2779 }
2780
2781 switch (status) {
2782 case CS_WAIT_STATUS_BUSY:
2783 /* CS did not finished, QID to wait on already stored */
2784 break;
2785 case CS_WAIT_STATUS_COMPLETED:
2786 /*
2787 * Using mcs_handling_done to avoid possibility of mcs_data
2788 * returns to user indicating CS completed before it finished
2789 * all of its mcs handling, to avoid race the next time the
2790 * user waits for mcs.
2791 * note: when reaching this case fence is definitely not NULL
2792 * but NULL check was added to overcome static analysis
2793 */
2794 if (fence && !fence->mcs_handling_done) {
2795 /*
2796 * in case multi CS is completed but MCS handling not done
2797 * we "complete" the multi CS to prevent it from waiting
2798 * until time-out and the "multi-CS handling done" will have
2799 * another chance at the next iteration
2800 */
2801 complete_all(&mcs_compl->completion);
2802 break;
2803 }
2804
2805 mcs_data->completion_bitmap |= BIT(i);
2806 /*
2807 * For all completed CSs we take the earliest timestamp.
2808 * For this we have to validate that the timestamp is
2809 * earliest of all timestamps so far.
2810 */
2811 if (fence && mcs_data->update_ts &&
2812 (ktime_compare(fence->timestamp, first_cs_time) < 0))
2813 first_cs_time = fence->timestamp;
2814 break;
2815 case CS_WAIT_STATUS_GONE:
2816 mcs_data->update_ts = false;
2817 mcs_data->gone_cs = true;
2818 /*
2819 * It is possible to get an old sequence numbers from user
2820 * which related to already completed CSs and their fences
2821 * already gone. In this case, CS set as completed but
2822 * no need to consider its QID for mcs completion.
2823 */
2824 mcs_data->completion_bitmap |= BIT(i);
2825 break;
2826 default:
2827 dev_err(hdev->dev, "Invalid fence status\n");
2828 rc = -EINVAL;
2829 break;
2830 }
2831
2832 }
2833
2834 hl_fences_put(mcs_data->fence_arr, arr_len);
2835
2836 if (mcs_data->update_ts &&
2837 (ktime_compare(first_cs_time, max_ktime) != 0))
2838 mcs_data->timestamp = ktime_to_ns(first_cs_time);
2839
2840 return rc;
2841 }
2842
_hl_cs_wait_ioctl(struct hl_device * hdev,struct hl_ctx * ctx,u64 timeout_us,u64 seq,enum hl_cs_wait_status * status,s64 * timestamp)2843 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
2844 enum hl_cs_wait_status *status, s64 *timestamp)
2845 {
2846 struct hl_fence *fence;
2847 int rc = 0;
2848
2849 if (timestamp)
2850 *timestamp = 0;
2851
2852 hl_ctx_get(ctx);
2853
2854 fence = hl_ctx_get_fence(ctx, seq);
2855
2856 rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
2857 hl_fence_put(fence);
2858 hl_ctx_put(ctx);
2859
2860 return rc;
2861 }
2862
hl_usecs64_to_jiffies(const u64 usecs)2863 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
2864 {
2865 if (usecs <= U32_MAX)
2866 return usecs_to_jiffies(usecs);
2867
2868 /*
2869 * If the value in nanoseconds is larger than 64 bit, use the largest
2870 * 64 bit value.
2871 */
2872 if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
2873 return nsecs_to_jiffies(U64_MAX);
2874
2875 return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
2876 }
2877
2878 /*
2879 * hl_wait_multi_cs_completion_init - init completion structure
2880 *
2881 * @hdev: pointer to habanalabs device structure
2882 * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
2883 * master QID to wait on
2884 *
2885 * @return valid completion struct pointer on success, otherwise error pointer
2886 *
2887 * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
2888 * the function gets the first available completion (by marking it "used")
2889 * and initialize its values.
2890 */
hl_wait_multi_cs_completion_init(struct hl_device * hdev)2891 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
2892 {
2893 struct multi_cs_completion *mcs_compl;
2894 int i;
2895
2896 /* find free multi_cs completion structure */
2897 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2898 mcs_compl = &hdev->multi_cs_completion[i];
2899 spin_lock(&mcs_compl->lock);
2900 if (!mcs_compl->used) {
2901 mcs_compl->used = 1;
2902 mcs_compl->timestamp = 0;
2903 /*
2904 * init QID map to 0 to avoid completion by CSs. the actual QID map
2905 * to multi-CS CSs will be set incrementally at a later stage
2906 */
2907 mcs_compl->stream_master_qid_map = 0;
2908 spin_unlock(&mcs_compl->lock);
2909 break;
2910 }
2911 spin_unlock(&mcs_compl->lock);
2912 }
2913
2914 if (i == MULTI_CS_MAX_USER_CTX) {
2915 dev_err(hdev->dev, "no available multi-CS completion structure\n");
2916 return ERR_PTR(-ENOMEM);
2917 }
2918 return mcs_compl;
2919 }
2920
2921 /*
2922 * hl_wait_multi_cs_completion_fini - return completion structure and set as
2923 * unused
2924 *
2925 * @mcs_compl: pointer to the completion structure
2926 */
hl_wait_multi_cs_completion_fini(struct multi_cs_completion * mcs_compl)2927 static void hl_wait_multi_cs_completion_fini(
2928 struct multi_cs_completion *mcs_compl)
2929 {
2930 /*
2931 * free completion structure, do it under lock to be in-sync with the
2932 * thread that signals completion
2933 */
2934 spin_lock(&mcs_compl->lock);
2935 mcs_compl->used = 0;
2936 spin_unlock(&mcs_compl->lock);
2937 }
2938
2939 /*
2940 * hl_wait_multi_cs_completion - wait for first CS to complete
2941 *
2942 * @mcs_data: multi-CS internal data
2943 *
2944 * @return 0 on success, otherwise non 0 error code
2945 */
hl_wait_multi_cs_completion(struct multi_cs_data * mcs_data,struct multi_cs_completion * mcs_compl)2946 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
2947 struct multi_cs_completion *mcs_compl)
2948 {
2949 long completion_rc;
2950
2951 completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
2952 mcs_data->timeout_jiffies);
2953
2954 /* update timestamp */
2955 if (completion_rc > 0)
2956 mcs_data->timestamp = mcs_compl->timestamp;
2957
2958 if (completion_rc == -ERESTARTSYS)
2959 return completion_rc;
2960
2961 mcs_data->wait_status = completion_rc;
2962
2963 return 0;
2964 }
2965
2966 /*
2967 * hl_multi_cs_completion_init - init array of multi-CS completion structures
2968 *
2969 * @hdev: pointer to habanalabs device structure
2970 */
hl_multi_cs_completion_init(struct hl_device * hdev)2971 void hl_multi_cs_completion_init(struct hl_device *hdev)
2972 {
2973 struct multi_cs_completion *mcs_cmpl;
2974 int i;
2975
2976 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2977 mcs_cmpl = &hdev->multi_cs_completion[i];
2978 mcs_cmpl->used = 0;
2979 spin_lock_init(&mcs_cmpl->lock);
2980 init_completion(&mcs_cmpl->completion);
2981 }
2982 }
2983
2984 /*
2985 * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
2986 *
2987 * @hpriv: pointer to the private data of the fd
2988 * @data: pointer to multi-CS wait ioctl in/out args
2989 *
2990 */
hl_multi_cs_wait_ioctl(struct hl_fpriv * hpriv,void * data)2991 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2992 {
2993 struct multi_cs_completion *mcs_compl;
2994 struct hl_device *hdev = hpriv->hdev;
2995 struct multi_cs_data mcs_data = {};
2996 union hl_wait_cs_args *args = data;
2997 struct hl_ctx *ctx = hpriv->ctx;
2998 struct hl_fence **fence_arr;
2999 void __user *seq_arr;
3000 u32 size_to_copy;
3001 u64 *cs_seq_arr;
3002 u8 seq_arr_len;
3003 int rc, i;
3004
3005 for (i = 0 ; i < sizeof(args->in.pad) ; i++)
3006 if (args->in.pad[i]) {
3007 dev_dbg(hdev->dev, "Padding bytes must be 0\n");
3008 return -EINVAL;
3009 }
3010
3011 if (!hdev->supports_wait_for_multi_cs) {
3012 dev_err(hdev->dev, "Wait for multi CS is not supported\n");
3013 return -EPERM;
3014 }
3015
3016 seq_arr_len = args->in.seq_arr_len;
3017
3018 if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
3019 dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
3020 HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
3021 return -EINVAL;
3022 }
3023
3024 /* allocate memory for sequence array */
3025 cs_seq_arr =
3026 kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
3027 if (!cs_seq_arr)
3028 return -ENOMEM;
3029
3030 /* copy CS sequence array from user */
3031 seq_arr = (void __user *) (uintptr_t) args->in.seq;
3032 size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
3033 if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
3034 dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
3035 rc = -EFAULT;
3036 goto free_seq_arr;
3037 }
3038
3039 /* allocate array for the fences */
3040 fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL);
3041 if (!fence_arr) {
3042 rc = -ENOMEM;
3043 goto free_seq_arr;
3044 }
3045
3046 /* initialize the multi-CS internal data */
3047 mcs_data.ctx = ctx;
3048 mcs_data.seq_arr = cs_seq_arr;
3049 mcs_data.fence_arr = fence_arr;
3050 mcs_data.arr_len = seq_arr_len;
3051
3052 hl_ctx_get(ctx);
3053
3054 /* wait (with timeout) for the first CS to be completed */
3055 mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
3056 mcs_compl = hl_wait_multi_cs_completion_init(hdev);
3057 if (IS_ERR(mcs_compl)) {
3058 rc = PTR_ERR(mcs_compl);
3059 goto put_ctx;
3060 }
3061
3062 /* poll all CS fences, extract timestamp */
3063 mcs_data.update_ts = true;
3064 rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3065 /*
3066 * skip wait for CS completion when one of the below is true:
3067 * - an error on the poll function
3068 * - one or more CS in the list completed
3069 * - the user called ioctl with timeout 0
3070 */
3071 if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
3072 goto completion_fini;
3073
3074 while (true) {
3075 rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
3076 if (rc || (mcs_data.wait_status == 0))
3077 break;
3078
3079 /*
3080 * poll fences once again to update the CS map.
3081 * no timestamp should be updated this time.
3082 */
3083 mcs_data.update_ts = false;
3084 rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3085
3086 if (rc || mcs_data.completion_bitmap)
3087 break;
3088
3089 /*
3090 * if hl_wait_multi_cs_completion returned before timeout (i.e.
3091 * it got a completion) it either got completed by CS in the multi CS list
3092 * (in which case the indication will be non empty completion_bitmap) or it
3093 * got completed by CS submitted to one of the shared stream master but
3094 * not in the multi CS list (in which case we should wait again but modify
3095 * the timeout and set timestamp as zero to let a CS related to the current
3096 * multi-CS set a new, relevant, timestamp)
3097 */
3098 mcs_data.timeout_jiffies = mcs_data.wait_status;
3099 mcs_compl->timestamp = 0;
3100 }
3101
3102 completion_fini:
3103 hl_wait_multi_cs_completion_fini(mcs_compl);
3104
3105 put_ctx:
3106 hl_ctx_put(ctx);
3107 kfree(fence_arr);
3108
3109 free_seq_arr:
3110 kfree(cs_seq_arr);
3111
3112 if (rc == -ERESTARTSYS) {
3113 dev_err_ratelimited(hdev->dev,
3114 "user process got signal while waiting for Multi-CS\n");
3115 rc = -EINTR;
3116 }
3117
3118 if (rc)
3119 return rc;
3120
3121 /* update output args */
3122 memset(args, 0, sizeof(*args));
3123
3124 if (mcs_data.completion_bitmap) {
3125 args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3126 args->out.cs_completion_map = mcs_data.completion_bitmap;
3127
3128 /* if timestamp not 0- it's valid */
3129 if (mcs_data.timestamp) {
3130 args->out.timestamp_nsec = mcs_data.timestamp;
3131 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3132 }
3133
3134 /* update if some CS was gone */
3135 if (!mcs_data.timestamp)
3136 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3137 } else {
3138 args->out.status = HL_WAIT_CS_STATUS_BUSY;
3139 }
3140
3141 return 0;
3142 }
3143
hl_cs_wait_ioctl(struct hl_fpriv * hpriv,void * data)3144 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3145 {
3146 struct hl_device *hdev = hpriv->hdev;
3147 union hl_wait_cs_args *args = data;
3148 enum hl_cs_wait_status status;
3149 u64 seq = args->in.seq;
3150 s64 timestamp;
3151 int rc;
3152
3153 rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, ×tamp);
3154
3155 if (rc == -ERESTARTSYS) {
3156 dev_err_ratelimited(hdev->dev,
3157 "user process got signal while waiting for CS handle %llu\n",
3158 seq);
3159 return -EINTR;
3160 }
3161
3162 memset(args, 0, sizeof(*args));
3163
3164 if (rc) {
3165 if (rc == -ETIMEDOUT) {
3166 dev_err_ratelimited(hdev->dev,
3167 "CS %llu has timed-out while user process is waiting for it\n",
3168 seq);
3169 args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
3170 } else if (rc == -EIO) {
3171 dev_err_ratelimited(hdev->dev,
3172 "CS %llu has been aborted while user process is waiting for it\n",
3173 seq);
3174 args->out.status = HL_WAIT_CS_STATUS_ABORTED;
3175 }
3176 return rc;
3177 }
3178
3179 if (timestamp) {
3180 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3181 args->out.timestamp_nsec = timestamp;
3182 }
3183
3184 switch (status) {
3185 case CS_WAIT_STATUS_GONE:
3186 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3187 fallthrough;
3188 case CS_WAIT_STATUS_COMPLETED:
3189 args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3190 break;
3191 case CS_WAIT_STATUS_BUSY:
3192 default:
3193 args->out.status = HL_WAIT_CS_STATUS_BUSY;
3194 break;
3195 }
3196
3197 return 0;
3198 }
3199
ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf * buf,struct hl_cb * cq_cb,u64 ts_offset,u64 cq_offset,u64 target_value,spinlock_t * wait_list_lock,struct hl_user_pending_interrupt ** pend)3200 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf,
3201 struct hl_cb *cq_cb,
3202 u64 ts_offset, u64 cq_offset, u64 target_value,
3203 spinlock_t *wait_list_lock,
3204 struct hl_user_pending_interrupt **pend)
3205 {
3206 struct hl_ts_buff *ts_buff = buf->private;
3207 struct hl_user_pending_interrupt *requested_offset_record =
3208 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3209 ts_offset;
3210 struct hl_user_pending_interrupt *cb_last =
3211 (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3212 (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
3213 unsigned long iter_counter = 0;
3214 u64 current_cq_counter;
3215 ktime_t timestamp;
3216
3217 /* Validate ts_offset not exceeding last max */
3218 if (requested_offset_record >= cb_last) {
3219 dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n",
3220 (u64)(uintptr_t)cb_last);
3221 return -EINVAL;
3222 }
3223
3224 timestamp = ktime_get();
3225
3226 start_over:
3227 spin_lock(wait_list_lock);
3228
3229 /* Unregister only if we didn't reach the target value
3230 * since in this case there will be no handling in irq context
3231 * and then it's safe to delete the node out of the interrupt list
3232 * then re-use it on other interrupt
3233 */
3234 if (requested_offset_record->ts_reg_info.in_use) {
3235 current_cq_counter = *requested_offset_record->cq_kernel_addr;
3236 if (current_cq_counter < requested_offset_record->cq_target_value) {
3237 list_del(&requested_offset_record->wait_list_node);
3238 spin_unlock(wait_list_lock);
3239
3240 hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf);
3241 hl_cb_put(requested_offset_record->ts_reg_info.cq_cb);
3242
3243 dev_dbg(buf->mmg->dev,
3244 "ts node removed from interrupt list now can re-use\n");
3245 } else {
3246 dev_dbg(buf->mmg->dev,
3247 "ts node in middle of irq handling\n");
3248
3249 /* irq thread handling in the middle give it time to finish */
3250 spin_unlock(wait_list_lock);
3251 usleep_range(100, 1000);
3252 if (++iter_counter == MAX_TS_ITER_NUM) {
3253 dev_err(buf->mmg->dev,
3254 "Timestamp offset processing reached timeout of %lld ms\n",
3255 ktime_ms_delta(ktime_get(), timestamp));
3256 return -EAGAIN;
3257 }
3258
3259 goto start_over;
3260 }
3261 } else {
3262 /* Fill up the new registration node info */
3263 requested_offset_record->ts_reg_info.buf = buf;
3264 requested_offset_record->ts_reg_info.cq_cb = cq_cb;
3265 requested_offset_record->ts_reg_info.timestamp_kernel_addr =
3266 (u64 *) ts_buff->user_buff_address + ts_offset;
3267 requested_offset_record->cq_kernel_addr =
3268 (u64 *) cq_cb->kernel_address + cq_offset;
3269 requested_offset_record->cq_target_value = target_value;
3270
3271 spin_unlock(wait_list_lock);
3272 }
3273
3274 *pend = requested_offset_record;
3275
3276 dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n",
3277 requested_offset_record);
3278 return 0;
3279 }
3280
_hl_interrupt_wait_ioctl(struct hl_device * hdev,struct hl_ctx * ctx,struct hl_mem_mgr * cb_mmg,struct hl_mem_mgr * mmg,u64 timeout_us,u64 cq_counters_handle,u64 cq_counters_offset,u64 target_value,struct hl_user_interrupt * interrupt,bool register_ts_record,u64 ts_handle,u64 ts_offset,u32 * status,u64 * timestamp)3281 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3282 struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg,
3283 u64 timeout_us, u64 cq_counters_handle, u64 cq_counters_offset,
3284 u64 target_value, struct hl_user_interrupt *interrupt,
3285 bool register_ts_record, u64 ts_handle, u64 ts_offset,
3286 u32 *status, u64 *timestamp)
3287 {
3288 struct hl_user_pending_interrupt *pend;
3289 struct hl_mmap_mem_buf *buf;
3290 struct hl_cb *cq_cb;
3291 unsigned long timeout;
3292 long completion_rc;
3293 int rc = 0;
3294
3295 timeout = hl_usecs64_to_jiffies(timeout_us);
3296
3297 hl_ctx_get(ctx);
3298
3299 cq_cb = hl_cb_get(cb_mmg, cq_counters_handle);
3300 if (!cq_cb) {
3301 rc = -EINVAL;
3302 goto put_ctx;
3303 }
3304
3305 /* Validate the cq offset */
3306 if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >=
3307 ((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) {
3308 rc = -EINVAL;
3309 goto put_cq_cb;
3310 }
3311
3312 if (register_ts_record) {
3313 dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n",
3314 interrupt->interrupt_id, ts_offset, cq_counters_offset);
3315 buf = hl_mmap_mem_buf_get(mmg, ts_handle);
3316 if (!buf) {
3317 rc = -EINVAL;
3318 goto put_cq_cb;
3319 }
3320
3321 /* get ts buffer record */
3322 rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset,
3323 cq_counters_offset, target_value,
3324 &interrupt->wait_list_lock, &pend);
3325 if (rc)
3326 goto put_ts_buff;
3327 } else {
3328 pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3329 if (!pend) {
3330 rc = -ENOMEM;
3331 goto put_cq_cb;
3332 }
3333 hl_fence_init(&pend->fence, ULONG_MAX);
3334 pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset;
3335 pend->cq_target_value = target_value;
3336 }
3337
3338 spin_lock(&interrupt->wait_list_lock);
3339
3340 /* We check for completion value as interrupt could have been received
3341 * before we added the node to the wait list
3342 */
3343 if (*pend->cq_kernel_addr >= target_value) {
3344 if (register_ts_record)
3345 pend->ts_reg_info.in_use = 0;
3346 spin_unlock(&interrupt->wait_list_lock);
3347
3348 *status = HL_WAIT_CS_STATUS_COMPLETED;
3349
3350 if (register_ts_record) {
3351 *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
3352 goto put_ts_buff;
3353 } else {
3354 pend->fence.timestamp = ktime_get();
3355 goto set_timestamp;
3356 }
3357 } else if (!timeout_us) {
3358 spin_unlock(&interrupt->wait_list_lock);
3359 *status = HL_WAIT_CS_STATUS_BUSY;
3360 pend->fence.timestamp = ktime_get();
3361 goto set_timestamp;
3362 }
3363
3364 /* Add pending user interrupt to relevant list for the interrupt
3365 * handler to monitor.
3366 * Note that we cannot have sorted list by target value,
3367 * in order to shorten the list pass loop, since
3368 * same list could have nodes for different cq counter handle.
3369 * Note:
3370 * Mark ts buff offset as in use here in the spinlock protection area
3371 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record
3372 * before adding the node to the list. this scenario might happen when
3373 * multiple threads are racing on same offset and one thread could
3374 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread
3375 * takes over and get to ts_buff_get_kernel_ts_record and then we will try
3376 * to re-use the same ts buff offset, and will try to delete a non existing
3377 * node from the list.
3378 */
3379 if (register_ts_record)
3380 pend->ts_reg_info.in_use = 1;
3381
3382 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3383 spin_unlock(&interrupt->wait_list_lock);
3384
3385 if (register_ts_record) {
3386 rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
3387 goto ts_registration_exit;
3388 }
3389
3390 /* Wait for interrupt handler to signal completion */
3391 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3392 timeout);
3393 if (completion_rc > 0) {
3394 *status = HL_WAIT_CS_STATUS_COMPLETED;
3395 } else {
3396 if (completion_rc == -ERESTARTSYS) {
3397 dev_err_ratelimited(hdev->dev,
3398 "user process got signal while waiting for interrupt ID %d\n",
3399 interrupt->interrupt_id);
3400 rc = -EINTR;
3401 *status = HL_WAIT_CS_STATUS_ABORTED;
3402 } else {
3403 if (pend->fence.error == -EIO) {
3404 dev_err_ratelimited(hdev->dev,
3405 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3406 pend->fence.error);
3407 rc = -EIO;
3408 *status = HL_WAIT_CS_STATUS_ABORTED;
3409 } else {
3410 /* The wait has timed-out. We don't know anything beyond that
3411 * because the workload wasn't submitted through the driver.
3412 * Therefore, from driver's perspective, the workload is still
3413 * executing.
3414 */
3415 rc = 0;
3416 *status = HL_WAIT_CS_STATUS_BUSY;
3417 }
3418 }
3419 }
3420
3421 /*
3422 * We keep removing the node from list here, and not at the irq handler
3423 * for completion timeout case. and if it's a registration
3424 * for ts record, the node will be deleted in the irq handler after
3425 * we reach the target value.
3426 */
3427 spin_lock(&interrupt->wait_list_lock);
3428 list_del(&pend->wait_list_node);
3429 spin_unlock(&interrupt->wait_list_lock);
3430
3431 set_timestamp:
3432 *timestamp = ktime_to_ns(pend->fence.timestamp);
3433 kfree(pend);
3434 hl_cb_put(cq_cb);
3435 ts_registration_exit:
3436 hl_ctx_put(ctx);
3437
3438 return rc;
3439
3440 put_ts_buff:
3441 hl_mmap_mem_buf_put(buf);
3442 put_cq_cb:
3443 hl_cb_put(cq_cb);
3444 put_ctx:
3445 hl_ctx_put(ctx);
3446
3447 return rc;
3448 }
3449
_hl_interrupt_wait_ioctl_user_addr(struct hl_device * hdev,struct hl_ctx * ctx,u64 timeout_us,u64 user_address,u64 target_value,struct hl_user_interrupt * interrupt,u32 * status,u64 * timestamp)3450 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
3451 u64 timeout_us, u64 user_address,
3452 u64 target_value, struct hl_user_interrupt *interrupt,
3453 u32 *status,
3454 u64 *timestamp)
3455 {
3456 struct hl_user_pending_interrupt *pend;
3457 unsigned long timeout;
3458 u64 completion_value;
3459 long completion_rc;
3460 int rc = 0;
3461
3462 timeout = hl_usecs64_to_jiffies(timeout_us);
3463
3464 hl_ctx_get(ctx);
3465
3466 pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3467 if (!pend) {
3468 hl_ctx_put(ctx);
3469 return -ENOMEM;
3470 }
3471
3472 hl_fence_init(&pend->fence, ULONG_MAX);
3473
3474 /* Add pending user interrupt to relevant list for the interrupt
3475 * handler to monitor
3476 */
3477 spin_lock(&interrupt->wait_list_lock);
3478 list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3479 spin_unlock(&interrupt->wait_list_lock);
3480
3481 /* We check for completion value as interrupt could have been received
3482 * before we added the node to the wait list
3483 */
3484 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3485 dev_err(hdev->dev, "Failed to copy completion value from user\n");
3486 rc = -EFAULT;
3487 goto remove_pending_user_interrupt;
3488 }
3489
3490 if (completion_value >= target_value) {
3491 *status = HL_WAIT_CS_STATUS_COMPLETED;
3492 /* There was no interrupt, we assume the completion is now. */
3493 pend->fence.timestamp = ktime_get();
3494 } else {
3495 *status = HL_WAIT_CS_STATUS_BUSY;
3496 }
3497
3498 if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
3499 goto remove_pending_user_interrupt;
3500
3501 wait_again:
3502 /* Wait for interrupt handler to signal completion */
3503 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3504 timeout);
3505
3506 /* If timeout did not expire we need to perform the comparison.
3507 * If comparison fails, keep waiting until timeout expires
3508 */
3509 if (completion_rc > 0) {
3510 spin_lock(&interrupt->wait_list_lock);
3511 /* reinit_completion must be called before we check for user
3512 * completion value, otherwise, if interrupt is received after
3513 * the comparison and before the next wait_for_completion,
3514 * we will reach timeout and fail
3515 */
3516 reinit_completion(&pend->fence.completion);
3517 spin_unlock(&interrupt->wait_list_lock);
3518
3519 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3520 dev_err(hdev->dev, "Failed to copy completion value from user\n");
3521 rc = -EFAULT;
3522
3523 goto remove_pending_user_interrupt;
3524 }
3525
3526 if (completion_value >= target_value) {
3527 *status = HL_WAIT_CS_STATUS_COMPLETED;
3528 } else if (pend->fence.error) {
3529 dev_err_ratelimited(hdev->dev,
3530 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3531 pend->fence.error);
3532 /* set the command completion status as ABORTED */
3533 *status = HL_WAIT_CS_STATUS_ABORTED;
3534 } else {
3535 timeout = completion_rc;
3536 goto wait_again;
3537 }
3538 } else if (completion_rc == -ERESTARTSYS) {
3539 dev_err_ratelimited(hdev->dev,
3540 "user process got signal while waiting for interrupt ID %d\n",
3541 interrupt->interrupt_id);
3542 rc = -EINTR;
3543 } else {
3544 /* The wait has timed-out. We don't know anything beyond that
3545 * because the workload wasn't submitted through the driver.
3546 * Therefore, from driver's perspective, the workload is still
3547 * executing.
3548 */
3549 rc = 0;
3550 *status = HL_WAIT_CS_STATUS_BUSY;
3551 }
3552
3553 remove_pending_user_interrupt:
3554 spin_lock(&interrupt->wait_list_lock);
3555 list_del(&pend->wait_list_node);
3556 spin_unlock(&interrupt->wait_list_lock);
3557
3558 *timestamp = ktime_to_ns(pend->fence.timestamp);
3559
3560 kfree(pend);
3561 hl_ctx_put(ctx);
3562
3563 return rc;
3564 }
3565
hl_interrupt_wait_ioctl(struct hl_fpriv * hpriv,void * data)3566 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3567 {
3568 u16 interrupt_id, first_interrupt, last_interrupt;
3569 struct hl_device *hdev = hpriv->hdev;
3570 struct asic_fixed_properties *prop;
3571 struct hl_user_interrupt *interrupt;
3572 union hl_wait_cs_args *args = data;
3573 u32 status = HL_WAIT_CS_STATUS_BUSY;
3574 u64 timestamp = 0;
3575 int rc, int_idx;
3576
3577 prop = &hdev->asic_prop;
3578
3579 if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
3580 dev_err(hdev->dev, "no user interrupts allowed");
3581 return -EPERM;
3582 }
3583
3584 interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
3585
3586 first_interrupt = prop->first_available_user_interrupt;
3587 last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
3588
3589 if (interrupt_id < prop->user_dec_intr_count) {
3590
3591 /* Check if the requested core is enabled */
3592 if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
3593 dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
3594 interrupt_id);
3595 return -EINVAL;
3596 }
3597
3598 interrupt = &hdev->user_interrupt[interrupt_id];
3599
3600 } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
3601
3602 int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
3603 interrupt = &hdev->user_interrupt[int_idx];
3604
3605 } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
3606 interrupt = &hdev->common_user_cq_interrupt;
3607 } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
3608 interrupt = &hdev->common_decoder_interrupt;
3609 } else {
3610 dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
3611 return -EINVAL;
3612 }
3613
3614 if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ)
3615 rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr,
3616 args->in.interrupt_timeout_us, args->in.cq_counters_handle,
3617 args->in.cq_counters_offset,
3618 args->in.target, interrupt,
3619 !!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT),
3620 args->in.timestamp_handle, args->in.timestamp_offset,
3621 &status, ×tamp);
3622 else
3623 rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
3624 args->in.interrupt_timeout_us, args->in.addr,
3625 args->in.target, interrupt, &status,
3626 ×tamp);
3627 if (rc)
3628 return rc;
3629
3630 memset(args, 0, sizeof(*args));
3631 args->out.status = status;
3632
3633 if (timestamp) {
3634 args->out.timestamp_nsec = timestamp;
3635 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3636 }
3637
3638 return 0;
3639 }
3640
hl_wait_ioctl(struct hl_fpriv * hpriv,void * data)3641 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3642 {
3643 struct hl_device *hdev = hpriv->hdev;
3644 union hl_wait_cs_args *args = data;
3645 u32 flags = args->in.flags;
3646 int rc;
3647
3648 /* If the device is not operational, or if an error has happened and user should release the
3649 * device, there is no point in waiting for any command submission or user interrupt.
3650 */
3651 if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active)
3652 return -EBUSY;
3653
3654 if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
3655 rc = hl_interrupt_wait_ioctl(hpriv, data);
3656 else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
3657 rc = hl_multi_cs_wait_ioctl(hpriv, data);
3658 else
3659 rc = hl_cs_wait_ioctl(hpriv, data);
3660
3661 return rc;
3662 }
3663