• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9 
10 #include <linux/kvm_host.h>
11 #include <linux/types.h>
12 #include <linux/jump_label.h>
13 #include <uapi/linux/psci.h>
14 
15 #include <kvm/arm_psci.h>
16 
17 #include <asm/barrier.h>
18 #include <asm/cpufeature.h>
19 #include <asm/kprobes.h>
20 #include <asm/kvm_asm.h>
21 #include <asm/kvm_emulate.h>
22 #include <asm/kvm_hyp.h>
23 #include <asm/kvm_hypevents.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 
29 #include <nvhe/mem_protect.h>
30 #include <nvhe/pkvm.h>
31 
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36 
37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
38 extern void __pkvm_unmask_serror(void);
39 
40 #define update_pvm_fgt_traps(vcpu, reg)						\
41 	update_fgt_traps_cs(vcpu, reg, PVM_ ## reg ## _CLR, PVM_ ## reg ## _SET)
42 
__activate_pvm_fine_grain_traps(struct kvm_vcpu * vcpu)43 static void __activate_pvm_fine_grain_traps(struct kvm_vcpu *vcpu)
44 {
45 	if (cpus_have_final_cap(ARM64_HAS_HCX))
46 		update_pvm_fgt_traps(vcpu, HCRX_EL2);
47 
48 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
49 		return;
50 
51 	update_pvm_fgt_traps(vcpu, HFGRTR_EL2);
52 
53 	/* Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD. */
54 	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) {
55 		update_fgt_traps_cs(vcpu, HFGWTR_EL2, PVM_HFGWTR_EL2_CLR,
56 			PVM_HFGWTR_EL2_SET | HFGxTR_EL2_TCR_EL1_MASK);
57 	} else {
58 		update_pvm_fgt_traps(vcpu, HFGWTR_EL2);
59 	}
60 
61 	update_pvm_fgt_traps(vcpu, HFGITR_EL2);
62 	update_pvm_fgt_traps(vcpu, HDFGRTR_EL2);
63 	update_pvm_fgt_traps(vcpu, HDFGWTR_EL2);
64 
65 	if (cpu_has_amu())
66 		update_pvm_fgt_traps(vcpu, HAFGRTR_EL2);
67 }
68 
__deactivate_pvm_traps_hfgxtr(struct kvm_vcpu * vcpu)69 static void __deactivate_pvm_traps_hfgxtr(struct kvm_vcpu *vcpu)
70 {
71 	struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
72 
73 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
74 		return;
75 
76 	write_sysreg_s(ctxt_sys_reg(hctxt, HFGRTR_EL2), SYS_HFGRTR_EL2);
77 	write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
78 	write_sysreg_s(ctxt_sys_reg(hctxt, HFGITR_EL2), SYS_HFGITR_EL2);
79 	write_sysreg_s(ctxt_sys_reg(hctxt, HDFGRTR_EL2), SYS_HDFGRTR_EL2);
80 	write_sysreg_s(ctxt_sys_reg(hctxt, HDFGWTR_EL2), SYS_HDFGWTR_EL2);
81 
82 	if (cpu_has_amu())
83 		write_sysreg_s(ctxt_sys_reg(hctxt, HAFGRTR_EL2), SYS_HAFGRTR_EL2);
84 }
85 
__activate_traps(struct kvm_vcpu * vcpu)86 static void __activate_traps(struct kvm_vcpu *vcpu)
87 {
88 	u64 val;
89 
90 	___activate_traps(vcpu);
91 	__activate_traps_common(vcpu);
92 
93 	if (unlikely(vcpu_is_protected(vcpu))) {
94 		__activate_pvm_fine_grain_traps(vcpu);
95 	} else {
96 		__activate_traps_hcrx(vcpu);
97 		__activate_traps_hfgxtr(vcpu);
98 	}
99 
100 	val = vcpu->arch.cptr_el2;
101 	val |= CPTR_EL2_TAM;	/* Same bit irrespective of E2H */
102 	val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA;
103 	if (cpus_have_final_cap(ARM64_SME)) {
104 		if (has_hvhe())
105 			val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN);
106 		else
107 			val |= CPTR_EL2_TSM;
108 	}
109 
110 	if (vcpu->arch.fp_state != FP_STATE_GUEST_OWNED) {
111 		if (has_hvhe())
112 			val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
113 				 CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN);
114 		else
115 			val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
116 
117 		__activate_traps_fpsimd32(vcpu);
118 	}
119 
120 	kvm_write_cptr_el2(val);
121 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
122 
123 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
124 		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
125 
126 		isb();
127 		/*
128 		 * At this stage, and thanks to the above isb(), S2 is
129 		 * configured and enabled. We can now restore the guest's S1
130 		 * configuration: SCTLR, and only then TCR.
131 		 */
132 		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
133 		isb();
134 		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
135 	}
136 }
137 
__deactivate_traps(struct kvm_vcpu * vcpu)138 static void __deactivate_traps(struct kvm_vcpu *vcpu)
139 {
140 	extern char __kvm_hyp_host_vector[];
141 
142 	___deactivate_traps(vcpu);
143 
144 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
145 		u64 val;
146 
147 		/*
148 		 * Set the TCR and SCTLR registers in the exact opposite
149 		 * sequence as __activate_traps (first prevent walks,
150 		 * then force the MMU on). A generous sprinkling of isb()
151 		 * ensure that things happen in this exact order.
152 		 */
153 		val = read_sysreg_el1(SYS_TCR);
154 		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
155 		isb();
156 		val = read_sysreg_el1(SYS_SCTLR);
157 		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
158 		isb();
159 	}
160 
161 	__deactivate_traps_common(vcpu);
162 
163 	if (unlikely(vcpu_is_protected(vcpu)))
164 		__deactivate_pvm_traps_hfgxtr(vcpu);
165 	else
166 		__deactivate_traps_hfgxtr(vcpu);
167 
168 	write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
169 
170 	kvm_reset_cptr_el2(vcpu);
171 	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
172 }
173 
__deactivate_fpsimd_traps(struct kvm_vcpu * vcpu)174 static void __deactivate_fpsimd_traps(struct kvm_vcpu *vcpu)
175 {
176 	u64 reg;
177 	bool trap_sve = vcpu_has_sve(vcpu) ||
178 			(is_protected_kvm_enabled() && system_supports_sve());
179 
180 	if (has_hvhe()) {
181 		reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
182 		if (trap_sve)
183 			reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
184 
185 		sysreg_clear_set(cpacr_el1, 0, reg);
186 	} else {
187 		reg = CPTR_EL2_TFP;
188 		if (trap_sve)
189 			reg |= CPTR_EL2_TZ;
190 
191 		sysreg_clear_set(cptr_el2, reg, 0);
192 	}
193 }
194 
195 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)196 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
197 {
198 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
199 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
200 		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
201 	}
202 }
203 
204 /* Restore VGICv3 state on non-VHE systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)205 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
206 {
207 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
208 		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
209 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
210 	}
211 }
212 
213 /*
214  * Disable host events, enable guest events
215  */
216 #ifdef CONFIG_HW_PERF_EVENTS
__pmu_switch_to_guest(struct kvm_vcpu * vcpu)217 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
218 {
219 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
220 
221 	if (pmu->events_host)
222 		write_sysreg(pmu->events_host, pmcntenclr_el0);
223 
224 	if (pmu->events_guest)
225 		write_sysreg(pmu->events_guest, pmcntenset_el0);
226 
227 	return (pmu->events_host || pmu->events_guest);
228 }
229 
230 /*
231  * Disable guest events, enable host events
232  */
__pmu_switch_to_host(struct kvm_vcpu * vcpu)233 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
234 {
235 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
236 
237 	if (pmu->events_guest)
238 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
239 
240 	if (pmu->events_host)
241 		write_sysreg(pmu->events_host, pmcntenset_el0);
242 }
243 #else
244 #define __pmu_switch_to_guest(v)	({ false; })
245 #define __pmu_switch_to_host(v)		do {} while (0)
246 #endif
247 
248 /*
249  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
250  *
251  * Returns true if the hypervisor has handled the exit, and control should go
252  * back to the guest, or false if it hasn't.
253  */
kvm_handle_pvm_sys64(struct kvm_vcpu * vcpu,u64 * exit_code)254 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
255 {
256 	/*
257 	 * Make sure we handle the exit for workarounds and ptrauth
258 	 * before the pKVM handling, as the latter could decide to
259 	 * UNDEF.
260 	 */
261 	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
262 		kvm_handle_pvm_sysreg(vcpu, exit_code));
263 }
264 
kvm_hyp_handle_fpsimd_host(struct kvm_vcpu * vcpu)265 static void kvm_hyp_handle_fpsimd_host(struct kvm_vcpu *vcpu)
266 {
267 	/*
268 	 * Non-protected kvm relies on the host restoring its sve state.
269 	 * Protected kvm restores the host's sve state as not to reveal that
270 	 * fpsimd was used by a guest nor leak upper sve bits.
271 	 */
272 	if (unlikely(is_protected_kvm_enabled() && system_supports_sve())) {
273 		struct kvm_host_sve_state *sve_state = get_host_sve_state(vcpu);
274 		u64 zcr_el2 = sve_vq_from_vl(kvm_host_sve_max_vl) - 1;
275 
276 		sve_state->zcr_el1 = read_sysreg_el1(SYS_ZCR);
277 		sve_cond_update_zcr_vq(zcr_el2, SYS_ZCR_EL2);
278 		__sve_save_state(sve_state->sve_regs +
279 				 sve_ffr_offset(kvm_host_sve_max_vl),
280 				 &sve_state->fpsr);
281 
282 		/* Still trap SVE since it's handled by hyp in pKVM. */
283 		if (!vcpu_has_sve(vcpu))
284 			sysreg_clear_set(cptr_el2, 0, CPTR_EL2_TZ);
285 	} else {
286 		__fpsimd_save_state(get_host_fpsimd_state(vcpu));
287 	}
288 }
289 
290 static const exit_handler_fn hyp_exit_handlers[] = {
291 	[0 ... ESR_ELx_EC_MAX]		= NULL,
292 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
293 	[ESR_ELx_EC_HVC64]		= kvm_hyp_handle_hvc64,
294 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
295 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
296 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
297 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
298 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
299 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
300 	[ESR_ELx_EC_PAC]		= kvm_hyp_handle_ptrauth,
301 };
302 
303 static const exit_handler_fn pvm_exit_handlers[] = {
304 	[0 ... ESR_ELx_EC_MAX]		= NULL,
305 	[ESR_ELx_EC_HVC64]		= kvm_handle_pvm_hvc64,
306 	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
307 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
308 	[ESR_ELx_EC_SME]		= kvm_handle_pvm_restricted,
309 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
310 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
311 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
312 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
313 	[ESR_ELx_EC_PAC]		= kvm_hyp_handle_ptrauth,
314 };
315 
kvm_get_exit_handler_array(struct kvm_vcpu * vcpu)316 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
317 {
318 	if (unlikely(vcpu_is_protected(vcpu)))
319 		return pvm_exit_handlers;
320 
321 	return hyp_exit_handlers;
322 }
323 
324 /*
325  * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
326  * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
327  * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
328  * hypervisor spots a guest in such a state ensure it is handled, and don't
329  * trust the host to spot or fix it.  The check below is based on the one in
330  * kvm_arch_vcpu_ioctl_run().
331  *
332  * Returns false if the guest ran in AArch32 when it shouldn't have, and
333  * thus should exit to the host, or true if a the guest run loop can continue.
334  */
early_exit_filter(struct kvm_vcpu * vcpu,u64 * exit_code)335 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
336 {
337 	if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) {
338 		/*
339 		 * As we have caught the guest red-handed, decide that it isn't
340 		 * fit for purpose anymore by making the vcpu invalid. The VMM
341 		 * can try and fix it by re-initializing the vcpu with
342 		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
343 		 * protected VMs.
344 		 */
345 		vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
346 		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
347 		*exit_code |= ARM_EXCEPTION_IL;
348 	}
349 }
350 
351 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run(struct kvm_vcpu * vcpu)352 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
353 {
354 	struct kvm_cpu_context *host_ctxt;
355 	struct kvm_cpu_context *guest_ctxt;
356 	struct kvm_s2_mmu *mmu;
357 	bool pmu_switch_needed;
358 	u64 exit_code;
359 
360 	/*
361 	 * Having IRQs masked via PMR when entering the guest means the GIC
362 	 * will not signal the CPU of interrupts of lower priority, and the
363 	 * only way to get out will be via guest exceptions.
364 	 * Naturally, we want to avoid this.
365 	 */
366 	if (system_uses_irq_prio_masking()) {
367 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
368 		pmr_sync();
369 	}
370 
371 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
372 	host_ctxt->__hyp_running_vcpu = vcpu;
373 	guest_ctxt = &vcpu->arch.ctxt;
374 
375 	pmu_switch_needed = __pmu_switch_to_guest(vcpu);
376 
377 	__sysreg_save_state_nvhe(host_ctxt);
378 	/*
379 	 * We must flush and disable the SPE buffer for nVHE, as
380 	 * the translation regime(EL1&0) is going to be loaded with
381 	 * that of the guest. And we must do this before we change the
382 	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
383 	 * before we load guest Stage1.
384 	 */
385 	__debug_save_host_buffers_nvhe(vcpu);
386 
387 	/*
388 	 * We're about to restore some new MMU state. Make sure
389 	 * ongoing page-table walks that have started before we
390 	 * trapped to EL2 have completed. This also synchronises the
391 	 * above disabling of SPE and TRBE.
392 	 *
393 	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
394 	 * rule R_LFHQG and subsequent information statements.
395 	 */
396 	dsb(nsh);
397 
398 	__kvm_adjust_pc(vcpu);
399 
400 	/*
401 	 * We must restore the 32-bit state before the sysregs, thanks
402 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
403 	 *
404 	 * Also, and in order to be able to deal with erratum #1319537 (A57)
405 	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
406 	 * restored before we enable S2 translation.
407 	 */
408 	__sysreg32_restore_state(vcpu);
409 	__sysreg_restore_state_nvhe(guest_ctxt);
410 
411 	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
412 	__load_stage2(mmu, kern_hyp_va(mmu->arch));
413 	__activate_traps(vcpu);
414 
415 	__hyp_vgic_restore_state(vcpu);
416 	__timer_enable_traps(vcpu);
417 
418 	__debug_switch_to_guest(vcpu);
419 
420 	do {
421 		trace_hyp_exit();
422 
423 		/* Jump in the fire! */
424 		exit_code = __guest_enter(vcpu);
425 
426 		/* And we're baaack! */
427 		trace_hyp_enter();
428 	} while (fixup_guest_exit(vcpu, &exit_code));
429 
430 	__sysreg_save_state_nvhe(guest_ctxt);
431 	__sysreg32_save_state(vcpu);
432 	__timer_disable_traps(vcpu);
433 	__hyp_vgic_save_state(vcpu);
434 
435 	/*
436 	 * Same thing as before the guest run: we're about to switch
437 	 * the MMU context, so let's make sure we don't have any
438 	 * ongoing EL1&0 translations.
439 	 */
440 	dsb(nsh);
441 
442 	__deactivate_traps(vcpu);
443 	__load_host_stage2();
444 
445 	__sysreg_restore_state_nvhe(host_ctxt);
446 
447 	if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
448 		__fpsimd_save_fpexc32(vcpu);
449 
450 	__debug_switch_to_host(vcpu);
451 	/*
452 	 * This must come after restoring the host sysregs, since a non-VHE
453 	 * system may enable SPE here and make use of the TTBRs.
454 	 */
455 	__debug_restore_host_buffers_nvhe(vcpu);
456 
457 	if (pmu_switch_needed)
458 		__pmu_switch_to_host(vcpu);
459 
460 	/* Returning to host will clear PSR.I, remask PMR if needed */
461 	if (system_uses_irq_prio_masking())
462 		gic_write_pmr(GIC_PRIO_IRQOFF);
463 
464 	host_ctxt->__hyp_running_vcpu = NULL;
465 
466 	__pkvm_unmask_serror();
467 
468 	return exit_code;
469 }
470 
471 static void (*hyp_panic_notifier)(struct user_pt_regs *regs);
__pkvm_register_hyp_panic_notifier(void (* cb)(struct user_pt_regs * regs))472 int __pkvm_register_hyp_panic_notifier(void (*cb)(struct user_pt_regs *regs))
473 {
474 	return cmpxchg(&hyp_panic_notifier, NULL, cb) ? -EBUSY : 0;
475 }
476 
hyp_panic(void)477 asmlinkage void __noreturn hyp_panic(void)
478 {
479 	u64 spsr = read_sysreg_el2(SYS_SPSR);
480 	u64 elr = read_sysreg_el2(SYS_ELR);
481 	u64 par = read_sysreg_par();
482 	struct kvm_cpu_context *host_ctxt;
483 	struct kvm_vcpu *vcpu;
484 
485 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
486 	vcpu = host_ctxt->__hyp_running_vcpu;
487 
488 	if (READ_ONCE(hyp_panic_notifier))
489 		hyp_panic_notifier(&host_ctxt->regs);
490 
491 	if (vcpu) {
492 		__timer_disable_traps(vcpu);
493 		__deactivate_traps(vcpu);
494 		__load_host_stage2();
495 		__sysreg_restore_state_nvhe(host_ctxt);
496 	}
497 
498 	/* Prepare to dump kvm nvhe hyp stacktrace */
499 	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
500 				   _THIS_IP_);
501 
502 	__hyp_do_panic(host_ctxt, spsr, elr, par);
503 	unreachable();
504 }
505 
hyp_panic_bad_stack(void)506 asmlinkage void __noreturn hyp_panic_bad_stack(void)
507 {
508 	hyp_panic();
509 }
510 
kvm_unexpected_el2_exception(void)511 asmlinkage void kvm_unexpected_el2_exception(void)
512 {
513 	__kvm_unexpected_el2_exception();
514 }
515