• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "display/intel_display.h"
8 #include "display/intel_frontbuffer.h"
9 #include "gt/intel_gt.h"
10 
11 #include "i915_drv.h"
12 #include "i915_gem_clflush.h"
13 #include "i915_gem_domain.h"
14 #include "i915_gem_gtt.h"
15 #include "i915_gem_ioctls.h"
16 #include "i915_gem_lmem.h"
17 #include "i915_gem_mman.h"
18 #include "i915_gem_object.h"
19 #include "i915_vma.h"
20 
21 #define VTD_GUARD (168u * I915_GTT_PAGE_SIZE) /* 168 or tile-row PTE padding */
22 
gpu_write_needs_clflush(struct drm_i915_gem_object * obj)23 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
24 {
25 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
26 
27 	if (IS_DGFX(i915))
28 		return false;
29 
30 	/*
31 	 * For objects created by userspace through GEM_CREATE with pat_index
32 	 * set by set_pat extension, i915_gem_object_has_cache_level() will
33 	 * always return true, because the coherency of such object is managed
34 	 * by userspace. Othereise the call here would fall back to checking
35 	 * whether the object is un-cached or write-through.
36 	 */
37 	return !(i915_gem_object_has_cache_level(obj, I915_CACHE_NONE) ||
38 		 i915_gem_object_has_cache_level(obj, I915_CACHE_WT));
39 }
40 
i915_gem_cpu_write_needs_clflush(struct drm_i915_gem_object * obj)41 bool i915_gem_cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
42 {
43 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
44 
45 	if (obj->cache_dirty)
46 		return false;
47 
48 	if (IS_DGFX(i915))
49 		return false;
50 
51 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
52 		return true;
53 
54 	/* Currently in use by HW (display engine)? Keep flushed. */
55 	return i915_gem_object_is_framebuffer(obj);
56 }
57 
58 static void
flush_write_domain(struct drm_i915_gem_object * obj,unsigned int flush_domains)59 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
60 {
61 	struct i915_vma *vma;
62 
63 	assert_object_held(obj);
64 
65 	if (!(obj->write_domain & flush_domains))
66 		return;
67 
68 	switch (obj->write_domain) {
69 	case I915_GEM_DOMAIN_GTT:
70 		spin_lock(&obj->vma.lock);
71 		for_each_ggtt_vma(vma, obj)
72 			i915_vma_flush_writes(vma);
73 		spin_unlock(&obj->vma.lock);
74 
75 		i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
76 		break;
77 
78 	case I915_GEM_DOMAIN_WC:
79 		wmb();
80 		break;
81 
82 	case I915_GEM_DOMAIN_CPU:
83 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
84 		break;
85 
86 	case I915_GEM_DOMAIN_RENDER:
87 		if (gpu_write_needs_clflush(obj))
88 			obj->cache_dirty = true;
89 		break;
90 	}
91 
92 	obj->write_domain = 0;
93 }
94 
__i915_gem_object_flush_for_display(struct drm_i915_gem_object * obj)95 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
96 {
97 	/*
98 	 * We manually flush the CPU domain so that we can override and
99 	 * force the flush for the display, and perform it asyncrhonously.
100 	 */
101 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
102 	if (obj->cache_dirty)
103 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
104 	obj->write_domain = 0;
105 }
106 
i915_gem_object_flush_if_display(struct drm_i915_gem_object * obj)107 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
108 {
109 	if (!i915_gem_object_is_framebuffer(obj))
110 		return;
111 
112 	i915_gem_object_lock(obj, NULL);
113 	__i915_gem_object_flush_for_display(obj);
114 	i915_gem_object_unlock(obj);
115 }
116 
i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object * obj)117 void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
118 {
119 	if (i915_gem_object_is_framebuffer(obj))
120 		__i915_gem_object_flush_for_display(obj);
121 }
122 
123 /**
124  * i915_gem_object_set_to_wc_domain - Moves a single object to the WC read, and
125  *                                    possibly write domain.
126  * @obj: object to act on
127  * @write: ask for write access or read only
128  *
129  * This function returns when the move is complete, including waiting on
130  * flushes to occur.
131  */
132 int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object * obj,bool write)133 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
134 {
135 	int ret;
136 
137 	assert_object_held(obj);
138 
139 	ret = i915_gem_object_wait(obj,
140 				   I915_WAIT_INTERRUPTIBLE |
141 				   (write ? I915_WAIT_ALL : 0),
142 				   MAX_SCHEDULE_TIMEOUT);
143 	if (ret)
144 		return ret;
145 
146 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
147 		return 0;
148 
149 	/* Flush and acquire obj->pages so that we are coherent through
150 	 * direct access in memory with previous cached writes through
151 	 * shmemfs and that our cache domain tracking remains valid.
152 	 * For example, if the obj->filp was moved to swap without us
153 	 * being notified and releasing the pages, we would mistakenly
154 	 * continue to assume that the obj remained out of the CPU cached
155 	 * domain.
156 	 */
157 	ret = i915_gem_object_pin_pages(obj);
158 	if (ret)
159 		return ret;
160 
161 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
162 
163 	/* Serialise direct access to this object with the barriers for
164 	 * coherent writes from the GPU, by effectively invalidating the
165 	 * WC domain upon first access.
166 	 */
167 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
168 		mb();
169 
170 	/* It should now be out of any other write domains, and we can update
171 	 * the domain values for our changes.
172 	 */
173 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
174 	obj->read_domains |= I915_GEM_DOMAIN_WC;
175 	if (write) {
176 		obj->read_domains = I915_GEM_DOMAIN_WC;
177 		obj->write_domain = I915_GEM_DOMAIN_WC;
178 		obj->mm.dirty = true;
179 	}
180 
181 	i915_gem_object_unpin_pages(obj);
182 	return 0;
183 }
184 
185 /**
186  * i915_gem_object_set_to_gtt_domain - Moves a single object to the GTT read,
187  *                                     and possibly write domain.
188  * @obj: object to act on
189  * @write: ask for write access or read only
190  *
191  * This function returns when the move is complete, including waiting on
192  * flushes to occur.
193  */
194 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)195 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
196 {
197 	int ret;
198 
199 	assert_object_held(obj);
200 
201 	ret = i915_gem_object_wait(obj,
202 				   I915_WAIT_INTERRUPTIBLE |
203 				   (write ? I915_WAIT_ALL : 0),
204 				   MAX_SCHEDULE_TIMEOUT);
205 	if (ret)
206 		return ret;
207 
208 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
209 		return 0;
210 
211 	/* Flush and acquire obj->pages so that we are coherent through
212 	 * direct access in memory with previous cached writes through
213 	 * shmemfs and that our cache domain tracking remains valid.
214 	 * For example, if the obj->filp was moved to swap without us
215 	 * being notified and releasing the pages, we would mistakenly
216 	 * continue to assume that the obj remained out of the CPU cached
217 	 * domain.
218 	 */
219 	ret = i915_gem_object_pin_pages(obj);
220 	if (ret)
221 		return ret;
222 
223 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
224 
225 	/* Serialise direct access to this object with the barriers for
226 	 * coherent writes from the GPU, by effectively invalidating the
227 	 * GTT domain upon first access.
228 	 */
229 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
230 		mb();
231 
232 	/* It should now be out of any other write domains, and we can update
233 	 * the domain values for our changes.
234 	 */
235 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
236 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
237 	if (write) {
238 		struct i915_vma *vma;
239 
240 		obj->read_domains = I915_GEM_DOMAIN_GTT;
241 		obj->write_domain = I915_GEM_DOMAIN_GTT;
242 		obj->mm.dirty = true;
243 
244 		spin_lock(&obj->vma.lock);
245 		for_each_ggtt_vma(vma, obj)
246 			if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
247 				i915_vma_set_ggtt_write(vma);
248 		spin_unlock(&obj->vma.lock);
249 	}
250 
251 	i915_gem_object_unpin_pages(obj);
252 	return 0;
253 }
254 
255 /**
256  * i915_gem_object_set_cache_level - Changes the cache-level of an object across all VMA.
257  * @obj: object to act on
258  * @cache_level: new cache level to set for the object
259  *
260  * After this function returns, the object will be in the new cache-level
261  * across all GTT and the contents of the backing storage will be coherent,
262  * with respect to the new cache-level. In order to keep the backing storage
263  * coherent for all users, we only allow a single cache level to be set
264  * globally on the object and prevent it from being changed whilst the
265  * hardware is reading from the object. That is if the object is currently
266  * on the scanout it will be set to uncached (or equivalent display
267  * cache coherency) and all non-MOCS GPU access will also be uncached so
268  * that all direct access to the scanout remains coherent.
269  */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)270 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
271 				    enum i915_cache_level cache_level)
272 {
273 	int ret;
274 
275 	/*
276 	 * For objects created by userspace through GEM_CREATE with pat_index
277 	 * set by set_pat extension, simply return 0 here without touching
278 	 * the cache setting, because such objects should have an immutable
279 	 * cache setting by desgin and always managed by userspace.
280 	 */
281 	if (i915_gem_object_has_cache_level(obj, cache_level))
282 		return 0;
283 
284 	ret = i915_gem_object_wait(obj,
285 				   I915_WAIT_INTERRUPTIBLE |
286 				   I915_WAIT_ALL,
287 				   MAX_SCHEDULE_TIMEOUT);
288 	if (ret)
289 		return ret;
290 
291 	/* Always invalidate stale cachelines */
292 	i915_gem_object_set_cache_coherency(obj, cache_level);
293 	obj->cache_dirty = true;
294 
295 	/* The cache-level will be applied when each vma is rebound. */
296 	return i915_gem_object_unbind(obj,
297 				      I915_GEM_OBJECT_UNBIND_ACTIVE |
298 				      I915_GEM_OBJECT_UNBIND_BARRIER);
299 }
300 
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)301 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
302 			       struct drm_file *file)
303 {
304 	struct drm_i915_gem_caching *args = data;
305 	struct drm_i915_gem_object *obj;
306 	int err = 0;
307 
308 	if (IS_DGFX(to_i915(dev)))
309 		return -ENODEV;
310 
311 	rcu_read_lock();
312 	obj = i915_gem_object_lookup_rcu(file, args->handle);
313 	if (!obj) {
314 		err = -ENOENT;
315 		goto out;
316 	}
317 
318 	/*
319 	 * This ioctl should be disabled for the objects with pat_index
320 	 * set by user space.
321 	 */
322 	if (obj->pat_set_by_user) {
323 		err = -EOPNOTSUPP;
324 		goto out;
325 	}
326 
327 	if (i915_gem_object_has_cache_level(obj, I915_CACHE_LLC) ||
328 	    i915_gem_object_has_cache_level(obj, I915_CACHE_L3_LLC))
329 		args->caching = I915_CACHING_CACHED;
330 	else if (i915_gem_object_has_cache_level(obj, I915_CACHE_WT))
331 		args->caching = I915_CACHING_DISPLAY;
332 	else
333 		args->caching = I915_CACHING_NONE;
334 out:
335 	rcu_read_unlock();
336 	return err;
337 }
338 
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)339 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
340 			       struct drm_file *file)
341 {
342 	struct drm_i915_private *i915 = to_i915(dev);
343 	struct drm_i915_gem_caching *args = data;
344 	struct drm_i915_gem_object *obj;
345 	enum i915_cache_level level;
346 	int ret = 0;
347 
348 	if (IS_DGFX(i915))
349 		return -ENODEV;
350 
351 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
352 		return -EOPNOTSUPP;
353 
354 	switch (args->caching) {
355 	case I915_CACHING_NONE:
356 		level = I915_CACHE_NONE;
357 		break;
358 	case I915_CACHING_CACHED:
359 		/*
360 		 * Due to a HW issue on BXT A stepping, GPU stores via a
361 		 * snooped mapping may leave stale data in a corresponding CPU
362 		 * cacheline, whereas normally such cachelines would get
363 		 * invalidated.
364 		 */
365 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
366 			return -ENODEV;
367 
368 		level = I915_CACHE_LLC;
369 		break;
370 	case I915_CACHING_DISPLAY:
371 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
372 		break;
373 	default:
374 		return -EINVAL;
375 	}
376 
377 	obj = i915_gem_object_lookup(file, args->handle);
378 	if (!obj)
379 		return -ENOENT;
380 
381 	/*
382 	 * This ioctl should be disabled for the objects with pat_index
383 	 * set by user space.
384 	 */
385 	if (obj->pat_set_by_user) {
386 		ret = -EOPNOTSUPP;
387 		goto out;
388 	}
389 
390 	/*
391 	 * The caching mode of proxy object is handled by its generator, and
392 	 * not allowed to be changed by userspace.
393 	 */
394 	if (i915_gem_object_is_proxy(obj)) {
395 		/*
396 		 * Silently allow cached for userptr; the vulkan driver
397 		 * sets all objects to cached
398 		 */
399 		if (!i915_gem_object_is_userptr(obj) ||
400 		    args->caching != I915_CACHING_CACHED)
401 			ret = -ENXIO;
402 
403 		goto out;
404 	}
405 
406 	ret = i915_gem_object_lock_interruptible(obj, NULL);
407 	if (ret)
408 		goto out;
409 
410 	ret = i915_gem_object_set_cache_level(obj, level);
411 	i915_gem_object_unlock(obj);
412 
413 out:
414 	i915_gem_object_put(obj);
415 	return ret;
416 }
417 
418 /*
419  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
420  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
421  * (for pageflips). We only flush the caches while preparing the buffer for
422  * display, the callers are responsible for frontbuffer flush.
423  */
424 struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,struct i915_gem_ww_ctx * ww,u32 alignment,const struct i915_gtt_view * view,unsigned int flags)425 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
426 				     struct i915_gem_ww_ctx *ww,
427 				     u32 alignment,
428 				     const struct i915_gtt_view *view,
429 				     unsigned int flags)
430 {
431 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
432 	struct i915_vma *vma;
433 	int ret;
434 
435 	/* Frame buffer must be in LMEM */
436 	if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
437 		return ERR_PTR(-EINVAL);
438 
439 	/*
440 	 * The display engine is not coherent with the LLC cache on gen6.  As
441 	 * a result, we make sure that the pinning that is about to occur is
442 	 * done with uncached PTEs. This is lowest common denominator for all
443 	 * chipsets.
444 	 *
445 	 * However for gen6+, we could do better by using the GFDT bit instead
446 	 * of uncaching, which would allow us to flush all the LLC-cached data
447 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
448 	 */
449 	ret = i915_gem_object_set_cache_level(obj,
450 					      HAS_WT(i915) ?
451 					      I915_CACHE_WT : I915_CACHE_NONE);
452 	if (ret)
453 		return ERR_PTR(ret);
454 
455 	/* VT-d may overfetch before/after the vma, so pad with scratch */
456 	if (intel_scanout_needs_vtd_wa(i915)) {
457 		unsigned int guard = VTD_GUARD;
458 
459 		if (i915_gem_object_is_tiled(obj))
460 			guard = max(guard,
461 				    i915_gem_object_get_tile_row_size(obj));
462 
463 		flags |= PIN_OFFSET_GUARD | guard;
464 	}
465 
466 	/*
467 	 * As the user may map the buffer once pinned in the display plane
468 	 * (e.g. libkms for the bootup splash), we have to ensure that we
469 	 * always use map_and_fenceable for all scanout buffers. However,
470 	 * it may simply be too big to fit into mappable, in which case
471 	 * put it anyway and hope that userspace can cope (but always first
472 	 * try to preserve the existing ABI).
473 	 */
474 	vma = ERR_PTR(-ENOSPC);
475 	if ((flags & PIN_MAPPABLE) == 0 &&
476 	    (!view || view->type == I915_GTT_VIEW_NORMAL))
477 		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, alignment,
478 						  flags | PIN_MAPPABLE |
479 						  PIN_NONBLOCK);
480 	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
481 		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0,
482 						  alignment, flags);
483 	if (IS_ERR(vma))
484 		return vma;
485 
486 	vma->display_alignment = max(vma->display_alignment, alignment);
487 	i915_vma_mark_scanout(vma);
488 
489 	i915_gem_object_flush_if_display_locked(obj);
490 
491 	return vma;
492 }
493 
494 /**
495  * i915_gem_object_set_to_cpu_domain - Moves a single object to the CPU read,
496  *                                     and possibly write domain.
497  * @obj: object to act on
498  * @write: requesting write or read-only access
499  *
500  * This function returns when the move is complete, including waiting on
501  * flushes to occur.
502  */
503 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)504 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
505 {
506 	int ret;
507 
508 	assert_object_held(obj);
509 
510 	ret = i915_gem_object_wait(obj,
511 				   I915_WAIT_INTERRUPTIBLE |
512 				   (write ? I915_WAIT_ALL : 0),
513 				   MAX_SCHEDULE_TIMEOUT);
514 	if (ret)
515 		return ret;
516 
517 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
518 
519 	/* Flush the CPU cache if it's still invalid. */
520 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
521 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
522 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
523 	}
524 
525 	/* It should now be out of any other write domains, and we can update
526 	 * the domain values for our changes.
527 	 */
528 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
529 
530 	/* If we're writing through the CPU, then the GPU read domains will
531 	 * need to be invalidated at next use.
532 	 */
533 	if (write)
534 		__start_cpu_write(obj);
535 
536 	return 0;
537 }
538 
539 /**
540  * i915_gem_set_domain_ioctl - Called when user space prepares to use an
541  *                             object with the CPU, either
542  * through the mmap ioctl's mapping or a GTT mapping.
543  * @dev: drm device
544  * @data: ioctl data blob
545  * @file: drm file
546  */
547 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)548 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
549 			  struct drm_file *file)
550 {
551 	struct drm_i915_gem_set_domain *args = data;
552 	struct drm_i915_gem_object *obj;
553 	u32 read_domains = args->read_domains;
554 	u32 write_domain = args->write_domain;
555 	int err;
556 
557 	if (IS_DGFX(to_i915(dev)))
558 		return -ENODEV;
559 
560 	/* Only handle setting domains to types used by the CPU. */
561 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
562 		return -EINVAL;
563 
564 	/*
565 	 * Having something in the write domain implies it's in the read
566 	 * domain, and only that read domain.  Enforce that in the request.
567 	 */
568 	if (write_domain && read_domains != write_domain)
569 		return -EINVAL;
570 
571 	if (!read_domains)
572 		return 0;
573 
574 	obj = i915_gem_object_lookup(file, args->handle);
575 	if (!obj)
576 		return -ENOENT;
577 
578 	/*
579 	 * Try to flush the object off the GPU without holding the lock.
580 	 * We will repeat the flush holding the lock in the normal manner
581 	 * to catch cases where we are gazumped.
582 	 */
583 	err = i915_gem_object_wait(obj,
584 				   I915_WAIT_INTERRUPTIBLE |
585 				   I915_WAIT_PRIORITY |
586 				   (write_domain ? I915_WAIT_ALL : 0),
587 				   MAX_SCHEDULE_TIMEOUT);
588 	if (err)
589 		goto out;
590 
591 	if (i915_gem_object_is_userptr(obj)) {
592 		/*
593 		 * Try to grab userptr pages, iris uses set_domain to check
594 		 * userptr validity
595 		 */
596 		err = i915_gem_object_userptr_validate(obj);
597 		if (!err)
598 			err = i915_gem_object_wait(obj,
599 						   I915_WAIT_INTERRUPTIBLE |
600 						   I915_WAIT_PRIORITY |
601 						   (write_domain ? I915_WAIT_ALL : 0),
602 						   MAX_SCHEDULE_TIMEOUT);
603 		goto out;
604 	}
605 
606 	/*
607 	 * Proxy objects do not control access to the backing storage, ergo
608 	 * they cannot be used as a means to manipulate the cache domain
609 	 * tracking for that backing storage. The proxy object is always
610 	 * considered to be outside of any cache domain.
611 	 */
612 	if (i915_gem_object_is_proxy(obj)) {
613 		err = -ENXIO;
614 		goto out;
615 	}
616 
617 	err = i915_gem_object_lock_interruptible(obj, NULL);
618 	if (err)
619 		goto out;
620 
621 	/*
622 	 * Flush and acquire obj->pages so that we are coherent through
623 	 * direct access in memory with previous cached writes through
624 	 * shmemfs and that our cache domain tracking remains valid.
625 	 * For example, if the obj->filp was moved to swap without us
626 	 * being notified and releasing the pages, we would mistakenly
627 	 * continue to assume that the obj remained out of the CPU cached
628 	 * domain.
629 	 */
630 	err = i915_gem_object_pin_pages(obj);
631 	if (err)
632 		goto out_unlock;
633 
634 	/*
635 	 * Already in the desired write domain? Nothing for us to do!
636 	 *
637 	 * We apply a little bit of cunning here to catch a broader set of
638 	 * no-ops. If obj->write_domain is set, we must be in the same
639 	 * obj->read_domains, and only that domain. Therefore, if that
640 	 * obj->write_domain matches the request read_domains, we are
641 	 * already in the same read/write domain and can skip the operation,
642 	 * without having to further check the requested write_domain.
643 	 */
644 	if (READ_ONCE(obj->write_domain) == read_domains)
645 		goto out_unpin;
646 
647 	if (read_domains & I915_GEM_DOMAIN_WC)
648 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
649 	else if (read_domains & I915_GEM_DOMAIN_GTT)
650 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
651 	else
652 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
653 
654 out_unpin:
655 	i915_gem_object_unpin_pages(obj);
656 
657 out_unlock:
658 	i915_gem_object_unlock(obj);
659 
660 	if (!err && write_domain)
661 		i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
662 
663 out:
664 	i915_gem_object_put(obj);
665 	return err;
666 }
667 
668 /*
669  * Pins the specified object's pages and synchronizes the object with
670  * GPU accesses. Sets needs_clflush to non-zero if the caller should
671  * flush the object from the CPU cache.
672  */
i915_gem_object_prepare_read(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)673 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
674 				 unsigned int *needs_clflush)
675 {
676 	int ret;
677 
678 	*needs_clflush = 0;
679 	if (!i915_gem_object_has_struct_page(obj))
680 		return -ENODEV;
681 
682 	assert_object_held(obj);
683 
684 	ret = i915_gem_object_wait(obj,
685 				   I915_WAIT_INTERRUPTIBLE,
686 				   MAX_SCHEDULE_TIMEOUT);
687 	if (ret)
688 		return ret;
689 
690 	ret = i915_gem_object_pin_pages(obj);
691 	if (ret)
692 		return ret;
693 
694 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
695 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
697 		if (ret)
698 			goto err_unpin;
699 		else
700 			goto out;
701 	}
702 
703 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
704 
705 	/* If we're not in the cpu read domain, set ourself into the gtt
706 	 * read domain and manually flush cachelines (if required). This
707 	 * optimizes for the case when the gpu will dirty the data
708 	 * anyway again before the next pread happens.
709 	 */
710 	if (!obj->cache_dirty &&
711 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
712 		*needs_clflush = CLFLUSH_BEFORE;
713 
714 out:
715 	/* return with the pages pinned */
716 	return 0;
717 
718 err_unpin:
719 	i915_gem_object_unpin_pages(obj);
720 	return ret;
721 }
722 
i915_gem_object_prepare_write(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)723 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
724 				  unsigned int *needs_clflush)
725 {
726 	int ret;
727 
728 	*needs_clflush = 0;
729 	if (!i915_gem_object_has_struct_page(obj))
730 		return -ENODEV;
731 
732 	assert_object_held(obj);
733 
734 	ret = i915_gem_object_wait(obj,
735 				   I915_WAIT_INTERRUPTIBLE |
736 				   I915_WAIT_ALL,
737 				   MAX_SCHEDULE_TIMEOUT);
738 	if (ret)
739 		return ret;
740 
741 	ret = i915_gem_object_pin_pages(obj);
742 	if (ret)
743 		return ret;
744 
745 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
746 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
747 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
748 		if (ret)
749 			goto err_unpin;
750 		else
751 			goto out;
752 	}
753 
754 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
755 
756 	/* If we're not in the cpu write domain, set ourself into the
757 	 * gtt write domain and manually flush cachelines (as required).
758 	 * This optimizes for the case when the gpu will use the data
759 	 * right away and we therefore have to clflush anyway.
760 	 */
761 	if (!obj->cache_dirty) {
762 		*needs_clflush |= CLFLUSH_AFTER;
763 
764 		/*
765 		 * Same trick applies to invalidate partially written
766 		 * cachelines read before writing.
767 		 */
768 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
769 			*needs_clflush |= CLFLUSH_BEFORE;
770 	}
771 
772 out:
773 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
774 	obj->mm.dirty = true;
775 	/* return with the pages pinned */
776 	return 0;
777 
778 err_unpin:
779 	i915_gem_object_unpin_pages(obj);
780 	return ret;
781 }
782