1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include <linux/vmalloc.h>
5
6 #include "ice_common.h"
7
8 /**
9 * ice_aq_read_nvm
10 * @hw: pointer to the HW struct
11 * @module_typeid: module pointer location in words from the NVM beginning
12 * @offset: byte offset from the module beginning
13 * @length: length of the section to be read (in bytes from the offset)
14 * @data: command buffer (size [bytes] = length)
15 * @last_command: tells if this is the last command in a series
16 * @read_shadow_ram: tell if this is a shadow RAM read
17 * @cd: pointer to command details structure or NULL
18 *
19 * Read the NVM using the admin queue commands (0x0701)
20 */
21 static int
ice_aq_read_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,bool read_shadow_ram,struct ice_sq_cd * cd)22 ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
23 void *data, bool last_command, bool read_shadow_ram,
24 struct ice_sq_cd *cd)
25 {
26 struct ice_aq_desc desc;
27 struct ice_aqc_nvm *cmd;
28
29 cmd = &desc.params.nvm;
30
31 if (offset > ICE_AQC_NVM_MAX_OFFSET)
32 return -EINVAL;
33
34 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
35
36 if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
37 cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
38
39 /* If this is the last command in a series, set the proper flag. */
40 if (last_command)
41 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
42 cmd->module_typeid = cpu_to_le16(module_typeid);
43 cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
44 cmd->offset_high = (offset >> 16) & 0xFF;
45 cmd->length = cpu_to_le16(length);
46
47 return ice_aq_send_cmd(hw, &desc, data, length, cd);
48 }
49
50 /**
51 * ice_read_flat_nvm - Read portion of NVM by flat offset
52 * @hw: pointer to the HW struct
53 * @offset: offset from beginning of NVM
54 * @length: (in) number of bytes to read; (out) number of bytes actually read
55 * @data: buffer to return data in (sized to fit the specified length)
56 * @read_shadow_ram: if true, read from shadow RAM instead of NVM
57 *
58 * Reads a portion of the NVM, as a flat memory space. This function correctly
59 * breaks read requests across Shadow RAM sectors and ensures that no single
60 * read request exceeds the maximum 4KB read for a single AdminQ command.
61 *
62 * Returns a status code on failure. Note that the data pointer may be
63 * partially updated if some reads succeed before a failure.
64 */
65 int
ice_read_flat_nvm(struct ice_hw * hw,u32 offset,u32 * length,u8 * data,bool read_shadow_ram)66 ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
67 bool read_shadow_ram)
68 {
69 u32 inlen = *length;
70 u32 bytes_read = 0;
71 bool last_cmd;
72 int status;
73
74 *length = 0;
75
76 /* Verify the length of the read if this is for the Shadow RAM */
77 if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
78 ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n");
79 return -EINVAL;
80 }
81
82 do {
83 u32 read_size, sector_offset;
84
85 /* ice_aq_read_nvm cannot read more than 4KB at a time.
86 * Additionally, a read from the Shadow RAM may not cross over
87 * a sector boundary. Conveniently, the sector size is also
88 * 4KB.
89 */
90 sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
91 read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
92 inlen - bytes_read);
93
94 last_cmd = !(bytes_read + read_size < inlen);
95
96 status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
97 offset, read_size,
98 data + bytes_read, last_cmd,
99 read_shadow_ram, NULL);
100 if (status)
101 break;
102
103 bytes_read += read_size;
104 offset += read_size;
105 } while (!last_cmd);
106
107 *length = bytes_read;
108 return status;
109 }
110
111 /**
112 * ice_aq_update_nvm
113 * @hw: pointer to the HW struct
114 * @module_typeid: module pointer location in words from the NVM beginning
115 * @offset: byte offset from the module beginning
116 * @length: length of the section to be written (in bytes from the offset)
117 * @data: command buffer (size [bytes] = length)
118 * @last_command: tells if this is the last command in a series
119 * @command_flags: command parameters
120 * @cd: pointer to command details structure or NULL
121 *
122 * Update the NVM using the admin queue commands (0x0703)
123 */
124 int
ice_aq_update_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,u8 command_flags,struct ice_sq_cd * cd)125 ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
126 u16 length, void *data, bool last_command, u8 command_flags,
127 struct ice_sq_cd *cd)
128 {
129 struct ice_aq_desc desc;
130 struct ice_aqc_nvm *cmd;
131
132 cmd = &desc.params.nvm;
133
134 /* In offset the highest byte must be zeroed. */
135 if (offset & 0xFF000000)
136 return -EINVAL;
137
138 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
139
140 cmd->cmd_flags |= command_flags;
141
142 /* If this is the last command in a series, set the proper flag. */
143 if (last_command)
144 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
145 cmd->module_typeid = cpu_to_le16(module_typeid);
146 cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
147 cmd->offset_high = (offset >> 16) & 0xFF;
148 cmd->length = cpu_to_le16(length);
149
150 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
151
152 return ice_aq_send_cmd(hw, &desc, data, length, cd);
153 }
154
155 /**
156 * ice_aq_erase_nvm
157 * @hw: pointer to the HW struct
158 * @module_typeid: module pointer location in words from the NVM beginning
159 * @cd: pointer to command details structure or NULL
160 *
161 * Erase the NVM sector using the admin queue commands (0x0702)
162 */
ice_aq_erase_nvm(struct ice_hw * hw,u16 module_typeid,struct ice_sq_cd * cd)163 int ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
164 {
165 struct ice_aq_desc desc;
166 struct ice_aqc_nvm *cmd;
167
168 cmd = &desc.params.nvm;
169
170 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
171
172 cmd->module_typeid = cpu_to_le16(module_typeid);
173 cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
174 cmd->offset_low = 0;
175 cmd->offset_high = 0;
176
177 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
178 }
179
180 /**
181 * ice_read_sr_word_aq - Reads Shadow RAM via AQ
182 * @hw: pointer to the HW structure
183 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
184 * @data: word read from the Shadow RAM
185 *
186 * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
187 */
ice_read_sr_word_aq(struct ice_hw * hw,u16 offset,u16 * data)188 static int ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
189 {
190 u32 bytes = sizeof(u16);
191 __le16 data_local;
192 int status;
193
194 /* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
195 * Shadow RAM sector restrictions necessary when reading from the NVM.
196 */
197 status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
198 (__force u8 *)&data_local, true);
199 if (status)
200 return status;
201
202 *data = le16_to_cpu(data_local);
203 return 0;
204 }
205
206 /**
207 * ice_acquire_nvm - Generic request for acquiring the NVM ownership
208 * @hw: pointer to the HW structure
209 * @access: NVM access type (read or write)
210 *
211 * This function will request NVM ownership.
212 */
ice_acquire_nvm(struct ice_hw * hw,enum ice_aq_res_access_type access)213 int ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
214 {
215 if (hw->flash.blank_nvm_mode)
216 return 0;
217
218 return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
219 }
220
221 /**
222 * ice_release_nvm - Generic request for releasing the NVM ownership
223 * @hw: pointer to the HW structure
224 *
225 * This function will release NVM ownership.
226 */
ice_release_nvm(struct ice_hw * hw)227 void ice_release_nvm(struct ice_hw *hw)
228 {
229 if (hw->flash.blank_nvm_mode)
230 return;
231
232 ice_release_res(hw, ICE_NVM_RES_ID);
233 }
234
235 /**
236 * ice_get_flash_bank_offset - Get offset into requested flash bank
237 * @hw: pointer to the HW structure
238 * @bank: whether to read from the active or inactive flash bank
239 * @module: the module to read from
240 *
241 * Based on the module, lookup the module offset from the beginning of the
242 * flash.
243 *
244 * Returns the flash offset. Note that a value of zero is invalid and must be
245 * treated as an error.
246 */
ice_get_flash_bank_offset(struct ice_hw * hw,enum ice_bank_select bank,u16 module)247 static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
248 {
249 struct ice_bank_info *banks = &hw->flash.banks;
250 enum ice_flash_bank active_bank;
251 bool second_bank_active;
252 u32 offset, size;
253
254 switch (module) {
255 case ICE_SR_1ST_NVM_BANK_PTR:
256 offset = banks->nvm_ptr;
257 size = banks->nvm_size;
258 active_bank = banks->nvm_bank;
259 break;
260 case ICE_SR_1ST_OROM_BANK_PTR:
261 offset = banks->orom_ptr;
262 size = banks->orom_size;
263 active_bank = banks->orom_bank;
264 break;
265 case ICE_SR_NETLIST_BANK_PTR:
266 offset = banks->netlist_ptr;
267 size = banks->netlist_size;
268 active_bank = banks->netlist_bank;
269 break;
270 default:
271 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
272 return 0;
273 }
274
275 switch (active_bank) {
276 case ICE_1ST_FLASH_BANK:
277 second_bank_active = false;
278 break;
279 case ICE_2ND_FLASH_BANK:
280 second_bank_active = true;
281 break;
282 default:
283 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
284 active_bank);
285 return 0;
286 }
287
288 /* The second flash bank is stored immediately following the first
289 * bank. Based on whether the 1st or 2nd bank is active, and whether
290 * we want the active or inactive bank, calculate the desired offset.
291 */
292 switch (bank) {
293 case ICE_ACTIVE_FLASH_BANK:
294 return offset + (second_bank_active ? size : 0);
295 case ICE_INACTIVE_FLASH_BANK:
296 return offset + (second_bank_active ? 0 : size);
297 }
298
299 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
300 return 0;
301 }
302
303 /**
304 * ice_read_flash_module - Read a word from one of the main NVM modules
305 * @hw: pointer to the HW structure
306 * @bank: which bank of the module to read
307 * @module: the module to read
308 * @offset: the offset into the module in bytes
309 * @data: storage for the word read from the flash
310 * @length: bytes of data to read
311 *
312 * Read data from the specified flash module. The bank parameter indicates
313 * whether or not to read from the active bank or the inactive bank of that
314 * module.
315 *
316 * The word will be read using flat NVM access, and relies on the
317 * hw->flash.banks data being setup by ice_determine_active_flash_banks()
318 * during initialization.
319 */
320 static int
ice_read_flash_module(struct ice_hw * hw,enum ice_bank_select bank,u16 module,u32 offset,u8 * data,u32 length)321 ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
322 u32 offset, u8 *data, u32 length)
323 {
324 int status;
325 u32 start;
326
327 start = ice_get_flash_bank_offset(hw, bank, module);
328 if (!start) {
329 ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
330 module);
331 return -EINVAL;
332 }
333
334 status = ice_acquire_nvm(hw, ICE_RES_READ);
335 if (status)
336 return status;
337
338 status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
339
340 ice_release_nvm(hw);
341
342 return status;
343 }
344
345 /**
346 * ice_read_nvm_module - Read from the active main NVM module
347 * @hw: pointer to the HW structure
348 * @bank: whether to read from active or inactive NVM module
349 * @offset: offset into the NVM module to read, in words
350 * @data: storage for returned word value
351 *
352 * Read the specified word from the active NVM module. This includes the CSS
353 * header at the start of the NVM module.
354 */
355 static int
ice_read_nvm_module(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)356 ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
357 {
358 __le16 data_local;
359 int status;
360
361 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
362 (__force u8 *)&data_local, sizeof(u16));
363 if (!status)
364 *data = le16_to_cpu(data_local);
365
366 return status;
367 }
368
369 /**
370 * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
371 * @hw: pointer to the HW structure
372 * @bank: whether to read from the active or inactive NVM module
373 * @offset: offset into the Shadow RAM copy to read, in words
374 * @data: storage for returned word value
375 *
376 * Read the specified word from the copy of the Shadow RAM found in the
377 * specified NVM module.
378 */
379 static int
ice_read_nvm_sr_copy(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)380 ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
381 {
382 return ice_read_nvm_module(hw, bank, ICE_NVM_SR_COPY_WORD_OFFSET + offset, data);
383 }
384
385 /**
386 * ice_read_netlist_module - Read data from the netlist module area
387 * @hw: pointer to the HW structure
388 * @bank: whether to read from the active or inactive module
389 * @offset: offset into the netlist to read from
390 * @data: storage for returned word value
391 *
392 * Read a word from the specified netlist bank.
393 */
394 static int
ice_read_netlist_module(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)395 ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
396 {
397 __le16 data_local;
398 int status;
399
400 status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16),
401 (__force u8 *)&data_local, sizeof(u16));
402 if (!status)
403 *data = le16_to_cpu(data_local);
404
405 return status;
406 }
407
408 /**
409 * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
410 * @hw: pointer to the HW structure
411 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
412 * @data: word read from the Shadow RAM
413 *
414 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
415 */
ice_read_sr_word(struct ice_hw * hw,u16 offset,u16 * data)416 int ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
417 {
418 int status;
419
420 status = ice_acquire_nvm(hw, ICE_RES_READ);
421 if (!status) {
422 status = ice_read_sr_word_aq(hw, offset, data);
423 ice_release_nvm(hw);
424 }
425
426 return status;
427 }
428
429 /**
430 * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
431 * @hw: pointer to hardware structure
432 * @module_tlv: pointer to module TLV to return
433 * @module_tlv_len: pointer to module TLV length to return
434 * @module_type: module type requested
435 *
436 * Finds the requested sub module TLV type from the Preserved Field
437 * Area (PFA) and returns the TLV pointer and length. The caller can
438 * use these to read the variable length TLV value.
439 */
440 int
ice_get_pfa_module_tlv(struct ice_hw * hw,u16 * module_tlv,u16 * module_tlv_len,u16 module_type)441 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
442 u16 module_type)
443 {
444 u16 pfa_len, pfa_ptr, next_tlv, max_tlv;
445 int status;
446
447 status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
448 if (status) {
449 ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
450 return status;
451 }
452 status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
453 if (status) {
454 ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
455 return status;
456 }
457
458 /* The Preserved Fields Area contains a sequence of Type-Length-Value
459 * structures which define its contents. The PFA length includes all
460 * of the TLVs, plus the initial length word itself, *and* one final
461 * word at the end after all of the TLVs.
462 */
463 if (check_add_overflow(pfa_ptr, pfa_len - 1, &max_tlv)) {
464 dev_warn(ice_hw_to_dev(hw), "PFA starts at offset %u. PFA length of %u caused 16-bit arithmetic overflow.\n",
465 pfa_ptr, pfa_len);
466 return -EINVAL;
467 }
468
469 /* Starting with first TLV after PFA length, iterate through the list
470 * of TLVs to find the requested one.
471 */
472 next_tlv = pfa_ptr + 1;
473 while (next_tlv < max_tlv) {
474 u16 tlv_sub_module_type;
475 u16 tlv_len;
476
477 /* Read TLV type */
478 status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
479 if (status) {
480 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
481 break;
482 }
483 /* Read TLV length */
484 status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
485 if (status) {
486 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
487 break;
488 }
489 if (tlv_sub_module_type == module_type) {
490 if (tlv_len) {
491 *module_tlv = next_tlv;
492 *module_tlv_len = tlv_len;
493 return 0;
494 }
495 return -EINVAL;
496 }
497
498 if (check_add_overflow(next_tlv, 2, &next_tlv) ||
499 check_add_overflow(next_tlv, tlv_len, &next_tlv)) {
500 dev_warn(ice_hw_to_dev(hw), "TLV of type %u and length 0x%04x caused 16-bit arithmetic overflow. The PFA starts at 0x%04x and has length of 0x%04x\n",
501 tlv_sub_module_type, tlv_len, pfa_ptr, pfa_len);
502 return -EINVAL;
503 }
504 }
505 /* Module does not exist */
506 return -ENOENT;
507 }
508
509 /**
510 * ice_read_pba_string - Reads part number string from NVM
511 * @hw: pointer to hardware structure
512 * @pba_num: stores the part number string from the NVM
513 * @pba_num_size: part number string buffer length
514 *
515 * Reads the part number string from the NVM.
516 */
ice_read_pba_string(struct ice_hw * hw,u8 * pba_num,u32 pba_num_size)517 int ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
518 {
519 u16 pba_tlv, pba_tlv_len;
520 u16 pba_word, pba_size;
521 int status;
522 u16 i;
523
524 status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
525 ICE_SR_PBA_BLOCK_PTR);
526 if (status) {
527 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
528 return status;
529 }
530
531 /* pba_size is the next word */
532 status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
533 if (status) {
534 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
535 return status;
536 }
537
538 if (pba_tlv_len < pba_size) {
539 ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
540 return -EINVAL;
541 }
542
543 /* Subtract one to get PBA word count (PBA Size word is included in
544 * total size)
545 */
546 pba_size--;
547 if (pba_num_size < (((u32)pba_size * 2) + 1)) {
548 ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
549 return -EINVAL;
550 }
551
552 for (i = 0; i < pba_size; i++) {
553 status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
554 if (status) {
555 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
556 return status;
557 }
558
559 pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
560 pba_num[(i * 2) + 1] = pba_word & 0xFF;
561 }
562 pba_num[(pba_size * 2)] = '\0';
563
564 return status;
565 }
566
567 /**
568 * ice_get_nvm_ver_info - Read NVM version information
569 * @hw: pointer to the HW struct
570 * @bank: whether to read from the active or inactive flash bank
571 * @nvm: pointer to NVM info structure
572 *
573 * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
574 * in the NVM info structure.
575 */
576 static int
ice_get_nvm_ver_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_nvm_info * nvm)577 ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
578 {
579 u16 eetrack_lo, eetrack_hi, ver;
580 int status;
581
582 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
583 if (status) {
584 ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
585 return status;
586 }
587
588 nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
589 nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
590
591 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
592 if (status) {
593 ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
594 return status;
595 }
596 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
597 if (status) {
598 ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
599 return status;
600 }
601
602 nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
603
604 return 0;
605 }
606
607 /**
608 * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
609 * @hw: pointer to the HW structure
610 * @nvm: storage for Option ROM version information
611 *
612 * Reads the NVM EETRACK ID, Map version, and security revision of the
613 * inactive NVM bank. Used to access version data for a pending update that
614 * has not yet been activated.
615 */
ice_get_inactive_nvm_ver(struct ice_hw * hw,struct ice_nvm_info * nvm)616 int ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm)
617 {
618 return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm);
619 }
620
621 /**
622 * ice_get_orom_civd_data - Get the combo version information from Option ROM
623 * @hw: pointer to the HW struct
624 * @bank: whether to read from the active or inactive flash module
625 * @civd: storage for the Option ROM CIVD data.
626 *
627 * Searches through the Option ROM flash contents to locate the CIVD data for
628 * the image.
629 */
630 static int
ice_get_orom_civd_data(struct ice_hw * hw,enum ice_bank_select bank,struct ice_orom_civd_info * civd)631 ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
632 struct ice_orom_civd_info *civd)
633 {
634 u8 *orom_data;
635 int status;
636 u32 offset;
637
638 /* The CIVD section is located in the Option ROM aligned to 512 bytes.
639 * The first 4 bytes must contain the ASCII characters "$CIV".
640 * A simple modulo 256 sum of all of the bytes of the structure must
641 * equal 0.
642 *
643 * The exact location is unknown and varies between images but is
644 * usually somewhere in the middle of the bank. We need to scan the
645 * Option ROM bank to locate it.
646 *
647 * It's significantly faster to read the entire Option ROM up front
648 * using the maximum page size, than to read each possible location
649 * with a separate firmware command.
650 */
651 orom_data = vzalloc(hw->flash.banks.orom_size);
652 if (!orom_data)
653 return -ENOMEM;
654
655 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0,
656 orom_data, hw->flash.banks.orom_size);
657 if (status) {
658 vfree(orom_data);
659 ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n");
660 return status;
661 }
662
663 /* Scan the memory buffer to locate the CIVD data section */
664 for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) {
665 struct ice_orom_civd_info *tmp;
666 u8 sum = 0, i;
667
668 tmp = (struct ice_orom_civd_info *)&orom_data[offset];
669
670 /* Skip forward until we find a matching signature */
671 if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0)
672 continue;
673
674 ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n",
675 offset);
676
677 /* Verify that the simple checksum is zero */
678 for (i = 0; i < sizeof(*tmp); i++)
679 sum += ((u8 *)tmp)[i];
680
681 if (sum) {
682 ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n",
683 sum);
684 goto err_invalid_checksum;
685 }
686
687 *civd = *tmp;
688 vfree(orom_data);
689 return 0;
690 }
691
692 ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n");
693
694 err_invalid_checksum:
695 vfree(orom_data);
696 return -EIO;
697 }
698
699 /**
700 * ice_get_orom_ver_info - Read Option ROM version information
701 * @hw: pointer to the HW struct
702 * @bank: whether to read from the active or inactive flash module
703 * @orom: pointer to Option ROM info structure
704 *
705 * Read Option ROM version and security revision from the Option ROM flash
706 * section.
707 */
708 static int
ice_get_orom_ver_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_orom_info * orom)709 ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom)
710 {
711 struct ice_orom_civd_info civd;
712 u32 combo_ver;
713 int status;
714
715 status = ice_get_orom_civd_data(hw, bank, &civd);
716 if (status) {
717 ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n");
718 return status;
719 }
720
721 combo_ver = le32_to_cpu(civd.combo_ver);
722
723 orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT);
724 orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
725 orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT);
726
727 return 0;
728 }
729
730 /**
731 * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank
732 * @hw: pointer to the HW structure
733 * @orom: storage for Option ROM version information
734 *
735 * Reads the Option ROM version and security revision data for the inactive
736 * section of flash. Used to access version data for a pending update that has
737 * not yet been activated.
738 */
ice_get_inactive_orom_ver(struct ice_hw * hw,struct ice_orom_info * orom)739 int ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom)
740 {
741 return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom);
742 }
743
744 /**
745 * ice_get_netlist_info
746 * @hw: pointer to the HW struct
747 * @bank: whether to read from the active or inactive flash bank
748 * @netlist: pointer to netlist version info structure
749 *
750 * Get the netlist version information from the requested bank. Reads the Link
751 * Topology section to find the Netlist ID block and extract the relevant
752 * information into the netlist version structure.
753 */
754 static int
ice_get_netlist_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_netlist_info * netlist)755 ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank,
756 struct ice_netlist_info *netlist)
757 {
758 u16 module_id, length, node_count, i;
759 u16 *id_blk;
760 int status;
761
762 status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id);
763 if (status)
764 return status;
765
766 if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) {
767 ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n",
768 ICE_NETLIST_LINK_TOPO_MOD_ID, module_id);
769 return -EIO;
770 }
771
772 status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length);
773 if (status)
774 return status;
775
776 /* sanity check that we have at least enough words to store the netlist ID block */
777 if (length < ICE_NETLIST_ID_BLK_SIZE) {
778 ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n",
779 ICE_NETLIST_ID_BLK_SIZE, length);
780 return -EIO;
781 }
782
783 status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count);
784 if (status)
785 return status;
786 node_count &= ICE_LINK_TOPO_NODE_COUNT_M;
787
788 id_blk = kcalloc(ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
789 if (!id_blk)
790 return -ENOMEM;
791
792 /* Read out the entire Netlist ID Block at once. */
793 status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
794 ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16),
795 (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16));
796 if (status)
797 goto exit_error;
798
799 for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++)
800 id_blk[i] = le16_to_cpu(((__force __le16 *)id_blk)[i]);
801
802 netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
803 id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW];
804 netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
805 id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW];
806 netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
807 id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW];
808 netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 |
809 id_blk[ICE_NETLIST_ID_BLK_REV_LOW];
810 netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER];
811 /* Read the left most 4 bytes of SHA */
812 netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
813 id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
814
815 exit_error:
816 kfree(id_blk);
817
818 return status;
819 }
820
821 /**
822 * ice_get_inactive_netlist_ver
823 * @hw: pointer to the HW struct
824 * @netlist: pointer to netlist version info structure
825 *
826 * Read the netlist version data from the inactive netlist bank. Used to
827 * extract version data of a pending flash update in order to display the
828 * version data.
829 */
ice_get_inactive_netlist_ver(struct ice_hw * hw,struct ice_netlist_info * netlist)830 int ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist)
831 {
832 return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist);
833 }
834
835 /**
836 * ice_discover_flash_size - Discover the available flash size.
837 * @hw: pointer to the HW struct
838 *
839 * The device flash could be up to 16MB in size. However, it is possible that
840 * the actual size is smaller. Use bisection to determine the accessible size
841 * of flash memory.
842 */
ice_discover_flash_size(struct ice_hw * hw)843 static int ice_discover_flash_size(struct ice_hw *hw)
844 {
845 u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
846 int status;
847
848 status = ice_acquire_nvm(hw, ICE_RES_READ);
849 if (status)
850 return status;
851
852 while ((max_size - min_size) > 1) {
853 u32 offset = (max_size + min_size) / 2;
854 u32 len = 1;
855 u8 data;
856
857 status = ice_read_flat_nvm(hw, offset, &len, &data, false);
858 if (status == -EIO &&
859 hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
860 ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
861 __func__, offset);
862 status = 0;
863 max_size = offset;
864 } else if (!status) {
865 ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
866 __func__, offset);
867 min_size = offset;
868 } else {
869 /* an unexpected error occurred */
870 goto err_read_flat_nvm;
871 }
872 }
873
874 ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
875
876 hw->flash.flash_size = max_size;
877
878 err_read_flat_nvm:
879 ice_release_nvm(hw);
880
881 return status;
882 }
883
884 /**
885 * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
886 * @hw: pointer to the HW structure
887 * @offset: the word offset of the Shadow RAM word to read
888 * @pointer: pointer value read from Shadow RAM
889 *
890 * Read the given Shadow RAM word, and convert it to a pointer value specified
891 * in bytes. This function assumes the specified offset is a valid pointer
892 * word.
893 *
894 * Each pointer word specifies whether it is stored in word size or 4KB
895 * sector size by using the highest bit. The reported pointer value will be in
896 * bytes, intended for flat NVM reads.
897 */
ice_read_sr_pointer(struct ice_hw * hw,u16 offset,u32 * pointer)898 static int ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
899 {
900 int status;
901 u16 value;
902
903 status = ice_read_sr_word(hw, offset, &value);
904 if (status)
905 return status;
906
907 /* Determine if the pointer is in 4KB or word units */
908 if (value & ICE_SR_NVM_PTR_4KB_UNITS)
909 *pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
910 else
911 *pointer = value * 2;
912
913 return 0;
914 }
915
916 /**
917 * ice_read_sr_area_size - Read an area size from a Shadow RAM word
918 * @hw: pointer to the HW structure
919 * @offset: the word offset of the Shadow RAM to read
920 * @size: size value read from the Shadow RAM
921 *
922 * Read the given Shadow RAM word, and convert it to an area size value
923 * specified in bytes. This function assumes the specified offset is a valid
924 * area size word.
925 *
926 * Each area size word is specified in 4KB sector units. This function reports
927 * the size in bytes, intended for flat NVM reads.
928 */
ice_read_sr_area_size(struct ice_hw * hw,u16 offset,u32 * size)929 static int ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
930 {
931 int status;
932 u16 value;
933
934 status = ice_read_sr_word(hw, offset, &value);
935 if (status)
936 return status;
937
938 /* Area sizes are always specified in 4KB units */
939 *size = value * 4 * 1024;
940
941 return 0;
942 }
943
944 /**
945 * ice_determine_active_flash_banks - Discover active bank for each module
946 * @hw: pointer to the HW struct
947 *
948 * Read the Shadow RAM control word and determine which banks are active for
949 * the NVM, OROM, and Netlist modules. Also read and calculate the associated
950 * pointer and size. These values are then cached into the ice_flash_info
951 * structure for later use in order to calculate the correct offset to read
952 * from the active module.
953 */
ice_determine_active_flash_banks(struct ice_hw * hw)954 static int ice_determine_active_flash_banks(struct ice_hw *hw)
955 {
956 struct ice_bank_info *banks = &hw->flash.banks;
957 u16 ctrl_word;
958 int status;
959
960 status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
961 if (status) {
962 ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
963 return status;
964 }
965
966 /* Check that the control word indicates validity */
967 if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) {
968 ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
969 return -EIO;
970 }
971
972 if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
973 banks->nvm_bank = ICE_1ST_FLASH_BANK;
974 else
975 banks->nvm_bank = ICE_2ND_FLASH_BANK;
976
977 if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
978 banks->orom_bank = ICE_1ST_FLASH_BANK;
979 else
980 banks->orom_bank = ICE_2ND_FLASH_BANK;
981
982 if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
983 banks->netlist_bank = ICE_1ST_FLASH_BANK;
984 else
985 banks->netlist_bank = ICE_2ND_FLASH_BANK;
986
987 status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
988 if (status) {
989 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
990 return status;
991 }
992
993 status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
994 if (status) {
995 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
996 return status;
997 }
998
999 status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
1000 if (status) {
1001 ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
1002 return status;
1003 }
1004
1005 status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
1006 if (status) {
1007 ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
1008 return status;
1009 }
1010
1011 status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
1012 if (status) {
1013 ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
1014 return status;
1015 }
1016
1017 status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
1018 if (status) {
1019 ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
1020 return status;
1021 }
1022
1023 return 0;
1024 }
1025
1026 /**
1027 * ice_init_nvm - initializes NVM setting
1028 * @hw: pointer to the HW struct
1029 *
1030 * This function reads and populates NVM settings such as Shadow RAM size,
1031 * max_timeout, and blank_nvm_mode
1032 */
ice_init_nvm(struct ice_hw * hw)1033 int ice_init_nvm(struct ice_hw *hw)
1034 {
1035 struct ice_flash_info *flash = &hw->flash;
1036 u32 fla, gens_stat;
1037 u8 sr_size;
1038 int status;
1039
1040 /* The SR size is stored regardless of the NVM programming mode
1041 * as the blank mode may be used in the factory line.
1042 */
1043 gens_stat = rd32(hw, GLNVM_GENS);
1044 sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
1045
1046 /* Switching to words (sr_size contains power of 2) */
1047 flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
1048
1049 /* Check if we are in the normal or blank NVM programming mode */
1050 fla = rd32(hw, GLNVM_FLA);
1051 if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
1052 flash->blank_nvm_mode = false;
1053 } else {
1054 /* Blank programming mode */
1055 flash->blank_nvm_mode = true;
1056 ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
1057 return -EIO;
1058 }
1059
1060 status = ice_discover_flash_size(hw);
1061 if (status) {
1062 ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
1063 return status;
1064 }
1065
1066 status = ice_determine_active_flash_banks(hw);
1067 if (status) {
1068 ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
1069 return status;
1070 }
1071
1072 status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
1073 if (status) {
1074 ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
1075 return status;
1076 }
1077
1078 status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
1079 if (status)
1080 ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
1081
1082 /* read the netlist version information */
1083 status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist);
1084 if (status)
1085 ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
1086
1087 return 0;
1088 }
1089
1090 /**
1091 * ice_nvm_validate_checksum
1092 * @hw: pointer to the HW struct
1093 *
1094 * Verify NVM PFA checksum validity (0x0706)
1095 */
ice_nvm_validate_checksum(struct ice_hw * hw)1096 int ice_nvm_validate_checksum(struct ice_hw *hw)
1097 {
1098 struct ice_aqc_nvm_checksum *cmd;
1099 struct ice_aq_desc desc;
1100 int status;
1101
1102 status = ice_acquire_nvm(hw, ICE_RES_READ);
1103 if (status)
1104 return status;
1105
1106 cmd = &desc.params.nvm_checksum;
1107
1108 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
1109 cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
1110
1111 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1112 ice_release_nvm(hw);
1113
1114 if (!status)
1115 if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
1116 status = -EIO;
1117
1118 return status;
1119 }
1120
1121 /**
1122 * ice_nvm_write_activate
1123 * @hw: pointer to the HW struct
1124 * @cmd_flags: flags for write activate command
1125 * @response_flags: response indicators from firmware
1126 *
1127 * Update the control word with the required banks' validity bits
1128 * and dumps the Shadow RAM to flash (0x0707)
1129 *
1130 * cmd_flags controls which banks to activate, the preservation level to use
1131 * when activating the NVM bank, and whether an EMP reset is required for
1132 * activation.
1133 *
1134 * Note that the 16bit cmd_flags value is split between two separate 1 byte
1135 * flag values in the descriptor.
1136 *
1137 * On successful return of the firmware command, the response_flags variable
1138 * is updated with the flags reported by firmware indicating certain status,
1139 * such as whether EMP reset is enabled.
1140 */
ice_nvm_write_activate(struct ice_hw * hw,u16 cmd_flags,u8 * response_flags)1141 int ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags)
1142 {
1143 struct ice_aqc_nvm *cmd;
1144 struct ice_aq_desc desc;
1145 int err;
1146
1147 cmd = &desc.params.nvm;
1148 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
1149
1150 cmd->cmd_flags = (u8)(cmd_flags & 0xFF);
1151 cmd->offset_high = (u8)((cmd_flags >> 8) & 0xFF);
1152
1153 err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1154 if (!err && response_flags)
1155 *response_flags = cmd->cmd_flags;
1156
1157 return err;
1158 }
1159
1160 /**
1161 * ice_aq_nvm_update_empr
1162 * @hw: pointer to the HW struct
1163 *
1164 * Update empr (0x0709). This command allows SW to
1165 * request an EMPR to activate new FW.
1166 */
ice_aq_nvm_update_empr(struct ice_hw * hw)1167 int ice_aq_nvm_update_empr(struct ice_hw *hw)
1168 {
1169 struct ice_aq_desc desc;
1170
1171 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
1172
1173 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1174 }
1175
1176 /* ice_nvm_set_pkg_data
1177 * @hw: pointer to the HW struct
1178 * @del_pkg_data_flag: If is set then the current pkg_data store by FW
1179 * is deleted.
1180 * If bit is set to 1, then buffer should be size 0.
1181 * @data: pointer to buffer
1182 * @length: length of the buffer
1183 * @cd: pointer to command details structure or NULL
1184 *
1185 * Set package data (0x070A). This command is equivalent to the reception
1186 * of a PLDM FW Update GetPackageData cmd. This command should be sent
1187 * as part of the NVM update as the first cmd in the flow.
1188 */
1189
1190 int
ice_nvm_set_pkg_data(struct ice_hw * hw,bool del_pkg_data_flag,u8 * data,u16 length,struct ice_sq_cd * cd)1191 ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
1192 u16 length, struct ice_sq_cd *cd)
1193 {
1194 struct ice_aqc_nvm_pkg_data *cmd;
1195 struct ice_aq_desc desc;
1196
1197 if (length != 0 && !data)
1198 return -EINVAL;
1199
1200 cmd = &desc.params.pkg_data;
1201
1202 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
1203 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1204
1205 if (del_pkg_data_flag)
1206 cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
1207
1208 return ice_aq_send_cmd(hw, &desc, data, length, cd);
1209 }
1210
1211 /* ice_nvm_pass_component_tbl
1212 * @hw: pointer to the HW struct
1213 * @data: pointer to buffer
1214 * @length: length of the buffer
1215 * @transfer_flag: parameter for determining stage of the update
1216 * @comp_response: a pointer to the response from the 0x070B AQC.
1217 * @comp_response_code: a pointer to the response code from the 0x070B AQC.
1218 * @cd: pointer to command details structure or NULL
1219 *
1220 * Pass component table (0x070B). This command is equivalent to the reception
1221 * of a PLDM FW Update PassComponentTable cmd. This command should be sent once
1222 * per component. It can be only sent after Set Package Data cmd and before
1223 * actual update. FW will assume these commands are going to be sent until
1224 * the TransferFlag is set to End or StartAndEnd.
1225 */
1226
1227 int
ice_nvm_pass_component_tbl(struct ice_hw * hw,u8 * data,u16 length,u8 transfer_flag,u8 * comp_response,u8 * comp_response_code,struct ice_sq_cd * cd)1228 ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
1229 u8 transfer_flag, u8 *comp_response,
1230 u8 *comp_response_code, struct ice_sq_cd *cd)
1231 {
1232 struct ice_aqc_nvm_pass_comp_tbl *cmd;
1233 struct ice_aq_desc desc;
1234 int status;
1235
1236 if (!data || !comp_response || !comp_response_code)
1237 return -EINVAL;
1238
1239 cmd = &desc.params.pass_comp_tbl;
1240
1241 ice_fill_dflt_direct_cmd_desc(&desc,
1242 ice_aqc_opc_nvm_pass_component_tbl);
1243 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1244
1245 cmd->transfer_flag = transfer_flag;
1246 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
1247
1248 if (!status) {
1249 *comp_response = cmd->component_response;
1250 *comp_response_code = cmd->component_response_code;
1251 }
1252 return status;
1253 }
1254