1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
18 * ice tracepoint functions. This must be done exactly once across the
19 * ice driver.
20 */
21 #define CREATE_TRACE_POINTS
22 #include "ice_trace.h"
23 #include "ice_eswitch.h"
24 #include "ice_tc_lib.h"
25 #include "ice_vsi_vlan_ops.h"
26 #include <net/xdp_sock_drv.h>
27
28 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
29 static const char ice_driver_string[] = DRV_SUMMARY;
30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
31
32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
33 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
34 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
35
36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
37 MODULE_DESCRIPTION(DRV_SUMMARY);
38 MODULE_LICENSE("GPL v2");
39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
40
41 static int debug = -1;
42 module_param(debug, int, 0644);
43 #ifndef CONFIG_DYNAMIC_DEBUG
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
45 #else
46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
47 #endif /* !CONFIG_DYNAMIC_DEBUG */
48
49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
50 EXPORT_SYMBOL(ice_xdp_locking_key);
51
52 /**
53 * ice_hw_to_dev - Get device pointer from the hardware structure
54 * @hw: pointer to the device HW structure
55 *
56 * Used to access the device pointer from compilation units which can't easily
57 * include the definition of struct ice_pf without leading to circular header
58 * dependencies.
59 */
ice_hw_to_dev(struct ice_hw * hw)60 struct device *ice_hw_to_dev(struct ice_hw *hw)
61 {
62 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
63
64 return &pf->pdev->dev;
65 }
66
67 static struct workqueue_struct *ice_wq;
68 struct workqueue_struct *ice_lag_wq;
69 static const struct net_device_ops ice_netdev_safe_mode_ops;
70 static const struct net_device_ops ice_netdev_ops;
71
72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
73
74 static void ice_vsi_release_all(struct ice_pf *pf);
75
76 static int ice_rebuild_channels(struct ice_pf *pf);
77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
78
79 static int
80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
81 void *cb_priv, enum tc_setup_type type, void *type_data,
82 void *data,
83 void (*cleanup)(struct flow_block_cb *block_cb));
84
netif_is_ice(const struct net_device * dev)85 bool netif_is_ice(const struct net_device *dev)
86 {
87 return dev && (dev->netdev_ops == &ice_netdev_ops);
88 }
89
90 /**
91 * ice_get_tx_pending - returns number of Tx descriptors not processed
92 * @ring: the ring of descriptors
93 */
ice_get_tx_pending(struct ice_tx_ring * ring)94 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
95 {
96 u16 head, tail;
97
98 head = ring->next_to_clean;
99 tail = ring->next_to_use;
100
101 if (head != tail)
102 return (head < tail) ?
103 tail - head : (tail + ring->count - head);
104 return 0;
105 }
106
107 /**
108 * ice_check_for_hang_subtask - check for and recover hung queues
109 * @pf: pointer to PF struct
110 */
ice_check_for_hang_subtask(struct ice_pf * pf)111 static void ice_check_for_hang_subtask(struct ice_pf *pf)
112 {
113 struct ice_vsi *vsi = NULL;
114 struct ice_hw *hw;
115 unsigned int i;
116 int packets;
117 u32 v;
118
119 ice_for_each_vsi(pf, v)
120 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
121 vsi = pf->vsi[v];
122 break;
123 }
124
125 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
126 return;
127
128 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
129 return;
130
131 hw = &vsi->back->hw;
132
133 ice_for_each_txq(vsi, i) {
134 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
135 struct ice_ring_stats *ring_stats;
136
137 if (!tx_ring)
138 continue;
139 if (ice_ring_ch_enabled(tx_ring))
140 continue;
141
142 ring_stats = tx_ring->ring_stats;
143 if (!ring_stats)
144 continue;
145
146 if (tx_ring->desc) {
147 /* If packet counter has not changed the queue is
148 * likely stalled, so force an interrupt for this
149 * queue.
150 *
151 * prev_pkt would be negative if there was no
152 * pending work.
153 */
154 packets = ring_stats->stats.pkts & INT_MAX;
155 if (ring_stats->tx_stats.prev_pkt == packets) {
156 /* Trigger sw interrupt to revive the queue */
157 ice_trigger_sw_intr(hw, tx_ring->q_vector);
158 continue;
159 }
160
161 /* Memory barrier between read of packet count and call
162 * to ice_get_tx_pending()
163 */
164 smp_rmb();
165 ring_stats->tx_stats.prev_pkt =
166 ice_get_tx_pending(tx_ring) ? packets : -1;
167 }
168 }
169 }
170
171 /**
172 * ice_init_mac_fltr - Set initial MAC filters
173 * @pf: board private structure
174 *
175 * Set initial set of MAC filters for PF VSI; configure filters for permanent
176 * address and broadcast address. If an error is encountered, netdevice will be
177 * unregistered.
178 */
ice_init_mac_fltr(struct ice_pf * pf)179 static int ice_init_mac_fltr(struct ice_pf *pf)
180 {
181 struct ice_vsi *vsi;
182 u8 *perm_addr;
183
184 vsi = ice_get_main_vsi(pf);
185 if (!vsi)
186 return -EINVAL;
187
188 perm_addr = vsi->port_info->mac.perm_addr;
189 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
190 }
191
192 /**
193 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
194 * @netdev: the net device on which the sync is happening
195 * @addr: MAC address to sync
196 *
197 * This is a callback function which is called by the in kernel device sync
198 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
199 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
200 * MAC filters from the hardware.
201 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)202 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
203 {
204 struct ice_netdev_priv *np = netdev_priv(netdev);
205 struct ice_vsi *vsi = np->vsi;
206
207 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
208 ICE_FWD_TO_VSI))
209 return -EINVAL;
210
211 return 0;
212 }
213
214 /**
215 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
216 * @netdev: the net device on which the unsync is happening
217 * @addr: MAC address to unsync
218 *
219 * This is a callback function which is called by the in kernel device unsync
220 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
221 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
222 * delete the MAC filters from the hardware.
223 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)224 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
225 {
226 struct ice_netdev_priv *np = netdev_priv(netdev);
227 struct ice_vsi *vsi = np->vsi;
228
229 /* Under some circumstances, we might receive a request to delete our
230 * own device address from our uc list. Because we store the device
231 * address in the VSI's MAC filter list, we need to ignore such
232 * requests and not delete our device address from this list.
233 */
234 if (ether_addr_equal(addr, netdev->dev_addr))
235 return 0;
236
237 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
238 ICE_FWD_TO_VSI))
239 return -EINVAL;
240
241 return 0;
242 }
243
244 /**
245 * ice_vsi_fltr_changed - check if filter state changed
246 * @vsi: VSI to be checked
247 *
248 * returns true if filter state has changed, false otherwise.
249 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)250 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
251 {
252 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
253 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
254 }
255
256 /**
257 * ice_set_promisc - Enable promiscuous mode for a given PF
258 * @vsi: the VSI being configured
259 * @promisc_m: mask of promiscuous config bits
260 *
261 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)262 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
263 {
264 int status;
265
266 if (vsi->type != ICE_VSI_PF)
267 return 0;
268
269 if (ice_vsi_has_non_zero_vlans(vsi)) {
270 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
271 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
272 promisc_m);
273 } else {
274 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
275 promisc_m, 0);
276 }
277 if (status && status != -EEXIST)
278 return status;
279
280 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
281 vsi->vsi_num, promisc_m);
282 return 0;
283 }
284
285 /**
286 * ice_clear_promisc - Disable promiscuous mode for a given PF
287 * @vsi: the VSI being configured
288 * @promisc_m: mask of promiscuous config bits
289 *
290 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)291 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
292 {
293 int status;
294
295 if (vsi->type != ICE_VSI_PF)
296 return 0;
297
298 if (ice_vsi_has_non_zero_vlans(vsi)) {
299 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
300 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
301 promisc_m);
302 } else {
303 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
304 promisc_m, 0);
305 }
306
307 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
308 vsi->vsi_num, promisc_m);
309 return status;
310 }
311
312 /**
313 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
314 * @vsi: ptr to the VSI
315 *
316 * Push any outstanding VSI filter changes through the AdminQ.
317 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)318 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
319 {
320 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
321 struct device *dev = ice_pf_to_dev(vsi->back);
322 struct net_device *netdev = vsi->netdev;
323 bool promisc_forced_on = false;
324 struct ice_pf *pf = vsi->back;
325 struct ice_hw *hw = &pf->hw;
326 u32 changed_flags = 0;
327 int err;
328
329 if (!vsi->netdev)
330 return -EINVAL;
331
332 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
333 usleep_range(1000, 2000);
334
335 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
336 vsi->current_netdev_flags = vsi->netdev->flags;
337
338 INIT_LIST_HEAD(&vsi->tmp_sync_list);
339 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
340
341 if (ice_vsi_fltr_changed(vsi)) {
342 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
343 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
344
345 /* grab the netdev's addr_list_lock */
346 netif_addr_lock_bh(netdev);
347 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
348 ice_add_mac_to_unsync_list);
349 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
350 ice_add_mac_to_unsync_list);
351 /* our temp lists are populated. release lock */
352 netif_addr_unlock_bh(netdev);
353 }
354
355 /* Remove MAC addresses in the unsync list */
356 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
357 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
358 if (err) {
359 netdev_err(netdev, "Failed to delete MAC filters\n");
360 /* if we failed because of alloc failures, just bail */
361 if (err == -ENOMEM)
362 goto out;
363 }
364
365 /* Add MAC addresses in the sync list */
366 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
367 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
368 /* If filter is added successfully or already exists, do not go into
369 * 'if' condition and report it as error. Instead continue processing
370 * rest of the function.
371 */
372 if (err && err != -EEXIST) {
373 netdev_err(netdev, "Failed to add MAC filters\n");
374 /* If there is no more space for new umac filters, VSI
375 * should go into promiscuous mode. There should be some
376 * space reserved for promiscuous filters.
377 */
378 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
379 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
380 vsi->state)) {
381 promisc_forced_on = true;
382 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
383 vsi->vsi_num);
384 } else {
385 goto out;
386 }
387 }
388 err = 0;
389 /* check for changes in promiscuous modes */
390 if (changed_flags & IFF_ALLMULTI) {
391 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
392 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
393 if (err) {
394 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
395 goto out_promisc;
396 }
397 } else {
398 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
399 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
400 if (err) {
401 vsi->current_netdev_flags |= IFF_ALLMULTI;
402 goto out_promisc;
403 }
404 }
405 }
406
407 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
408 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
409 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
410 if (vsi->current_netdev_flags & IFF_PROMISC) {
411 /* Apply Rx filter rule to get traffic from wire */
412 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
413 err = ice_set_dflt_vsi(vsi);
414 if (err && err != -EEXIST) {
415 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
416 err, vsi->vsi_num);
417 vsi->current_netdev_flags &=
418 ~IFF_PROMISC;
419 goto out_promisc;
420 }
421 err = 0;
422 vlan_ops->dis_rx_filtering(vsi);
423
424 /* promiscuous mode implies allmulticast so
425 * that VSIs that are in promiscuous mode are
426 * subscribed to multicast packets coming to
427 * the port
428 */
429 err = ice_set_promisc(vsi,
430 ICE_MCAST_PROMISC_BITS);
431 if (err)
432 goto out_promisc;
433 }
434 } else {
435 /* Clear Rx filter to remove traffic from wire */
436 if (ice_is_vsi_dflt_vsi(vsi)) {
437 err = ice_clear_dflt_vsi(vsi);
438 if (err) {
439 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
440 err, vsi->vsi_num);
441 vsi->current_netdev_flags |=
442 IFF_PROMISC;
443 goto out_promisc;
444 }
445 if (vsi->netdev->features &
446 NETIF_F_HW_VLAN_CTAG_FILTER)
447 vlan_ops->ena_rx_filtering(vsi);
448 }
449
450 /* disable allmulti here, but only if allmulti is not
451 * still enabled for the netdev
452 */
453 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
454 err = ice_clear_promisc(vsi,
455 ICE_MCAST_PROMISC_BITS);
456 if (err) {
457 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
458 err, vsi->vsi_num);
459 }
460 }
461 }
462 }
463 goto exit;
464
465 out_promisc:
466 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
467 goto exit;
468 out:
469 /* if something went wrong then set the changed flag so we try again */
470 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
471 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
472 exit:
473 clear_bit(ICE_CFG_BUSY, vsi->state);
474 return err;
475 }
476
477 /**
478 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
479 * @pf: board private structure
480 */
ice_sync_fltr_subtask(struct ice_pf * pf)481 static void ice_sync_fltr_subtask(struct ice_pf *pf)
482 {
483 int v;
484
485 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
486 return;
487
488 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
489
490 ice_for_each_vsi(pf, v)
491 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
492 ice_vsi_sync_fltr(pf->vsi[v])) {
493 /* come back and try again later */
494 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
495 break;
496 }
497 }
498
499 /**
500 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
501 * @pf: the PF
502 * @locked: is the rtnl_lock already held
503 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)504 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
505 {
506 int node;
507 int v;
508
509 ice_for_each_vsi(pf, v)
510 if (pf->vsi[v])
511 ice_dis_vsi(pf->vsi[v], locked);
512
513 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
514 pf->pf_agg_node[node].num_vsis = 0;
515
516 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
517 pf->vf_agg_node[node].num_vsis = 0;
518 }
519
520 /**
521 * ice_clear_sw_switch_recipes - clear switch recipes
522 * @pf: board private structure
523 *
524 * Mark switch recipes as not created in sw structures. There are cases where
525 * rules (especially advanced rules) need to be restored, either re-read from
526 * hardware or added again. For example after the reset. 'recp_created' flag
527 * prevents from doing that and need to be cleared upfront.
528 */
ice_clear_sw_switch_recipes(struct ice_pf * pf)529 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
530 {
531 struct ice_sw_recipe *recp;
532 u8 i;
533
534 recp = pf->hw.switch_info->recp_list;
535 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
536 recp[i].recp_created = false;
537 }
538
539 /**
540 * ice_prepare_for_reset - prep for reset
541 * @pf: board private structure
542 * @reset_type: reset type requested
543 *
544 * Inform or close all dependent features in prep for reset.
545 */
546 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)547 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
548 {
549 struct ice_hw *hw = &pf->hw;
550 struct ice_vsi *vsi;
551 struct ice_vf *vf;
552 unsigned int bkt;
553
554 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
555
556 /* already prepared for reset */
557 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
558 return;
559
560 synchronize_irq(pf->oicr_irq.virq);
561
562 ice_unplug_aux_dev(pf);
563
564 /* Notify VFs of impending reset */
565 if (ice_check_sq_alive(hw, &hw->mailboxq))
566 ice_vc_notify_reset(pf);
567
568 /* Disable VFs until reset is completed */
569 mutex_lock(&pf->vfs.table_lock);
570 ice_for_each_vf(pf, bkt, vf)
571 ice_set_vf_state_dis(vf);
572 mutex_unlock(&pf->vfs.table_lock);
573
574 if (ice_is_eswitch_mode_switchdev(pf)) {
575 if (reset_type != ICE_RESET_PFR)
576 ice_clear_sw_switch_recipes(pf);
577 }
578
579 /* release ADQ specific HW and SW resources */
580 vsi = ice_get_main_vsi(pf);
581 if (!vsi)
582 goto skip;
583
584 /* to be on safe side, reset orig_rss_size so that normal flow
585 * of deciding rss_size can take precedence
586 */
587 vsi->orig_rss_size = 0;
588
589 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
590 if (reset_type == ICE_RESET_PFR) {
591 vsi->old_ena_tc = vsi->all_enatc;
592 vsi->old_numtc = vsi->all_numtc;
593 } else {
594 ice_remove_q_channels(vsi, true);
595
596 /* for other reset type, do not support channel rebuild
597 * hence reset needed info
598 */
599 vsi->old_ena_tc = 0;
600 vsi->all_enatc = 0;
601 vsi->old_numtc = 0;
602 vsi->all_numtc = 0;
603 vsi->req_txq = 0;
604 vsi->req_rxq = 0;
605 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
606 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
607 }
608 }
609 skip:
610
611 /* clear SW filtering DB */
612 ice_clear_hw_tbls(hw);
613 /* disable the VSIs and their queues that are not already DOWN */
614 ice_pf_dis_all_vsi(pf, false);
615
616 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
617 ice_ptp_prepare_for_reset(pf);
618
619 if (ice_is_feature_supported(pf, ICE_F_GNSS))
620 ice_gnss_exit(pf);
621
622 if (hw->port_info)
623 ice_sched_clear_port(hw->port_info);
624
625 ice_shutdown_all_ctrlq(hw);
626
627 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
628 }
629
630 /**
631 * ice_do_reset - Initiate one of many types of resets
632 * @pf: board private structure
633 * @reset_type: reset type requested before this function was called.
634 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)635 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
636 {
637 struct device *dev = ice_pf_to_dev(pf);
638 struct ice_hw *hw = &pf->hw;
639
640 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
641
642 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
643 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
644 reset_type = ICE_RESET_CORER;
645 }
646
647 ice_prepare_for_reset(pf, reset_type);
648
649 /* trigger the reset */
650 if (ice_reset(hw, reset_type)) {
651 dev_err(dev, "reset %d failed\n", reset_type);
652 set_bit(ICE_RESET_FAILED, pf->state);
653 clear_bit(ICE_RESET_OICR_RECV, pf->state);
654 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
655 clear_bit(ICE_PFR_REQ, pf->state);
656 clear_bit(ICE_CORER_REQ, pf->state);
657 clear_bit(ICE_GLOBR_REQ, pf->state);
658 wake_up(&pf->reset_wait_queue);
659 return;
660 }
661
662 /* PFR is a bit of a special case because it doesn't result in an OICR
663 * interrupt. So for PFR, rebuild after the reset and clear the reset-
664 * associated state bits.
665 */
666 if (reset_type == ICE_RESET_PFR) {
667 pf->pfr_count++;
668 ice_rebuild(pf, reset_type);
669 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
670 clear_bit(ICE_PFR_REQ, pf->state);
671 wake_up(&pf->reset_wait_queue);
672 ice_reset_all_vfs(pf);
673 }
674 }
675
676 /**
677 * ice_reset_subtask - Set up for resetting the device and driver
678 * @pf: board private structure
679 */
ice_reset_subtask(struct ice_pf * pf)680 static void ice_reset_subtask(struct ice_pf *pf)
681 {
682 enum ice_reset_req reset_type = ICE_RESET_INVAL;
683
684 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
685 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
686 * of reset is pending and sets bits in pf->state indicating the reset
687 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
688 * prepare for pending reset if not already (for PF software-initiated
689 * global resets the software should already be prepared for it as
690 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
691 * by firmware or software on other PFs, that bit is not set so prepare
692 * for the reset now), poll for reset done, rebuild and return.
693 */
694 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
695 /* Perform the largest reset requested */
696 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
697 reset_type = ICE_RESET_CORER;
698 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
699 reset_type = ICE_RESET_GLOBR;
700 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
701 reset_type = ICE_RESET_EMPR;
702 /* return if no valid reset type requested */
703 if (reset_type == ICE_RESET_INVAL)
704 return;
705 ice_prepare_for_reset(pf, reset_type);
706
707 /* make sure we are ready to rebuild */
708 if (ice_check_reset(&pf->hw)) {
709 set_bit(ICE_RESET_FAILED, pf->state);
710 } else {
711 /* done with reset. start rebuild */
712 pf->hw.reset_ongoing = false;
713 ice_rebuild(pf, reset_type);
714 /* clear bit to resume normal operations, but
715 * ICE_NEEDS_RESTART bit is set in case rebuild failed
716 */
717 clear_bit(ICE_RESET_OICR_RECV, pf->state);
718 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
719 clear_bit(ICE_PFR_REQ, pf->state);
720 clear_bit(ICE_CORER_REQ, pf->state);
721 clear_bit(ICE_GLOBR_REQ, pf->state);
722 wake_up(&pf->reset_wait_queue);
723 ice_reset_all_vfs(pf);
724 }
725
726 return;
727 }
728
729 /* No pending resets to finish processing. Check for new resets */
730 if (test_bit(ICE_PFR_REQ, pf->state)) {
731 reset_type = ICE_RESET_PFR;
732 if (pf->lag && pf->lag->bonded) {
733 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
734 reset_type = ICE_RESET_CORER;
735 }
736 }
737 if (test_bit(ICE_CORER_REQ, pf->state))
738 reset_type = ICE_RESET_CORER;
739 if (test_bit(ICE_GLOBR_REQ, pf->state))
740 reset_type = ICE_RESET_GLOBR;
741 /* If no valid reset type requested just return */
742 if (reset_type == ICE_RESET_INVAL)
743 return;
744
745 /* reset if not already down or busy */
746 if (!test_bit(ICE_DOWN, pf->state) &&
747 !test_bit(ICE_CFG_BUSY, pf->state)) {
748 ice_do_reset(pf, reset_type);
749 }
750 }
751
752 /**
753 * ice_print_topo_conflict - print topology conflict message
754 * @vsi: the VSI whose topology status is being checked
755 */
ice_print_topo_conflict(struct ice_vsi * vsi)756 static void ice_print_topo_conflict(struct ice_vsi *vsi)
757 {
758 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
759 case ICE_AQ_LINK_TOPO_CONFLICT:
760 case ICE_AQ_LINK_MEDIA_CONFLICT:
761 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
762 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
763 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
764 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
765 break;
766 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
767 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
768 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
769 else
770 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
771 break;
772 default:
773 break;
774 }
775 }
776
777 /**
778 * ice_print_link_msg - print link up or down message
779 * @vsi: the VSI whose link status is being queried
780 * @isup: boolean for if the link is now up or down
781 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)782 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
783 {
784 struct ice_aqc_get_phy_caps_data *caps;
785 const char *an_advertised;
786 const char *fec_req;
787 const char *speed;
788 const char *fec;
789 const char *fc;
790 const char *an;
791 int status;
792
793 if (!vsi)
794 return;
795
796 if (vsi->current_isup == isup)
797 return;
798
799 vsi->current_isup = isup;
800
801 if (!isup) {
802 netdev_info(vsi->netdev, "NIC Link is Down\n");
803 return;
804 }
805
806 switch (vsi->port_info->phy.link_info.link_speed) {
807 case ICE_AQ_LINK_SPEED_100GB:
808 speed = "100 G";
809 break;
810 case ICE_AQ_LINK_SPEED_50GB:
811 speed = "50 G";
812 break;
813 case ICE_AQ_LINK_SPEED_40GB:
814 speed = "40 G";
815 break;
816 case ICE_AQ_LINK_SPEED_25GB:
817 speed = "25 G";
818 break;
819 case ICE_AQ_LINK_SPEED_20GB:
820 speed = "20 G";
821 break;
822 case ICE_AQ_LINK_SPEED_10GB:
823 speed = "10 G";
824 break;
825 case ICE_AQ_LINK_SPEED_5GB:
826 speed = "5 G";
827 break;
828 case ICE_AQ_LINK_SPEED_2500MB:
829 speed = "2.5 G";
830 break;
831 case ICE_AQ_LINK_SPEED_1000MB:
832 speed = "1 G";
833 break;
834 case ICE_AQ_LINK_SPEED_100MB:
835 speed = "100 M";
836 break;
837 default:
838 speed = "Unknown ";
839 break;
840 }
841
842 switch (vsi->port_info->fc.current_mode) {
843 case ICE_FC_FULL:
844 fc = "Rx/Tx";
845 break;
846 case ICE_FC_TX_PAUSE:
847 fc = "Tx";
848 break;
849 case ICE_FC_RX_PAUSE:
850 fc = "Rx";
851 break;
852 case ICE_FC_NONE:
853 fc = "None";
854 break;
855 default:
856 fc = "Unknown";
857 break;
858 }
859
860 /* Get FEC mode based on negotiated link info */
861 switch (vsi->port_info->phy.link_info.fec_info) {
862 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
863 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
864 fec = "RS-FEC";
865 break;
866 case ICE_AQ_LINK_25G_KR_FEC_EN:
867 fec = "FC-FEC/BASE-R";
868 break;
869 default:
870 fec = "NONE";
871 break;
872 }
873
874 /* check if autoneg completed, might be false due to not supported */
875 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
876 an = "True";
877 else
878 an = "False";
879
880 /* Get FEC mode requested based on PHY caps last SW configuration */
881 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
882 if (!caps) {
883 fec_req = "Unknown";
884 an_advertised = "Unknown";
885 goto done;
886 }
887
888 status = ice_aq_get_phy_caps(vsi->port_info, false,
889 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
890 if (status)
891 netdev_info(vsi->netdev, "Get phy capability failed.\n");
892
893 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
894
895 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
896 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
897 fec_req = "RS-FEC";
898 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
899 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
900 fec_req = "FC-FEC/BASE-R";
901 else
902 fec_req = "NONE";
903
904 kfree(caps);
905
906 done:
907 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
908 speed, fec_req, fec, an_advertised, an, fc);
909 ice_print_topo_conflict(vsi);
910 }
911
912 /**
913 * ice_vsi_link_event - update the VSI's netdev
914 * @vsi: the VSI on which the link event occurred
915 * @link_up: whether or not the VSI needs to be set up or down
916 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)917 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
918 {
919 if (!vsi)
920 return;
921
922 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
923 return;
924
925 if (vsi->type == ICE_VSI_PF) {
926 if (link_up == netif_carrier_ok(vsi->netdev))
927 return;
928
929 if (link_up) {
930 netif_carrier_on(vsi->netdev);
931 netif_tx_wake_all_queues(vsi->netdev);
932 } else {
933 netif_carrier_off(vsi->netdev);
934 netif_tx_stop_all_queues(vsi->netdev);
935 }
936 }
937 }
938
939 /**
940 * ice_set_dflt_mib - send a default config MIB to the FW
941 * @pf: private PF struct
942 *
943 * This function sends a default configuration MIB to the FW.
944 *
945 * If this function errors out at any point, the driver is still able to
946 * function. The main impact is that LFC may not operate as expected.
947 * Therefore an error state in this function should be treated with a DBG
948 * message and continue on with driver rebuild/reenable.
949 */
ice_set_dflt_mib(struct ice_pf * pf)950 static void ice_set_dflt_mib(struct ice_pf *pf)
951 {
952 struct device *dev = ice_pf_to_dev(pf);
953 u8 mib_type, *buf, *lldpmib = NULL;
954 u16 len, typelen, offset = 0;
955 struct ice_lldp_org_tlv *tlv;
956 struct ice_hw *hw = &pf->hw;
957 u32 ouisubtype;
958
959 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
960 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
961 if (!lldpmib) {
962 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
963 __func__);
964 return;
965 }
966
967 /* Add ETS CFG TLV */
968 tlv = (struct ice_lldp_org_tlv *)lldpmib;
969 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
970 ICE_IEEE_ETS_TLV_LEN);
971 tlv->typelen = htons(typelen);
972 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
973 ICE_IEEE_SUBTYPE_ETS_CFG);
974 tlv->ouisubtype = htonl(ouisubtype);
975
976 buf = tlv->tlvinfo;
977 buf[0] = 0;
978
979 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
980 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
981 * Octets 13 - 20 are TSA values - leave as zeros
982 */
983 buf[5] = 0x64;
984 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
985 offset += len + 2;
986 tlv = (struct ice_lldp_org_tlv *)
987 ((char *)tlv + sizeof(tlv->typelen) + len);
988
989 /* Add ETS REC TLV */
990 buf = tlv->tlvinfo;
991 tlv->typelen = htons(typelen);
992
993 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
994 ICE_IEEE_SUBTYPE_ETS_REC);
995 tlv->ouisubtype = htonl(ouisubtype);
996
997 /* First octet of buf is reserved
998 * Octets 1 - 4 map UP to TC - all UPs map to zero
999 * Octets 5 - 12 are BW values - set TC 0 to 100%.
1000 * Octets 13 - 20 are TSA value - leave as zeros
1001 */
1002 buf[5] = 0x64;
1003 offset += len + 2;
1004 tlv = (struct ice_lldp_org_tlv *)
1005 ((char *)tlv + sizeof(tlv->typelen) + len);
1006
1007 /* Add PFC CFG TLV */
1008 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1009 ICE_IEEE_PFC_TLV_LEN);
1010 tlv->typelen = htons(typelen);
1011
1012 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1013 ICE_IEEE_SUBTYPE_PFC_CFG);
1014 tlv->ouisubtype = htonl(ouisubtype);
1015
1016 /* Octet 1 left as all zeros - PFC disabled */
1017 buf[0] = 0x08;
1018 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1019 offset += len + 2;
1020
1021 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1022 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1023
1024 kfree(lldpmib);
1025 }
1026
1027 /**
1028 * ice_check_phy_fw_load - check if PHY FW load failed
1029 * @pf: pointer to PF struct
1030 * @link_cfg_err: bitmap from the link info structure
1031 *
1032 * check if external PHY FW load failed and print an error message if it did
1033 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1034 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1035 {
1036 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1037 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1038 return;
1039 }
1040
1041 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1042 return;
1043
1044 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1045 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1046 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1047 }
1048 }
1049
1050 /**
1051 * ice_check_module_power
1052 * @pf: pointer to PF struct
1053 * @link_cfg_err: bitmap from the link info structure
1054 *
1055 * check module power level returned by a previous call to aq_get_link_info
1056 * and print error messages if module power level is not supported
1057 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1058 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1059 {
1060 /* if module power level is supported, clear the flag */
1061 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1062 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1063 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1064 return;
1065 }
1066
1067 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1068 * above block didn't clear this bit, there's nothing to do
1069 */
1070 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1071 return;
1072
1073 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1074 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1075 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1076 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1077 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1078 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1079 }
1080 }
1081
1082 /**
1083 * ice_check_link_cfg_err - check if link configuration failed
1084 * @pf: pointer to the PF struct
1085 * @link_cfg_err: bitmap from the link info structure
1086 *
1087 * print if any link configuration failure happens due to the value in the
1088 * link_cfg_err parameter in the link info structure
1089 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1090 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1091 {
1092 ice_check_module_power(pf, link_cfg_err);
1093 ice_check_phy_fw_load(pf, link_cfg_err);
1094 }
1095
1096 /**
1097 * ice_link_event - process the link event
1098 * @pf: PF that the link event is associated with
1099 * @pi: port_info for the port that the link event is associated with
1100 * @link_up: true if the physical link is up and false if it is down
1101 * @link_speed: current link speed received from the link event
1102 *
1103 * Returns 0 on success and negative on failure
1104 */
1105 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1106 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1107 u16 link_speed)
1108 {
1109 struct device *dev = ice_pf_to_dev(pf);
1110 struct ice_phy_info *phy_info;
1111 struct ice_vsi *vsi;
1112 u16 old_link_speed;
1113 bool old_link;
1114 int status;
1115
1116 phy_info = &pi->phy;
1117 phy_info->link_info_old = phy_info->link_info;
1118
1119 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1120 old_link_speed = phy_info->link_info_old.link_speed;
1121
1122 /* update the link info structures and re-enable link events,
1123 * don't bail on failure due to other book keeping needed
1124 */
1125 status = ice_update_link_info(pi);
1126 if (status)
1127 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1128 pi->lport, status,
1129 ice_aq_str(pi->hw->adminq.sq_last_status));
1130
1131 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1132
1133 /* Check if the link state is up after updating link info, and treat
1134 * this event as an UP event since the link is actually UP now.
1135 */
1136 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1137 link_up = true;
1138
1139 vsi = ice_get_main_vsi(pf);
1140 if (!vsi || !vsi->port_info)
1141 return -EINVAL;
1142
1143 /* turn off PHY if media was removed */
1144 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1145 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1146 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1147 ice_set_link(vsi, false);
1148 }
1149
1150 /* if the old link up/down and speed is the same as the new */
1151 if (link_up == old_link && link_speed == old_link_speed)
1152 return 0;
1153
1154 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1155
1156 if (ice_is_dcb_active(pf)) {
1157 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1158 ice_dcb_rebuild(pf);
1159 } else {
1160 if (link_up)
1161 ice_set_dflt_mib(pf);
1162 }
1163 ice_vsi_link_event(vsi, link_up);
1164 ice_print_link_msg(vsi, link_up);
1165
1166 ice_vc_notify_link_state(pf);
1167
1168 return 0;
1169 }
1170
1171 /**
1172 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1173 * @pf: board private structure
1174 */
ice_watchdog_subtask(struct ice_pf * pf)1175 static void ice_watchdog_subtask(struct ice_pf *pf)
1176 {
1177 int i;
1178
1179 /* if interface is down do nothing */
1180 if (test_bit(ICE_DOWN, pf->state) ||
1181 test_bit(ICE_CFG_BUSY, pf->state))
1182 return;
1183
1184 /* make sure we don't do these things too often */
1185 if (time_before(jiffies,
1186 pf->serv_tmr_prev + pf->serv_tmr_period))
1187 return;
1188
1189 pf->serv_tmr_prev = jiffies;
1190
1191 /* Update the stats for active netdevs so the network stack
1192 * can look at updated numbers whenever it cares to
1193 */
1194 ice_update_pf_stats(pf);
1195 ice_for_each_vsi(pf, i)
1196 if (pf->vsi[i] && pf->vsi[i]->netdev)
1197 ice_update_vsi_stats(pf->vsi[i]);
1198 }
1199
1200 /**
1201 * ice_init_link_events - enable/initialize link events
1202 * @pi: pointer to the port_info instance
1203 *
1204 * Returns -EIO on failure, 0 on success
1205 */
ice_init_link_events(struct ice_port_info * pi)1206 static int ice_init_link_events(struct ice_port_info *pi)
1207 {
1208 u16 mask;
1209
1210 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1211 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1212 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1213
1214 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1215 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1216 pi->lport);
1217 return -EIO;
1218 }
1219
1220 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1221 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1222 pi->lport);
1223 return -EIO;
1224 }
1225
1226 return 0;
1227 }
1228
1229 /**
1230 * ice_handle_link_event - handle link event via ARQ
1231 * @pf: PF that the link event is associated with
1232 * @event: event structure containing link status info
1233 */
1234 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1235 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1236 {
1237 struct ice_aqc_get_link_status_data *link_data;
1238 struct ice_port_info *port_info;
1239 int status;
1240
1241 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1242 port_info = pf->hw.port_info;
1243 if (!port_info)
1244 return -EINVAL;
1245
1246 status = ice_link_event(pf, port_info,
1247 !!(link_data->link_info & ICE_AQ_LINK_UP),
1248 le16_to_cpu(link_data->link_speed));
1249 if (status)
1250 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1251 status);
1252
1253 return status;
1254 }
1255
1256 /**
1257 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1258 * @pf: pointer to the PF private structure
1259 * @task: intermediate helper storage and identifier for waiting
1260 * @opcode: the opcode to wait for
1261 *
1262 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1263 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1264 *
1265 * Calls are separated to allow caller registering for event before sending
1266 * the command, which mitigates a race between registering and FW responding.
1267 *
1268 * To obtain only the descriptor contents, pass an task->event with null
1269 * msg_buf. If the complete data buffer is desired, allocate the
1270 * task->event.msg_buf with enough space ahead of time.
1271 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1272 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1273 u16 opcode)
1274 {
1275 INIT_HLIST_NODE(&task->entry);
1276 task->opcode = opcode;
1277 task->state = ICE_AQ_TASK_WAITING;
1278
1279 spin_lock_bh(&pf->aq_wait_lock);
1280 hlist_add_head(&task->entry, &pf->aq_wait_list);
1281 spin_unlock_bh(&pf->aq_wait_lock);
1282 }
1283
1284 /**
1285 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1286 * @pf: pointer to the PF private structure
1287 * @task: ptr prepared by ice_aq_prep_for_event()
1288 * @timeout: how long to wait, in jiffies
1289 *
1290 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1291 * current thread will be put to sleep until the specified event occurs or
1292 * until the given timeout is reached.
1293 *
1294 * Returns: zero on success, or a negative error code on failure.
1295 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1296 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1297 unsigned long timeout)
1298 {
1299 enum ice_aq_task_state *state = &task->state;
1300 struct device *dev = ice_pf_to_dev(pf);
1301 unsigned long start = jiffies;
1302 long ret;
1303 int err;
1304
1305 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1306 *state != ICE_AQ_TASK_WAITING,
1307 timeout);
1308 switch (*state) {
1309 case ICE_AQ_TASK_NOT_PREPARED:
1310 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1311 err = -EINVAL;
1312 break;
1313 case ICE_AQ_TASK_WAITING:
1314 err = ret < 0 ? ret : -ETIMEDOUT;
1315 break;
1316 case ICE_AQ_TASK_CANCELED:
1317 err = ret < 0 ? ret : -ECANCELED;
1318 break;
1319 case ICE_AQ_TASK_COMPLETE:
1320 err = ret < 0 ? ret : 0;
1321 break;
1322 default:
1323 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1324 err = -EINVAL;
1325 break;
1326 }
1327
1328 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1329 jiffies_to_msecs(jiffies - start),
1330 jiffies_to_msecs(timeout),
1331 task->opcode);
1332
1333 spin_lock_bh(&pf->aq_wait_lock);
1334 hlist_del(&task->entry);
1335 spin_unlock_bh(&pf->aq_wait_lock);
1336
1337 return err;
1338 }
1339
1340 /**
1341 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1342 * @pf: pointer to the PF private structure
1343 * @opcode: the opcode of the event
1344 * @event: the event to check
1345 *
1346 * Loops over the current list of pending threads waiting for an AdminQ event.
1347 * For each matching task, copy the contents of the event into the task
1348 * structure and wake up the thread.
1349 *
1350 * If multiple threads wait for the same opcode, they will all be woken up.
1351 *
1352 * Note that event->msg_buf will only be duplicated if the event has a buffer
1353 * with enough space already allocated. Otherwise, only the descriptor and
1354 * message length will be copied.
1355 *
1356 * Returns: true if an event was found, false otherwise
1357 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1358 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1359 struct ice_rq_event_info *event)
1360 {
1361 struct ice_rq_event_info *task_ev;
1362 struct ice_aq_task *task;
1363 bool found = false;
1364
1365 spin_lock_bh(&pf->aq_wait_lock);
1366 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1367 if (task->state != ICE_AQ_TASK_WAITING)
1368 continue;
1369 if (task->opcode != opcode)
1370 continue;
1371
1372 task_ev = &task->event;
1373 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1374 task_ev->msg_len = event->msg_len;
1375
1376 /* Only copy the data buffer if a destination was set */
1377 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1378 memcpy(task_ev->msg_buf, event->msg_buf,
1379 event->buf_len);
1380 task_ev->buf_len = event->buf_len;
1381 }
1382
1383 task->state = ICE_AQ_TASK_COMPLETE;
1384 found = true;
1385 }
1386 spin_unlock_bh(&pf->aq_wait_lock);
1387
1388 if (found)
1389 wake_up(&pf->aq_wait_queue);
1390 }
1391
1392 /**
1393 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1394 * @pf: the PF private structure
1395 *
1396 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1397 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1398 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1399 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1400 {
1401 struct ice_aq_task *task;
1402
1403 spin_lock_bh(&pf->aq_wait_lock);
1404 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1405 task->state = ICE_AQ_TASK_CANCELED;
1406 spin_unlock_bh(&pf->aq_wait_lock);
1407
1408 wake_up(&pf->aq_wait_queue);
1409 }
1410
1411 #define ICE_MBX_OVERFLOW_WATERMARK 64
1412
1413 /**
1414 * __ice_clean_ctrlq - helper function to clean controlq rings
1415 * @pf: ptr to struct ice_pf
1416 * @q_type: specific Control queue type
1417 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1418 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1419 {
1420 struct device *dev = ice_pf_to_dev(pf);
1421 struct ice_rq_event_info event;
1422 struct ice_hw *hw = &pf->hw;
1423 struct ice_ctl_q_info *cq;
1424 u16 pending, i = 0;
1425 const char *qtype;
1426 u32 oldval, val;
1427
1428 /* Do not clean control queue if/when PF reset fails */
1429 if (test_bit(ICE_RESET_FAILED, pf->state))
1430 return 0;
1431
1432 switch (q_type) {
1433 case ICE_CTL_Q_ADMIN:
1434 cq = &hw->adminq;
1435 qtype = "Admin";
1436 break;
1437 case ICE_CTL_Q_SB:
1438 cq = &hw->sbq;
1439 qtype = "Sideband";
1440 break;
1441 case ICE_CTL_Q_MAILBOX:
1442 cq = &hw->mailboxq;
1443 qtype = "Mailbox";
1444 /* we are going to try to detect a malicious VF, so set the
1445 * state to begin detection
1446 */
1447 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1448 break;
1449 default:
1450 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1451 return 0;
1452 }
1453
1454 /* check for error indications - PF_xx_AxQLEN register layout for
1455 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1456 */
1457 val = rd32(hw, cq->rq.len);
1458 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1459 PF_FW_ARQLEN_ARQCRIT_M)) {
1460 oldval = val;
1461 if (val & PF_FW_ARQLEN_ARQVFE_M)
1462 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1463 qtype);
1464 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1465 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1466 qtype);
1467 }
1468 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1469 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1470 qtype);
1471 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1472 PF_FW_ARQLEN_ARQCRIT_M);
1473 if (oldval != val)
1474 wr32(hw, cq->rq.len, val);
1475 }
1476
1477 val = rd32(hw, cq->sq.len);
1478 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1479 PF_FW_ATQLEN_ATQCRIT_M)) {
1480 oldval = val;
1481 if (val & PF_FW_ATQLEN_ATQVFE_M)
1482 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1483 qtype);
1484 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1485 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1486 qtype);
1487 }
1488 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1489 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1490 qtype);
1491 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1492 PF_FW_ATQLEN_ATQCRIT_M);
1493 if (oldval != val)
1494 wr32(hw, cq->sq.len, val);
1495 }
1496
1497 event.buf_len = cq->rq_buf_size;
1498 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1499 if (!event.msg_buf)
1500 return 0;
1501
1502 do {
1503 struct ice_mbx_data data = {};
1504 u16 opcode;
1505 int ret;
1506
1507 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1508 if (ret == -EALREADY)
1509 break;
1510 if (ret) {
1511 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1512 ret);
1513 break;
1514 }
1515
1516 opcode = le16_to_cpu(event.desc.opcode);
1517
1518 /* Notify any thread that might be waiting for this event */
1519 ice_aq_check_events(pf, opcode, &event);
1520
1521 switch (opcode) {
1522 case ice_aqc_opc_get_link_status:
1523 if (ice_handle_link_event(pf, &event))
1524 dev_err(dev, "Could not handle link event\n");
1525 break;
1526 case ice_aqc_opc_event_lan_overflow:
1527 ice_vf_lan_overflow_event(pf, &event);
1528 break;
1529 case ice_mbx_opc_send_msg_to_pf:
1530 data.num_msg_proc = i;
1531 data.num_pending_arq = pending;
1532 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1533 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1534
1535 ice_vc_process_vf_msg(pf, &event, &data);
1536 break;
1537 case ice_aqc_opc_fw_logging:
1538 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1539 break;
1540 case ice_aqc_opc_lldp_set_mib_change:
1541 ice_dcb_process_lldp_set_mib_change(pf, &event);
1542 break;
1543 default:
1544 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1545 qtype, opcode);
1546 break;
1547 }
1548 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1549
1550 kfree(event.msg_buf);
1551
1552 return pending && (i == ICE_DFLT_IRQ_WORK);
1553 }
1554
1555 /**
1556 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1557 * @hw: pointer to hardware info
1558 * @cq: control queue information
1559 *
1560 * returns true if there are pending messages in a queue, false if there aren't
1561 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1562 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1563 {
1564 u16 ntu;
1565
1566 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1567 return cq->rq.next_to_clean != ntu;
1568 }
1569
1570 /**
1571 * ice_clean_adminq_subtask - clean the AdminQ rings
1572 * @pf: board private structure
1573 */
ice_clean_adminq_subtask(struct ice_pf * pf)1574 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1575 {
1576 struct ice_hw *hw = &pf->hw;
1577
1578 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1579 return;
1580
1581 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1582 return;
1583
1584 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1585
1586 /* There might be a situation where new messages arrive to a control
1587 * queue between processing the last message and clearing the
1588 * EVENT_PENDING bit. So before exiting, check queue head again (using
1589 * ice_ctrlq_pending) and process new messages if any.
1590 */
1591 if (ice_ctrlq_pending(hw, &hw->adminq))
1592 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1593
1594 ice_flush(hw);
1595 }
1596
1597 /**
1598 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1599 * @pf: board private structure
1600 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1601 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1602 {
1603 struct ice_hw *hw = &pf->hw;
1604
1605 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1606 return;
1607
1608 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1609 return;
1610
1611 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1612
1613 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1614 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1615
1616 ice_flush(hw);
1617 }
1618
1619 /**
1620 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1621 * @pf: board private structure
1622 */
ice_clean_sbq_subtask(struct ice_pf * pf)1623 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1624 {
1625 struct ice_hw *hw = &pf->hw;
1626
1627 /* Nothing to do here if sideband queue is not supported */
1628 if (!ice_is_sbq_supported(hw)) {
1629 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1630 return;
1631 }
1632
1633 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1634 return;
1635
1636 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1637 return;
1638
1639 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1640
1641 if (ice_ctrlq_pending(hw, &hw->sbq))
1642 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1643
1644 ice_flush(hw);
1645 }
1646
1647 /**
1648 * ice_service_task_schedule - schedule the service task to wake up
1649 * @pf: board private structure
1650 *
1651 * If not already scheduled, this puts the task into the work queue.
1652 */
ice_service_task_schedule(struct ice_pf * pf)1653 void ice_service_task_schedule(struct ice_pf *pf)
1654 {
1655 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1656 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1657 !test_bit(ICE_NEEDS_RESTART, pf->state))
1658 queue_work(ice_wq, &pf->serv_task);
1659 }
1660
1661 /**
1662 * ice_service_task_complete - finish up the service task
1663 * @pf: board private structure
1664 */
ice_service_task_complete(struct ice_pf * pf)1665 static void ice_service_task_complete(struct ice_pf *pf)
1666 {
1667 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1668
1669 /* force memory (pf->state) to sync before next service task */
1670 smp_mb__before_atomic();
1671 clear_bit(ICE_SERVICE_SCHED, pf->state);
1672 }
1673
1674 /**
1675 * ice_service_task_stop - stop service task and cancel works
1676 * @pf: board private structure
1677 *
1678 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1679 * 1 otherwise.
1680 */
ice_service_task_stop(struct ice_pf * pf)1681 static int ice_service_task_stop(struct ice_pf *pf)
1682 {
1683 int ret;
1684
1685 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1686
1687 if (pf->serv_tmr.function)
1688 del_timer_sync(&pf->serv_tmr);
1689 if (pf->serv_task.func)
1690 cancel_work_sync(&pf->serv_task);
1691
1692 clear_bit(ICE_SERVICE_SCHED, pf->state);
1693 return ret;
1694 }
1695
1696 /**
1697 * ice_service_task_restart - restart service task and schedule works
1698 * @pf: board private structure
1699 *
1700 * This function is needed for suspend and resume works (e.g WoL scenario)
1701 */
ice_service_task_restart(struct ice_pf * pf)1702 static void ice_service_task_restart(struct ice_pf *pf)
1703 {
1704 clear_bit(ICE_SERVICE_DIS, pf->state);
1705 ice_service_task_schedule(pf);
1706 }
1707
1708 /**
1709 * ice_service_timer - timer callback to schedule service task
1710 * @t: pointer to timer_list
1711 */
ice_service_timer(struct timer_list * t)1712 static void ice_service_timer(struct timer_list *t)
1713 {
1714 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1715
1716 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1717 ice_service_task_schedule(pf);
1718 }
1719
1720 /**
1721 * ice_handle_mdd_event - handle malicious driver detect event
1722 * @pf: pointer to the PF structure
1723 *
1724 * Called from service task. OICR interrupt handler indicates MDD event.
1725 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1726 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1727 * disable the queue, the PF can be configured to reset the VF using ethtool
1728 * private flag mdd-auto-reset-vf.
1729 */
ice_handle_mdd_event(struct ice_pf * pf)1730 static void ice_handle_mdd_event(struct ice_pf *pf)
1731 {
1732 struct device *dev = ice_pf_to_dev(pf);
1733 struct ice_hw *hw = &pf->hw;
1734 struct ice_vf *vf;
1735 unsigned int bkt;
1736 u32 reg;
1737
1738 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1739 /* Since the VF MDD event logging is rate limited, check if
1740 * there are pending MDD events.
1741 */
1742 ice_print_vfs_mdd_events(pf);
1743 return;
1744 }
1745
1746 /* find what triggered an MDD event */
1747 reg = rd32(hw, GL_MDET_TX_PQM);
1748 if (reg & GL_MDET_TX_PQM_VALID_M) {
1749 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1750 GL_MDET_TX_PQM_PF_NUM_S;
1751 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1752 GL_MDET_TX_PQM_VF_NUM_S;
1753 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1754 GL_MDET_TX_PQM_MAL_TYPE_S;
1755 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1756 GL_MDET_TX_PQM_QNUM_S);
1757
1758 if (netif_msg_tx_err(pf))
1759 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1760 event, queue, pf_num, vf_num);
1761 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1762 }
1763
1764 reg = rd32(hw, GL_MDET_TX_TCLAN);
1765 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1766 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1767 GL_MDET_TX_TCLAN_PF_NUM_S;
1768 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1769 GL_MDET_TX_TCLAN_VF_NUM_S;
1770 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1771 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1772 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1773 GL_MDET_TX_TCLAN_QNUM_S);
1774
1775 if (netif_msg_tx_err(pf))
1776 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1777 event, queue, pf_num, vf_num);
1778 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1779 }
1780
1781 reg = rd32(hw, GL_MDET_RX);
1782 if (reg & GL_MDET_RX_VALID_M) {
1783 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1784 GL_MDET_RX_PF_NUM_S;
1785 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1786 GL_MDET_RX_VF_NUM_S;
1787 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1788 GL_MDET_RX_MAL_TYPE_S;
1789 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1790 GL_MDET_RX_QNUM_S);
1791
1792 if (netif_msg_rx_err(pf))
1793 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1794 event, queue, pf_num, vf_num);
1795 wr32(hw, GL_MDET_RX, 0xffffffff);
1796 }
1797
1798 /* check to see if this PF caused an MDD event */
1799 reg = rd32(hw, PF_MDET_TX_PQM);
1800 if (reg & PF_MDET_TX_PQM_VALID_M) {
1801 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1802 if (netif_msg_tx_err(pf))
1803 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1804 }
1805
1806 reg = rd32(hw, PF_MDET_TX_TCLAN);
1807 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1808 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1809 if (netif_msg_tx_err(pf))
1810 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1811 }
1812
1813 reg = rd32(hw, PF_MDET_RX);
1814 if (reg & PF_MDET_RX_VALID_M) {
1815 wr32(hw, PF_MDET_RX, 0xFFFF);
1816 if (netif_msg_rx_err(pf))
1817 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1818 }
1819
1820 /* Check to see if one of the VFs caused an MDD event, and then
1821 * increment counters and set print pending
1822 */
1823 mutex_lock(&pf->vfs.table_lock);
1824 ice_for_each_vf(pf, bkt, vf) {
1825 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1826 if (reg & VP_MDET_TX_PQM_VALID_M) {
1827 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1828 vf->mdd_tx_events.count++;
1829 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1830 if (netif_msg_tx_err(pf))
1831 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1832 vf->vf_id);
1833 }
1834
1835 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1836 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1837 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1838 vf->mdd_tx_events.count++;
1839 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1840 if (netif_msg_tx_err(pf))
1841 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1842 vf->vf_id);
1843 }
1844
1845 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1846 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1847 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1848 vf->mdd_tx_events.count++;
1849 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1850 if (netif_msg_tx_err(pf))
1851 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1852 vf->vf_id);
1853 }
1854
1855 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1856 if (reg & VP_MDET_RX_VALID_M) {
1857 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1858 vf->mdd_rx_events.count++;
1859 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1860 if (netif_msg_rx_err(pf))
1861 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1862 vf->vf_id);
1863
1864 /* Since the queue is disabled on VF Rx MDD events, the
1865 * PF can be configured to reset the VF through ethtool
1866 * private flag mdd-auto-reset-vf.
1867 */
1868 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1869 /* VF MDD event counters will be cleared by
1870 * reset, so print the event prior to reset.
1871 */
1872 ice_print_vf_rx_mdd_event(vf);
1873 ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1874 }
1875 }
1876 }
1877 mutex_unlock(&pf->vfs.table_lock);
1878
1879 ice_print_vfs_mdd_events(pf);
1880 }
1881
1882 /**
1883 * ice_force_phys_link_state - Force the physical link state
1884 * @vsi: VSI to force the physical link state to up/down
1885 * @link_up: true/false indicates to set the physical link to up/down
1886 *
1887 * Force the physical link state by getting the current PHY capabilities from
1888 * hardware and setting the PHY config based on the determined capabilities. If
1889 * link changes a link event will be triggered because both the Enable Automatic
1890 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1891 *
1892 * Returns 0 on success, negative on failure
1893 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1894 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1895 {
1896 struct ice_aqc_get_phy_caps_data *pcaps;
1897 struct ice_aqc_set_phy_cfg_data *cfg;
1898 struct ice_port_info *pi;
1899 struct device *dev;
1900 int retcode;
1901
1902 if (!vsi || !vsi->port_info || !vsi->back)
1903 return -EINVAL;
1904 if (vsi->type != ICE_VSI_PF)
1905 return 0;
1906
1907 dev = ice_pf_to_dev(vsi->back);
1908
1909 pi = vsi->port_info;
1910
1911 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1912 if (!pcaps)
1913 return -ENOMEM;
1914
1915 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1916 NULL);
1917 if (retcode) {
1918 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1919 vsi->vsi_num, retcode);
1920 retcode = -EIO;
1921 goto out;
1922 }
1923
1924 /* No change in link */
1925 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1926 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1927 goto out;
1928
1929 /* Use the current user PHY configuration. The current user PHY
1930 * configuration is initialized during probe from PHY capabilities
1931 * software mode, and updated on set PHY configuration.
1932 */
1933 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1934 if (!cfg) {
1935 retcode = -ENOMEM;
1936 goto out;
1937 }
1938
1939 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1940 if (link_up)
1941 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1942 else
1943 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1944
1945 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1946 if (retcode) {
1947 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1948 vsi->vsi_num, retcode);
1949 retcode = -EIO;
1950 }
1951
1952 kfree(cfg);
1953 out:
1954 kfree(pcaps);
1955 return retcode;
1956 }
1957
1958 /**
1959 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1960 * @pi: port info structure
1961 *
1962 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1963 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1964 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1965 {
1966 struct ice_aqc_get_phy_caps_data *pcaps;
1967 struct ice_pf *pf = pi->hw->back;
1968 int err;
1969
1970 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1971 if (!pcaps)
1972 return -ENOMEM;
1973
1974 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1975 pcaps, NULL);
1976
1977 if (err) {
1978 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1979 goto out;
1980 }
1981
1982 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1983 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1984
1985 out:
1986 kfree(pcaps);
1987 return err;
1988 }
1989
1990 /**
1991 * ice_init_link_dflt_override - Initialize link default override
1992 * @pi: port info structure
1993 *
1994 * Initialize link default override and PHY total port shutdown during probe
1995 */
ice_init_link_dflt_override(struct ice_port_info * pi)1996 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1997 {
1998 struct ice_link_default_override_tlv *ldo;
1999 struct ice_pf *pf = pi->hw->back;
2000
2001 ldo = &pf->link_dflt_override;
2002 if (ice_get_link_default_override(ldo, pi))
2003 return;
2004
2005 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2006 return;
2007
2008 /* Enable Total Port Shutdown (override/replace link-down-on-close
2009 * ethtool private flag) for ports with Port Disable bit set.
2010 */
2011 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2012 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2013 }
2014
2015 /**
2016 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2017 * @pi: port info structure
2018 *
2019 * If default override is enabled, initialize the user PHY cfg speed and FEC
2020 * settings using the default override mask from the NVM.
2021 *
2022 * The PHY should only be configured with the default override settings the
2023 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2024 * is used to indicate that the user PHY cfg default override is initialized
2025 * and the PHY has not been configured with the default override settings. The
2026 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2027 * configured.
2028 *
2029 * This function should be called only if the FW doesn't support default
2030 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2031 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2032 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2033 {
2034 struct ice_link_default_override_tlv *ldo;
2035 struct ice_aqc_set_phy_cfg_data *cfg;
2036 struct ice_phy_info *phy = &pi->phy;
2037 struct ice_pf *pf = pi->hw->back;
2038
2039 ldo = &pf->link_dflt_override;
2040
2041 /* If link default override is enabled, use to mask NVM PHY capabilities
2042 * for speed and FEC default configuration.
2043 */
2044 cfg = &phy->curr_user_phy_cfg;
2045
2046 if (ldo->phy_type_low || ldo->phy_type_high) {
2047 cfg->phy_type_low = pf->nvm_phy_type_lo &
2048 cpu_to_le64(ldo->phy_type_low);
2049 cfg->phy_type_high = pf->nvm_phy_type_hi &
2050 cpu_to_le64(ldo->phy_type_high);
2051 }
2052 cfg->link_fec_opt = ldo->fec_options;
2053 phy->curr_user_fec_req = ICE_FEC_AUTO;
2054
2055 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2056 }
2057
2058 /**
2059 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2060 * @pi: port info structure
2061 *
2062 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2063 * mode to default. The PHY defaults are from get PHY capabilities topology
2064 * with media so call when media is first available. An error is returned if
2065 * called when media is not available. The PHY initialization completed state is
2066 * set here.
2067 *
2068 * These configurations are used when setting PHY
2069 * configuration. The user PHY configuration is updated on set PHY
2070 * configuration. Returns 0 on success, negative on failure
2071 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2072 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2073 {
2074 struct ice_aqc_get_phy_caps_data *pcaps;
2075 struct ice_phy_info *phy = &pi->phy;
2076 struct ice_pf *pf = pi->hw->back;
2077 int err;
2078
2079 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2080 return -EIO;
2081
2082 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2083 if (!pcaps)
2084 return -ENOMEM;
2085
2086 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2087 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2088 pcaps, NULL);
2089 else
2090 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2091 pcaps, NULL);
2092 if (err) {
2093 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2094 goto err_out;
2095 }
2096
2097 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2098
2099 /* check if lenient mode is supported and enabled */
2100 if (ice_fw_supports_link_override(pi->hw) &&
2101 !(pcaps->module_compliance_enforcement &
2102 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2103 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2104
2105 /* if the FW supports default PHY configuration mode, then the driver
2106 * does not have to apply link override settings. If not,
2107 * initialize user PHY configuration with link override values
2108 */
2109 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2110 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2111 ice_init_phy_cfg_dflt_override(pi);
2112 goto out;
2113 }
2114 }
2115
2116 /* if link default override is not enabled, set user flow control and
2117 * FEC settings based on what get_phy_caps returned
2118 */
2119 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2120 pcaps->link_fec_options);
2121 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2122
2123 out:
2124 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2125 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2126 err_out:
2127 kfree(pcaps);
2128 return err;
2129 }
2130
2131 /**
2132 * ice_configure_phy - configure PHY
2133 * @vsi: VSI of PHY
2134 *
2135 * Set the PHY configuration. If the current PHY configuration is the same as
2136 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2137 * configure the based get PHY capabilities for topology with media.
2138 */
ice_configure_phy(struct ice_vsi * vsi)2139 static int ice_configure_phy(struct ice_vsi *vsi)
2140 {
2141 struct device *dev = ice_pf_to_dev(vsi->back);
2142 struct ice_port_info *pi = vsi->port_info;
2143 struct ice_aqc_get_phy_caps_data *pcaps;
2144 struct ice_aqc_set_phy_cfg_data *cfg;
2145 struct ice_phy_info *phy = &pi->phy;
2146 struct ice_pf *pf = vsi->back;
2147 int err;
2148
2149 /* Ensure we have media as we cannot configure a medialess port */
2150 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2151 return -ENOMEDIUM;
2152
2153 ice_print_topo_conflict(vsi);
2154
2155 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2156 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2157 return -EPERM;
2158
2159 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2160 return ice_force_phys_link_state(vsi, true);
2161
2162 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2163 if (!pcaps)
2164 return -ENOMEM;
2165
2166 /* Get current PHY config */
2167 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2168 NULL);
2169 if (err) {
2170 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2171 vsi->vsi_num, err);
2172 goto done;
2173 }
2174
2175 /* If PHY enable link is configured and configuration has not changed,
2176 * there's nothing to do
2177 */
2178 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2179 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2180 goto done;
2181
2182 /* Use PHY topology as baseline for configuration */
2183 memset(pcaps, 0, sizeof(*pcaps));
2184 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2185 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2186 pcaps, NULL);
2187 else
2188 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2189 pcaps, NULL);
2190 if (err) {
2191 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2192 vsi->vsi_num, err);
2193 goto done;
2194 }
2195
2196 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2197 if (!cfg) {
2198 err = -ENOMEM;
2199 goto done;
2200 }
2201
2202 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2203
2204 /* Speed - If default override pending, use curr_user_phy_cfg set in
2205 * ice_init_phy_user_cfg_ldo.
2206 */
2207 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2208 vsi->back->state)) {
2209 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2210 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2211 } else {
2212 u64 phy_low = 0, phy_high = 0;
2213
2214 ice_update_phy_type(&phy_low, &phy_high,
2215 pi->phy.curr_user_speed_req);
2216 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2217 cfg->phy_type_high = pcaps->phy_type_high &
2218 cpu_to_le64(phy_high);
2219 }
2220
2221 /* Can't provide what was requested; use PHY capabilities */
2222 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2223 cfg->phy_type_low = pcaps->phy_type_low;
2224 cfg->phy_type_high = pcaps->phy_type_high;
2225 }
2226
2227 /* FEC */
2228 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2229
2230 /* Can't provide what was requested; use PHY capabilities */
2231 if (cfg->link_fec_opt !=
2232 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2233 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2234 cfg->link_fec_opt = pcaps->link_fec_options;
2235 }
2236
2237 /* Flow Control - always supported; no need to check against
2238 * capabilities
2239 */
2240 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2241
2242 /* Enable link and link update */
2243 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2244
2245 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2246 if (err)
2247 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2248 vsi->vsi_num, err);
2249
2250 kfree(cfg);
2251 done:
2252 kfree(pcaps);
2253 return err;
2254 }
2255
2256 /**
2257 * ice_check_media_subtask - Check for media
2258 * @pf: pointer to PF struct
2259 *
2260 * If media is available, then initialize PHY user configuration if it is not
2261 * been, and configure the PHY if the interface is up.
2262 */
ice_check_media_subtask(struct ice_pf * pf)2263 static void ice_check_media_subtask(struct ice_pf *pf)
2264 {
2265 struct ice_port_info *pi;
2266 struct ice_vsi *vsi;
2267 int err;
2268
2269 /* No need to check for media if it's already present */
2270 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2271 return;
2272
2273 vsi = ice_get_main_vsi(pf);
2274 if (!vsi)
2275 return;
2276
2277 /* Refresh link info and check if media is present */
2278 pi = vsi->port_info;
2279 err = ice_update_link_info(pi);
2280 if (err)
2281 return;
2282
2283 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2284
2285 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2286 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2287 ice_init_phy_user_cfg(pi);
2288
2289 /* PHY settings are reset on media insertion, reconfigure
2290 * PHY to preserve settings.
2291 */
2292 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2293 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2294 return;
2295
2296 err = ice_configure_phy(vsi);
2297 if (!err)
2298 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2299
2300 /* A Link Status Event will be generated; the event handler
2301 * will complete bringing the interface up
2302 */
2303 }
2304 }
2305
2306 /**
2307 * ice_service_task - manage and run subtasks
2308 * @work: pointer to work_struct contained by the PF struct
2309 */
ice_service_task(struct work_struct * work)2310 static void ice_service_task(struct work_struct *work)
2311 {
2312 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2313 unsigned long start_time = jiffies;
2314
2315 /* subtasks */
2316
2317 /* process reset requests first */
2318 ice_reset_subtask(pf);
2319
2320 /* bail if a reset/recovery cycle is pending or rebuild failed */
2321 if (ice_is_reset_in_progress(pf->state) ||
2322 test_bit(ICE_SUSPENDED, pf->state) ||
2323 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2324 ice_service_task_complete(pf);
2325 return;
2326 }
2327
2328 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2329 struct iidc_event *event;
2330
2331 event = kzalloc(sizeof(*event), GFP_KERNEL);
2332 if (event) {
2333 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2334 /* report the entire OICR value to AUX driver */
2335 swap(event->reg, pf->oicr_err_reg);
2336 ice_send_event_to_aux(pf, event);
2337 kfree(event);
2338 }
2339 }
2340
2341 /* unplug aux dev per request, if an unplug request came in
2342 * while processing a plug request, this will handle it
2343 */
2344 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2345 ice_unplug_aux_dev(pf);
2346
2347 /* Plug aux device per request */
2348 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2349 ice_plug_aux_dev(pf);
2350
2351 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2352 struct iidc_event *event;
2353
2354 event = kzalloc(sizeof(*event), GFP_KERNEL);
2355 if (event) {
2356 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2357 ice_send_event_to_aux(pf, event);
2358 kfree(event);
2359 }
2360 }
2361
2362 ice_clean_adminq_subtask(pf);
2363 ice_check_media_subtask(pf);
2364 ice_check_for_hang_subtask(pf);
2365 ice_sync_fltr_subtask(pf);
2366 ice_handle_mdd_event(pf);
2367 ice_watchdog_subtask(pf);
2368
2369 if (ice_is_safe_mode(pf)) {
2370 ice_service_task_complete(pf);
2371 return;
2372 }
2373
2374 ice_process_vflr_event(pf);
2375 ice_clean_mailboxq_subtask(pf);
2376 ice_clean_sbq_subtask(pf);
2377 ice_sync_arfs_fltrs(pf);
2378 ice_flush_fdir_ctx(pf);
2379
2380 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2381 ice_service_task_complete(pf);
2382
2383 /* If the tasks have taken longer than one service timer period
2384 * or there is more work to be done, reset the service timer to
2385 * schedule the service task now.
2386 */
2387 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2388 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2389 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2390 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2391 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2392 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2393 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2394 mod_timer(&pf->serv_tmr, jiffies);
2395 }
2396
2397 /**
2398 * ice_set_ctrlq_len - helper function to set controlq length
2399 * @hw: pointer to the HW instance
2400 */
ice_set_ctrlq_len(struct ice_hw * hw)2401 static void ice_set_ctrlq_len(struct ice_hw *hw)
2402 {
2403 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2404 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2405 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2406 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2407 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2408 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2409 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2410 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2411 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2412 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2413 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2414 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2415 }
2416
2417 /**
2418 * ice_schedule_reset - schedule a reset
2419 * @pf: board private structure
2420 * @reset: reset being requested
2421 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2422 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2423 {
2424 struct device *dev = ice_pf_to_dev(pf);
2425
2426 /* bail out if earlier reset has failed */
2427 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2428 dev_dbg(dev, "earlier reset has failed\n");
2429 return -EIO;
2430 }
2431 /* bail if reset/recovery already in progress */
2432 if (ice_is_reset_in_progress(pf->state)) {
2433 dev_dbg(dev, "Reset already in progress\n");
2434 return -EBUSY;
2435 }
2436
2437 switch (reset) {
2438 case ICE_RESET_PFR:
2439 set_bit(ICE_PFR_REQ, pf->state);
2440 break;
2441 case ICE_RESET_CORER:
2442 set_bit(ICE_CORER_REQ, pf->state);
2443 break;
2444 case ICE_RESET_GLOBR:
2445 set_bit(ICE_GLOBR_REQ, pf->state);
2446 break;
2447 default:
2448 return -EINVAL;
2449 }
2450
2451 ice_service_task_schedule(pf);
2452 return 0;
2453 }
2454
2455 /**
2456 * ice_irq_affinity_notify - Callback for affinity changes
2457 * @notify: context as to what irq was changed
2458 * @mask: the new affinity mask
2459 *
2460 * This is a callback function used by the irq_set_affinity_notifier function
2461 * so that we may register to receive changes to the irq affinity masks.
2462 */
2463 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2464 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2465 const cpumask_t *mask)
2466 {
2467 struct ice_q_vector *q_vector =
2468 container_of(notify, struct ice_q_vector, affinity_notify);
2469
2470 cpumask_copy(&q_vector->affinity_mask, mask);
2471 }
2472
2473 /**
2474 * ice_irq_affinity_release - Callback for affinity notifier release
2475 * @ref: internal core kernel usage
2476 *
2477 * This is a callback function used by the irq_set_affinity_notifier function
2478 * to inform the current notification subscriber that they will no longer
2479 * receive notifications.
2480 */
ice_irq_affinity_release(struct kref __always_unused * ref)2481 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2482
2483 /**
2484 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2485 * @vsi: the VSI being configured
2486 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2487 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2488 {
2489 struct ice_hw *hw = &vsi->back->hw;
2490 int i;
2491
2492 ice_for_each_q_vector(vsi, i)
2493 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2494
2495 ice_flush(hw);
2496 return 0;
2497 }
2498
2499 /**
2500 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2501 * @vsi: the VSI being configured
2502 * @basename: name for the vector
2503 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2504 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2505 {
2506 int q_vectors = vsi->num_q_vectors;
2507 struct ice_pf *pf = vsi->back;
2508 struct device *dev;
2509 int rx_int_idx = 0;
2510 int tx_int_idx = 0;
2511 int vector, err;
2512 int irq_num;
2513
2514 dev = ice_pf_to_dev(pf);
2515 for (vector = 0; vector < q_vectors; vector++) {
2516 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2517
2518 irq_num = q_vector->irq.virq;
2519
2520 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2521 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2522 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2523 tx_int_idx++;
2524 } else if (q_vector->rx.rx_ring) {
2525 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2526 "%s-%s-%d", basename, "rx", rx_int_idx++);
2527 } else if (q_vector->tx.tx_ring) {
2528 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2529 "%s-%s-%d", basename, "tx", tx_int_idx++);
2530 } else {
2531 /* skip this unused q_vector */
2532 continue;
2533 }
2534 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2535 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2536 IRQF_SHARED, q_vector->name,
2537 q_vector);
2538 else
2539 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2540 0, q_vector->name, q_vector);
2541 if (err) {
2542 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2543 err);
2544 goto free_q_irqs;
2545 }
2546
2547 /* register for affinity change notifications */
2548 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2549 struct irq_affinity_notify *affinity_notify;
2550
2551 affinity_notify = &q_vector->affinity_notify;
2552 affinity_notify->notify = ice_irq_affinity_notify;
2553 affinity_notify->release = ice_irq_affinity_release;
2554 irq_set_affinity_notifier(irq_num, affinity_notify);
2555 }
2556
2557 /* assign the mask for this irq */
2558 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2559 }
2560
2561 err = ice_set_cpu_rx_rmap(vsi);
2562 if (err) {
2563 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2564 vsi->vsi_num, ERR_PTR(err));
2565 goto free_q_irqs;
2566 }
2567
2568 vsi->irqs_ready = true;
2569 return 0;
2570
2571 free_q_irqs:
2572 while (vector--) {
2573 irq_num = vsi->q_vectors[vector]->irq.virq;
2574 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2575 irq_set_affinity_notifier(irq_num, NULL);
2576 irq_set_affinity_hint(irq_num, NULL);
2577 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2578 }
2579 return err;
2580 }
2581
2582 /**
2583 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2584 * @vsi: VSI to setup Tx rings used by XDP
2585 *
2586 * Return 0 on success and negative value on error
2587 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2588 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2589 {
2590 struct device *dev = ice_pf_to_dev(vsi->back);
2591 struct ice_tx_desc *tx_desc;
2592 int i, j;
2593
2594 ice_for_each_xdp_txq(vsi, i) {
2595 u16 xdp_q_idx = vsi->alloc_txq + i;
2596 struct ice_ring_stats *ring_stats;
2597 struct ice_tx_ring *xdp_ring;
2598
2599 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2600 if (!xdp_ring)
2601 goto free_xdp_rings;
2602
2603 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2604 if (!ring_stats) {
2605 ice_free_tx_ring(xdp_ring);
2606 goto free_xdp_rings;
2607 }
2608
2609 xdp_ring->ring_stats = ring_stats;
2610 xdp_ring->q_index = xdp_q_idx;
2611 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2612 xdp_ring->vsi = vsi;
2613 xdp_ring->netdev = NULL;
2614 xdp_ring->dev = dev;
2615 xdp_ring->count = vsi->num_tx_desc;
2616 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2617 if (ice_setup_tx_ring(xdp_ring))
2618 goto free_xdp_rings;
2619 ice_set_ring_xdp(xdp_ring);
2620 spin_lock_init(&xdp_ring->tx_lock);
2621 for (j = 0; j < xdp_ring->count; j++) {
2622 tx_desc = ICE_TX_DESC(xdp_ring, j);
2623 tx_desc->cmd_type_offset_bsz = 0;
2624 }
2625 }
2626
2627 return 0;
2628
2629 free_xdp_rings:
2630 for (; i >= 0; i--) {
2631 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2632 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2633 vsi->xdp_rings[i]->ring_stats = NULL;
2634 ice_free_tx_ring(vsi->xdp_rings[i]);
2635 }
2636 }
2637 return -ENOMEM;
2638 }
2639
2640 /**
2641 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2642 * @vsi: VSI to set the bpf prog on
2643 * @prog: the bpf prog pointer
2644 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2645 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2646 {
2647 struct bpf_prog *old_prog;
2648 int i;
2649
2650 old_prog = xchg(&vsi->xdp_prog, prog);
2651 ice_for_each_rxq(vsi, i)
2652 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2653
2654 if (old_prog)
2655 bpf_prog_put(old_prog);
2656 }
2657
2658 /**
2659 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2660 * @vsi: VSI to bring up Tx rings used by XDP
2661 * @prog: bpf program that will be assigned to VSI
2662 * @cfg_type: create from scratch or restore the existing configuration
2663 *
2664 * Return 0 on success and negative value on error
2665 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2666 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2667 enum ice_xdp_cfg cfg_type)
2668 {
2669 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2670 int xdp_rings_rem = vsi->num_xdp_txq;
2671 struct ice_pf *pf = vsi->back;
2672 struct ice_qs_cfg xdp_qs_cfg = {
2673 .qs_mutex = &pf->avail_q_mutex,
2674 .pf_map = pf->avail_txqs,
2675 .pf_map_size = pf->max_pf_txqs,
2676 .q_count = vsi->num_xdp_txq,
2677 .scatter_count = ICE_MAX_SCATTER_TXQS,
2678 .vsi_map = vsi->txq_map,
2679 .vsi_map_offset = vsi->alloc_txq,
2680 .mapping_mode = ICE_VSI_MAP_CONTIG
2681 };
2682 struct device *dev;
2683 int i, v_idx;
2684 int status;
2685
2686 dev = ice_pf_to_dev(pf);
2687 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2688 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2689 if (!vsi->xdp_rings)
2690 return -ENOMEM;
2691
2692 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2693 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2694 goto err_map_xdp;
2695
2696 if (static_key_enabled(&ice_xdp_locking_key))
2697 netdev_warn(vsi->netdev,
2698 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2699
2700 if (ice_xdp_alloc_setup_rings(vsi))
2701 goto clear_xdp_rings;
2702
2703 /* follow the logic from ice_vsi_map_rings_to_vectors */
2704 ice_for_each_q_vector(vsi, v_idx) {
2705 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2706 int xdp_rings_per_v, q_id, q_base;
2707
2708 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2709 vsi->num_q_vectors - v_idx);
2710 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2711
2712 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2713 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2714
2715 xdp_ring->q_vector = q_vector;
2716 xdp_ring->next = q_vector->tx.tx_ring;
2717 q_vector->tx.tx_ring = xdp_ring;
2718 }
2719 xdp_rings_rem -= xdp_rings_per_v;
2720 }
2721
2722 ice_for_each_rxq(vsi, i) {
2723 if (static_key_enabled(&ice_xdp_locking_key)) {
2724 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2725 } else {
2726 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2727 struct ice_tx_ring *ring;
2728
2729 ice_for_each_tx_ring(ring, q_vector->tx) {
2730 if (ice_ring_is_xdp(ring)) {
2731 vsi->rx_rings[i]->xdp_ring = ring;
2732 break;
2733 }
2734 }
2735 }
2736 ice_tx_xsk_pool(vsi, i);
2737 }
2738
2739 /* omit the scheduler update if in reset path; XDP queues will be
2740 * taken into account at the end of ice_vsi_rebuild, where
2741 * ice_cfg_vsi_lan is being called
2742 */
2743 if (cfg_type == ICE_XDP_CFG_PART)
2744 return 0;
2745
2746 /* tell the Tx scheduler that right now we have
2747 * additional queues
2748 */
2749 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2750 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2751
2752 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2753 max_txqs);
2754 if (status) {
2755 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2756 status);
2757 goto clear_xdp_rings;
2758 }
2759
2760 /* assign the prog only when it's not already present on VSI;
2761 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2762 * VSI rebuild that happens under ethtool -L can expose us to
2763 * the bpf_prog refcount issues as we would be swapping same
2764 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2765 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2766 * this is not harmful as dev_xdp_install bumps the refcount
2767 * before calling the op exposed by the driver;
2768 */
2769 if (!ice_is_xdp_ena_vsi(vsi))
2770 ice_vsi_assign_bpf_prog(vsi, prog);
2771
2772 return 0;
2773 clear_xdp_rings:
2774 ice_for_each_xdp_txq(vsi, i)
2775 if (vsi->xdp_rings[i]) {
2776 kfree_rcu(vsi->xdp_rings[i], rcu);
2777 vsi->xdp_rings[i] = NULL;
2778 }
2779
2780 err_map_xdp:
2781 mutex_lock(&pf->avail_q_mutex);
2782 ice_for_each_xdp_txq(vsi, i) {
2783 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2784 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2785 }
2786 mutex_unlock(&pf->avail_q_mutex);
2787
2788 devm_kfree(dev, vsi->xdp_rings);
2789 return -ENOMEM;
2790 }
2791
2792 /**
2793 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2794 * @vsi: VSI to remove XDP rings
2795 * @cfg_type: disable XDP permanently or allow it to be restored later
2796 *
2797 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2798 * resources
2799 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2800 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2801 {
2802 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2803 struct ice_pf *pf = vsi->back;
2804 int i, v_idx;
2805
2806 /* q_vectors are freed in reset path so there's no point in detaching
2807 * rings
2808 */
2809 if (cfg_type == ICE_XDP_CFG_PART)
2810 goto free_qmap;
2811
2812 ice_for_each_q_vector(vsi, v_idx) {
2813 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2814 struct ice_tx_ring *ring;
2815
2816 ice_for_each_tx_ring(ring, q_vector->tx)
2817 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2818 break;
2819
2820 /* restore the value of last node prior to XDP setup */
2821 q_vector->tx.tx_ring = ring;
2822 }
2823
2824 free_qmap:
2825 mutex_lock(&pf->avail_q_mutex);
2826 ice_for_each_xdp_txq(vsi, i) {
2827 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2828 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2829 }
2830 mutex_unlock(&pf->avail_q_mutex);
2831
2832 ice_for_each_xdp_txq(vsi, i)
2833 if (vsi->xdp_rings[i]) {
2834 if (vsi->xdp_rings[i]->desc) {
2835 synchronize_rcu();
2836 ice_free_tx_ring(vsi->xdp_rings[i]);
2837 }
2838 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2839 vsi->xdp_rings[i]->ring_stats = NULL;
2840 kfree_rcu(vsi->xdp_rings[i], rcu);
2841 vsi->xdp_rings[i] = NULL;
2842 }
2843
2844 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2845 vsi->xdp_rings = NULL;
2846
2847 if (static_key_enabled(&ice_xdp_locking_key))
2848 static_branch_dec(&ice_xdp_locking_key);
2849
2850 if (cfg_type == ICE_XDP_CFG_PART)
2851 return 0;
2852
2853 ice_vsi_assign_bpf_prog(vsi, NULL);
2854
2855 /* notify Tx scheduler that we destroyed XDP queues and bring
2856 * back the old number of child nodes
2857 */
2858 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2859 max_txqs[i] = vsi->num_txq;
2860
2861 /* change number of XDP Tx queues to 0 */
2862 vsi->num_xdp_txq = 0;
2863
2864 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2865 max_txqs);
2866 }
2867
2868 /**
2869 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2870 * @vsi: VSI to schedule napi on
2871 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2872 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2873 {
2874 int i;
2875
2876 ice_for_each_rxq(vsi, i) {
2877 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2878
2879 if (rx_ring->xsk_pool)
2880 napi_schedule(&rx_ring->q_vector->napi);
2881 }
2882 }
2883
2884 /**
2885 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2886 * @vsi: VSI to determine the count of XDP Tx qs
2887 *
2888 * returns 0 if Tx qs count is higher than at least half of CPU count,
2889 * -ENOMEM otherwise
2890 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2891 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2892 {
2893 u16 avail = ice_get_avail_txq_count(vsi->back);
2894 u16 cpus = num_possible_cpus();
2895
2896 if (avail < cpus / 2)
2897 return -ENOMEM;
2898
2899 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2900
2901 if (vsi->num_xdp_txq < cpus)
2902 static_branch_inc(&ice_xdp_locking_key);
2903
2904 return 0;
2905 }
2906
2907 /**
2908 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2909 * @vsi: Pointer to VSI structure
2910 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2911 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2912 {
2913 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2914 return ICE_RXBUF_1664;
2915 else
2916 return ICE_RXBUF_3072;
2917 }
2918
2919 /**
2920 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2921 * @vsi: VSI to setup XDP for
2922 * @prog: XDP program
2923 * @extack: netlink extended ack
2924 */
2925 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2926 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2927 struct netlink_ext_ack *extack)
2928 {
2929 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2930 bool if_running = netif_running(vsi->netdev);
2931 int ret = 0, xdp_ring_err = 0;
2932
2933 if (prog && !prog->aux->xdp_has_frags) {
2934 if (frame_size > ice_max_xdp_frame_size(vsi)) {
2935 NL_SET_ERR_MSG_MOD(extack,
2936 "MTU is too large for linear frames and XDP prog does not support frags");
2937 return -EOPNOTSUPP;
2938 }
2939 }
2940
2941 /* hot swap progs and avoid toggling link */
2942 if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2943 ice_vsi_assign_bpf_prog(vsi, prog);
2944 return 0;
2945 }
2946
2947 /* need to stop netdev while setting up the program for Rx rings */
2948 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2949 ret = ice_down(vsi);
2950 if (ret) {
2951 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2952 return ret;
2953 }
2954 }
2955
2956 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2957 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2958 if (xdp_ring_err) {
2959 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2960 } else {
2961 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
2962 ICE_XDP_CFG_FULL);
2963 if (xdp_ring_err)
2964 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2965 }
2966 xdp_features_set_redirect_target(vsi->netdev, true);
2967 /* reallocate Rx queues that are used for zero-copy */
2968 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2969 if (xdp_ring_err)
2970 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2971 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2972 xdp_features_clear_redirect_target(vsi->netdev);
2973 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
2974 if (xdp_ring_err)
2975 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2976 /* reallocate Rx queues that were used for zero-copy */
2977 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2978 if (xdp_ring_err)
2979 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2980 }
2981
2982 if (if_running)
2983 ret = ice_up(vsi);
2984
2985 if (!ret && prog)
2986 ice_vsi_rx_napi_schedule(vsi);
2987
2988 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2989 }
2990
2991 /**
2992 * ice_xdp_safe_mode - XDP handler for safe mode
2993 * @dev: netdevice
2994 * @xdp: XDP command
2995 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2996 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2997 struct netdev_bpf *xdp)
2998 {
2999 NL_SET_ERR_MSG_MOD(xdp->extack,
3000 "Please provide working DDP firmware package in order to use XDP\n"
3001 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3002 return -EOPNOTSUPP;
3003 }
3004
3005 /**
3006 * ice_xdp - implements XDP handler
3007 * @dev: netdevice
3008 * @xdp: XDP command
3009 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3010 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3011 {
3012 struct ice_netdev_priv *np = netdev_priv(dev);
3013 struct ice_vsi *vsi = np->vsi;
3014
3015 if (vsi->type != ICE_VSI_PF) {
3016 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3017 return -EINVAL;
3018 }
3019
3020 switch (xdp->command) {
3021 case XDP_SETUP_PROG:
3022 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3023 case XDP_SETUP_XSK_POOL:
3024 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3025 xdp->xsk.queue_id);
3026 default:
3027 return -EINVAL;
3028 }
3029 }
3030
3031 /**
3032 * ice_ena_misc_vector - enable the non-queue interrupts
3033 * @pf: board private structure
3034 */
ice_ena_misc_vector(struct ice_pf * pf)3035 static void ice_ena_misc_vector(struct ice_pf *pf)
3036 {
3037 struct ice_hw *hw = &pf->hw;
3038 u32 val;
3039
3040 /* Disable anti-spoof detection interrupt to prevent spurious event
3041 * interrupts during a function reset. Anti-spoof functionally is
3042 * still supported.
3043 */
3044 val = rd32(hw, GL_MDCK_TX_TDPU);
3045 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3046 wr32(hw, GL_MDCK_TX_TDPU, val);
3047
3048 /* clear things first */
3049 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3050 rd32(hw, PFINT_OICR); /* read to clear */
3051
3052 val = (PFINT_OICR_ECC_ERR_M |
3053 PFINT_OICR_MAL_DETECT_M |
3054 PFINT_OICR_GRST_M |
3055 PFINT_OICR_PCI_EXCEPTION_M |
3056 PFINT_OICR_VFLR_M |
3057 PFINT_OICR_HMC_ERR_M |
3058 PFINT_OICR_PE_PUSH_M |
3059 PFINT_OICR_PE_CRITERR_M);
3060
3061 wr32(hw, PFINT_OICR_ENA, val);
3062
3063 /* SW_ITR_IDX = 0, but don't change INTENA */
3064 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3065 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3066 }
3067
3068 /**
3069 * ice_misc_intr - misc interrupt handler
3070 * @irq: interrupt number
3071 * @data: pointer to a q_vector
3072 */
ice_misc_intr(int __always_unused irq,void * data)3073 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3074 {
3075 struct ice_pf *pf = (struct ice_pf *)data;
3076 struct ice_hw *hw = &pf->hw;
3077 struct device *dev;
3078 u32 oicr, ena_mask;
3079
3080 dev = ice_pf_to_dev(pf);
3081 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3082 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3083 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3084
3085 oicr = rd32(hw, PFINT_OICR);
3086 ena_mask = rd32(hw, PFINT_OICR_ENA);
3087
3088 if (oicr & PFINT_OICR_SWINT_M) {
3089 ena_mask &= ~PFINT_OICR_SWINT_M;
3090 pf->sw_int_count++;
3091 }
3092
3093 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3094 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3095 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3096 }
3097 if (oicr & PFINT_OICR_VFLR_M) {
3098 /* disable any further VFLR event notifications */
3099 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3100 u32 reg = rd32(hw, PFINT_OICR_ENA);
3101
3102 reg &= ~PFINT_OICR_VFLR_M;
3103 wr32(hw, PFINT_OICR_ENA, reg);
3104 } else {
3105 ena_mask &= ~PFINT_OICR_VFLR_M;
3106 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3107 }
3108 }
3109
3110 if (oicr & PFINT_OICR_GRST_M) {
3111 u32 reset;
3112
3113 /* we have a reset warning */
3114 ena_mask &= ~PFINT_OICR_GRST_M;
3115 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3116 GLGEN_RSTAT_RESET_TYPE_S;
3117
3118 if (reset == ICE_RESET_CORER)
3119 pf->corer_count++;
3120 else if (reset == ICE_RESET_GLOBR)
3121 pf->globr_count++;
3122 else if (reset == ICE_RESET_EMPR)
3123 pf->empr_count++;
3124 else
3125 dev_dbg(dev, "Invalid reset type %d\n", reset);
3126
3127 /* If a reset cycle isn't already in progress, we set a bit in
3128 * pf->state so that the service task can start a reset/rebuild.
3129 */
3130 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3131 if (reset == ICE_RESET_CORER)
3132 set_bit(ICE_CORER_RECV, pf->state);
3133 else if (reset == ICE_RESET_GLOBR)
3134 set_bit(ICE_GLOBR_RECV, pf->state);
3135 else
3136 set_bit(ICE_EMPR_RECV, pf->state);
3137
3138 /* There are couple of different bits at play here.
3139 * hw->reset_ongoing indicates whether the hardware is
3140 * in reset. This is set to true when a reset interrupt
3141 * is received and set back to false after the driver
3142 * has determined that the hardware is out of reset.
3143 *
3144 * ICE_RESET_OICR_RECV in pf->state indicates
3145 * that a post reset rebuild is required before the
3146 * driver is operational again. This is set above.
3147 *
3148 * As this is the start of the reset/rebuild cycle, set
3149 * both to indicate that.
3150 */
3151 hw->reset_ongoing = true;
3152 }
3153 }
3154
3155 if (oicr & PFINT_OICR_TSYN_TX_M) {
3156 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3157 if (!hw->reset_ongoing)
3158 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3159 }
3160
3161 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3162 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3163 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3164
3165 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3166
3167 if (hw->func_caps.ts_func_info.src_tmr_owned) {
3168 /* Save EVENTs from GLTSYN register */
3169 pf->ptp.ext_ts_irq |= gltsyn_stat &
3170 (GLTSYN_STAT_EVENT0_M |
3171 GLTSYN_STAT_EVENT1_M |
3172 GLTSYN_STAT_EVENT2_M);
3173
3174 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread);
3175 }
3176 }
3177
3178 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3179 if (oicr & ICE_AUX_CRIT_ERR) {
3180 pf->oicr_err_reg |= oicr;
3181 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3182 ena_mask &= ~ICE_AUX_CRIT_ERR;
3183 }
3184
3185 /* Report any remaining unexpected interrupts */
3186 oicr &= ena_mask;
3187 if (oicr) {
3188 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3189 /* If a critical error is pending there is no choice but to
3190 * reset the device.
3191 */
3192 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3193 PFINT_OICR_ECC_ERR_M)) {
3194 set_bit(ICE_PFR_REQ, pf->state);
3195 }
3196 }
3197
3198 return IRQ_WAKE_THREAD;
3199 }
3200
3201 /**
3202 * ice_misc_intr_thread_fn - misc interrupt thread function
3203 * @irq: interrupt number
3204 * @data: pointer to a q_vector
3205 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3206 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3207 {
3208 struct ice_pf *pf = data;
3209 struct ice_hw *hw;
3210
3211 hw = &pf->hw;
3212
3213 if (ice_is_reset_in_progress(pf->state))
3214 return IRQ_HANDLED;
3215
3216 ice_service_task_schedule(pf);
3217
3218 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread))
3219 ice_ptp_extts_event(pf);
3220
3221 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3222 /* Process outstanding Tx timestamps. If there is more work,
3223 * re-arm the interrupt to trigger again.
3224 */
3225 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3226 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3227 ice_flush(hw);
3228 }
3229 }
3230
3231 ice_irq_dynamic_ena(hw, NULL, NULL);
3232
3233 return IRQ_HANDLED;
3234 }
3235
3236 /**
3237 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3238 * @hw: pointer to HW structure
3239 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3240 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3241 {
3242 /* disable Admin queue Interrupt causes */
3243 wr32(hw, PFINT_FW_CTL,
3244 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3245
3246 /* disable Mailbox queue Interrupt causes */
3247 wr32(hw, PFINT_MBX_CTL,
3248 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3249
3250 wr32(hw, PFINT_SB_CTL,
3251 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3252
3253 /* disable Control queue Interrupt causes */
3254 wr32(hw, PFINT_OICR_CTL,
3255 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3256
3257 ice_flush(hw);
3258 }
3259
3260 /**
3261 * ice_free_irq_msix_misc - Unroll misc vector setup
3262 * @pf: board private structure
3263 */
ice_free_irq_msix_misc(struct ice_pf * pf)3264 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3265 {
3266 int misc_irq_num = pf->oicr_irq.virq;
3267 struct ice_hw *hw = &pf->hw;
3268
3269 ice_dis_ctrlq_interrupts(hw);
3270
3271 /* disable OICR interrupt */
3272 wr32(hw, PFINT_OICR_ENA, 0);
3273 ice_flush(hw);
3274
3275 synchronize_irq(misc_irq_num);
3276 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3277
3278 ice_free_irq(pf, pf->oicr_irq);
3279 }
3280
3281 /**
3282 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3283 * @hw: pointer to HW structure
3284 * @reg_idx: HW vector index to associate the control queue interrupts with
3285 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3286 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3287 {
3288 u32 val;
3289
3290 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3291 PFINT_OICR_CTL_CAUSE_ENA_M);
3292 wr32(hw, PFINT_OICR_CTL, val);
3293
3294 /* enable Admin queue Interrupt causes */
3295 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3296 PFINT_FW_CTL_CAUSE_ENA_M);
3297 wr32(hw, PFINT_FW_CTL, val);
3298
3299 /* enable Mailbox queue Interrupt causes */
3300 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3301 PFINT_MBX_CTL_CAUSE_ENA_M);
3302 wr32(hw, PFINT_MBX_CTL, val);
3303
3304 /* This enables Sideband queue Interrupt causes */
3305 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3306 PFINT_SB_CTL_CAUSE_ENA_M);
3307 wr32(hw, PFINT_SB_CTL, val);
3308
3309 ice_flush(hw);
3310 }
3311
3312 /**
3313 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3314 * @pf: board private structure
3315 *
3316 * This sets up the handler for MSIX 0, which is used to manage the
3317 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3318 * when in MSI or Legacy interrupt mode.
3319 */
ice_req_irq_msix_misc(struct ice_pf * pf)3320 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3321 {
3322 struct device *dev = ice_pf_to_dev(pf);
3323 struct ice_hw *hw = &pf->hw;
3324 struct msi_map oicr_irq;
3325 int err = 0;
3326
3327 if (!pf->int_name[0])
3328 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3329 dev_driver_string(dev), dev_name(dev));
3330
3331 /* Do not request IRQ but do enable OICR interrupt since settings are
3332 * lost during reset. Note that this function is called only during
3333 * rebuild path and not while reset is in progress.
3334 */
3335 if (ice_is_reset_in_progress(pf->state))
3336 goto skip_req_irq;
3337
3338 /* reserve one vector in irq_tracker for misc interrupts */
3339 oicr_irq = ice_alloc_irq(pf, false);
3340 if (oicr_irq.index < 0)
3341 return oicr_irq.index;
3342
3343 pf->oicr_irq = oicr_irq;
3344 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3345 ice_misc_intr_thread_fn, 0,
3346 pf->int_name, pf);
3347 if (err) {
3348 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3349 pf->int_name, err);
3350 ice_free_irq(pf, pf->oicr_irq);
3351 return err;
3352 }
3353
3354 skip_req_irq:
3355 ice_ena_misc_vector(pf);
3356
3357 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3358 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3359 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3360
3361 ice_flush(hw);
3362 ice_irq_dynamic_ena(hw, NULL, NULL);
3363
3364 return 0;
3365 }
3366
3367 /**
3368 * ice_napi_add - register NAPI handler for the VSI
3369 * @vsi: VSI for which NAPI handler is to be registered
3370 *
3371 * This function is only called in the driver's load path. Registering the NAPI
3372 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3373 * reset/rebuild, etc.)
3374 */
ice_napi_add(struct ice_vsi * vsi)3375 static void ice_napi_add(struct ice_vsi *vsi)
3376 {
3377 int v_idx;
3378
3379 if (!vsi->netdev)
3380 return;
3381
3382 ice_for_each_q_vector(vsi, v_idx)
3383 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3384 ice_napi_poll);
3385 }
3386
3387 /**
3388 * ice_set_ops - set netdev and ethtools ops for the given netdev
3389 * @vsi: the VSI associated with the new netdev
3390 */
ice_set_ops(struct ice_vsi * vsi)3391 static void ice_set_ops(struct ice_vsi *vsi)
3392 {
3393 struct net_device *netdev = vsi->netdev;
3394 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3395
3396 if (ice_is_safe_mode(pf)) {
3397 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3398 ice_set_ethtool_safe_mode_ops(netdev);
3399 return;
3400 }
3401
3402 netdev->netdev_ops = &ice_netdev_ops;
3403 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3404 ice_set_ethtool_ops(netdev);
3405
3406 if (vsi->type != ICE_VSI_PF)
3407 return;
3408
3409 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3410 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3411 NETDEV_XDP_ACT_RX_SG;
3412 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3413 }
3414
3415 /**
3416 * ice_set_netdev_features - set features for the given netdev
3417 * @netdev: netdev instance
3418 */
ice_set_netdev_features(struct net_device * netdev)3419 static void ice_set_netdev_features(struct net_device *netdev)
3420 {
3421 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3422 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3423 netdev_features_t csumo_features;
3424 netdev_features_t vlano_features;
3425 netdev_features_t dflt_features;
3426 netdev_features_t tso_features;
3427
3428 if (ice_is_safe_mode(pf)) {
3429 /* safe mode */
3430 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3431 netdev->hw_features = netdev->features;
3432 return;
3433 }
3434
3435 dflt_features = NETIF_F_SG |
3436 NETIF_F_HIGHDMA |
3437 NETIF_F_NTUPLE |
3438 NETIF_F_RXHASH;
3439
3440 csumo_features = NETIF_F_RXCSUM |
3441 NETIF_F_IP_CSUM |
3442 NETIF_F_SCTP_CRC |
3443 NETIF_F_IPV6_CSUM;
3444
3445 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3446 NETIF_F_HW_VLAN_CTAG_TX |
3447 NETIF_F_HW_VLAN_CTAG_RX;
3448
3449 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3450 if (is_dvm_ena)
3451 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3452
3453 tso_features = NETIF_F_TSO |
3454 NETIF_F_TSO_ECN |
3455 NETIF_F_TSO6 |
3456 NETIF_F_GSO_GRE |
3457 NETIF_F_GSO_UDP_TUNNEL |
3458 NETIF_F_GSO_GRE_CSUM |
3459 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3460 NETIF_F_GSO_PARTIAL |
3461 NETIF_F_GSO_IPXIP4 |
3462 NETIF_F_GSO_IPXIP6 |
3463 NETIF_F_GSO_UDP_L4;
3464
3465 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3466 NETIF_F_GSO_GRE_CSUM;
3467 /* set features that user can change */
3468 netdev->hw_features = dflt_features | csumo_features |
3469 vlano_features | tso_features;
3470
3471 /* add support for HW_CSUM on packets with MPLS header */
3472 netdev->mpls_features = NETIF_F_HW_CSUM |
3473 NETIF_F_TSO |
3474 NETIF_F_TSO6;
3475
3476 /* enable features */
3477 netdev->features |= netdev->hw_features;
3478
3479 netdev->hw_features |= NETIF_F_HW_TC;
3480 netdev->hw_features |= NETIF_F_LOOPBACK;
3481
3482 /* encap and VLAN devices inherit default, csumo and tso features */
3483 netdev->hw_enc_features |= dflt_features | csumo_features |
3484 tso_features;
3485 netdev->vlan_features |= dflt_features | csumo_features |
3486 tso_features;
3487
3488 /* advertise support but don't enable by default since only one type of
3489 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3490 * type turns on the other has to be turned off. This is enforced by the
3491 * ice_fix_features() ndo callback.
3492 */
3493 if (is_dvm_ena)
3494 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3495 NETIF_F_HW_VLAN_STAG_TX;
3496
3497 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3498 * be changed at runtime
3499 */
3500 netdev->hw_features |= NETIF_F_RXFCS;
3501
3502 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3503 }
3504
3505 /**
3506 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3507 * @lut: Lookup table
3508 * @rss_table_size: Lookup table size
3509 * @rss_size: Range of queue number for hashing
3510 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3511 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3512 {
3513 u16 i;
3514
3515 for (i = 0; i < rss_table_size; i++)
3516 lut[i] = i % rss_size;
3517 }
3518
3519 /**
3520 * ice_pf_vsi_setup - Set up a PF VSI
3521 * @pf: board private structure
3522 * @pi: pointer to the port_info instance
3523 *
3524 * Returns pointer to the successfully allocated VSI software struct
3525 * on success, otherwise returns NULL on failure.
3526 */
3527 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3528 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3529 {
3530 struct ice_vsi_cfg_params params = {};
3531
3532 params.type = ICE_VSI_PF;
3533 params.pi = pi;
3534 params.flags = ICE_VSI_FLAG_INIT;
3535
3536 return ice_vsi_setup(pf, ¶ms);
3537 }
3538
3539 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3540 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3541 struct ice_channel *ch)
3542 {
3543 struct ice_vsi_cfg_params params = {};
3544
3545 params.type = ICE_VSI_CHNL;
3546 params.pi = pi;
3547 params.ch = ch;
3548 params.flags = ICE_VSI_FLAG_INIT;
3549
3550 return ice_vsi_setup(pf, ¶ms);
3551 }
3552
3553 /**
3554 * ice_ctrl_vsi_setup - Set up a control VSI
3555 * @pf: board private structure
3556 * @pi: pointer to the port_info instance
3557 *
3558 * Returns pointer to the successfully allocated VSI software struct
3559 * on success, otherwise returns NULL on failure.
3560 */
3561 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3562 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3563 {
3564 struct ice_vsi_cfg_params params = {};
3565
3566 params.type = ICE_VSI_CTRL;
3567 params.pi = pi;
3568 params.flags = ICE_VSI_FLAG_INIT;
3569
3570 return ice_vsi_setup(pf, ¶ms);
3571 }
3572
3573 /**
3574 * ice_lb_vsi_setup - Set up a loopback VSI
3575 * @pf: board private structure
3576 * @pi: pointer to the port_info instance
3577 *
3578 * Returns pointer to the successfully allocated VSI software struct
3579 * on success, otherwise returns NULL on failure.
3580 */
3581 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3582 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3583 {
3584 struct ice_vsi_cfg_params params = {};
3585
3586 params.type = ICE_VSI_LB;
3587 params.pi = pi;
3588 params.flags = ICE_VSI_FLAG_INIT;
3589
3590 return ice_vsi_setup(pf, ¶ms);
3591 }
3592
3593 /**
3594 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3595 * @netdev: network interface to be adjusted
3596 * @proto: VLAN TPID
3597 * @vid: VLAN ID to be added
3598 *
3599 * net_device_ops implementation for adding VLAN IDs
3600 */
3601 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3602 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3603 {
3604 struct ice_netdev_priv *np = netdev_priv(netdev);
3605 struct ice_vsi_vlan_ops *vlan_ops;
3606 struct ice_vsi *vsi = np->vsi;
3607 struct ice_vlan vlan;
3608 int ret;
3609
3610 /* VLAN 0 is added by default during load/reset */
3611 if (!vid)
3612 return 0;
3613
3614 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3615 usleep_range(1000, 2000);
3616
3617 /* Add multicast promisc rule for the VLAN ID to be added if
3618 * all-multicast is currently enabled.
3619 */
3620 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3621 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3622 ICE_MCAST_VLAN_PROMISC_BITS,
3623 vid);
3624 if (ret)
3625 goto finish;
3626 }
3627
3628 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3629
3630 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3631 * packets aren't pruned by the device's internal switch on Rx
3632 */
3633 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3634 ret = vlan_ops->add_vlan(vsi, &vlan);
3635 if (ret)
3636 goto finish;
3637
3638 /* If all-multicast is currently enabled and this VLAN ID is only one
3639 * besides VLAN-0 we have to update look-up type of multicast promisc
3640 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3641 */
3642 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3643 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3644 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3645 ICE_MCAST_PROMISC_BITS, 0);
3646 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3647 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3648 }
3649
3650 finish:
3651 clear_bit(ICE_CFG_BUSY, vsi->state);
3652
3653 return ret;
3654 }
3655
3656 /**
3657 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3658 * @netdev: network interface to be adjusted
3659 * @proto: VLAN TPID
3660 * @vid: VLAN ID to be removed
3661 *
3662 * net_device_ops implementation for removing VLAN IDs
3663 */
3664 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3665 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3666 {
3667 struct ice_netdev_priv *np = netdev_priv(netdev);
3668 struct ice_vsi_vlan_ops *vlan_ops;
3669 struct ice_vsi *vsi = np->vsi;
3670 struct ice_vlan vlan;
3671 int ret;
3672
3673 /* don't allow removal of VLAN 0 */
3674 if (!vid)
3675 return 0;
3676
3677 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3678 usleep_range(1000, 2000);
3679
3680 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3681 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3682 if (ret) {
3683 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3684 vsi->vsi_num);
3685 vsi->current_netdev_flags |= IFF_ALLMULTI;
3686 }
3687
3688 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3689
3690 /* Make sure VLAN delete is successful before updating VLAN
3691 * information
3692 */
3693 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3694 ret = vlan_ops->del_vlan(vsi, &vlan);
3695 if (ret)
3696 goto finish;
3697
3698 /* Remove multicast promisc rule for the removed VLAN ID if
3699 * all-multicast is enabled.
3700 */
3701 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3702 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3703 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3704
3705 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3706 /* Update look-up type of multicast promisc rule for VLAN 0
3707 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3708 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3709 */
3710 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3711 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3712 ICE_MCAST_VLAN_PROMISC_BITS,
3713 0);
3714 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3715 ICE_MCAST_PROMISC_BITS, 0);
3716 }
3717 }
3718
3719 finish:
3720 clear_bit(ICE_CFG_BUSY, vsi->state);
3721
3722 return ret;
3723 }
3724
3725 /**
3726 * ice_rep_indr_tc_block_unbind
3727 * @cb_priv: indirection block private data
3728 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3729 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3730 {
3731 struct ice_indr_block_priv *indr_priv = cb_priv;
3732
3733 list_del(&indr_priv->list);
3734 kfree(indr_priv);
3735 }
3736
3737 /**
3738 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3739 * @vsi: VSI struct which has the netdev
3740 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3741 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3742 {
3743 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3744
3745 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3746 ice_rep_indr_tc_block_unbind);
3747 }
3748
3749 /**
3750 * ice_tc_indir_block_register - Register TC indirect block notifications
3751 * @vsi: VSI struct which has the netdev
3752 *
3753 * Returns 0 on success, negative value on failure
3754 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3755 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3756 {
3757 struct ice_netdev_priv *np;
3758
3759 if (!vsi || !vsi->netdev)
3760 return -EINVAL;
3761
3762 np = netdev_priv(vsi->netdev);
3763
3764 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3765 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3766 }
3767
3768 /**
3769 * ice_get_avail_q_count - Get count of queues in use
3770 * @pf_qmap: bitmap to get queue use count from
3771 * @lock: pointer to a mutex that protects access to pf_qmap
3772 * @size: size of the bitmap
3773 */
3774 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3775 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3776 {
3777 unsigned long bit;
3778 u16 count = 0;
3779
3780 mutex_lock(lock);
3781 for_each_clear_bit(bit, pf_qmap, size)
3782 count++;
3783 mutex_unlock(lock);
3784
3785 return count;
3786 }
3787
3788 /**
3789 * ice_get_avail_txq_count - Get count of Tx queues in use
3790 * @pf: pointer to an ice_pf instance
3791 */
ice_get_avail_txq_count(struct ice_pf * pf)3792 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3793 {
3794 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3795 pf->max_pf_txqs);
3796 }
3797
3798 /**
3799 * ice_get_avail_rxq_count - Get count of Rx queues in use
3800 * @pf: pointer to an ice_pf instance
3801 */
ice_get_avail_rxq_count(struct ice_pf * pf)3802 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3803 {
3804 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3805 pf->max_pf_rxqs);
3806 }
3807
3808 /**
3809 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3810 * @pf: board private structure to initialize
3811 */
ice_deinit_pf(struct ice_pf * pf)3812 static void ice_deinit_pf(struct ice_pf *pf)
3813 {
3814 ice_service_task_stop(pf);
3815 mutex_destroy(&pf->lag_mutex);
3816 mutex_destroy(&pf->adev_mutex);
3817 mutex_destroy(&pf->sw_mutex);
3818 mutex_destroy(&pf->tc_mutex);
3819 mutex_destroy(&pf->avail_q_mutex);
3820 mutex_destroy(&pf->vfs.table_lock);
3821
3822 if (pf->avail_txqs) {
3823 bitmap_free(pf->avail_txqs);
3824 pf->avail_txqs = NULL;
3825 }
3826
3827 if (pf->avail_rxqs) {
3828 bitmap_free(pf->avail_rxqs);
3829 pf->avail_rxqs = NULL;
3830 }
3831
3832 if (pf->ptp.clock)
3833 ptp_clock_unregister(pf->ptp.clock);
3834 }
3835
3836 /**
3837 * ice_set_pf_caps - set PFs capability flags
3838 * @pf: pointer to the PF instance
3839 */
ice_set_pf_caps(struct ice_pf * pf)3840 static void ice_set_pf_caps(struct ice_pf *pf)
3841 {
3842 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3843
3844 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3845 if (func_caps->common_cap.rdma)
3846 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3847 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3848 if (func_caps->common_cap.dcb)
3849 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3850 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3851 if (func_caps->common_cap.sr_iov_1_1) {
3852 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3853 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3854 ICE_MAX_SRIOV_VFS);
3855 }
3856 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3857 if (func_caps->common_cap.rss_table_size)
3858 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3859
3860 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3861 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3862 u16 unused;
3863
3864 /* ctrl_vsi_idx will be set to a valid value when flow director
3865 * is setup by ice_init_fdir
3866 */
3867 pf->ctrl_vsi_idx = ICE_NO_VSI;
3868 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3869 /* force guaranteed filter pool for PF */
3870 ice_alloc_fd_guar_item(&pf->hw, &unused,
3871 func_caps->fd_fltr_guar);
3872 /* force shared filter pool for PF */
3873 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3874 func_caps->fd_fltr_best_effort);
3875 }
3876
3877 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3878 if (func_caps->common_cap.ieee_1588)
3879 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3880
3881 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3882 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3883 }
3884
3885 /**
3886 * ice_init_pf - Initialize general software structures (struct ice_pf)
3887 * @pf: board private structure to initialize
3888 */
ice_init_pf(struct ice_pf * pf)3889 static int ice_init_pf(struct ice_pf *pf)
3890 {
3891 ice_set_pf_caps(pf);
3892
3893 mutex_init(&pf->sw_mutex);
3894 mutex_init(&pf->tc_mutex);
3895 mutex_init(&pf->adev_mutex);
3896 mutex_init(&pf->lag_mutex);
3897
3898 INIT_HLIST_HEAD(&pf->aq_wait_list);
3899 spin_lock_init(&pf->aq_wait_lock);
3900 init_waitqueue_head(&pf->aq_wait_queue);
3901
3902 init_waitqueue_head(&pf->reset_wait_queue);
3903
3904 /* setup service timer and periodic service task */
3905 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3906 pf->serv_tmr_period = HZ;
3907 INIT_WORK(&pf->serv_task, ice_service_task);
3908 clear_bit(ICE_SERVICE_SCHED, pf->state);
3909
3910 mutex_init(&pf->avail_q_mutex);
3911 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3912 if (!pf->avail_txqs)
3913 return -ENOMEM;
3914
3915 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3916 if (!pf->avail_rxqs) {
3917 bitmap_free(pf->avail_txqs);
3918 pf->avail_txqs = NULL;
3919 return -ENOMEM;
3920 }
3921
3922 mutex_init(&pf->vfs.table_lock);
3923 hash_init(pf->vfs.table);
3924 ice_mbx_init_snapshot(&pf->hw);
3925
3926 return 0;
3927 }
3928
3929 /**
3930 * ice_is_wol_supported - check if WoL is supported
3931 * @hw: pointer to hardware info
3932 *
3933 * Check if WoL is supported based on the HW configuration.
3934 * Returns true if NVM supports and enables WoL for this port, false otherwise
3935 */
ice_is_wol_supported(struct ice_hw * hw)3936 bool ice_is_wol_supported(struct ice_hw *hw)
3937 {
3938 u16 wol_ctrl;
3939
3940 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3941 * word) indicates WoL is not supported on the corresponding PF ID.
3942 */
3943 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3944 return false;
3945
3946 return !(BIT(hw->port_info->lport) & wol_ctrl);
3947 }
3948
3949 /**
3950 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3951 * @vsi: VSI being changed
3952 * @new_rx: new number of Rx queues
3953 * @new_tx: new number of Tx queues
3954 * @locked: is adev device_lock held
3955 *
3956 * Only change the number of queues if new_tx, or new_rx is non-0.
3957 *
3958 * Returns 0 on success.
3959 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)3960 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
3961 {
3962 struct ice_pf *pf = vsi->back;
3963 int i, err = 0, timeout = 50;
3964
3965 if (!new_rx && !new_tx)
3966 return -EINVAL;
3967
3968 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3969 timeout--;
3970 if (!timeout)
3971 return -EBUSY;
3972 usleep_range(1000, 2000);
3973 }
3974
3975 if (new_tx)
3976 vsi->req_txq = (u16)new_tx;
3977 if (new_rx)
3978 vsi->req_rxq = (u16)new_rx;
3979
3980 /* set for the next time the netdev is started */
3981 if (!netif_running(vsi->netdev)) {
3982 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3983 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3984 goto done;
3985 }
3986
3987 ice_vsi_close(vsi);
3988 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3989
3990 ice_for_each_traffic_class(i) {
3991 if (vsi->tc_cfg.ena_tc & BIT(i))
3992 netdev_set_tc_queue(vsi->netdev,
3993 vsi->tc_cfg.tc_info[i].netdev_tc,
3994 vsi->tc_cfg.tc_info[i].qcount_tx,
3995 vsi->tc_cfg.tc_info[i].qoffset);
3996 }
3997 ice_pf_dcb_recfg(pf, locked);
3998 ice_vsi_open(vsi);
3999 done:
4000 clear_bit(ICE_CFG_BUSY, pf->state);
4001 return err;
4002 }
4003
4004 /**
4005 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4006 * @pf: PF to configure
4007 *
4008 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4009 * VSI can still Tx/Rx VLAN tagged packets.
4010 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4011 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4012 {
4013 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4014 struct ice_vsi_ctx *ctxt;
4015 struct ice_hw *hw;
4016 int status;
4017
4018 if (!vsi)
4019 return;
4020
4021 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4022 if (!ctxt)
4023 return;
4024
4025 hw = &pf->hw;
4026 ctxt->info = vsi->info;
4027
4028 ctxt->info.valid_sections =
4029 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4030 ICE_AQ_VSI_PROP_SECURITY_VALID |
4031 ICE_AQ_VSI_PROP_SW_VALID);
4032
4033 /* disable VLAN anti-spoof */
4034 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4035 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4036
4037 /* disable VLAN pruning and keep all other settings */
4038 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4039
4040 /* allow all VLANs on Tx and don't strip on Rx */
4041 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4042 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4043
4044 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4045 if (status) {
4046 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4047 status, ice_aq_str(hw->adminq.sq_last_status));
4048 } else {
4049 vsi->info.sec_flags = ctxt->info.sec_flags;
4050 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4051 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4052 }
4053
4054 kfree(ctxt);
4055 }
4056
4057 /**
4058 * ice_log_pkg_init - log result of DDP package load
4059 * @hw: pointer to hardware info
4060 * @state: state of package load
4061 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4062 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4063 {
4064 struct ice_pf *pf = hw->back;
4065 struct device *dev;
4066
4067 dev = ice_pf_to_dev(pf);
4068
4069 switch (state) {
4070 case ICE_DDP_PKG_SUCCESS:
4071 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4072 hw->active_pkg_name,
4073 hw->active_pkg_ver.major,
4074 hw->active_pkg_ver.minor,
4075 hw->active_pkg_ver.update,
4076 hw->active_pkg_ver.draft);
4077 break;
4078 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4079 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4080 hw->active_pkg_name,
4081 hw->active_pkg_ver.major,
4082 hw->active_pkg_ver.minor,
4083 hw->active_pkg_ver.update,
4084 hw->active_pkg_ver.draft);
4085 break;
4086 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4087 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4088 hw->active_pkg_name,
4089 hw->active_pkg_ver.major,
4090 hw->active_pkg_ver.minor,
4091 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4092 break;
4093 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4094 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4095 hw->active_pkg_name,
4096 hw->active_pkg_ver.major,
4097 hw->active_pkg_ver.minor,
4098 hw->active_pkg_ver.update,
4099 hw->active_pkg_ver.draft,
4100 hw->pkg_name,
4101 hw->pkg_ver.major,
4102 hw->pkg_ver.minor,
4103 hw->pkg_ver.update,
4104 hw->pkg_ver.draft);
4105 break;
4106 case ICE_DDP_PKG_FW_MISMATCH:
4107 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4108 break;
4109 case ICE_DDP_PKG_INVALID_FILE:
4110 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4111 break;
4112 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4113 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4114 break;
4115 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4116 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4117 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4118 break;
4119 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4120 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4121 break;
4122 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4123 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4124 break;
4125 case ICE_DDP_PKG_LOAD_ERROR:
4126 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4127 /* poll for reset to complete */
4128 if (ice_check_reset(hw))
4129 dev_err(dev, "Error resetting device. Please reload the driver\n");
4130 break;
4131 case ICE_DDP_PKG_ERR:
4132 default:
4133 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4134 break;
4135 }
4136 }
4137
4138 /**
4139 * ice_load_pkg - load/reload the DDP Package file
4140 * @firmware: firmware structure when firmware requested or NULL for reload
4141 * @pf: pointer to the PF instance
4142 *
4143 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4144 * initialize HW tables.
4145 */
4146 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4147 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4148 {
4149 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4150 struct device *dev = ice_pf_to_dev(pf);
4151 struct ice_hw *hw = &pf->hw;
4152
4153 /* Load DDP Package */
4154 if (firmware && !hw->pkg_copy) {
4155 state = ice_copy_and_init_pkg(hw, firmware->data,
4156 firmware->size);
4157 ice_log_pkg_init(hw, state);
4158 } else if (!firmware && hw->pkg_copy) {
4159 /* Reload package during rebuild after CORER/GLOBR reset */
4160 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4161 ice_log_pkg_init(hw, state);
4162 } else {
4163 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4164 }
4165
4166 if (!ice_is_init_pkg_successful(state)) {
4167 /* Safe Mode */
4168 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4169 return;
4170 }
4171
4172 /* Successful download package is the precondition for advanced
4173 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4174 */
4175 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4176 }
4177
4178 /**
4179 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4180 * @pf: pointer to the PF structure
4181 *
4182 * There is no error returned here because the driver should be able to handle
4183 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4184 * specifically with Tx.
4185 */
ice_verify_cacheline_size(struct ice_pf * pf)4186 static void ice_verify_cacheline_size(struct ice_pf *pf)
4187 {
4188 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4189 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4190 ICE_CACHE_LINE_BYTES);
4191 }
4192
4193 /**
4194 * ice_send_version - update firmware with driver version
4195 * @pf: PF struct
4196 *
4197 * Returns 0 on success, else error code
4198 */
ice_send_version(struct ice_pf * pf)4199 static int ice_send_version(struct ice_pf *pf)
4200 {
4201 struct ice_driver_ver dv;
4202
4203 dv.major_ver = 0xff;
4204 dv.minor_ver = 0xff;
4205 dv.build_ver = 0xff;
4206 dv.subbuild_ver = 0;
4207 strscpy((char *)dv.driver_string, UTS_RELEASE,
4208 sizeof(dv.driver_string));
4209 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4210 }
4211
4212 /**
4213 * ice_init_fdir - Initialize flow director VSI and configuration
4214 * @pf: pointer to the PF instance
4215 *
4216 * returns 0 on success, negative on error
4217 */
ice_init_fdir(struct ice_pf * pf)4218 static int ice_init_fdir(struct ice_pf *pf)
4219 {
4220 struct device *dev = ice_pf_to_dev(pf);
4221 struct ice_vsi *ctrl_vsi;
4222 int err;
4223
4224 /* Side Band Flow Director needs to have a control VSI.
4225 * Allocate it and store it in the PF.
4226 */
4227 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4228 if (!ctrl_vsi) {
4229 dev_dbg(dev, "could not create control VSI\n");
4230 return -ENOMEM;
4231 }
4232
4233 err = ice_vsi_open_ctrl(ctrl_vsi);
4234 if (err) {
4235 dev_dbg(dev, "could not open control VSI\n");
4236 goto err_vsi_open;
4237 }
4238
4239 mutex_init(&pf->hw.fdir_fltr_lock);
4240
4241 err = ice_fdir_create_dflt_rules(pf);
4242 if (err)
4243 goto err_fdir_rule;
4244
4245 return 0;
4246
4247 err_fdir_rule:
4248 ice_fdir_release_flows(&pf->hw);
4249 ice_vsi_close(ctrl_vsi);
4250 err_vsi_open:
4251 ice_vsi_release(ctrl_vsi);
4252 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4253 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4254 pf->ctrl_vsi_idx = ICE_NO_VSI;
4255 }
4256 return err;
4257 }
4258
ice_deinit_fdir(struct ice_pf * pf)4259 static void ice_deinit_fdir(struct ice_pf *pf)
4260 {
4261 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4262
4263 if (!vsi)
4264 return;
4265
4266 ice_vsi_manage_fdir(vsi, false);
4267 ice_vsi_release(vsi);
4268 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4269 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4270 pf->ctrl_vsi_idx = ICE_NO_VSI;
4271 }
4272
4273 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4274 }
4275
4276 /**
4277 * ice_get_opt_fw_name - return optional firmware file name or NULL
4278 * @pf: pointer to the PF instance
4279 */
ice_get_opt_fw_name(struct ice_pf * pf)4280 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4281 {
4282 /* Optional firmware name same as default with additional dash
4283 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4284 */
4285 struct pci_dev *pdev = pf->pdev;
4286 char *opt_fw_filename;
4287 u64 dsn;
4288
4289 /* Determine the name of the optional file using the DSN (two
4290 * dwords following the start of the DSN Capability).
4291 */
4292 dsn = pci_get_dsn(pdev);
4293 if (!dsn)
4294 return NULL;
4295
4296 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4297 if (!opt_fw_filename)
4298 return NULL;
4299
4300 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4301 ICE_DDP_PKG_PATH, dsn);
4302
4303 return opt_fw_filename;
4304 }
4305
4306 /**
4307 * ice_request_fw - Device initialization routine
4308 * @pf: pointer to the PF instance
4309 */
ice_request_fw(struct ice_pf * pf)4310 static void ice_request_fw(struct ice_pf *pf)
4311 {
4312 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4313 const struct firmware *firmware = NULL;
4314 struct device *dev = ice_pf_to_dev(pf);
4315 int err = 0;
4316
4317 /* optional device-specific DDP (if present) overrides the default DDP
4318 * package file. kernel logs a debug message if the file doesn't exist,
4319 * and warning messages for other errors.
4320 */
4321 if (opt_fw_filename) {
4322 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4323 if (err) {
4324 kfree(opt_fw_filename);
4325 goto dflt_pkg_load;
4326 }
4327
4328 /* request for firmware was successful. Download to device */
4329 ice_load_pkg(firmware, pf);
4330 kfree(opt_fw_filename);
4331 release_firmware(firmware);
4332 return;
4333 }
4334
4335 dflt_pkg_load:
4336 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4337 if (err) {
4338 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4339 return;
4340 }
4341
4342 /* request for firmware was successful. Download to device */
4343 ice_load_pkg(firmware, pf);
4344 release_firmware(firmware);
4345 }
4346
4347 /**
4348 * ice_print_wake_reason - show the wake up cause in the log
4349 * @pf: pointer to the PF struct
4350 */
ice_print_wake_reason(struct ice_pf * pf)4351 static void ice_print_wake_reason(struct ice_pf *pf)
4352 {
4353 u32 wus = pf->wakeup_reason;
4354 const char *wake_str;
4355
4356 /* if no wake event, nothing to print */
4357 if (!wus)
4358 return;
4359
4360 if (wus & PFPM_WUS_LNKC_M)
4361 wake_str = "Link\n";
4362 else if (wus & PFPM_WUS_MAG_M)
4363 wake_str = "Magic Packet\n";
4364 else if (wus & PFPM_WUS_MNG_M)
4365 wake_str = "Management\n";
4366 else if (wus & PFPM_WUS_FW_RST_WK_M)
4367 wake_str = "Firmware Reset\n";
4368 else
4369 wake_str = "Unknown\n";
4370
4371 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4372 }
4373
4374 /**
4375 * ice_register_netdev - register netdev
4376 * @vsi: pointer to the VSI struct
4377 */
ice_register_netdev(struct ice_vsi * vsi)4378 static int ice_register_netdev(struct ice_vsi *vsi)
4379 {
4380 int err;
4381
4382 if (!vsi || !vsi->netdev)
4383 return -EIO;
4384
4385 err = register_netdev(vsi->netdev);
4386 if (err)
4387 return err;
4388
4389 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4390 netif_carrier_off(vsi->netdev);
4391 netif_tx_stop_all_queues(vsi->netdev);
4392
4393 return 0;
4394 }
4395
ice_unregister_netdev(struct ice_vsi * vsi)4396 static void ice_unregister_netdev(struct ice_vsi *vsi)
4397 {
4398 if (!vsi || !vsi->netdev)
4399 return;
4400
4401 unregister_netdev(vsi->netdev);
4402 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4403 }
4404
4405 /**
4406 * ice_cfg_netdev - Allocate, configure and register a netdev
4407 * @vsi: the VSI associated with the new netdev
4408 *
4409 * Returns 0 on success, negative value on failure
4410 */
ice_cfg_netdev(struct ice_vsi * vsi)4411 static int ice_cfg_netdev(struct ice_vsi *vsi)
4412 {
4413 struct ice_netdev_priv *np;
4414 struct net_device *netdev;
4415 u8 mac_addr[ETH_ALEN];
4416
4417 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4418 vsi->alloc_rxq);
4419 if (!netdev)
4420 return -ENOMEM;
4421
4422 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4423 vsi->netdev = netdev;
4424 np = netdev_priv(netdev);
4425 np->vsi = vsi;
4426
4427 ice_set_netdev_features(netdev);
4428 ice_set_ops(vsi);
4429
4430 if (vsi->type == ICE_VSI_PF) {
4431 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4432 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4433 eth_hw_addr_set(netdev, mac_addr);
4434 }
4435
4436 netdev->priv_flags |= IFF_UNICAST_FLT;
4437
4438 /* Setup netdev TC information */
4439 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4440
4441 netdev->max_mtu = ICE_MAX_MTU;
4442
4443 return 0;
4444 }
4445
ice_decfg_netdev(struct ice_vsi * vsi)4446 static void ice_decfg_netdev(struct ice_vsi *vsi)
4447 {
4448 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4449 free_netdev(vsi->netdev);
4450 vsi->netdev = NULL;
4451 }
4452
ice_start_eth(struct ice_vsi * vsi)4453 static int ice_start_eth(struct ice_vsi *vsi)
4454 {
4455 int err;
4456
4457 err = ice_init_mac_fltr(vsi->back);
4458 if (err)
4459 return err;
4460
4461 err = ice_vsi_open(vsi);
4462 if (err)
4463 ice_fltr_remove_all(vsi);
4464
4465 return err;
4466 }
4467
ice_stop_eth(struct ice_vsi * vsi)4468 static void ice_stop_eth(struct ice_vsi *vsi)
4469 {
4470 ice_fltr_remove_all(vsi);
4471 ice_vsi_close(vsi);
4472 }
4473
ice_init_eth(struct ice_pf * pf)4474 static int ice_init_eth(struct ice_pf *pf)
4475 {
4476 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4477 int err;
4478
4479 if (!vsi)
4480 return -EINVAL;
4481
4482 /* init channel list */
4483 INIT_LIST_HEAD(&vsi->ch_list);
4484
4485 err = ice_cfg_netdev(vsi);
4486 if (err)
4487 return err;
4488 /* Setup DCB netlink interface */
4489 ice_dcbnl_setup(vsi);
4490
4491 err = ice_init_mac_fltr(pf);
4492 if (err)
4493 goto err_init_mac_fltr;
4494
4495 err = ice_devlink_create_pf_port(pf);
4496 if (err)
4497 goto err_devlink_create_pf_port;
4498
4499 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4500
4501 err = ice_register_netdev(vsi);
4502 if (err)
4503 goto err_register_netdev;
4504
4505 err = ice_tc_indir_block_register(vsi);
4506 if (err)
4507 goto err_tc_indir_block_register;
4508
4509 ice_napi_add(vsi);
4510
4511 return 0;
4512
4513 err_tc_indir_block_register:
4514 ice_unregister_netdev(vsi);
4515 err_register_netdev:
4516 ice_devlink_destroy_pf_port(pf);
4517 err_devlink_create_pf_port:
4518 err_init_mac_fltr:
4519 ice_decfg_netdev(vsi);
4520 return err;
4521 }
4522
ice_deinit_eth(struct ice_pf * pf)4523 static void ice_deinit_eth(struct ice_pf *pf)
4524 {
4525 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4526
4527 if (!vsi)
4528 return;
4529
4530 ice_vsi_close(vsi);
4531 ice_unregister_netdev(vsi);
4532 ice_devlink_destroy_pf_port(pf);
4533 ice_tc_indir_block_unregister(vsi);
4534 ice_decfg_netdev(vsi);
4535 }
4536
4537 /**
4538 * ice_wait_for_fw - wait for full FW readiness
4539 * @hw: pointer to the hardware structure
4540 * @timeout: milliseconds that can elapse before timing out
4541 */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)4542 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4543 {
4544 int fw_loading;
4545 u32 elapsed = 0;
4546
4547 while (elapsed <= timeout) {
4548 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4549
4550 /* firmware was not yet loaded, we have to wait more */
4551 if (fw_loading) {
4552 elapsed += 100;
4553 msleep(100);
4554 continue;
4555 }
4556 return 0;
4557 }
4558
4559 return -ETIMEDOUT;
4560 }
4561
ice_init_dev(struct ice_pf * pf)4562 static int ice_init_dev(struct ice_pf *pf)
4563 {
4564 struct device *dev = ice_pf_to_dev(pf);
4565 struct ice_hw *hw = &pf->hw;
4566 int err;
4567
4568 err = ice_init_hw(hw);
4569 if (err) {
4570 dev_err(dev, "ice_init_hw failed: %d\n", err);
4571 return err;
4572 }
4573
4574 /* Some cards require longer initialization times
4575 * due to necessity of loading FW from an external source.
4576 * This can take even half a minute.
4577 */
4578 if (ice_is_pf_c827(hw)) {
4579 err = ice_wait_for_fw(hw, 30000);
4580 if (err) {
4581 dev_err(dev, "ice_wait_for_fw timed out");
4582 return err;
4583 }
4584 }
4585
4586 ice_init_feature_support(pf);
4587
4588 ice_request_fw(pf);
4589
4590 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4591 * set in pf->state, which will cause ice_is_safe_mode to return
4592 * true
4593 */
4594 if (ice_is_safe_mode(pf)) {
4595 /* we already got function/device capabilities but these don't
4596 * reflect what the driver needs to do in safe mode. Instead of
4597 * adding conditional logic everywhere to ignore these
4598 * device/function capabilities, override them.
4599 */
4600 ice_set_safe_mode_caps(hw);
4601 }
4602
4603 err = ice_init_pf(pf);
4604 if (err) {
4605 dev_err(dev, "ice_init_pf failed: %d\n", err);
4606 goto err_init_pf;
4607 }
4608
4609 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4610 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4611 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4612 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4613 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4614 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4615 pf->hw.tnl.valid_count[TNL_VXLAN];
4616 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4617 UDP_TUNNEL_TYPE_VXLAN;
4618 }
4619 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4620 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4621 pf->hw.tnl.valid_count[TNL_GENEVE];
4622 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4623 UDP_TUNNEL_TYPE_GENEVE;
4624 }
4625
4626 err = ice_init_interrupt_scheme(pf);
4627 if (err) {
4628 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4629 err = -EIO;
4630 goto err_init_interrupt_scheme;
4631 }
4632
4633 /* In case of MSIX we are going to setup the misc vector right here
4634 * to handle admin queue events etc. In case of legacy and MSI
4635 * the misc functionality and queue processing is combined in
4636 * the same vector and that gets setup at open.
4637 */
4638 err = ice_req_irq_msix_misc(pf);
4639 if (err) {
4640 dev_err(dev, "setup of misc vector failed: %d\n", err);
4641 goto err_req_irq_msix_misc;
4642 }
4643
4644 return 0;
4645
4646 err_req_irq_msix_misc:
4647 ice_clear_interrupt_scheme(pf);
4648 err_init_interrupt_scheme:
4649 ice_deinit_pf(pf);
4650 err_init_pf:
4651 ice_deinit_hw(hw);
4652 return err;
4653 }
4654
ice_deinit_dev(struct ice_pf * pf)4655 static void ice_deinit_dev(struct ice_pf *pf)
4656 {
4657 ice_free_irq_msix_misc(pf);
4658 ice_deinit_pf(pf);
4659 ice_deinit_hw(&pf->hw);
4660
4661 /* Service task is already stopped, so call reset directly. */
4662 ice_reset(&pf->hw, ICE_RESET_PFR);
4663 pci_wait_for_pending_transaction(pf->pdev);
4664 ice_clear_interrupt_scheme(pf);
4665 }
4666
ice_init_features(struct ice_pf * pf)4667 static void ice_init_features(struct ice_pf *pf)
4668 {
4669 struct device *dev = ice_pf_to_dev(pf);
4670
4671 if (ice_is_safe_mode(pf))
4672 return;
4673
4674 /* initialize DDP driven features */
4675 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4676 ice_ptp_init(pf);
4677
4678 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4679 ice_gnss_init(pf);
4680
4681 /* Note: Flow director init failure is non-fatal to load */
4682 if (ice_init_fdir(pf))
4683 dev_err(dev, "could not initialize flow director\n");
4684
4685 /* Note: DCB init failure is non-fatal to load */
4686 if (ice_init_pf_dcb(pf, false)) {
4687 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4688 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4689 } else {
4690 ice_cfg_lldp_mib_change(&pf->hw, true);
4691 }
4692
4693 if (ice_init_lag(pf))
4694 dev_warn(dev, "Failed to init link aggregation support\n");
4695 }
4696
ice_deinit_features(struct ice_pf * pf)4697 static void ice_deinit_features(struct ice_pf *pf)
4698 {
4699 if (ice_is_safe_mode(pf))
4700 return;
4701
4702 ice_deinit_lag(pf);
4703 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4704 ice_cfg_lldp_mib_change(&pf->hw, false);
4705 ice_deinit_fdir(pf);
4706 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4707 ice_gnss_exit(pf);
4708 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4709 ice_ptp_release(pf);
4710 }
4711
ice_init_wakeup(struct ice_pf * pf)4712 static void ice_init_wakeup(struct ice_pf *pf)
4713 {
4714 /* Save wakeup reason register for later use */
4715 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4716
4717 /* check for a power management event */
4718 ice_print_wake_reason(pf);
4719
4720 /* clear wake status, all bits */
4721 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4722
4723 /* Disable WoL at init, wait for user to enable */
4724 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4725 }
4726
ice_init_link(struct ice_pf * pf)4727 static int ice_init_link(struct ice_pf *pf)
4728 {
4729 struct device *dev = ice_pf_to_dev(pf);
4730 int err;
4731
4732 err = ice_init_link_events(pf->hw.port_info);
4733 if (err) {
4734 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4735 return err;
4736 }
4737
4738 /* not a fatal error if this fails */
4739 err = ice_init_nvm_phy_type(pf->hw.port_info);
4740 if (err)
4741 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4742
4743 /* not a fatal error if this fails */
4744 err = ice_update_link_info(pf->hw.port_info);
4745 if (err)
4746 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4747
4748 ice_init_link_dflt_override(pf->hw.port_info);
4749
4750 ice_check_link_cfg_err(pf,
4751 pf->hw.port_info->phy.link_info.link_cfg_err);
4752
4753 /* if media available, initialize PHY settings */
4754 if (pf->hw.port_info->phy.link_info.link_info &
4755 ICE_AQ_MEDIA_AVAILABLE) {
4756 /* not a fatal error if this fails */
4757 err = ice_init_phy_user_cfg(pf->hw.port_info);
4758 if (err)
4759 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4760
4761 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4762 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4763
4764 if (vsi)
4765 ice_configure_phy(vsi);
4766 }
4767 } else {
4768 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4769 }
4770
4771 return err;
4772 }
4773
ice_init_pf_sw(struct ice_pf * pf)4774 static int ice_init_pf_sw(struct ice_pf *pf)
4775 {
4776 bool dvm = ice_is_dvm_ena(&pf->hw);
4777 struct ice_vsi *vsi;
4778 int err;
4779
4780 /* create switch struct for the switch element created by FW on boot */
4781 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4782 if (!pf->first_sw)
4783 return -ENOMEM;
4784
4785 if (pf->hw.evb_veb)
4786 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4787 else
4788 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4789
4790 pf->first_sw->pf = pf;
4791
4792 /* record the sw_id available for later use */
4793 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4794
4795 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4796 if (err)
4797 goto err_aq_set_port_params;
4798
4799 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4800 if (!vsi) {
4801 err = -ENOMEM;
4802 goto err_pf_vsi_setup;
4803 }
4804
4805 return 0;
4806
4807 err_pf_vsi_setup:
4808 err_aq_set_port_params:
4809 kfree(pf->first_sw);
4810 return err;
4811 }
4812
ice_deinit_pf_sw(struct ice_pf * pf)4813 static void ice_deinit_pf_sw(struct ice_pf *pf)
4814 {
4815 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4816
4817 if (!vsi)
4818 return;
4819
4820 ice_vsi_release(vsi);
4821 kfree(pf->first_sw);
4822 }
4823
ice_alloc_vsis(struct ice_pf * pf)4824 static int ice_alloc_vsis(struct ice_pf *pf)
4825 {
4826 struct device *dev = ice_pf_to_dev(pf);
4827
4828 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4829 if (!pf->num_alloc_vsi)
4830 return -EIO;
4831
4832 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4833 dev_warn(dev,
4834 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4835 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4836 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4837 }
4838
4839 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4840 GFP_KERNEL);
4841 if (!pf->vsi)
4842 return -ENOMEM;
4843
4844 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4845 sizeof(*pf->vsi_stats), GFP_KERNEL);
4846 if (!pf->vsi_stats) {
4847 devm_kfree(dev, pf->vsi);
4848 return -ENOMEM;
4849 }
4850
4851 return 0;
4852 }
4853
ice_dealloc_vsis(struct ice_pf * pf)4854 static void ice_dealloc_vsis(struct ice_pf *pf)
4855 {
4856 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4857 pf->vsi_stats = NULL;
4858
4859 pf->num_alloc_vsi = 0;
4860 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4861 pf->vsi = NULL;
4862 }
4863
ice_init_devlink(struct ice_pf * pf)4864 static int ice_init_devlink(struct ice_pf *pf)
4865 {
4866 int err;
4867
4868 err = ice_devlink_register_params(pf);
4869 if (err)
4870 return err;
4871
4872 ice_devlink_init_regions(pf);
4873 ice_devlink_register(pf);
4874
4875 return 0;
4876 }
4877
ice_deinit_devlink(struct ice_pf * pf)4878 static void ice_deinit_devlink(struct ice_pf *pf)
4879 {
4880 ice_devlink_unregister(pf);
4881 ice_devlink_destroy_regions(pf);
4882 ice_devlink_unregister_params(pf);
4883 }
4884
ice_init(struct ice_pf * pf)4885 static int ice_init(struct ice_pf *pf)
4886 {
4887 int err;
4888
4889 err = ice_init_dev(pf);
4890 if (err)
4891 return err;
4892
4893 err = ice_alloc_vsis(pf);
4894 if (err)
4895 goto err_alloc_vsis;
4896
4897 err = ice_init_pf_sw(pf);
4898 if (err)
4899 goto err_init_pf_sw;
4900
4901 ice_init_wakeup(pf);
4902
4903 err = ice_init_link(pf);
4904 if (err)
4905 goto err_init_link;
4906
4907 err = ice_send_version(pf);
4908 if (err)
4909 goto err_init_link;
4910
4911 ice_verify_cacheline_size(pf);
4912
4913 if (ice_is_safe_mode(pf))
4914 ice_set_safe_mode_vlan_cfg(pf);
4915 else
4916 /* print PCI link speed and width */
4917 pcie_print_link_status(pf->pdev);
4918
4919 /* ready to go, so clear down state bit */
4920 clear_bit(ICE_DOWN, pf->state);
4921 clear_bit(ICE_SERVICE_DIS, pf->state);
4922
4923 /* since everything is good, start the service timer */
4924 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4925
4926 return 0;
4927
4928 err_init_link:
4929 ice_deinit_pf_sw(pf);
4930 err_init_pf_sw:
4931 ice_dealloc_vsis(pf);
4932 err_alloc_vsis:
4933 ice_deinit_dev(pf);
4934 return err;
4935 }
4936
ice_deinit(struct ice_pf * pf)4937 static void ice_deinit(struct ice_pf *pf)
4938 {
4939 set_bit(ICE_SERVICE_DIS, pf->state);
4940 set_bit(ICE_DOWN, pf->state);
4941
4942 ice_deinit_pf_sw(pf);
4943 ice_dealloc_vsis(pf);
4944 ice_deinit_dev(pf);
4945 }
4946
4947 /**
4948 * ice_load - load pf by init hw and starting VSI
4949 * @pf: pointer to the pf instance
4950 */
ice_load(struct ice_pf * pf)4951 int ice_load(struct ice_pf *pf)
4952 {
4953 struct ice_vsi_cfg_params params = {};
4954 struct ice_vsi *vsi;
4955 int err;
4956
4957 err = ice_init_dev(pf);
4958 if (err)
4959 return err;
4960
4961 vsi = ice_get_main_vsi(pf);
4962
4963 params = ice_vsi_to_params(vsi);
4964 params.flags = ICE_VSI_FLAG_INIT;
4965
4966 rtnl_lock();
4967 err = ice_vsi_cfg(vsi, ¶ms);
4968 if (err)
4969 goto err_vsi_cfg;
4970
4971 err = ice_start_eth(ice_get_main_vsi(pf));
4972 if (err)
4973 goto err_start_eth;
4974 rtnl_unlock();
4975
4976 err = ice_init_rdma(pf);
4977 if (err)
4978 goto err_init_rdma;
4979
4980 ice_init_features(pf);
4981 ice_service_task_restart(pf);
4982
4983 clear_bit(ICE_DOWN, pf->state);
4984
4985 return 0;
4986
4987 err_init_rdma:
4988 ice_vsi_close(ice_get_main_vsi(pf));
4989 rtnl_lock();
4990 err_start_eth:
4991 ice_vsi_decfg(ice_get_main_vsi(pf));
4992 err_vsi_cfg:
4993 rtnl_unlock();
4994 ice_deinit_dev(pf);
4995 return err;
4996 }
4997
4998 /**
4999 * ice_unload - unload pf by stopping VSI and deinit hw
5000 * @pf: pointer to the pf instance
5001 */
ice_unload(struct ice_pf * pf)5002 void ice_unload(struct ice_pf *pf)
5003 {
5004 ice_deinit_features(pf);
5005 ice_deinit_rdma(pf);
5006 rtnl_lock();
5007 ice_stop_eth(ice_get_main_vsi(pf));
5008 ice_vsi_decfg(ice_get_main_vsi(pf));
5009 rtnl_unlock();
5010 ice_deinit_dev(pf);
5011 }
5012
5013 /**
5014 * ice_probe - Device initialization routine
5015 * @pdev: PCI device information struct
5016 * @ent: entry in ice_pci_tbl
5017 *
5018 * Returns 0 on success, negative on failure
5019 */
5020 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5021 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5022 {
5023 struct device *dev = &pdev->dev;
5024 struct ice_pf *pf;
5025 struct ice_hw *hw;
5026 int err;
5027
5028 if (pdev->is_virtfn) {
5029 dev_err(dev, "can't probe a virtual function\n");
5030 return -EINVAL;
5031 }
5032
5033 /* when under a kdump kernel initiate a reset before enabling the
5034 * device in order to clear out any pending DMA transactions. These
5035 * transactions can cause some systems to machine check when doing
5036 * the pcim_enable_device() below.
5037 */
5038 if (is_kdump_kernel()) {
5039 pci_save_state(pdev);
5040 pci_clear_master(pdev);
5041 err = pcie_flr(pdev);
5042 if (err)
5043 return err;
5044 pci_restore_state(pdev);
5045 }
5046
5047 /* this driver uses devres, see
5048 * Documentation/driver-api/driver-model/devres.rst
5049 */
5050 err = pcim_enable_device(pdev);
5051 if (err)
5052 return err;
5053
5054 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5055 if (err) {
5056 dev_err(dev, "BAR0 I/O map error %d\n", err);
5057 return err;
5058 }
5059
5060 pf = ice_allocate_pf(dev);
5061 if (!pf)
5062 return -ENOMEM;
5063
5064 /* initialize Auxiliary index to invalid value */
5065 pf->aux_idx = -1;
5066
5067 /* set up for high or low DMA */
5068 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5069 if (err) {
5070 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5071 return err;
5072 }
5073
5074 pci_set_master(pdev);
5075
5076 pf->pdev = pdev;
5077 pci_set_drvdata(pdev, pf);
5078 set_bit(ICE_DOWN, pf->state);
5079 /* Disable service task until DOWN bit is cleared */
5080 set_bit(ICE_SERVICE_DIS, pf->state);
5081
5082 hw = &pf->hw;
5083 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5084 pci_save_state(pdev);
5085
5086 hw->back = pf;
5087 hw->port_info = NULL;
5088 hw->vendor_id = pdev->vendor;
5089 hw->device_id = pdev->device;
5090 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5091 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5092 hw->subsystem_device_id = pdev->subsystem_device;
5093 hw->bus.device = PCI_SLOT(pdev->devfn);
5094 hw->bus.func = PCI_FUNC(pdev->devfn);
5095 ice_set_ctrlq_len(hw);
5096
5097 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5098
5099 #ifndef CONFIG_DYNAMIC_DEBUG
5100 if (debug < -1)
5101 hw->debug_mask = debug;
5102 #endif
5103
5104 err = ice_init(pf);
5105 if (err)
5106 goto err_init;
5107
5108 err = ice_init_eth(pf);
5109 if (err)
5110 goto err_init_eth;
5111
5112 err = ice_init_rdma(pf);
5113 if (err)
5114 goto err_init_rdma;
5115
5116 err = ice_init_devlink(pf);
5117 if (err)
5118 goto err_init_devlink;
5119
5120 ice_init_features(pf);
5121
5122 return 0;
5123
5124 err_init_devlink:
5125 ice_deinit_rdma(pf);
5126 err_init_rdma:
5127 ice_deinit_eth(pf);
5128 err_init_eth:
5129 ice_deinit(pf);
5130 err_init:
5131 pci_disable_device(pdev);
5132 return err;
5133 }
5134
5135 /**
5136 * ice_set_wake - enable or disable Wake on LAN
5137 * @pf: pointer to the PF struct
5138 *
5139 * Simple helper for WoL control
5140 */
ice_set_wake(struct ice_pf * pf)5141 static void ice_set_wake(struct ice_pf *pf)
5142 {
5143 struct ice_hw *hw = &pf->hw;
5144 bool wol = pf->wol_ena;
5145
5146 /* clear wake state, otherwise new wake events won't fire */
5147 wr32(hw, PFPM_WUS, U32_MAX);
5148
5149 /* enable / disable APM wake up, no RMW needed */
5150 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5151
5152 /* set magic packet filter enabled */
5153 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5154 }
5155
5156 /**
5157 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5158 * @pf: pointer to the PF struct
5159 *
5160 * Issue firmware command to enable multicast magic wake, making
5161 * sure that any locally administered address (LAA) is used for
5162 * wake, and that PF reset doesn't undo the LAA.
5163 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5164 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5165 {
5166 struct device *dev = ice_pf_to_dev(pf);
5167 struct ice_hw *hw = &pf->hw;
5168 u8 mac_addr[ETH_ALEN];
5169 struct ice_vsi *vsi;
5170 int status;
5171 u8 flags;
5172
5173 if (!pf->wol_ena)
5174 return;
5175
5176 vsi = ice_get_main_vsi(pf);
5177 if (!vsi)
5178 return;
5179
5180 /* Get current MAC address in case it's an LAA */
5181 if (vsi->netdev)
5182 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5183 else
5184 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5185
5186 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5187 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5188 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5189
5190 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5191 if (status)
5192 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5193 status, ice_aq_str(hw->adminq.sq_last_status));
5194 }
5195
5196 /**
5197 * ice_remove - Device removal routine
5198 * @pdev: PCI device information struct
5199 */
ice_remove(struct pci_dev * pdev)5200 static void ice_remove(struct pci_dev *pdev)
5201 {
5202 struct ice_pf *pf = pci_get_drvdata(pdev);
5203 int i;
5204
5205 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5206 if (!ice_is_reset_in_progress(pf->state))
5207 break;
5208 msleep(100);
5209 }
5210
5211 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5212 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5213 ice_free_vfs(pf);
5214 }
5215
5216 ice_service_task_stop(pf);
5217 ice_aq_cancel_waiting_tasks(pf);
5218 set_bit(ICE_DOWN, pf->state);
5219
5220 if (!ice_is_safe_mode(pf))
5221 ice_remove_arfs(pf);
5222 ice_deinit_features(pf);
5223 ice_deinit_devlink(pf);
5224 ice_deinit_rdma(pf);
5225 ice_deinit_eth(pf);
5226 ice_deinit(pf);
5227
5228 ice_vsi_release_all(pf);
5229
5230 ice_setup_mc_magic_wake(pf);
5231 ice_set_wake(pf);
5232
5233 pci_disable_device(pdev);
5234 }
5235
5236 /**
5237 * ice_shutdown - PCI callback for shutting down device
5238 * @pdev: PCI device information struct
5239 */
ice_shutdown(struct pci_dev * pdev)5240 static void ice_shutdown(struct pci_dev *pdev)
5241 {
5242 struct ice_pf *pf = pci_get_drvdata(pdev);
5243
5244 ice_remove(pdev);
5245
5246 if (system_state == SYSTEM_POWER_OFF) {
5247 pci_wake_from_d3(pdev, pf->wol_ena);
5248 pci_set_power_state(pdev, PCI_D3hot);
5249 }
5250 }
5251
5252 #ifdef CONFIG_PM
5253 /**
5254 * ice_prepare_for_shutdown - prep for PCI shutdown
5255 * @pf: board private structure
5256 *
5257 * Inform or close all dependent features in prep for PCI device shutdown
5258 */
ice_prepare_for_shutdown(struct ice_pf * pf)5259 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5260 {
5261 struct ice_hw *hw = &pf->hw;
5262 u32 v;
5263
5264 /* Notify VFs of impending reset */
5265 if (ice_check_sq_alive(hw, &hw->mailboxq))
5266 ice_vc_notify_reset(pf);
5267
5268 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5269
5270 /* disable the VSIs and their queues that are not already DOWN */
5271 ice_pf_dis_all_vsi(pf, false);
5272
5273 ice_for_each_vsi(pf, v)
5274 if (pf->vsi[v])
5275 pf->vsi[v]->vsi_num = 0;
5276
5277 ice_shutdown_all_ctrlq(hw);
5278 }
5279
5280 /**
5281 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5282 * @pf: board private structure to reinitialize
5283 *
5284 * This routine reinitialize interrupt scheme that was cleared during
5285 * power management suspend callback.
5286 *
5287 * This should be called during resume routine to re-allocate the q_vectors
5288 * and reacquire interrupts.
5289 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5290 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5291 {
5292 struct device *dev = ice_pf_to_dev(pf);
5293 int ret, v;
5294
5295 /* Since we clear MSIX flag during suspend, we need to
5296 * set it back during resume...
5297 */
5298
5299 ret = ice_init_interrupt_scheme(pf);
5300 if (ret) {
5301 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5302 return ret;
5303 }
5304
5305 /* Remap vectors and rings, after successful re-init interrupts */
5306 ice_for_each_vsi(pf, v) {
5307 if (!pf->vsi[v])
5308 continue;
5309
5310 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5311 if (ret)
5312 goto err_reinit;
5313 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5314 }
5315
5316 ret = ice_req_irq_msix_misc(pf);
5317 if (ret) {
5318 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5319 ret);
5320 goto err_reinit;
5321 }
5322
5323 return 0;
5324
5325 err_reinit:
5326 while (v--)
5327 if (pf->vsi[v])
5328 ice_vsi_free_q_vectors(pf->vsi[v]);
5329
5330 return ret;
5331 }
5332
5333 /**
5334 * ice_suspend
5335 * @dev: generic device information structure
5336 *
5337 * Power Management callback to quiesce the device and prepare
5338 * for D3 transition.
5339 */
ice_suspend(struct device * dev)5340 static int __maybe_unused ice_suspend(struct device *dev)
5341 {
5342 struct pci_dev *pdev = to_pci_dev(dev);
5343 struct ice_pf *pf;
5344 int disabled, v;
5345
5346 pf = pci_get_drvdata(pdev);
5347
5348 if (!ice_pf_state_is_nominal(pf)) {
5349 dev_err(dev, "Device is not ready, no need to suspend it\n");
5350 return -EBUSY;
5351 }
5352
5353 /* Stop watchdog tasks until resume completion.
5354 * Even though it is most likely that the service task is
5355 * disabled if the device is suspended or down, the service task's
5356 * state is controlled by a different state bit, and we should
5357 * store and honor whatever state that bit is in at this point.
5358 */
5359 disabled = ice_service_task_stop(pf);
5360
5361 ice_deinit_rdma(pf);
5362
5363 /* Already suspended?, then there is nothing to do */
5364 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5365 if (!disabled)
5366 ice_service_task_restart(pf);
5367 return 0;
5368 }
5369
5370 if (test_bit(ICE_DOWN, pf->state) ||
5371 ice_is_reset_in_progress(pf->state)) {
5372 dev_err(dev, "can't suspend device in reset or already down\n");
5373 if (!disabled)
5374 ice_service_task_restart(pf);
5375 return 0;
5376 }
5377
5378 ice_setup_mc_magic_wake(pf);
5379
5380 ice_prepare_for_shutdown(pf);
5381
5382 ice_set_wake(pf);
5383
5384 /* Free vectors, clear the interrupt scheme and release IRQs
5385 * for proper hibernation, especially with large number of CPUs.
5386 * Otherwise hibernation might fail when mapping all the vectors back
5387 * to CPU0.
5388 */
5389 ice_free_irq_msix_misc(pf);
5390 ice_for_each_vsi(pf, v) {
5391 if (!pf->vsi[v])
5392 continue;
5393 ice_vsi_free_q_vectors(pf->vsi[v]);
5394 }
5395 ice_clear_interrupt_scheme(pf);
5396
5397 pci_save_state(pdev);
5398 pci_wake_from_d3(pdev, pf->wol_ena);
5399 pci_set_power_state(pdev, PCI_D3hot);
5400 return 0;
5401 }
5402
5403 /**
5404 * ice_resume - PM callback for waking up from D3
5405 * @dev: generic device information structure
5406 */
ice_resume(struct device * dev)5407 static int __maybe_unused ice_resume(struct device *dev)
5408 {
5409 struct pci_dev *pdev = to_pci_dev(dev);
5410 enum ice_reset_req reset_type;
5411 struct ice_pf *pf;
5412 struct ice_hw *hw;
5413 int ret;
5414
5415 pci_set_power_state(pdev, PCI_D0);
5416 pci_restore_state(pdev);
5417 pci_save_state(pdev);
5418
5419 if (!pci_device_is_present(pdev))
5420 return -ENODEV;
5421
5422 ret = pci_enable_device_mem(pdev);
5423 if (ret) {
5424 dev_err(dev, "Cannot enable device after suspend\n");
5425 return ret;
5426 }
5427
5428 pf = pci_get_drvdata(pdev);
5429 hw = &pf->hw;
5430
5431 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5432 ice_print_wake_reason(pf);
5433
5434 /* We cleared the interrupt scheme when we suspended, so we need to
5435 * restore it now to resume device functionality.
5436 */
5437 ret = ice_reinit_interrupt_scheme(pf);
5438 if (ret)
5439 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5440
5441 ret = ice_init_rdma(pf);
5442 if (ret)
5443 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5444 ret);
5445
5446 clear_bit(ICE_DOWN, pf->state);
5447 /* Now perform PF reset and rebuild */
5448 reset_type = ICE_RESET_PFR;
5449 /* re-enable service task for reset, but allow reset to schedule it */
5450 clear_bit(ICE_SERVICE_DIS, pf->state);
5451
5452 if (ice_schedule_reset(pf, reset_type))
5453 dev_err(dev, "Reset during resume failed.\n");
5454
5455 clear_bit(ICE_SUSPENDED, pf->state);
5456 ice_service_task_restart(pf);
5457
5458 /* Restart the service task */
5459 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5460
5461 return 0;
5462 }
5463 #endif /* CONFIG_PM */
5464
5465 /**
5466 * ice_pci_err_detected - warning that PCI error has been detected
5467 * @pdev: PCI device information struct
5468 * @err: the type of PCI error
5469 *
5470 * Called to warn that something happened on the PCI bus and the error handling
5471 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5472 */
5473 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5474 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5475 {
5476 struct ice_pf *pf = pci_get_drvdata(pdev);
5477
5478 if (!pf) {
5479 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5480 __func__, err);
5481 return PCI_ERS_RESULT_DISCONNECT;
5482 }
5483
5484 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5485 ice_service_task_stop(pf);
5486
5487 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5488 set_bit(ICE_PFR_REQ, pf->state);
5489 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5490 }
5491 }
5492
5493 return PCI_ERS_RESULT_NEED_RESET;
5494 }
5495
5496 /**
5497 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5498 * @pdev: PCI device information struct
5499 *
5500 * Called to determine if the driver can recover from the PCI slot reset by
5501 * using a register read to determine if the device is recoverable.
5502 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5503 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5504 {
5505 struct ice_pf *pf = pci_get_drvdata(pdev);
5506 pci_ers_result_t result;
5507 int err;
5508 u32 reg;
5509
5510 err = pci_enable_device_mem(pdev);
5511 if (err) {
5512 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5513 err);
5514 result = PCI_ERS_RESULT_DISCONNECT;
5515 } else {
5516 pci_set_master(pdev);
5517 pci_restore_state(pdev);
5518 pci_save_state(pdev);
5519 pci_wake_from_d3(pdev, false);
5520
5521 /* Check for life */
5522 reg = rd32(&pf->hw, GLGEN_RTRIG);
5523 if (!reg)
5524 result = PCI_ERS_RESULT_RECOVERED;
5525 else
5526 result = PCI_ERS_RESULT_DISCONNECT;
5527 }
5528
5529 return result;
5530 }
5531
5532 /**
5533 * ice_pci_err_resume - restart operations after PCI error recovery
5534 * @pdev: PCI device information struct
5535 *
5536 * Called to allow the driver to bring things back up after PCI error and/or
5537 * reset recovery have finished
5538 */
ice_pci_err_resume(struct pci_dev * pdev)5539 static void ice_pci_err_resume(struct pci_dev *pdev)
5540 {
5541 struct ice_pf *pf = pci_get_drvdata(pdev);
5542
5543 if (!pf) {
5544 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5545 __func__);
5546 return;
5547 }
5548
5549 if (test_bit(ICE_SUSPENDED, pf->state)) {
5550 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5551 __func__);
5552 return;
5553 }
5554
5555 ice_restore_all_vfs_msi_state(pdev);
5556
5557 ice_do_reset(pf, ICE_RESET_PFR);
5558 ice_service_task_restart(pf);
5559 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5560 }
5561
5562 /**
5563 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5564 * @pdev: PCI device information struct
5565 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5566 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5567 {
5568 struct ice_pf *pf = pci_get_drvdata(pdev);
5569
5570 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5571 ice_service_task_stop(pf);
5572
5573 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5574 set_bit(ICE_PFR_REQ, pf->state);
5575 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5576 }
5577 }
5578 }
5579
5580 /**
5581 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5582 * @pdev: PCI device information struct
5583 */
ice_pci_err_reset_done(struct pci_dev * pdev)5584 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5585 {
5586 ice_pci_err_resume(pdev);
5587 }
5588
5589 /* ice_pci_tbl - PCI Device ID Table
5590 *
5591 * Wildcard entries (PCI_ANY_ID) should come last
5592 * Last entry must be all 0s
5593 *
5594 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5595 * Class, Class Mask, private data (not used) }
5596 */
5597 static const struct pci_device_id ice_pci_tbl[] = {
5598 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5599 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5600 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5601 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5602 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5603 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5604 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5605 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5606 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5607 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5608 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5609 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5610 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5611 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5612 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5613 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5614 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5615 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5616 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5617 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5618 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5619 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5620 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5621 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5622 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5623 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5624 /* required last entry */
5625 { 0, }
5626 };
5627 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5628
5629 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5630
5631 static const struct pci_error_handlers ice_pci_err_handler = {
5632 .error_detected = ice_pci_err_detected,
5633 .slot_reset = ice_pci_err_slot_reset,
5634 .reset_prepare = ice_pci_err_reset_prepare,
5635 .reset_done = ice_pci_err_reset_done,
5636 .resume = ice_pci_err_resume
5637 };
5638
5639 static struct pci_driver ice_driver = {
5640 .name = KBUILD_MODNAME,
5641 .id_table = ice_pci_tbl,
5642 .probe = ice_probe,
5643 .remove = ice_remove,
5644 #ifdef CONFIG_PM
5645 .driver.pm = &ice_pm_ops,
5646 #endif /* CONFIG_PM */
5647 .shutdown = ice_shutdown,
5648 .sriov_configure = ice_sriov_configure,
5649 .err_handler = &ice_pci_err_handler
5650 };
5651
5652 /**
5653 * ice_module_init - Driver registration routine
5654 *
5655 * ice_module_init is the first routine called when the driver is
5656 * loaded. All it does is register with the PCI subsystem.
5657 */
ice_module_init(void)5658 static int __init ice_module_init(void)
5659 {
5660 int status = -ENOMEM;
5661
5662 pr_info("%s\n", ice_driver_string);
5663 pr_info("%s\n", ice_copyright);
5664
5665 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5666 if (!ice_wq) {
5667 pr_err("Failed to create workqueue\n");
5668 return status;
5669 }
5670
5671 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5672 if (!ice_lag_wq) {
5673 pr_err("Failed to create LAG workqueue\n");
5674 goto err_dest_wq;
5675 }
5676
5677 status = pci_register_driver(&ice_driver);
5678 if (status) {
5679 pr_err("failed to register PCI driver, err %d\n", status);
5680 goto err_dest_lag_wq;
5681 }
5682
5683 return 0;
5684
5685 err_dest_lag_wq:
5686 destroy_workqueue(ice_lag_wq);
5687 err_dest_wq:
5688 destroy_workqueue(ice_wq);
5689 return status;
5690 }
5691 module_init(ice_module_init);
5692
5693 /**
5694 * ice_module_exit - Driver exit cleanup routine
5695 *
5696 * ice_module_exit is called just before the driver is removed
5697 * from memory.
5698 */
ice_module_exit(void)5699 static void __exit ice_module_exit(void)
5700 {
5701 pci_unregister_driver(&ice_driver);
5702 destroy_workqueue(ice_wq);
5703 destroy_workqueue(ice_lag_wq);
5704 pr_info("module unloaded\n");
5705 }
5706 module_exit(ice_module_exit);
5707
5708 /**
5709 * ice_set_mac_address - NDO callback to set MAC address
5710 * @netdev: network interface device structure
5711 * @pi: pointer to an address structure
5712 *
5713 * Returns 0 on success, negative on failure
5714 */
ice_set_mac_address(struct net_device * netdev,void * pi)5715 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5716 {
5717 struct ice_netdev_priv *np = netdev_priv(netdev);
5718 struct ice_vsi *vsi = np->vsi;
5719 struct ice_pf *pf = vsi->back;
5720 struct ice_hw *hw = &pf->hw;
5721 struct sockaddr *addr = pi;
5722 u8 old_mac[ETH_ALEN];
5723 u8 flags = 0;
5724 u8 *mac;
5725 int err;
5726
5727 mac = (u8 *)addr->sa_data;
5728
5729 if (!is_valid_ether_addr(mac))
5730 return -EADDRNOTAVAIL;
5731
5732 if (test_bit(ICE_DOWN, pf->state) ||
5733 ice_is_reset_in_progress(pf->state)) {
5734 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5735 mac);
5736 return -EBUSY;
5737 }
5738
5739 if (ice_chnl_dmac_fltr_cnt(pf)) {
5740 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5741 mac);
5742 return -EAGAIN;
5743 }
5744
5745 netif_addr_lock_bh(netdev);
5746 ether_addr_copy(old_mac, netdev->dev_addr);
5747 /* change the netdev's MAC address */
5748 eth_hw_addr_set(netdev, mac);
5749 netif_addr_unlock_bh(netdev);
5750
5751 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5752 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5753 if (err && err != -ENOENT) {
5754 err = -EADDRNOTAVAIL;
5755 goto err_update_filters;
5756 }
5757
5758 /* Add filter for new MAC. If filter exists, return success */
5759 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5760 if (err == -EEXIST) {
5761 /* Although this MAC filter is already present in hardware it's
5762 * possible in some cases (e.g. bonding) that dev_addr was
5763 * modified outside of the driver and needs to be restored back
5764 * to this value.
5765 */
5766 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5767
5768 return 0;
5769 } else if (err) {
5770 /* error if the new filter addition failed */
5771 err = -EADDRNOTAVAIL;
5772 }
5773
5774 err_update_filters:
5775 if (err) {
5776 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5777 mac);
5778 netif_addr_lock_bh(netdev);
5779 eth_hw_addr_set(netdev, old_mac);
5780 netif_addr_unlock_bh(netdev);
5781 return err;
5782 }
5783
5784 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5785 netdev->dev_addr);
5786
5787 /* write new MAC address to the firmware */
5788 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5789 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5790 if (err) {
5791 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5792 mac, err);
5793 }
5794 return 0;
5795 }
5796
5797 /**
5798 * ice_set_rx_mode - NDO callback to set the netdev filters
5799 * @netdev: network interface device structure
5800 */
ice_set_rx_mode(struct net_device * netdev)5801 static void ice_set_rx_mode(struct net_device *netdev)
5802 {
5803 struct ice_netdev_priv *np = netdev_priv(netdev);
5804 struct ice_vsi *vsi = np->vsi;
5805
5806 if (!vsi || ice_is_switchdev_running(vsi->back))
5807 return;
5808
5809 /* Set the flags to synchronize filters
5810 * ndo_set_rx_mode may be triggered even without a change in netdev
5811 * flags
5812 */
5813 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5814 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5815 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5816
5817 /* schedule our worker thread which will take care of
5818 * applying the new filter changes
5819 */
5820 ice_service_task_schedule(vsi->back);
5821 }
5822
5823 /**
5824 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5825 * @netdev: network interface device structure
5826 * @queue_index: Queue ID
5827 * @maxrate: maximum bandwidth in Mbps
5828 */
5829 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5830 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5831 {
5832 struct ice_netdev_priv *np = netdev_priv(netdev);
5833 struct ice_vsi *vsi = np->vsi;
5834 u16 q_handle;
5835 int status;
5836 u8 tc;
5837
5838 /* Validate maxrate requested is within permitted range */
5839 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5840 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5841 maxrate, queue_index);
5842 return -EINVAL;
5843 }
5844
5845 q_handle = vsi->tx_rings[queue_index]->q_handle;
5846 tc = ice_dcb_get_tc(vsi, queue_index);
5847
5848 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5849 if (!vsi) {
5850 netdev_err(netdev, "Invalid VSI for given queue %d\n",
5851 queue_index);
5852 return -EINVAL;
5853 }
5854
5855 /* Set BW back to default, when user set maxrate to 0 */
5856 if (!maxrate)
5857 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5858 q_handle, ICE_MAX_BW);
5859 else
5860 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5861 q_handle, ICE_MAX_BW, maxrate * 1000);
5862 if (status)
5863 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5864 status);
5865
5866 return status;
5867 }
5868
5869 /**
5870 * ice_fdb_add - add an entry to the hardware database
5871 * @ndm: the input from the stack
5872 * @tb: pointer to array of nladdr (unused)
5873 * @dev: the net device pointer
5874 * @addr: the MAC address entry being added
5875 * @vid: VLAN ID
5876 * @flags: instructions from stack about fdb operation
5877 * @extack: netlink extended ack
5878 */
5879 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5880 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5881 struct net_device *dev, const unsigned char *addr, u16 vid,
5882 u16 flags, struct netlink_ext_ack __always_unused *extack)
5883 {
5884 int err;
5885
5886 if (vid) {
5887 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5888 return -EINVAL;
5889 }
5890 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5891 netdev_err(dev, "FDB only supports static addresses\n");
5892 return -EINVAL;
5893 }
5894
5895 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5896 err = dev_uc_add_excl(dev, addr);
5897 else if (is_multicast_ether_addr(addr))
5898 err = dev_mc_add_excl(dev, addr);
5899 else
5900 err = -EINVAL;
5901
5902 /* Only return duplicate errors if NLM_F_EXCL is set */
5903 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5904 err = 0;
5905
5906 return err;
5907 }
5908
5909 /**
5910 * ice_fdb_del - delete an entry from the hardware database
5911 * @ndm: the input from the stack
5912 * @tb: pointer to array of nladdr (unused)
5913 * @dev: the net device pointer
5914 * @addr: the MAC address entry being added
5915 * @vid: VLAN ID
5916 * @extack: netlink extended ack
5917 */
5918 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,struct netlink_ext_ack * extack)5919 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5920 struct net_device *dev, const unsigned char *addr,
5921 __always_unused u16 vid, struct netlink_ext_ack *extack)
5922 {
5923 int err;
5924
5925 if (ndm->ndm_state & NUD_PERMANENT) {
5926 netdev_err(dev, "FDB only supports static addresses\n");
5927 return -EINVAL;
5928 }
5929
5930 if (is_unicast_ether_addr(addr))
5931 err = dev_uc_del(dev, addr);
5932 else if (is_multicast_ether_addr(addr))
5933 err = dev_mc_del(dev, addr);
5934 else
5935 err = -EINVAL;
5936
5937 return err;
5938 }
5939
5940 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5941 NETIF_F_HW_VLAN_CTAG_TX | \
5942 NETIF_F_HW_VLAN_STAG_RX | \
5943 NETIF_F_HW_VLAN_STAG_TX)
5944
5945 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5946 NETIF_F_HW_VLAN_STAG_RX)
5947
5948 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
5949 NETIF_F_HW_VLAN_STAG_FILTER)
5950
5951 /**
5952 * ice_fix_features - fix the netdev features flags based on device limitations
5953 * @netdev: ptr to the netdev that flags are being fixed on
5954 * @features: features that need to be checked and possibly fixed
5955 *
5956 * Make sure any fixups are made to features in this callback. This enables the
5957 * driver to not have to check unsupported configurations throughout the driver
5958 * because that's the responsiblity of this callback.
5959 *
5960 * Single VLAN Mode (SVM) Supported Features:
5961 * NETIF_F_HW_VLAN_CTAG_FILTER
5962 * NETIF_F_HW_VLAN_CTAG_RX
5963 * NETIF_F_HW_VLAN_CTAG_TX
5964 *
5965 * Double VLAN Mode (DVM) Supported Features:
5966 * NETIF_F_HW_VLAN_CTAG_FILTER
5967 * NETIF_F_HW_VLAN_CTAG_RX
5968 * NETIF_F_HW_VLAN_CTAG_TX
5969 *
5970 * NETIF_F_HW_VLAN_STAG_FILTER
5971 * NETIF_HW_VLAN_STAG_RX
5972 * NETIF_HW_VLAN_STAG_TX
5973 *
5974 * Features that need fixing:
5975 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5976 * These are mutually exlusive as the VSI context cannot support multiple
5977 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
5978 * is not done, then default to clearing the requested STAG offload
5979 * settings.
5980 *
5981 * All supported filtering has to be enabled or disabled together. For
5982 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5983 * together. If this is not done, then default to VLAN filtering disabled.
5984 * These are mutually exclusive as there is currently no way to
5985 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5986 * prune rules.
5987 */
5988 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)5989 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5990 {
5991 struct ice_netdev_priv *np = netdev_priv(netdev);
5992 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5993 bool cur_ctag, cur_stag, req_ctag, req_stag;
5994
5995 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5996 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5997 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5998
5999 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6000 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6001 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6002
6003 if (req_vlan_fltr != cur_vlan_fltr) {
6004 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6005 if (req_ctag && req_stag) {
6006 features |= NETIF_VLAN_FILTERING_FEATURES;
6007 } else if (!req_ctag && !req_stag) {
6008 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6009 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6010 (!cur_stag && req_stag && !cur_ctag)) {
6011 features |= NETIF_VLAN_FILTERING_FEATURES;
6012 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6013 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6014 (cur_stag && !req_stag && cur_ctag)) {
6015 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6016 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6017 }
6018 } else {
6019 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6020 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6021
6022 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6023 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6024 }
6025 }
6026
6027 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6028 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6029 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6030 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6031 NETIF_F_HW_VLAN_STAG_TX);
6032 }
6033
6034 if (!(netdev->features & NETIF_F_RXFCS) &&
6035 (features & NETIF_F_RXFCS) &&
6036 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6037 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6038 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6039 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6040 }
6041
6042 return features;
6043 }
6044
6045 /**
6046 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6047 * @vsi: PF's VSI
6048 * @features: features used to determine VLAN offload settings
6049 *
6050 * First, determine the vlan_ethertype based on the VLAN offload bits in
6051 * features. Then determine if stripping and insertion should be enabled or
6052 * disabled. Finally enable or disable VLAN stripping and insertion.
6053 */
6054 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6055 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6056 {
6057 bool enable_stripping = true, enable_insertion = true;
6058 struct ice_vsi_vlan_ops *vlan_ops;
6059 int strip_err = 0, insert_err = 0;
6060 u16 vlan_ethertype = 0;
6061
6062 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6063
6064 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6065 vlan_ethertype = ETH_P_8021AD;
6066 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6067 vlan_ethertype = ETH_P_8021Q;
6068
6069 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6070 enable_stripping = false;
6071 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6072 enable_insertion = false;
6073
6074 if (enable_stripping)
6075 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6076 else
6077 strip_err = vlan_ops->dis_stripping(vsi);
6078
6079 if (enable_insertion)
6080 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6081 else
6082 insert_err = vlan_ops->dis_insertion(vsi);
6083
6084 if (strip_err || insert_err)
6085 return -EIO;
6086
6087 return 0;
6088 }
6089
6090 /**
6091 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6092 * @vsi: PF's VSI
6093 * @features: features used to determine VLAN filtering settings
6094 *
6095 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6096 * features.
6097 */
6098 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6099 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6100 {
6101 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6102 int err = 0;
6103
6104 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6105 * if either bit is set
6106 */
6107 if (features &
6108 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6109 err = vlan_ops->ena_rx_filtering(vsi);
6110 else
6111 err = vlan_ops->dis_rx_filtering(vsi);
6112
6113 return err;
6114 }
6115
6116 /**
6117 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6118 * @netdev: ptr to the netdev being adjusted
6119 * @features: the feature set that the stack is suggesting
6120 *
6121 * Only update VLAN settings if the requested_vlan_features are different than
6122 * the current_vlan_features.
6123 */
6124 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6125 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6126 {
6127 netdev_features_t current_vlan_features, requested_vlan_features;
6128 struct ice_netdev_priv *np = netdev_priv(netdev);
6129 struct ice_vsi *vsi = np->vsi;
6130 int err;
6131
6132 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6133 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6134 if (current_vlan_features ^ requested_vlan_features) {
6135 if ((features & NETIF_F_RXFCS) &&
6136 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6137 dev_err(ice_pf_to_dev(vsi->back),
6138 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6139 return -EIO;
6140 }
6141
6142 err = ice_set_vlan_offload_features(vsi, features);
6143 if (err)
6144 return err;
6145 }
6146
6147 current_vlan_features = netdev->features &
6148 NETIF_VLAN_FILTERING_FEATURES;
6149 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6150 if (current_vlan_features ^ requested_vlan_features) {
6151 err = ice_set_vlan_filtering_features(vsi, features);
6152 if (err)
6153 return err;
6154 }
6155
6156 return 0;
6157 }
6158
6159 /**
6160 * ice_set_loopback - turn on/off loopback mode on underlying PF
6161 * @vsi: ptr to VSI
6162 * @ena: flag to indicate the on/off setting
6163 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6164 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6165 {
6166 bool if_running = netif_running(vsi->netdev);
6167 int ret;
6168
6169 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6170 ret = ice_down(vsi);
6171 if (ret) {
6172 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6173 return ret;
6174 }
6175 }
6176 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6177 if (ret)
6178 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6179 if (if_running)
6180 ret = ice_up(vsi);
6181
6182 return ret;
6183 }
6184
6185 /**
6186 * ice_set_features - set the netdev feature flags
6187 * @netdev: ptr to the netdev being adjusted
6188 * @features: the feature set that the stack is suggesting
6189 */
6190 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6191 ice_set_features(struct net_device *netdev, netdev_features_t features)
6192 {
6193 netdev_features_t changed = netdev->features ^ features;
6194 struct ice_netdev_priv *np = netdev_priv(netdev);
6195 struct ice_vsi *vsi = np->vsi;
6196 struct ice_pf *pf = vsi->back;
6197 int ret = 0;
6198
6199 /* Don't set any netdev advanced features with device in Safe Mode */
6200 if (ice_is_safe_mode(pf)) {
6201 dev_err(ice_pf_to_dev(pf),
6202 "Device is in Safe Mode - not enabling advanced netdev features\n");
6203 return ret;
6204 }
6205
6206 /* Do not change setting during reset */
6207 if (ice_is_reset_in_progress(pf->state)) {
6208 dev_err(ice_pf_to_dev(pf),
6209 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6210 return -EBUSY;
6211 }
6212
6213 /* Multiple features can be changed in one call so keep features in
6214 * separate if/else statements to guarantee each feature is checked
6215 */
6216 if (changed & NETIF_F_RXHASH)
6217 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6218
6219 ret = ice_set_vlan_features(netdev, features);
6220 if (ret)
6221 return ret;
6222
6223 /* Turn on receive of FCS aka CRC, and after setting this
6224 * flag the packet data will have the 4 byte CRC appended
6225 */
6226 if (changed & NETIF_F_RXFCS) {
6227 if ((features & NETIF_F_RXFCS) &&
6228 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6229 dev_err(ice_pf_to_dev(vsi->back),
6230 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6231 return -EIO;
6232 }
6233
6234 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6235 ret = ice_down_up(vsi);
6236 if (ret)
6237 return ret;
6238 }
6239
6240 if (changed & NETIF_F_NTUPLE) {
6241 bool ena = !!(features & NETIF_F_NTUPLE);
6242
6243 ice_vsi_manage_fdir(vsi, ena);
6244 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6245 }
6246
6247 /* don't turn off hw_tc_offload when ADQ is already enabled */
6248 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6249 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6250 return -EACCES;
6251 }
6252
6253 if (changed & NETIF_F_HW_TC) {
6254 bool ena = !!(features & NETIF_F_HW_TC);
6255
6256 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6257 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6258 }
6259
6260 if (changed & NETIF_F_LOOPBACK)
6261 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6262
6263 return ret;
6264 }
6265
6266 /**
6267 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6268 * @vsi: VSI to setup VLAN properties for
6269 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6270 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6271 {
6272 int err;
6273
6274 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6275 if (err)
6276 return err;
6277
6278 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6279 if (err)
6280 return err;
6281
6282 return ice_vsi_add_vlan_zero(vsi);
6283 }
6284
6285 /**
6286 * ice_vsi_cfg_lan - Setup the VSI lan related config
6287 * @vsi: the VSI being configured
6288 *
6289 * Return 0 on success and negative value on error
6290 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6291 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6292 {
6293 int err;
6294
6295 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6296 ice_set_rx_mode(vsi->netdev);
6297
6298 err = ice_vsi_vlan_setup(vsi);
6299 if (err)
6300 return err;
6301 }
6302 ice_vsi_cfg_dcb_rings(vsi);
6303
6304 err = ice_vsi_cfg_lan_txqs(vsi);
6305 if (!err && ice_is_xdp_ena_vsi(vsi))
6306 err = ice_vsi_cfg_xdp_txqs(vsi);
6307 if (!err)
6308 err = ice_vsi_cfg_rxqs(vsi);
6309
6310 return err;
6311 }
6312
6313 /* THEORY OF MODERATION:
6314 * The ice driver hardware works differently than the hardware that DIMLIB was
6315 * originally made for. ice hardware doesn't have packet count limits that
6316 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6317 * which is hard-coded to a limit of 250,000 ints/second.
6318 * If not using dynamic moderation, the INTRL value can be modified
6319 * by ethtool rx-usecs-high.
6320 */
6321 struct ice_dim {
6322 /* the throttle rate for interrupts, basically worst case delay before
6323 * an initial interrupt fires, value is stored in microseconds.
6324 */
6325 u16 itr;
6326 };
6327
6328 /* Make a different profile for Rx that doesn't allow quite so aggressive
6329 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6330 * second.
6331 */
6332 static const struct ice_dim rx_profile[] = {
6333 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6334 {8}, /* 125,000 ints/s */
6335 {16}, /* 62,500 ints/s */
6336 {62}, /* 16,129 ints/s */
6337 {126} /* 7,936 ints/s */
6338 };
6339
6340 /* The transmit profile, which has the same sorts of values
6341 * as the previous struct
6342 */
6343 static const struct ice_dim tx_profile[] = {
6344 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6345 {8}, /* 125,000 ints/s */
6346 {40}, /* 16,125 ints/s */
6347 {128}, /* 7,812 ints/s */
6348 {256} /* 3,906 ints/s */
6349 };
6350
ice_tx_dim_work(struct work_struct * work)6351 static void ice_tx_dim_work(struct work_struct *work)
6352 {
6353 struct ice_ring_container *rc;
6354 struct dim *dim;
6355 u16 itr;
6356
6357 dim = container_of(work, struct dim, work);
6358 rc = dim->priv;
6359
6360 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6361
6362 /* look up the values in our local table */
6363 itr = tx_profile[dim->profile_ix].itr;
6364
6365 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6366 ice_write_itr(rc, itr);
6367
6368 dim->state = DIM_START_MEASURE;
6369 }
6370
ice_rx_dim_work(struct work_struct * work)6371 static void ice_rx_dim_work(struct work_struct *work)
6372 {
6373 struct ice_ring_container *rc;
6374 struct dim *dim;
6375 u16 itr;
6376
6377 dim = container_of(work, struct dim, work);
6378 rc = dim->priv;
6379
6380 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6381
6382 /* look up the values in our local table */
6383 itr = rx_profile[dim->profile_ix].itr;
6384
6385 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6386 ice_write_itr(rc, itr);
6387
6388 dim->state = DIM_START_MEASURE;
6389 }
6390
6391 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6392
6393 /**
6394 * ice_init_moderation - set up interrupt moderation
6395 * @q_vector: the vector containing rings to be configured
6396 *
6397 * Set up interrupt moderation registers, with the intent to do the right thing
6398 * when called from reset or from probe, and whether or not dynamic moderation
6399 * is enabled or not. Take special care to write all the registers in both
6400 * dynamic moderation mode or not in order to make sure hardware is in a known
6401 * state.
6402 */
ice_init_moderation(struct ice_q_vector * q_vector)6403 static void ice_init_moderation(struct ice_q_vector *q_vector)
6404 {
6405 struct ice_ring_container *rc;
6406 bool tx_dynamic, rx_dynamic;
6407
6408 rc = &q_vector->tx;
6409 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6410 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6411 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6412 rc->dim.priv = rc;
6413 tx_dynamic = ITR_IS_DYNAMIC(rc);
6414
6415 /* set the initial TX ITR to match the above */
6416 ice_write_itr(rc, tx_dynamic ?
6417 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6418
6419 rc = &q_vector->rx;
6420 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6421 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6422 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6423 rc->dim.priv = rc;
6424 rx_dynamic = ITR_IS_DYNAMIC(rc);
6425
6426 /* set the initial RX ITR to match the above */
6427 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6428 rc->itr_setting);
6429
6430 ice_set_q_vector_intrl(q_vector);
6431 }
6432
6433 /**
6434 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6435 * @vsi: the VSI being configured
6436 */
ice_napi_enable_all(struct ice_vsi * vsi)6437 static void ice_napi_enable_all(struct ice_vsi *vsi)
6438 {
6439 int q_idx;
6440
6441 if (!vsi->netdev)
6442 return;
6443
6444 ice_for_each_q_vector(vsi, q_idx) {
6445 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6446
6447 ice_init_moderation(q_vector);
6448
6449 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6450 napi_enable(&q_vector->napi);
6451 }
6452 }
6453
6454 /**
6455 * ice_up_complete - Finish the last steps of bringing up a connection
6456 * @vsi: The VSI being configured
6457 *
6458 * Return 0 on success and negative value on error
6459 */
ice_up_complete(struct ice_vsi * vsi)6460 static int ice_up_complete(struct ice_vsi *vsi)
6461 {
6462 struct ice_pf *pf = vsi->back;
6463 int err;
6464
6465 ice_vsi_cfg_msix(vsi);
6466
6467 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6468 * Tx queue group list was configured and the context bits were
6469 * programmed using ice_vsi_cfg_txqs
6470 */
6471 err = ice_vsi_start_all_rx_rings(vsi);
6472 if (err)
6473 return err;
6474
6475 clear_bit(ICE_VSI_DOWN, vsi->state);
6476 ice_napi_enable_all(vsi);
6477 ice_vsi_ena_irq(vsi);
6478
6479 if (vsi->port_info &&
6480 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6481 vsi->netdev && vsi->type == ICE_VSI_PF) {
6482 ice_print_link_msg(vsi, true);
6483 netif_tx_start_all_queues(vsi->netdev);
6484 netif_carrier_on(vsi->netdev);
6485 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6486 }
6487
6488 /* Perform an initial read of the statistics registers now to
6489 * set the baseline so counters are ready when interface is up
6490 */
6491 ice_update_eth_stats(vsi);
6492
6493 if (vsi->type == ICE_VSI_PF)
6494 ice_service_task_schedule(pf);
6495
6496 return 0;
6497 }
6498
6499 /**
6500 * ice_up - Bring the connection back up after being down
6501 * @vsi: VSI being configured
6502 */
ice_up(struct ice_vsi * vsi)6503 int ice_up(struct ice_vsi *vsi)
6504 {
6505 int err;
6506
6507 err = ice_vsi_cfg_lan(vsi);
6508 if (!err)
6509 err = ice_up_complete(vsi);
6510
6511 return err;
6512 }
6513
6514 /**
6515 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6516 * @syncp: pointer to u64_stats_sync
6517 * @stats: stats that pkts and bytes count will be taken from
6518 * @pkts: packets stats counter
6519 * @bytes: bytes stats counter
6520 *
6521 * This function fetches stats from the ring considering the atomic operations
6522 * that needs to be performed to read u64 values in 32 bit machine.
6523 */
6524 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6525 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6526 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6527 {
6528 unsigned int start;
6529
6530 do {
6531 start = u64_stats_fetch_begin(syncp);
6532 *pkts = stats.pkts;
6533 *bytes = stats.bytes;
6534 } while (u64_stats_fetch_retry(syncp, start));
6535 }
6536
6537 /**
6538 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6539 * @vsi: the VSI to be updated
6540 * @vsi_stats: the stats struct to be updated
6541 * @rings: rings to work on
6542 * @count: number of rings
6543 */
6544 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6545 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6546 struct rtnl_link_stats64 *vsi_stats,
6547 struct ice_tx_ring **rings, u16 count)
6548 {
6549 u16 i;
6550
6551 for (i = 0; i < count; i++) {
6552 struct ice_tx_ring *ring;
6553 u64 pkts = 0, bytes = 0;
6554
6555 ring = READ_ONCE(rings[i]);
6556 if (!ring || !ring->ring_stats)
6557 continue;
6558 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6559 ring->ring_stats->stats, &pkts,
6560 &bytes);
6561 vsi_stats->tx_packets += pkts;
6562 vsi_stats->tx_bytes += bytes;
6563 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6564 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6565 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6566 }
6567 }
6568
6569 /**
6570 * ice_update_vsi_ring_stats - Update VSI stats counters
6571 * @vsi: the VSI to be updated
6572 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6573 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6574 {
6575 struct rtnl_link_stats64 *net_stats, *stats_prev;
6576 struct rtnl_link_stats64 *vsi_stats;
6577 struct ice_pf *pf = vsi->back;
6578 u64 pkts, bytes;
6579 int i;
6580
6581 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6582 if (!vsi_stats)
6583 return;
6584
6585 /* reset non-netdev (extended) stats */
6586 vsi->tx_restart = 0;
6587 vsi->tx_busy = 0;
6588 vsi->tx_linearize = 0;
6589 vsi->rx_buf_failed = 0;
6590 vsi->rx_page_failed = 0;
6591
6592 rcu_read_lock();
6593
6594 /* update Tx rings counters */
6595 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6596 vsi->num_txq);
6597
6598 /* update Rx rings counters */
6599 ice_for_each_rxq(vsi, i) {
6600 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6601 struct ice_ring_stats *ring_stats;
6602
6603 ring_stats = ring->ring_stats;
6604 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6605 ring_stats->stats, &pkts,
6606 &bytes);
6607 vsi_stats->rx_packets += pkts;
6608 vsi_stats->rx_bytes += bytes;
6609 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6610 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6611 }
6612
6613 /* update XDP Tx rings counters */
6614 if (ice_is_xdp_ena_vsi(vsi))
6615 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6616 vsi->num_xdp_txq);
6617
6618 rcu_read_unlock();
6619
6620 net_stats = &vsi->net_stats;
6621 stats_prev = &vsi->net_stats_prev;
6622
6623 /* Update netdev counters, but keep in mind that values could start at
6624 * random value after PF reset. And as we increase the reported stat by
6625 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6626 * let's skip this round.
6627 */
6628 if (likely(pf->stat_prev_loaded)) {
6629 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6630 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6631 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6632 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6633 }
6634
6635 stats_prev->tx_packets = vsi_stats->tx_packets;
6636 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6637 stats_prev->rx_packets = vsi_stats->rx_packets;
6638 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6639
6640 kfree(vsi_stats);
6641 }
6642
6643 /**
6644 * ice_update_vsi_stats - Update VSI stats counters
6645 * @vsi: the VSI to be updated
6646 */
ice_update_vsi_stats(struct ice_vsi * vsi)6647 void ice_update_vsi_stats(struct ice_vsi *vsi)
6648 {
6649 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6650 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6651 struct ice_pf *pf = vsi->back;
6652
6653 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6654 test_bit(ICE_CFG_BUSY, pf->state))
6655 return;
6656
6657 /* get stats as recorded by Tx/Rx rings */
6658 ice_update_vsi_ring_stats(vsi);
6659
6660 /* get VSI stats as recorded by the hardware */
6661 ice_update_eth_stats(vsi);
6662
6663 cur_ns->tx_errors = cur_es->tx_errors;
6664 cur_ns->rx_dropped = cur_es->rx_discards;
6665 cur_ns->tx_dropped = cur_es->tx_discards;
6666 cur_ns->multicast = cur_es->rx_multicast;
6667
6668 /* update some more netdev stats if this is main VSI */
6669 if (vsi->type == ICE_VSI_PF) {
6670 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6671 cur_ns->rx_errors = pf->stats.crc_errors +
6672 pf->stats.illegal_bytes +
6673 pf->stats.rx_len_errors +
6674 pf->stats.rx_undersize +
6675 pf->hw_csum_rx_error +
6676 pf->stats.rx_jabber +
6677 pf->stats.rx_fragments +
6678 pf->stats.rx_oversize;
6679 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6680 /* record drops from the port level */
6681 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6682 }
6683 }
6684
6685 /**
6686 * ice_update_pf_stats - Update PF port stats counters
6687 * @pf: PF whose stats needs to be updated
6688 */
ice_update_pf_stats(struct ice_pf * pf)6689 void ice_update_pf_stats(struct ice_pf *pf)
6690 {
6691 struct ice_hw_port_stats *prev_ps, *cur_ps;
6692 struct ice_hw *hw = &pf->hw;
6693 u16 fd_ctr_base;
6694 u8 port;
6695
6696 port = hw->port_info->lport;
6697 prev_ps = &pf->stats_prev;
6698 cur_ps = &pf->stats;
6699
6700 if (ice_is_reset_in_progress(pf->state))
6701 pf->stat_prev_loaded = false;
6702
6703 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6704 &prev_ps->eth.rx_bytes,
6705 &cur_ps->eth.rx_bytes);
6706
6707 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6708 &prev_ps->eth.rx_unicast,
6709 &cur_ps->eth.rx_unicast);
6710
6711 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6712 &prev_ps->eth.rx_multicast,
6713 &cur_ps->eth.rx_multicast);
6714
6715 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6716 &prev_ps->eth.rx_broadcast,
6717 &cur_ps->eth.rx_broadcast);
6718
6719 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6720 &prev_ps->eth.rx_discards,
6721 &cur_ps->eth.rx_discards);
6722
6723 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6724 &prev_ps->eth.tx_bytes,
6725 &cur_ps->eth.tx_bytes);
6726
6727 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6728 &prev_ps->eth.tx_unicast,
6729 &cur_ps->eth.tx_unicast);
6730
6731 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6732 &prev_ps->eth.tx_multicast,
6733 &cur_ps->eth.tx_multicast);
6734
6735 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6736 &prev_ps->eth.tx_broadcast,
6737 &cur_ps->eth.tx_broadcast);
6738
6739 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6740 &prev_ps->tx_dropped_link_down,
6741 &cur_ps->tx_dropped_link_down);
6742
6743 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6744 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6745
6746 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6747 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6748
6749 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6750 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6751
6752 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6753 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6754
6755 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6756 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6757
6758 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6759 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6760
6761 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6762 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6763
6764 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6765 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6766
6767 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6768 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6769
6770 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6771 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6772
6773 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6774 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6775
6776 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6777 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6778
6779 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6780 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6781
6782 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6783 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6784
6785 fd_ctr_base = hw->fd_ctr_base;
6786
6787 ice_stat_update40(hw,
6788 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6789 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6790 &cur_ps->fd_sb_match);
6791 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6792 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6793
6794 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6795 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6796
6797 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6798 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6799
6800 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6801 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6802
6803 ice_update_dcb_stats(pf);
6804
6805 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6806 &prev_ps->crc_errors, &cur_ps->crc_errors);
6807
6808 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6809 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6810
6811 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6812 &prev_ps->mac_local_faults,
6813 &cur_ps->mac_local_faults);
6814
6815 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6816 &prev_ps->mac_remote_faults,
6817 &cur_ps->mac_remote_faults);
6818
6819 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6820 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6821
6822 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6823 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6824
6825 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6826 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6827
6828 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6829 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6830
6831 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6832 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6833
6834 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6835
6836 pf->stat_prev_loaded = true;
6837 }
6838
6839 /**
6840 * ice_get_stats64 - get statistics for network device structure
6841 * @netdev: network interface device structure
6842 * @stats: main device statistics structure
6843 */
6844 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6845 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6846 {
6847 struct ice_netdev_priv *np = netdev_priv(netdev);
6848 struct rtnl_link_stats64 *vsi_stats;
6849 struct ice_vsi *vsi = np->vsi;
6850
6851 vsi_stats = &vsi->net_stats;
6852
6853 if (!vsi->num_txq || !vsi->num_rxq)
6854 return;
6855
6856 /* netdev packet/byte stats come from ring counter. These are obtained
6857 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6858 * But, only call the update routine and read the registers if VSI is
6859 * not down.
6860 */
6861 if (!test_bit(ICE_VSI_DOWN, vsi->state))
6862 ice_update_vsi_ring_stats(vsi);
6863 stats->tx_packets = vsi_stats->tx_packets;
6864 stats->tx_bytes = vsi_stats->tx_bytes;
6865 stats->rx_packets = vsi_stats->rx_packets;
6866 stats->rx_bytes = vsi_stats->rx_bytes;
6867
6868 /* The rest of the stats can be read from the hardware but instead we
6869 * just return values that the watchdog task has already obtained from
6870 * the hardware.
6871 */
6872 stats->multicast = vsi_stats->multicast;
6873 stats->tx_errors = vsi_stats->tx_errors;
6874 stats->tx_dropped = vsi_stats->tx_dropped;
6875 stats->rx_errors = vsi_stats->rx_errors;
6876 stats->rx_dropped = vsi_stats->rx_dropped;
6877 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6878 stats->rx_length_errors = vsi_stats->rx_length_errors;
6879 }
6880
6881 /**
6882 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6883 * @vsi: VSI having NAPI disabled
6884 */
ice_napi_disable_all(struct ice_vsi * vsi)6885 static void ice_napi_disable_all(struct ice_vsi *vsi)
6886 {
6887 int q_idx;
6888
6889 if (!vsi->netdev)
6890 return;
6891
6892 ice_for_each_q_vector(vsi, q_idx) {
6893 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6894
6895 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6896 napi_disable(&q_vector->napi);
6897
6898 cancel_work_sync(&q_vector->tx.dim.work);
6899 cancel_work_sync(&q_vector->rx.dim.work);
6900 }
6901 }
6902
6903 /**
6904 * ice_down - Shutdown the connection
6905 * @vsi: The VSI being stopped
6906 *
6907 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6908 */
ice_down(struct ice_vsi * vsi)6909 int ice_down(struct ice_vsi *vsi)
6910 {
6911 int i, tx_err, rx_err, vlan_err = 0;
6912
6913 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6914
6915 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6916 vlan_err = ice_vsi_del_vlan_zero(vsi);
6917 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6918 netif_carrier_off(vsi->netdev);
6919 netif_tx_disable(vsi->netdev);
6920 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6921 ice_eswitch_stop_all_tx_queues(vsi->back);
6922 }
6923
6924 ice_vsi_dis_irq(vsi);
6925
6926 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6927 if (tx_err)
6928 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6929 vsi->vsi_num, tx_err);
6930 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6931 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6932 if (tx_err)
6933 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6934 vsi->vsi_num, tx_err);
6935 }
6936
6937 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6938 if (rx_err)
6939 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6940 vsi->vsi_num, rx_err);
6941
6942 ice_napi_disable_all(vsi);
6943
6944 ice_for_each_txq(vsi, i)
6945 ice_clean_tx_ring(vsi->tx_rings[i]);
6946
6947 if (ice_is_xdp_ena_vsi(vsi))
6948 ice_for_each_xdp_txq(vsi, i)
6949 ice_clean_tx_ring(vsi->xdp_rings[i]);
6950
6951 ice_for_each_rxq(vsi, i)
6952 ice_clean_rx_ring(vsi->rx_rings[i]);
6953
6954 if (tx_err || rx_err || vlan_err) {
6955 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6956 vsi->vsi_num, vsi->vsw->sw_id);
6957 return -EIO;
6958 }
6959
6960 return 0;
6961 }
6962
6963 /**
6964 * ice_down_up - shutdown the VSI connection and bring it up
6965 * @vsi: the VSI to be reconnected
6966 */
ice_down_up(struct ice_vsi * vsi)6967 int ice_down_up(struct ice_vsi *vsi)
6968 {
6969 int ret;
6970
6971 /* if DOWN already set, nothing to do */
6972 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6973 return 0;
6974
6975 ret = ice_down(vsi);
6976 if (ret)
6977 return ret;
6978
6979 ret = ice_up(vsi);
6980 if (ret) {
6981 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6982 return ret;
6983 }
6984
6985 return 0;
6986 }
6987
6988 /**
6989 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6990 * @vsi: VSI having resources allocated
6991 *
6992 * Return 0 on success, negative on failure
6993 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)6994 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6995 {
6996 int i, err = 0;
6997
6998 if (!vsi->num_txq) {
6999 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7000 vsi->vsi_num);
7001 return -EINVAL;
7002 }
7003
7004 ice_for_each_txq(vsi, i) {
7005 struct ice_tx_ring *ring = vsi->tx_rings[i];
7006
7007 if (!ring)
7008 return -EINVAL;
7009
7010 if (vsi->netdev)
7011 ring->netdev = vsi->netdev;
7012 err = ice_setup_tx_ring(ring);
7013 if (err)
7014 break;
7015 }
7016
7017 return err;
7018 }
7019
7020 /**
7021 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7022 * @vsi: VSI having resources allocated
7023 *
7024 * Return 0 on success, negative on failure
7025 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7026 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7027 {
7028 int i, err = 0;
7029
7030 if (!vsi->num_rxq) {
7031 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7032 vsi->vsi_num);
7033 return -EINVAL;
7034 }
7035
7036 ice_for_each_rxq(vsi, i) {
7037 struct ice_rx_ring *ring = vsi->rx_rings[i];
7038
7039 if (!ring)
7040 return -EINVAL;
7041
7042 if (vsi->netdev)
7043 ring->netdev = vsi->netdev;
7044 err = ice_setup_rx_ring(ring);
7045 if (err)
7046 break;
7047 }
7048
7049 return err;
7050 }
7051
7052 /**
7053 * ice_vsi_open_ctrl - open control VSI for use
7054 * @vsi: the VSI to open
7055 *
7056 * Initialization of the Control VSI
7057 *
7058 * Returns 0 on success, negative value on error
7059 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7060 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7061 {
7062 char int_name[ICE_INT_NAME_STR_LEN];
7063 struct ice_pf *pf = vsi->back;
7064 struct device *dev;
7065 int err;
7066
7067 dev = ice_pf_to_dev(pf);
7068 /* allocate descriptors */
7069 err = ice_vsi_setup_tx_rings(vsi);
7070 if (err)
7071 goto err_setup_tx;
7072
7073 err = ice_vsi_setup_rx_rings(vsi);
7074 if (err)
7075 goto err_setup_rx;
7076
7077 err = ice_vsi_cfg_lan(vsi);
7078 if (err)
7079 goto err_setup_rx;
7080
7081 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7082 dev_driver_string(dev), dev_name(dev));
7083 err = ice_vsi_req_irq_msix(vsi, int_name);
7084 if (err)
7085 goto err_setup_rx;
7086
7087 ice_vsi_cfg_msix(vsi);
7088
7089 err = ice_vsi_start_all_rx_rings(vsi);
7090 if (err)
7091 goto err_up_complete;
7092
7093 clear_bit(ICE_VSI_DOWN, vsi->state);
7094 ice_vsi_ena_irq(vsi);
7095
7096 return 0;
7097
7098 err_up_complete:
7099 ice_down(vsi);
7100 err_setup_rx:
7101 ice_vsi_free_rx_rings(vsi);
7102 err_setup_tx:
7103 ice_vsi_free_tx_rings(vsi);
7104
7105 return err;
7106 }
7107
7108 /**
7109 * ice_vsi_open - Called when a network interface is made active
7110 * @vsi: the VSI to open
7111 *
7112 * Initialization of the VSI
7113 *
7114 * Returns 0 on success, negative value on error
7115 */
ice_vsi_open(struct ice_vsi * vsi)7116 int ice_vsi_open(struct ice_vsi *vsi)
7117 {
7118 char int_name[ICE_INT_NAME_STR_LEN];
7119 struct ice_pf *pf = vsi->back;
7120 int err;
7121
7122 /* allocate descriptors */
7123 err = ice_vsi_setup_tx_rings(vsi);
7124 if (err)
7125 goto err_setup_tx;
7126
7127 err = ice_vsi_setup_rx_rings(vsi);
7128 if (err)
7129 goto err_setup_rx;
7130
7131 err = ice_vsi_cfg_lan(vsi);
7132 if (err)
7133 goto err_setup_rx;
7134
7135 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7136 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7137 err = ice_vsi_req_irq_msix(vsi, int_name);
7138 if (err)
7139 goto err_setup_rx;
7140
7141 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7142
7143 if (vsi->type == ICE_VSI_PF) {
7144 /* Notify the stack of the actual queue counts. */
7145 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7146 if (err)
7147 goto err_set_qs;
7148
7149 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7150 if (err)
7151 goto err_set_qs;
7152 }
7153
7154 err = ice_up_complete(vsi);
7155 if (err)
7156 goto err_up_complete;
7157
7158 return 0;
7159
7160 err_up_complete:
7161 ice_down(vsi);
7162 err_set_qs:
7163 ice_vsi_free_irq(vsi);
7164 err_setup_rx:
7165 ice_vsi_free_rx_rings(vsi);
7166 err_setup_tx:
7167 ice_vsi_free_tx_rings(vsi);
7168
7169 return err;
7170 }
7171
7172 /**
7173 * ice_vsi_release_all - Delete all VSIs
7174 * @pf: PF from which all VSIs are being removed
7175 */
ice_vsi_release_all(struct ice_pf * pf)7176 static void ice_vsi_release_all(struct ice_pf *pf)
7177 {
7178 int err, i;
7179
7180 if (!pf->vsi)
7181 return;
7182
7183 ice_for_each_vsi(pf, i) {
7184 if (!pf->vsi[i])
7185 continue;
7186
7187 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7188 continue;
7189
7190 err = ice_vsi_release(pf->vsi[i]);
7191 if (err)
7192 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7193 i, err, pf->vsi[i]->vsi_num);
7194 }
7195 }
7196
7197 /**
7198 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7199 * @pf: pointer to the PF instance
7200 * @type: VSI type to rebuild
7201 *
7202 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7203 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7204 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7205 {
7206 struct device *dev = ice_pf_to_dev(pf);
7207 int i, err;
7208
7209 ice_for_each_vsi(pf, i) {
7210 struct ice_vsi *vsi = pf->vsi[i];
7211
7212 if (!vsi || vsi->type != type)
7213 continue;
7214
7215 /* rebuild the VSI */
7216 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7217 if (err) {
7218 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7219 err, vsi->idx, ice_vsi_type_str(type));
7220 return err;
7221 }
7222
7223 /* replay filters for the VSI */
7224 err = ice_replay_vsi(&pf->hw, vsi->idx);
7225 if (err) {
7226 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7227 err, vsi->idx, ice_vsi_type_str(type));
7228 return err;
7229 }
7230
7231 /* Re-map HW VSI number, using VSI handle that has been
7232 * previously validated in ice_replay_vsi() call above
7233 */
7234 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7235
7236 /* enable the VSI */
7237 err = ice_ena_vsi(vsi, false);
7238 if (err) {
7239 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7240 err, vsi->idx, ice_vsi_type_str(type));
7241 return err;
7242 }
7243
7244 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7245 ice_vsi_type_str(type));
7246 }
7247
7248 return 0;
7249 }
7250
7251 /**
7252 * ice_update_pf_netdev_link - Update PF netdev link status
7253 * @pf: pointer to the PF instance
7254 */
ice_update_pf_netdev_link(struct ice_pf * pf)7255 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7256 {
7257 bool link_up;
7258 int i;
7259
7260 ice_for_each_vsi(pf, i) {
7261 struct ice_vsi *vsi = pf->vsi[i];
7262
7263 if (!vsi || vsi->type != ICE_VSI_PF)
7264 return;
7265
7266 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7267 if (link_up) {
7268 netif_carrier_on(pf->vsi[i]->netdev);
7269 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7270 } else {
7271 netif_carrier_off(pf->vsi[i]->netdev);
7272 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7273 }
7274 }
7275 }
7276
7277 /**
7278 * ice_rebuild - rebuild after reset
7279 * @pf: PF to rebuild
7280 * @reset_type: type of reset
7281 *
7282 * Do not rebuild VF VSI in this flow because that is already handled via
7283 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7284 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7285 * to reset/rebuild all the VF VSI twice.
7286 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7287 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7288 {
7289 struct device *dev = ice_pf_to_dev(pf);
7290 struct ice_hw *hw = &pf->hw;
7291 bool dvm;
7292 int err;
7293
7294 if (test_bit(ICE_DOWN, pf->state))
7295 goto clear_recovery;
7296
7297 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7298
7299 #define ICE_EMP_RESET_SLEEP_MS 5000
7300 if (reset_type == ICE_RESET_EMPR) {
7301 /* If an EMP reset has occurred, any previously pending flash
7302 * update will have completed. We no longer know whether or
7303 * not the NVM update EMP reset is restricted.
7304 */
7305 pf->fw_emp_reset_disabled = false;
7306
7307 msleep(ICE_EMP_RESET_SLEEP_MS);
7308 }
7309
7310 err = ice_init_all_ctrlq(hw);
7311 if (err) {
7312 dev_err(dev, "control queues init failed %d\n", err);
7313 goto err_init_ctrlq;
7314 }
7315
7316 /* if DDP was previously loaded successfully */
7317 if (!ice_is_safe_mode(pf)) {
7318 /* reload the SW DB of filter tables */
7319 if (reset_type == ICE_RESET_PFR)
7320 ice_fill_blk_tbls(hw);
7321 else
7322 /* Reload DDP Package after CORER/GLOBR reset */
7323 ice_load_pkg(NULL, pf);
7324 }
7325
7326 err = ice_clear_pf_cfg(hw);
7327 if (err) {
7328 dev_err(dev, "clear PF configuration failed %d\n", err);
7329 goto err_init_ctrlq;
7330 }
7331
7332 ice_clear_pxe_mode(hw);
7333
7334 err = ice_init_nvm(hw);
7335 if (err) {
7336 dev_err(dev, "ice_init_nvm failed %d\n", err);
7337 goto err_init_ctrlq;
7338 }
7339
7340 err = ice_get_caps(hw);
7341 if (err) {
7342 dev_err(dev, "ice_get_caps failed %d\n", err);
7343 goto err_init_ctrlq;
7344 }
7345
7346 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7347 if (err) {
7348 dev_err(dev, "set_mac_cfg failed %d\n", err);
7349 goto err_init_ctrlq;
7350 }
7351
7352 dvm = ice_is_dvm_ena(hw);
7353
7354 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7355 if (err)
7356 goto err_init_ctrlq;
7357
7358 err = ice_sched_init_port(hw->port_info);
7359 if (err)
7360 goto err_sched_init_port;
7361
7362 /* start misc vector */
7363 err = ice_req_irq_msix_misc(pf);
7364 if (err) {
7365 dev_err(dev, "misc vector setup failed: %d\n", err);
7366 goto err_sched_init_port;
7367 }
7368
7369 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7370 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7371 if (!rd32(hw, PFQF_FD_SIZE)) {
7372 u16 unused, guar, b_effort;
7373
7374 guar = hw->func_caps.fd_fltr_guar;
7375 b_effort = hw->func_caps.fd_fltr_best_effort;
7376
7377 /* force guaranteed filter pool for PF */
7378 ice_alloc_fd_guar_item(hw, &unused, guar);
7379 /* force shared filter pool for PF */
7380 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7381 }
7382 }
7383
7384 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7385 ice_dcb_rebuild(pf);
7386
7387 /* If the PF previously had enabled PTP, PTP init needs to happen before
7388 * the VSI rebuild. If not, this causes the PTP link status events to
7389 * fail.
7390 */
7391 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7392 ice_ptp_reset(pf);
7393
7394 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7395 ice_gnss_init(pf);
7396
7397 /* rebuild PF VSI */
7398 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7399 if (err) {
7400 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7401 goto err_vsi_rebuild;
7402 }
7403
7404 /* configure PTP timestamping after VSI rebuild */
7405 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7406 ice_ptp_cfg_timestamp(pf, false);
7407
7408 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7409 if (err) {
7410 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7411 goto err_vsi_rebuild;
7412 }
7413
7414 if (reset_type == ICE_RESET_PFR) {
7415 err = ice_rebuild_channels(pf);
7416 if (err) {
7417 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7418 err);
7419 goto err_vsi_rebuild;
7420 }
7421 }
7422
7423 /* If Flow Director is active */
7424 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7425 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7426 if (err) {
7427 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7428 goto err_vsi_rebuild;
7429 }
7430
7431 /* replay HW Flow Director recipes */
7432 if (hw->fdir_prof)
7433 ice_fdir_replay_flows(hw);
7434
7435 /* replay Flow Director filters */
7436 ice_fdir_replay_fltrs(pf);
7437
7438 ice_rebuild_arfs(pf);
7439 }
7440
7441 ice_update_pf_netdev_link(pf);
7442
7443 /* tell the firmware we are up */
7444 err = ice_send_version(pf);
7445 if (err) {
7446 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7447 err);
7448 goto err_vsi_rebuild;
7449 }
7450
7451 ice_replay_post(hw);
7452
7453 /* if we get here, reset flow is successful */
7454 clear_bit(ICE_RESET_FAILED, pf->state);
7455
7456 ice_plug_aux_dev(pf);
7457 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7458 ice_lag_rebuild(pf);
7459 return;
7460
7461 err_vsi_rebuild:
7462 err_sched_init_port:
7463 ice_sched_cleanup_all(hw);
7464 err_init_ctrlq:
7465 ice_shutdown_all_ctrlq(hw);
7466 set_bit(ICE_RESET_FAILED, pf->state);
7467 clear_recovery:
7468 /* set this bit in PF state to control service task scheduling */
7469 set_bit(ICE_NEEDS_RESTART, pf->state);
7470 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7471 }
7472
7473 /**
7474 * ice_change_mtu - NDO callback to change the MTU
7475 * @netdev: network interface device structure
7476 * @new_mtu: new value for maximum frame size
7477 *
7478 * Returns 0 on success, negative on failure
7479 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7480 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7481 {
7482 struct ice_netdev_priv *np = netdev_priv(netdev);
7483 struct ice_vsi *vsi = np->vsi;
7484 struct ice_pf *pf = vsi->back;
7485 struct bpf_prog *prog;
7486 u8 count = 0;
7487 int err = 0;
7488
7489 if (new_mtu == (int)netdev->mtu) {
7490 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7491 return 0;
7492 }
7493
7494 prog = vsi->xdp_prog;
7495 if (prog && !prog->aux->xdp_has_frags) {
7496 int frame_size = ice_max_xdp_frame_size(vsi);
7497
7498 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7499 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7500 frame_size - ICE_ETH_PKT_HDR_PAD);
7501 return -EINVAL;
7502 }
7503 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7504 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7505 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7506 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7507 return -EINVAL;
7508 }
7509 }
7510
7511 /* if a reset is in progress, wait for some time for it to complete */
7512 do {
7513 if (ice_is_reset_in_progress(pf->state)) {
7514 count++;
7515 usleep_range(1000, 2000);
7516 } else {
7517 break;
7518 }
7519
7520 } while (count < 100);
7521
7522 if (count == 100) {
7523 netdev_err(netdev, "can't change MTU. Device is busy\n");
7524 return -EBUSY;
7525 }
7526
7527 netdev->mtu = (unsigned int)new_mtu;
7528 err = ice_down_up(vsi);
7529 if (err)
7530 return err;
7531
7532 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7533 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7534
7535 return err;
7536 }
7537
7538 /**
7539 * ice_eth_ioctl - Access the hwtstamp interface
7540 * @netdev: network interface device structure
7541 * @ifr: interface request data
7542 * @cmd: ioctl command
7543 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7544 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7545 {
7546 struct ice_netdev_priv *np = netdev_priv(netdev);
7547 struct ice_pf *pf = np->vsi->back;
7548
7549 switch (cmd) {
7550 case SIOCGHWTSTAMP:
7551 return ice_ptp_get_ts_config(pf, ifr);
7552 case SIOCSHWTSTAMP:
7553 return ice_ptp_set_ts_config(pf, ifr);
7554 default:
7555 return -EOPNOTSUPP;
7556 }
7557 }
7558
7559 /**
7560 * ice_aq_str - convert AQ err code to a string
7561 * @aq_err: the AQ error code to convert
7562 */
ice_aq_str(enum ice_aq_err aq_err)7563 const char *ice_aq_str(enum ice_aq_err aq_err)
7564 {
7565 switch (aq_err) {
7566 case ICE_AQ_RC_OK:
7567 return "OK";
7568 case ICE_AQ_RC_EPERM:
7569 return "ICE_AQ_RC_EPERM";
7570 case ICE_AQ_RC_ENOENT:
7571 return "ICE_AQ_RC_ENOENT";
7572 case ICE_AQ_RC_ENOMEM:
7573 return "ICE_AQ_RC_ENOMEM";
7574 case ICE_AQ_RC_EBUSY:
7575 return "ICE_AQ_RC_EBUSY";
7576 case ICE_AQ_RC_EEXIST:
7577 return "ICE_AQ_RC_EEXIST";
7578 case ICE_AQ_RC_EINVAL:
7579 return "ICE_AQ_RC_EINVAL";
7580 case ICE_AQ_RC_ENOSPC:
7581 return "ICE_AQ_RC_ENOSPC";
7582 case ICE_AQ_RC_ENOSYS:
7583 return "ICE_AQ_RC_ENOSYS";
7584 case ICE_AQ_RC_EMODE:
7585 return "ICE_AQ_RC_EMODE";
7586 case ICE_AQ_RC_ENOSEC:
7587 return "ICE_AQ_RC_ENOSEC";
7588 case ICE_AQ_RC_EBADSIG:
7589 return "ICE_AQ_RC_EBADSIG";
7590 case ICE_AQ_RC_ESVN:
7591 return "ICE_AQ_RC_ESVN";
7592 case ICE_AQ_RC_EBADMAN:
7593 return "ICE_AQ_RC_EBADMAN";
7594 case ICE_AQ_RC_EBADBUF:
7595 return "ICE_AQ_RC_EBADBUF";
7596 }
7597
7598 return "ICE_AQ_RC_UNKNOWN";
7599 }
7600
7601 /**
7602 * ice_set_rss_lut - Set RSS LUT
7603 * @vsi: Pointer to VSI structure
7604 * @lut: Lookup table
7605 * @lut_size: Lookup table size
7606 *
7607 * Returns 0 on success, negative on failure
7608 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7609 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7610 {
7611 struct ice_aq_get_set_rss_lut_params params = {};
7612 struct ice_hw *hw = &vsi->back->hw;
7613 int status;
7614
7615 if (!lut)
7616 return -EINVAL;
7617
7618 params.vsi_handle = vsi->idx;
7619 params.lut_size = lut_size;
7620 params.lut_type = vsi->rss_lut_type;
7621 params.lut = lut;
7622
7623 status = ice_aq_set_rss_lut(hw, ¶ms);
7624 if (status)
7625 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7626 status, ice_aq_str(hw->adminq.sq_last_status));
7627
7628 return status;
7629 }
7630
7631 /**
7632 * ice_set_rss_key - Set RSS key
7633 * @vsi: Pointer to the VSI structure
7634 * @seed: RSS hash seed
7635 *
7636 * Returns 0 on success, negative on failure
7637 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7638 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7639 {
7640 struct ice_hw *hw = &vsi->back->hw;
7641 int status;
7642
7643 if (!seed)
7644 return -EINVAL;
7645
7646 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7647 if (status)
7648 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7649 status, ice_aq_str(hw->adminq.sq_last_status));
7650
7651 return status;
7652 }
7653
7654 /**
7655 * ice_get_rss_lut - Get RSS LUT
7656 * @vsi: Pointer to VSI structure
7657 * @lut: Buffer to store the lookup table entries
7658 * @lut_size: Size of buffer to store the lookup table entries
7659 *
7660 * Returns 0 on success, negative on failure
7661 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7662 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7663 {
7664 struct ice_aq_get_set_rss_lut_params params = {};
7665 struct ice_hw *hw = &vsi->back->hw;
7666 int status;
7667
7668 if (!lut)
7669 return -EINVAL;
7670
7671 params.vsi_handle = vsi->idx;
7672 params.lut_size = lut_size;
7673 params.lut_type = vsi->rss_lut_type;
7674 params.lut = lut;
7675
7676 status = ice_aq_get_rss_lut(hw, ¶ms);
7677 if (status)
7678 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7679 status, ice_aq_str(hw->adminq.sq_last_status));
7680
7681 return status;
7682 }
7683
7684 /**
7685 * ice_get_rss_key - Get RSS key
7686 * @vsi: Pointer to VSI structure
7687 * @seed: Buffer to store the key in
7688 *
7689 * Returns 0 on success, negative on failure
7690 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7691 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7692 {
7693 struct ice_hw *hw = &vsi->back->hw;
7694 int status;
7695
7696 if (!seed)
7697 return -EINVAL;
7698
7699 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7700 if (status)
7701 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7702 status, ice_aq_str(hw->adminq.sq_last_status));
7703
7704 return status;
7705 }
7706
7707 /**
7708 * ice_bridge_getlink - Get the hardware bridge mode
7709 * @skb: skb buff
7710 * @pid: process ID
7711 * @seq: RTNL message seq
7712 * @dev: the netdev being configured
7713 * @filter_mask: filter mask passed in
7714 * @nlflags: netlink flags passed in
7715 *
7716 * Return the bridge mode (VEB/VEPA)
7717 */
7718 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)7719 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7720 struct net_device *dev, u32 filter_mask, int nlflags)
7721 {
7722 struct ice_netdev_priv *np = netdev_priv(dev);
7723 struct ice_vsi *vsi = np->vsi;
7724 struct ice_pf *pf = vsi->back;
7725 u16 bmode;
7726
7727 bmode = pf->first_sw->bridge_mode;
7728
7729 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7730 filter_mask, NULL);
7731 }
7732
7733 /**
7734 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7735 * @vsi: Pointer to VSI structure
7736 * @bmode: Hardware bridge mode (VEB/VEPA)
7737 *
7738 * Returns 0 on success, negative on failure
7739 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)7740 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7741 {
7742 struct ice_aqc_vsi_props *vsi_props;
7743 struct ice_hw *hw = &vsi->back->hw;
7744 struct ice_vsi_ctx *ctxt;
7745 int ret;
7746
7747 vsi_props = &vsi->info;
7748
7749 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7750 if (!ctxt)
7751 return -ENOMEM;
7752
7753 ctxt->info = vsi->info;
7754
7755 if (bmode == BRIDGE_MODE_VEB)
7756 /* change from VEPA to VEB mode */
7757 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7758 else
7759 /* change from VEB to VEPA mode */
7760 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7761 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7762
7763 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7764 if (ret) {
7765 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7766 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7767 goto out;
7768 }
7769 /* Update sw flags for book keeping */
7770 vsi_props->sw_flags = ctxt->info.sw_flags;
7771
7772 out:
7773 kfree(ctxt);
7774 return ret;
7775 }
7776
7777 /**
7778 * ice_bridge_setlink - Set the hardware bridge mode
7779 * @dev: the netdev being configured
7780 * @nlh: RTNL message
7781 * @flags: bridge setlink flags
7782 * @extack: netlink extended ack
7783 *
7784 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7785 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7786 * not already set for all VSIs connected to this switch. And also update the
7787 * unicast switch filter rules for the corresponding switch of the netdev.
7788 */
7789 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)7790 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7791 u16 __always_unused flags,
7792 struct netlink_ext_ack __always_unused *extack)
7793 {
7794 struct ice_netdev_priv *np = netdev_priv(dev);
7795 struct ice_pf *pf = np->vsi->back;
7796 struct nlattr *attr, *br_spec;
7797 struct ice_hw *hw = &pf->hw;
7798 struct ice_sw *pf_sw;
7799 int rem, v, err = 0;
7800
7801 pf_sw = pf->first_sw;
7802 /* find the attribute in the netlink message */
7803 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7804 if (!br_spec)
7805 return -EINVAL;
7806
7807 nla_for_each_nested(attr, br_spec, rem) {
7808 __u16 mode;
7809
7810 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7811 continue;
7812 mode = nla_get_u16(attr);
7813 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7814 return -EINVAL;
7815 /* Continue if bridge mode is not being flipped */
7816 if (mode == pf_sw->bridge_mode)
7817 continue;
7818 /* Iterates through the PF VSI list and update the loopback
7819 * mode of the VSI
7820 */
7821 ice_for_each_vsi(pf, v) {
7822 if (!pf->vsi[v])
7823 continue;
7824 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7825 if (err)
7826 return err;
7827 }
7828
7829 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7830 /* Update the unicast switch filter rules for the corresponding
7831 * switch of the netdev
7832 */
7833 err = ice_update_sw_rule_bridge_mode(hw);
7834 if (err) {
7835 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7836 mode, err,
7837 ice_aq_str(hw->adminq.sq_last_status));
7838 /* revert hw->evb_veb */
7839 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7840 return err;
7841 }
7842
7843 pf_sw->bridge_mode = mode;
7844 }
7845
7846 return 0;
7847 }
7848
7849 /**
7850 * ice_tx_timeout - Respond to a Tx Hang
7851 * @netdev: network interface device structure
7852 * @txqueue: Tx queue
7853 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)7854 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7855 {
7856 struct ice_netdev_priv *np = netdev_priv(netdev);
7857 struct ice_tx_ring *tx_ring = NULL;
7858 struct ice_vsi *vsi = np->vsi;
7859 struct ice_pf *pf = vsi->back;
7860 u32 i;
7861
7862 pf->tx_timeout_count++;
7863
7864 /* Check if PFC is enabled for the TC to which the queue belongs
7865 * to. If yes then Tx timeout is not caused by a hung queue, no
7866 * need to reset and rebuild
7867 */
7868 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7869 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7870 txqueue);
7871 return;
7872 }
7873
7874 /* now that we have an index, find the tx_ring struct */
7875 ice_for_each_txq(vsi, i)
7876 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7877 if (txqueue == vsi->tx_rings[i]->q_index) {
7878 tx_ring = vsi->tx_rings[i];
7879 break;
7880 }
7881
7882 /* Reset recovery level if enough time has elapsed after last timeout.
7883 * Also ensure no new reset action happens before next timeout period.
7884 */
7885 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7886 pf->tx_timeout_recovery_level = 1;
7887 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7888 netdev->watchdog_timeo)))
7889 return;
7890
7891 if (tx_ring) {
7892 struct ice_hw *hw = &pf->hw;
7893 u32 head, val = 0;
7894
7895 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7896 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7897 /* Read interrupt register */
7898 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7899
7900 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7901 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7902 head, tx_ring->next_to_use, val);
7903 }
7904
7905 pf->tx_timeout_last_recovery = jiffies;
7906 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7907 pf->tx_timeout_recovery_level, txqueue);
7908
7909 switch (pf->tx_timeout_recovery_level) {
7910 case 1:
7911 set_bit(ICE_PFR_REQ, pf->state);
7912 break;
7913 case 2:
7914 set_bit(ICE_CORER_REQ, pf->state);
7915 break;
7916 case 3:
7917 set_bit(ICE_GLOBR_REQ, pf->state);
7918 break;
7919 default:
7920 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7921 set_bit(ICE_DOWN, pf->state);
7922 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7923 set_bit(ICE_SERVICE_DIS, pf->state);
7924 break;
7925 }
7926
7927 ice_service_task_schedule(pf);
7928 pf->tx_timeout_recovery_level++;
7929 }
7930
7931 /**
7932 * ice_setup_tc_cls_flower - flower classifier offloads
7933 * @np: net device to configure
7934 * @filter_dev: device on which filter is added
7935 * @cls_flower: offload data
7936 */
7937 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)7938 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7939 struct net_device *filter_dev,
7940 struct flow_cls_offload *cls_flower)
7941 {
7942 struct ice_vsi *vsi = np->vsi;
7943
7944 if (cls_flower->common.chain_index)
7945 return -EOPNOTSUPP;
7946
7947 switch (cls_flower->command) {
7948 case FLOW_CLS_REPLACE:
7949 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7950 case FLOW_CLS_DESTROY:
7951 return ice_del_cls_flower(vsi, cls_flower);
7952 default:
7953 return -EINVAL;
7954 }
7955 }
7956
7957 /**
7958 * ice_setup_tc_block_cb - callback handler registered for TC block
7959 * @type: TC SETUP type
7960 * @type_data: TC flower offload data that contains user input
7961 * @cb_priv: netdev private data
7962 */
7963 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)7964 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7965 {
7966 struct ice_netdev_priv *np = cb_priv;
7967
7968 switch (type) {
7969 case TC_SETUP_CLSFLOWER:
7970 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7971 type_data);
7972 default:
7973 return -EOPNOTSUPP;
7974 }
7975 }
7976
7977 /**
7978 * ice_validate_mqprio_qopt - Validate TCF input parameters
7979 * @vsi: Pointer to VSI
7980 * @mqprio_qopt: input parameters for mqprio queue configuration
7981 *
7982 * This function validates MQPRIO params, such as qcount (power of 2 wherever
7983 * needed), and make sure user doesn't specify qcount and BW rate limit
7984 * for TCs, which are more than "num_tc"
7985 */
7986 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)7987 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7988 struct tc_mqprio_qopt_offload *mqprio_qopt)
7989 {
7990 int non_power_of_2_qcount = 0;
7991 struct ice_pf *pf = vsi->back;
7992 int max_rss_q_cnt = 0;
7993 u64 sum_min_rate = 0;
7994 struct device *dev;
7995 int i, speed;
7996 u8 num_tc;
7997
7998 if (vsi->type != ICE_VSI_PF)
7999 return -EINVAL;
8000
8001 if (mqprio_qopt->qopt.offset[0] != 0 ||
8002 mqprio_qopt->qopt.num_tc < 1 ||
8003 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8004 return -EINVAL;
8005
8006 dev = ice_pf_to_dev(pf);
8007 vsi->ch_rss_size = 0;
8008 num_tc = mqprio_qopt->qopt.num_tc;
8009 speed = ice_get_link_speed_kbps(vsi);
8010
8011 for (i = 0; num_tc; i++) {
8012 int qcount = mqprio_qopt->qopt.count[i];
8013 u64 max_rate, min_rate, rem;
8014
8015 if (!qcount)
8016 return -EINVAL;
8017
8018 if (is_power_of_2(qcount)) {
8019 if (non_power_of_2_qcount &&
8020 qcount > non_power_of_2_qcount) {
8021 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8022 qcount, non_power_of_2_qcount);
8023 return -EINVAL;
8024 }
8025 if (qcount > max_rss_q_cnt)
8026 max_rss_q_cnt = qcount;
8027 } else {
8028 if (non_power_of_2_qcount &&
8029 qcount != non_power_of_2_qcount) {
8030 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8031 qcount, non_power_of_2_qcount);
8032 return -EINVAL;
8033 }
8034 if (qcount < max_rss_q_cnt) {
8035 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8036 qcount, max_rss_q_cnt);
8037 return -EINVAL;
8038 }
8039 max_rss_q_cnt = qcount;
8040 non_power_of_2_qcount = qcount;
8041 }
8042
8043 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8044 * converts the bandwidth rate limit into Bytes/s when
8045 * passing it down to the driver. So convert input bandwidth
8046 * from Bytes/s to Kbps
8047 */
8048 max_rate = mqprio_qopt->max_rate[i];
8049 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8050
8051 /* min_rate is minimum guaranteed rate and it can't be zero */
8052 min_rate = mqprio_qopt->min_rate[i];
8053 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8054 sum_min_rate += min_rate;
8055
8056 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8057 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8058 min_rate, ICE_MIN_BW_LIMIT);
8059 return -EINVAL;
8060 }
8061
8062 if (max_rate && max_rate > speed) {
8063 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8064 i, max_rate, speed);
8065 return -EINVAL;
8066 }
8067
8068 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8069 if (rem) {
8070 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8071 i, ICE_MIN_BW_LIMIT);
8072 return -EINVAL;
8073 }
8074
8075 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8076 if (rem) {
8077 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8078 i, ICE_MIN_BW_LIMIT);
8079 return -EINVAL;
8080 }
8081
8082 /* min_rate can't be more than max_rate, except when max_rate
8083 * is zero (implies max_rate sought is max line rate). In such
8084 * a case min_rate can be more than max.
8085 */
8086 if (max_rate && min_rate > max_rate) {
8087 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8088 min_rate, max_rate);
8089 return -EINVAL;
8090 }
8091
8092 if (i >= mqprio_qopt->qopt.num_tc - 1)
8093 break;
8094 if (mqprio_qopt->qopt.offset[i + 1] !=
8095 (mqprio_qopt->qopt.offset[i] + qcount))
8096 return -EINVAL;
8097 }
8098 if (vsi->num_rxq <
8099 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8100 return -EINVAL;
8101 if (vsi->num_txq <
8102 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8103 return -EINVAL;
8104
8105 if (sum_min_rate && sum_min_rate > (u64)speed) {
8106 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8107 sum_min_rate, speed);
8108 return -EINVAL;
8109 }
8110
8111 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8112 vsi->ch_rss_size = max_rss_q_cnt;
8113
8114 return 0;
8115 }
8116
8117 /**
8118 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8119 * @pf: ptr to PF device
8120 * @vsi: ptr to VSI
8121 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8122 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8123 {
8124 struct device *dev = ice_pf_to_dev(pf);
8125 bool added = false;
8126 struct ice_hw *hw;
8127 int flow;
8128
8129 if (!(vsi->num_gfltr || vsi->num_bfltr))
8130 return -EINVAL;
8131
8132 hw = &pf->hw;
8133 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8134 struct ice_fd_hw_prof *prof;
8135 int tun, status;
8136 u64 entry_h;
8137
8138 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8139 hw->fdir_prof[flow]->cnt))
8140 continue;
8141
8142 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8143 enum ice_flow_priority prio;
8144 u64 prof_id;
8145
8146 /* add this VSI to FDir profile for this flow */
8147 prio = ICE_FLOW_PRIO_NORMAL;
8148 prof = hw->fdir_prof[flow];
8149 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8150 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8151 prof->vsi_h[0], vsi->idx,
8152 prio, prof->fdir_seg[tun],
8153 &entry_h);
8154 if (status) {
8155 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8156 vsi->idx, flow);
8157 continue;
8158 }
8159
8160 prof->entry_h[prof->cnt][tun] = entry_h;
8161 }
8162
8163 /* store VSI for filter replay and delete */
8164 prof->vsi_h[prof->cnt] = vsi->idx;
8165 prof->cnt++;
8166
8167 added = true;
8168 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8169 flow);
8170 }
8171
8172 if (!added)
8173 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8174
8175 return 0;
8176 }
8177
8178 /**
8179 * ice_add_channel - add a channel by adding VSI
8180 * @pf: ptr to PF device
8181 * @sw_id: underlying HW switching element ID
8182 * @ch: ptr to channel structure
8183 *
8184 * Add a channel (VSI) using add_vsi and queue_map
8185 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8186 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8187 {
8188 struct device *dev = ice_pf_to_dev(pf);
8189 struct ice_vsi *vsi;
8190
8191 if (ch->type != ICE_VSI_CHNL) {
8192 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8193 return -EINVAL;
8194 }
8195
8196 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8197 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8198 dev_err(dev, "create chnl VSI failure\n");
8199 return -EINVAL;
8200 }
8201
8202 ice_add_vsi_to_fdir(pf, vsi);
8203
8204 ch->sw_id = sw_id;
8205 ch->vsi_num = vsi->vsi_num;
8206 ch->info.mapping_flags = vsi->info.mapping_flags;
8207 ch->ch_vsi = vsi;
8208 /* set the back pointer of channel for newly created VSI */
8209 vsi->ch = ch;
8210
8211 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8212 sizeof(vsi->info.q_mapping));
8213 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8214 sizeof(vsi->info.tc_mapping));
8215
8216 return 0;
8217 }
8218
8219 /**
8220 * ice_chnl_cfg_res
8221 * @vsi: the VSI being setup
8222 * @ch: ptr to channel structure
8223 *
8224 * Configure channel specific resources such as rings, vector.
8225 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8226 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8227 {
8228 int i;
8229
8230 for (i = 0; i < ch->num_txq; i++) {
8231 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8232 struct ice_ring_container *rc;
8233 struct ice_tx_ring *tx_ring;
8234 struct ice_rx_ring *rx_ring;
8235
8236 tx_ring = vsi->tx_rings[ch->base_q + i];
8237 rx_ring = vsi->rx_rings[ch->base_q + i];
8238 if (!tx_ring || !rx_ring)
8239 continue;
8240
8241 /* setup ring being channel enabled */
8242 tx_ring->ch = ch;
8243 rx_ring->ch = ch;
8244
8245 /* following code block sets up vector specific attributes */
8246 tx_q_vector = tx_ring->q_vector;
8247 rx_q_vector = rx_ring->q_vector;
8248 if (!tx_q_vector && !rx_q_vector)
8249 continue;
8250
8251 if (tx_q_vector) {
8252 tx_q_vector->ch = ch;
8253 /* setup Tx and Rx ITR setting if DIM is off */
8254 rc = &tx_q_vector->tx;
8255 if (!ITR_IS_DYNAMIC(rc))
8256 ice_write_itr(rc, rc->itr_setting);
8257 }
8258 if (rx_q_vector) {
8259 rx_q_vector->ch = ch;
8260 /* setup Tx and Rx ITR setting if DIM is off */
8261 rc = &rx_q_vector->rx;
8262 if (!ITR_IS_DYNAMIC(rc))
8263 ice_write_itr(rc, rc->itr_setting);
8264 }
8265 }
8266
8267 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8268 * GLINT_ITR register would have written to perform in-context
8269 * update, hence perform flush
8270 */
8271 if (ch->num_txq || ch->num_rxq)
8272 ice_flush(&vsi->back->hw);
8273 }
8274
8275 /**
8276 * ice_cfg_chnl_all_res - configure channel resources
8277 * @vsi: pte to main_vsi
8278 * @ch: ptr to channel structure
8279 *
8280 * This function configures channel specific resources such as flow-director
8281 * counter index, and other resources such as queues, vectors, ITR settings
8282 */
8283 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8284 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8285 {
8286 /* configure channel (aka ADQ) resources such as queues, vectors,
8287 * ITR settings for channel specific vectors and anything else
8288 */
8289 ice_chnl_cfg_res(vsi, ch);
8290 }
8291
8292 /**
8293 * ice_setup_hw_channel - setup new channel
8294 * @pf: ptr to PF device
8295 * @vsi: the VSI being setup
8296 * @ch: ptr to channel structure
8297 * @sw_id: underlying HW switching element ID
8298 * @type: type of channel to be created (VMDq2/VF)
8299 *
8300 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8301 * and configures Tx rings accordingly
8302 */
8303 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8304 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8305 struct ice_channel *ch, u16 sw_id, u8 type)
8306 {
8307 struct device *dev = ice_pf_to_dev(pf);
8308 int ret;
8309
8310 ch->base_q = vsi->next_base_q;
8311 ch->type = type;
8312
8313 ret = ice_add_channel(pf, sw_id, ch);
8314 if (ret) {
8315 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8316 return ret;
8317 }
8318
8319 /* configure/setup ADQ specific resources */
8320 ice_cfg_chnl_all_res(vsi, ch);
8321
8322 /* make sure to update the next_base_q so that subsequent channel's
8323 * (aka ADQ) VSI queue map is correct
8324 */
8325 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8326 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8327 ch->num_rxq);
8328
8329 return 0;
8330 }
8331
8332 /**
8333 * ice_setup_channel - setup new channel using uplink element
8334 * @pf: ptr to PF device
8335 * @vsi: the VSI being setup
8336 * @ch: ptr to channel structure
8337 *
8338 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8339 * and uplink switching element
8340 */
8341 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8342 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8343 struct ice_channel *ch)
8344 {
8345 struct device *dev = ice_pf_to_dev(pf);
8346 u16 sw_id;
8347 int ret;
8348
8349 if (vsi->type != ICE_VSI_PF) {
8350 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8351 return false;
8352 }
8353
8354 sw_id = pf->first_sw->sw_id;
8355
8356 /* create channel (VSI) */
8357 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8358 if (ret) {
8359 dev_err(dev, "failed to setup hw_channel\n");
8360 return false;
8361 }
8362 dev_dbg(dev, "successfully created channel()\n");
8363
8364 return ch->ch_vsi ? true : false;
8365 }
8366
8367 /**
8368 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8369 * @vsi: VSI to be configured
8370 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8371 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8372 */
8373 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8374 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8375 {
8376 int err;
8377
8378 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8379 if (err)
8380 return err;
8381
8382 return ice_set_max_bw_limit(vsi, max_tx_rate);
8383 }
8384
8385 /**
8386 * ice_create_q_channel - function to create channel
8387 * @vsi: VSI to be configured
8388 * @ch: ptr to channel (it contains channel specific params)
8389 *
8390 * This function creates channel (VSI) using num_queues specified by user,
8391 * reconfigs RSS if needed.
8392 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8393 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8394 {
8395 struct ice_pf *pf = vsi->back;
8396 struct device *dev;
8397
8398 if (!ch)
8399 return -EINVAL;
8400
8401 dev = ice_pf_to_dev(pf);
8402 if (!ch->num_txq || !ch->num_rxq) {
8403 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8404 return -EINVAL;
8405 }
8406
8407 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8408 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8409 vsi->cnt_q_avail, ch->num_txq);
8410 return -EINVAL;
8411 }
8412
8413 if (!ice_setup_channel(pf, vsi, ch)) {
8414 dev_info(dev, "Failed to setup channel\n");
8415 return -EINVAL;
8416 }
8417 /* configure BW rate limit */
8418 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8419 int ret;
8420
8421 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8422 ch->min_tx_rate);
8423 if (ret)
8424 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8425 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8426 else
8427 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8428 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8429 }
8430
8431 vsi->cnt_q_avail -= ch->num_txq;
8432
8433 return 0;
8434 }
8435
8436 /**
8437 * ice_rem_all_chnl_fltrs - removes all channel filters
8438 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8439 *
8440 * Remove all advanced switch filters only if they are channel specific
8441 * tc-flower based filter
8442 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8443 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8444 {
8445 struct ice_tc_flower_fltr *fltr;
8446 struct hlist_node *node;
8447
8448 /* to remove all channel filters, iterate an ordered list of filters */
8449 hlist_for_each_entry_safe(fltr, node,
8450 &pf->tc_flower_fltr_list,
8451 tc_flower_node) {
8452 struct ice_rule_query_data rule;
8453 int status;
8454
8455 /* for now process only channel specific filters */
8456 if (!ice_is_chnl_fltr(fltr))
8457 continue;
8458
8459 rule.rid = fltr->rid;
8460 rule.rule_id = fltr->rule_id;
8461 rule.vsi_handle = fltr->dest_vsi_handle;
8462 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8463 if (status) {
8464 if (status == -ENOENT)
8465 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8466 rule.rule_id);
8467 else
8468 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8469 status);
8470 } else if (fltr->dest_vsi) {
8471 /* update advanced switch filter count */
8472 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8473 u32 flags = fltr->flags;
8474
8475 fltr->dest_vsi->num_chnl_fltr--;
8476 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8477 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8478 pf->num_dmac_chnl_fltrs--;
8479 }
8480 }
8481
8482 hlist_del(&fltr->tc_flower_node);
8483 kfree(fltr);
8484 }
8485 }
8486
8487 /**
8488 * ice_remove_q_channels - Remove queue channels for the TCs
8489 * @vsi: VSI to be configured
8490 * @rem_fltr: delete advanced switch filter or not
8491 *
8492 * Remove queue channels for the TCs
8493 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8494 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8495 {
8496 struct ice_channel *ch, *ch_tmp;
8497 struct ice_pf *pf = vsi->back;
8498 int i;
8499
8500 /* remove all tc-flower based filter if they are channel filters only */
8501 if (rem_fltr)
8502 ice_rem_all_chnl_fltrs(pf);
8503
8504 /* remove ntuple filters since queue configuration is being changed */
8505 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8506 struct ice_hw *hw = &pf->hw;
8507
8508 mutex_lock(&hw->fdir_fltr_lock);
8509 ice_fdir_del_all_fltrs(vsi);
8510 mutex_unlock(&hw->fdir_fltr_lock);
8511 }
8512
8513 /* perform cleanup for channels if they exist */
8514 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8515 struct ice_vsi *ch_vsi;
8516
8517 list_del(&ch->list);
8518 ch_vsi = ch->ch_vsi;
8519 if (!ch_vsi) {
8520 kfree(ch);
8521 continue;
8522 }
8523
8524 /* Reset queue contexts */
8525 for (i = 0; i < ch->num_rxq; i++) {
8526 struct ice_tx_ring *tx_ring;
8527 struct ice_rx_ring *rx_ring;
8528
8529 tx_ring = vsi->tx_rings[ch->base_q + i];
8530 rx_ring = vsi->rx_rings[ch->base_q + i];
8531 if (tx_ring) {
8532 tx_ring->ch = NULL;
8533 if (tx_ring->q_vector)
8534 tx_ring->q_vector->ch = NULL;
8535 }
8536 if (rx_ring) {
8537 rx_ring->ch = NULL;
8538 if (rx_ring->q_vector)
8539 rx_ring->q_vector->ch = NULL;
8540 }
8541 }
8542
8543 /* Release FD resources for the channel VSI */
8544 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8545
8546 /* clear the VSI from scheduler tree */
8547 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8548
8549 /* Delete VSI from FW, PF and HW VSI arrays */
8550 ice_vsi_delete(ch->ch_vsi);
8551
8552 /* free the channel */
8553 kfree(ch);
8554 }
8555
8556 /* clear the channel VSI map which is stored in main VSI */
8557 ice_for_each_chnl_tc(i)
8558 vsi->tc_map_vsi[i] = NULL;
8559
8560 /* reset main VSI's all TC information */
8561 vsi->all_enatc = 0;
8562 vsi->all_numtc = 0;
8563 }
8564
8565 /**
8566 * ice_rebuild_channels - rebuild channel
8567 * @pf: ptr to PF
8568 *
8569 * Recreate channel VSIs and replay filters
8570 */
ice_rebuild_channels(struct ice_pf * pf)8571 static int ice_rebuild_channels(struct ice_pf *pf)
8572 {
8573 struct device *dev = ice_pf_to_dev(pf);
8574 struct ice_vsi *main_vsi;
8575 bool rem_adv_fltr = true;
8576 struct ice_channel *ch;
8577 struct ice_vsi *vsi;
8578 int tc_idx = 1;
8579 int i, err;
8580
8581 main_vsi = ice_get_main_vsi(pf);
8582 if (!main_vsi)
8583 return 0;
8584
8585 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8586 main_vsi->old_numtc == 1)
8587 return 0; /* nothing to be done */
8588
8589 /* reconfigure main VSI based on old value of TC and cached values
8590 * for MQPRIO opts
8591 */
8592 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8593 if (err) {
8594 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8595 main_vsi->old_ena_tc, main_vsi->vsi_num);
8596 return err;
8597 }
8598
8599 /* rebuild ADQ VSIs */
8600 ice_for_each_vsi(pf, i) {
8601 enum ice_vsi_type type;
8602
8603 vsi = pf->vsi[i];
8604 if (!vsi || vsi->type != ICE_VSI_CHNL)
8605 continue;
8606
8607 type = vsi->type;
8608
8609 /* rebuild ADQ VSI */
8610 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8611 if (err) {
8612 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8613 ice_vsi_type_str(type), vsi->idx, err);
8614 goto cleanup;
8615 }
8616
8617 /* Re-map HW VSI number, using VSI handle that has been
8618 * previously validated in ice_replay_vsi() call above
8619 */
8620 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8621
8622 /* replay filters for the VSI */
8623 err = ice_replay_vsi(&pf->hw, vsi->idx);
8624 if (err) {
8625 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8626 ice_vsi_type_str(type), err, vsi->idx);
8627 rem_adv_fltr = false;
8628 goto cleanup;
8629 }
8630 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8631 ice_vsi_type_str(type), vsi->idx);
8632
8633 /* store ADQ VSI at correct TC index in main VSI's
8634 * map of TC to VSI
8635 */
8636 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8637 }
8638
8639 /* ADQ VSI(s) has been rebuilt successfully, so setup
8640 * channel for main VSI's Tx and Rx rings
8641 */
8642 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8643 struct ice_vsi *ch_vsi;
8644
8645 ch_vsi = ch->ch_vsi;
8646 if (!ch_vsi)
8647 continue;
8648
8649 /* reconfig channel resources */
8650 ice_cfg_chnl_all_res(main_vsi, ch);
8651
8652 /* replay BW rate limit if it is non-zero */
8653 if (!ch->max_tx_rate && !ch->min_tx_rate)
8654 continue;
8655
8656 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8657 ch->min_tx_rate);
8658 if (err)
8659 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8660 err, ch->max_tx_rate, ch->min_tx_rate,
8661 ch_vsi->vsi_num);
8662 else
8663 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8664 ch->max_tx_rate, ch->min_tx_rate,
8665 ch_vsi->vsi_num);
8666 }
8667
8668 /* reconfig RSS for main VSI */
8669 if (main_vsi->ch_rss_size)
8670 ice_vsi_cfg_rss_lut_key(main_vsi);
8671
8672 return 0;
8673
8674 cleanup:
8675 ice_remove_q_channels(main_vsi, rem_adv_fltr);
8676 return err;
8677 }
8678
8679 /**
8680 * ice_create_q_channels - Add queue channel for the given TCs
8681 * @vsi: VSI to be configured
8682 *
8683 * Configures queue channel mapping to the given TCs
8684 */
ice_create_q_channels(struct ice_vsi * vsi)8685 static int ice_create_q_channels(struct ice_vsi *vsi)
8686 {
8687 struct ice_pf *pf = vsi->back;
8688 struct ice_channel *ch;
8689 int ret = 0, i;
8690
8691 ice_for_each_chnl_tc(i) {
8692 if (!(vsi->all_enatc & BIT(i)))
8693 continue;
8694
8695 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8696 if (!ch) {
8697 ret = -ENOMEM;
8698 goto err_free;
8699 }
8700 INIT_LIST_HEAD(&ch->list);
8701 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8702 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8703 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8704 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8705 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8706
8707 /* convert to Kbits/s */
8708 if (ch->max_tx_rate)
8709 ch->max_tx_rate = div_u64(ch->max_tx_rate,
8710 ICE_BW_KBPS_DIVISOR);
8711 if (ch->min_tx_rate)
8712 ch->min_tx_rate = div_u64(ch->min_tx_rate,
8713 ICE_BW_KBPS_DIVISOR);
8714
8715 ret = ice_create_q_channel(vsi, ch);
8716 if (ret) {
8717 dev_err(ice_pf_to_dev(pf),
8718 "failed creating channel TC:%d\n", i);
8719 kfree(ch);
8720 goto err_free;
8721 }
8722 list_add_tail(&ch->list, &vsi->ch_list);
8723 vsi->tc_map_vsi[i] = ch->ch_vsi;
8724 dev_dbg(ice_pf_to_dev(pf),
8725 "successfully created channel: VSI %pK\n", ch->ch_vsi);
8726 }
8727 return 0;
8728
8729 err_free:
8730 ice_remove_q_channels(vsi, false);
8731
8732 return ret;
8733 }
8734
8735 /**
8736 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8737 * @netdev: net device to configure
8738 * @type_data: TC offload data
8739 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)8740 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8741 {
8742 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8743 struct ice_netdev_priv *np = netdev_priv(netdev);
8744 struct ice_vsi *vsi = np->vsi;
8745 struct ice_pf *pf = vsi->back;
8746 u16 mode, ena_tc_qdisc = 0;
8747 int cur_txq, cur_rxq;
8748 u8 hw = 0, num_tcf;
8749 struct device *dev;
8750 int ret, i;
8751
8752 dev = ice_pf_to_dev(pf);
8753 num_tcf = mqprio_qopt->qopt.num_tc;
8754 hw = mqprio_qopt->qopt.hw;
8755 mode = mqprio_qopt->mode;
8756 if (!hw) {
8757 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8758 vsi->ch_rss_size = 0;
8759 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8760 goto config_tcf;
8761 }
8762
8763 /* Generate queue region map for number of TCF requested */
8764 for (i = 0; i < num_tcf; i++)
8765 ena_tc_qdisc |= BIT(i);
8766
8767 switch (mode) {
8768 case TC_MQPRIO_MODE_CHANNEL:
8769
8770 if (pf->hw.port_info->is_custom_tx_enabled) {
8771 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8772 return -EBUSY;
8773 }
8774 ice_tear_down_devlink_rate_tree(pf);
8775
8776 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8777 if (ret) {
8778 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8779 ret);
8780 return ret;
8781 }
8782 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8783 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8784 /* don't assume state of hw_tc_offload during driver load
8785 * and set the flag for TC flower filter if hw_tc_offload
8786 * already ON
8787 */
8788 if (vsi->netdev->features & NETIF_F_HW_TC)
8789 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8790 break;
8791 default:
8792 return -EINVAL;
8793 }
8794
8795 config_tcf:
8796
8797 /* Requesting same TCF configuration as already enabled */
8798 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8799 mode != TC_MQPRIO_MODE_CHANNEL)
8800 return 0;
8801
8802 /* Pause VSI queues */
8803 ice_dis_vsi(vsi, true);
8804
8805 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8806 ice_remove_q_channels(vsi, true);
8807
8808 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8809 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8810 num_online_cpus());
8811 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8812 num_online_cpus());
8813 } else {
8814 /* logic to rebuild VSI, same like ethtool -L */
8815 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8816
8817 for (i = 0; i < num_tcf; i++) {
8818 if (!(ena_tc_qdisc & BIT(i)))
8819 continue;
8820
8821 offset = vsi->mqprio_qopt.qopt.offset[i];
8822 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8823 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8824 }
8825 vsi->req_txq = offset + qcount_tx;
8826 vsi->req_rxq = offset + qcount_rx;
8827
8828 /* store away original rss_size info, so that it gets reused
8829 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8830 * determine, what should be the rss_sizefor main VSI
8831 */
8832 vsi->orig_rss_size = vsi->rss_size;
8833 }
8834
8835 /* save current values of Tx and Rx queues before calling VSI rebuild
8836 * for fallback option
8837 */
8838 cur_txq = vsi->num_txq;
8839 cur_rxq = vsi->num_rxq;
8840
8841 /* proceed with rebuild main VSI using correct number of queues */
8842 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
8843 if (ret) {
8844 /* fallback to current number of queues */
8845 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8846 vsi->req_txq = cur_txq;
8847 vsi->req_rxq = cur_rxq;
8848 clear_bit(ICE_RESET_FAILED, pf->state);
8849 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
8850 dev_err(dev, "Rebuild of main VSI failed again\n");
8851 return ret;
8852 }
8853 }
8854
8855 vsi->all_numtc = num_tcf;
8856 vsi->all_enatc = ena_tc_qdisc;
8857 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8858 if (ret) {
8859 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8860 vsi->vsi_num);
8861 goto exit;
8862 }
8863
8864 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8865 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8866 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8867
8868 /* set TC0 rate limit if specified */
8869 if (max_tx_rate || min_tx_rate) {
8870 /* convert to Kbits/s */
8871 if (max_tx_rate)
8872 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8873 if (min_tx_rate)
8874 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8875
8876 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8877 if (!ret) {
8878 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8879 max_tx_rate, min_tx_rate, vsi->vsi_num);
8880 } else {
8881 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8882 max_tx_rate, min_tx_rate, vsi->vsi_num);
8883 goto exit;
8884 }
8885 }
8886 ret = ice_create_q_channels(vsi);
8887 if (ret) {
8888 netdev_err(netdev, "failed configuring queue channels\n");
8889 goto exit;
8890 } else {
8891 netdev_dbg(netdev, "successfully configured channels\n");
8892 }
8893 }
8894
8895 if (vsi->ch_rss_size)
8896 ice_vsi_cfg_rss_lut_key(vsi);
8897
8898 exit:
8899 /* if error, reset the all_numtc and all_enatc */
8900 if (ret) {
8901 vsi->all_numtc = 0;
8902 vsi->all_enatc = 0;
8903 }
8904 /* resume VSI */
8905 ice_ena_vsi(vsi, true);
8906
8907 return ret;
8908 }
8909
8910 static LIST_HEAD(ice_block_cb_list);
8911
8912 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)8913 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8914 void *type_data)
8915 {
8916 struct ice_netdev_priv *np = netdev_priv(netdev);
8917 struct ice_pf *pf = np->vsi->back;
8918 bool locked = false;
8919 int err;
8920
8921 switch (type) {
8922 case TC_SETUP_BLOCK:
8923 return flow_block_cb_setup_simple(type_data,
8924 &ice_block_cb_list,
8925 ice_setup_tc_block_cb,
8926 np, np, true);
8927 case TC_SETUP_QDISC_MQPRIO:
8928 if (ice_is_eswitch_mode_switchdev(pf)) {
8929 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
8930 return -EOPNOTSUPP;
8931 }
8932
8933 if (pf->adev) {
8934 mutex_lock(&pf->adev_mutex);
8935 device_lock(&pf->adev->dev);
8936 locked = true;
8937 if (pf->adev->dev.driver) {
8938 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
8939 err = -EBUSY;
8940 goto adev_unlock;
8941 }
8942 }
8943
8944 /* setup traffic classifier for receive side */
8945 mutex_lock(&pf->tc_mutex);
8946 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8947 mutex_unlock(&pf->tc_mutex);
8948
8949 adev_unlock:
8950 if (locked) {
8951 device_unlock(&pf->adev->dev);
8952 mutex_unlock(&pf->adev_mutex);
8953 }
8954 return err;
8955 default:
8956 return -EOPNOTSUPP;
8957 }
8958 return -EOPNOTSUPP;
8959 }
8960
8961 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)8962 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8963 struct net_device *netdev)
8964 {
8965 struct ice_indr_block_priv *cb_priv;
8966
8967 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8968 if (!cb_priv->netdev)
8969 return NULL;
8970 if (cb_priv->netdev == netdev)
8971 return cb_priv;
8972 }
8973 return NULL;
8974 }
8975
8976 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)8977 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8978 void *indr_priv)
8979 {
8980 struct ice_indr_block_priv *priv = indr_priv;
8981 struct ice_netdev_priv *np = priv->np;
8982
8983 switch (type) {
8984 case TC_SETUP_CLSFLOWER:
8985 return ice_setup_tc_cls_flower(np, priv->netdev,
8986 (struct flow_cls_offload *)
8987 type_data);
8988 default:
8989 return -EOPNOTSUPP;
8990 }
8991 }
8992
8993 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))8994 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8995 struct ice_netdev_priv *np,
8996 struct flow_block_offload *f, void *data,
8997 void (*cleanup)(struct flow_block_cb *block_cb))
8998 {
8999 struct ice_indr_block_priv *indr_priv;
9000 struct flow_block_cb *block_cb;
9001
9002 if (!ice_is_tunnel_supported(netdev) &&
9003 !(is_vlan_dev(netdev) &&
9004 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9005 return -EOPNOTSUPP;
9006
9007 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9008 return -EOPNOTSUPP;
9009
9010 switch (f->command) {
9011 case FLOW_BLOCK_BIND:
9012 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9013 if (indr_priv)
9014 return -EEXIST;
9015
9016 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9017 if (!indr_priv)
9018 return -ENOMEM;
9019
9020 indr_priv->netdev = netdev;
9021 indr_priv->np = np;
9022 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9023
9024 block_cb =
9025 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9026 indr_priv, indr_priv,
9027 ice_rep_indr_tc_block_unbind,
9028 f, netdev, sch, data, np,
9029 cleanup);
9030
9031 if (IS_ERR(block_cb)) {
9032 list_del(&indr_priv->list);
9033 kfree(indr_priv);
9034 return PTR_ERR(block_cb);
9035 }
9036 flow_block_cb_add(block_cb, f);
9037 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9038 break;
9039 case FLOW_BLOCK_UNBIND:
9040 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9041 if (!indr_priv)
9042 return -ENOENT;
9043
9044 block_cb = flow_block_cb_lookup(f->block,
9045 ice_indr_setup_block_cb,
9046 indr_priv);
9047 if (!block_cb)
9048 return -ENOENT;
9049
9050 flow_indr_block_cb_remove(block_cb, f);
9051
9052 list_del(&block_cb->driver_list);
9053 break;
9054 default:
9055 return -EOPNOTSUPP;
9056 }
9057 return 0;
9058 }
9059
9060 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9061 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9062 void *cb_priv, enum tc_setup_type type, void *type_data,
9063 void *data,
9064 void (*cleanup)(struct flow_block_cb *block_cb))
9065 {
9066 switch (type) {
9067 case TC_SETUP_BLOCK:
9068 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9069 data, cleanup);
9070
9071 default:
9072 return -EOPNOTSUPP;
9073 }
9074 }
9075
9076 /**
9077 * ice_open - Called when a network interface becomes active
9078 * @netdev: network interface device structure
9079 *
9080 * The open entry point is called when a network interface is made
9081 * active by the system (IFF_UP). At this point all resources needed
9082 * for transmit and receive operations are allocated, the interrupt
9083 * handler is registered with the OS, the netdev watchdog is enabled,
9084 * and the stack is notified that the interface is ready.
9085 *
9086 * Returns 0 on success, negative value on failure
9087 */
ice_open(struct net_device * netdev)9088 int ice_open(struct net_device *netdev)
9089 {
9090 struct ice_netdev_priv *np = netdev_priv(netdev);
9091 struct ice_pf *pf = np->vsi->back;
9092
9093 if (ice_is_reset_in_progress(pf->state)) {
9094 netdev_err(netdev, "can't open net device while reset is in progress");
9095 return -EBUSY;
9096 }
9097
9098 return ice_open_internal(netdev);
9099 }
9100
9101 /**
9102 * ice_open_internal - Called when a network interface becomes active
9103 * @netdev: network interface device structure
9104 *
9105 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9106 * handling routine
9107 *
9108 * Returns 0 on success, negative value on failure
9109 */
ice_open_internal(struct net_device * netdev)9110 int ice_open_internal(struct net_device *netdev)
9111 {
9112 struct ice_netdev_priv *np = netdev_priv(netdev);
9113 struct ice_vsi *vsi = np->vsi;
9114 struct ice_pf *pf = vsi->back;
9115 struct ice_port_info *pi;
9116 int err;
9117
9118 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9119 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9120 return -EIO;
9121 }
9122
9123 netif_carrier_off(netdev);
9124
9125 pi = vsi->port_info;
9126 err = ice_update_link_info(pi);
9127 if (err) {
9128 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9129 return err;
9130 }
9131
9132 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9133
9134 /* Set PHY if there is media, otherwise, turn off PHY */
9135 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9136 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9137 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9138 err = ice_init_phy_user_cfg(pi);
9139 if (err) {
9140 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9141 err);
9142 return err;
9143 }
9144 }
9145
9146 err = ice_configure_phy(vsi);
9147 if (err) {
9148 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9149 err);
9150 return err;
9151 }
9152 } else {
9153 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9154 ice_set_link(vsi, false);
9155 }
9156
9157 err = ice_vsi_open(vsi);
9158 if (err)
9159 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9160 vsi->vsi_num, vsi->vsw->sw_id);
9161
9162 /* Update existing tunnels information */
9163 udp_tunnel_get_rx_info(netdev);
9164
9165 return err;
9166 }
9167
9168 /**
9169 * ice_stop - Disables a network interface
9170 * @netdev: network interface device structure
9171 *
9172 * The stop entry point is called when an interface is de-activated by the OS,
9173 * and the netdevice enters the DOWN state. The hardware is still under the
9174 * driver's control, but the netdev interface is disabled.
9175 *
9176 * Returns success only - not allowed to fail
9177 */
ice_stop(struct net_device * netdev)9178 int ice_stop(struct net_device *netdev)
9179 {
9180 struct ice_netdev_priv *np = netdev_priv(netdev);
9181 struct ice_vsi *vsi = np->vsi;
9182 struct ice_pf *pf = vsi->back;
9183
9184 if (ice_is_reset_in_progress(pf->state)) {
9185 netdev_err(netdev, "can't stop net device while reset is in progress");
9186 return -EBUSY;
9187 }
9188
9189 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9190 int link_err = ice_force_phys_link_state(vsi, false);
9191
9192 if (link_err) {
9193 if (link_err == -ENOMEDIUM)
9194 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9195 vsi->vsi_num);
9196 else
9197 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9198 vsi->vsi_num, link_err);
9199
9200 ice_vsi_close(vsi);
9201 return -EIO;
9202 }
9203 }
9204
9205 ice_vsi_close(vsi);
9206
9207 return 0;
9208 }
9209
9210 /**
9211 * ice_features_check - Validate encapsulated packet conforms to limits
9212 * @skb: skb buffer
9213 * @netdev: This port's netdev
9214 * @features: Offload features that the stack believes apply
9215 */
9216 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9217 ice_features_check(struct sk_buff *skb,
9218 struct net_device __always_unused *netdev,
9219 netdev_features_t features)
9220 {
9221 bool gso = skb_is_gso(skb);
9222 size_t len;
9223
9224 /* No point in doing any of this if neither checksum nor GSO are
9225 * being requested for this frame. We can rule out both by just
9226 * checking for CHECKSUM_PARTIAL
9227 */
9228 if (skb->ip_summed != CHECKSUM_PARTIAL)
9229 return features;
9230
9231 /* We cannot support GSO if the MSS is going to be less than
9232 * 64 bytes. If it is then we need to drop support for GSO.
9233 */
9234 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9235 features &= ~NETIF_F_GSO_MASK;
9236
9237 len = skb_network_offset(skb);
9238 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9239 goto out_rm_features;
9240
9241 len = skb_network_header_len(skb);
9242 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9243 goto out_rm_features;
9244
9245 if (skb->encapsulation) {
9246 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9247 * the case of IPIP frames, the transport header pointer is
9248 * after the inner header! So check to make sure that this
9249 * is a GRE or UDP_TUNNEL frame before doing that math.
9250 */
9251 if (gso && (skb_shinfo(skb)->gso_type &
9252 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9253 len = skb_inner_network_header(skb) -
9254 skb_transport_header(skb);
9255 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9256 goto out_rm_features;
9257 }
9258
9259 len = skb_inner_network_header_len(skb);
9260 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9261 goto out_rm_features;
9262 }
9263
9264 return features;
9265 out_rm_features:
9266 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9267 }
9268
9269 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9270 .ndo_open = ice_open,
9271 .ndo_stop = ice_stop,
9272 .ndo_start_xmit = ice_start_xmit,
9273 .ndo_set_mac_address = ice_set_mac_address,
9274 .ndo_validate_addr = eth_validate_addr,
9275 .ndo_change_mtu = ice_change_mtu,
9276 .ndo_get_stats64 = ice_get_stats64,
9277 .ndo_tx_timeout = ice_tx_timeout,
9278 .ndo_bpf = ice_xdp_safe_mode,
9279 };
9280
9281 static const struct net_device_ops ice_netdev_ops = {
9282 .ndo_open = ice_open,
9283 .ndo_stop = ice_stop,
9284 .ndo_start_xmit = ice_start_xmit,
9285 .ndo_select_queue = ice_select_queue,
9286 .ndo_features_check = ice_features_check,
9287 .ndo_fix_features = ice_fix_features,
9288 .ndo_set_rx_mode = ice_set_rx_mode,
9289 .ndo_set_mac_address = ice_set_mac_address,
9290 .ndo_validate_addr = eth_validate_addr,
9291 .ndo_change_mtu = ice_change_mtu,
9292 .ndo_get_stats64 = ice_get_stats64,
9293 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9294 .ndo_eth_ioctl = ice_eth_ioctl,
9295 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9296 .ndo_set_vf_mac = ice_set_vf_mac,
9297 .ndo_get_vf_config = ice_get_vf_cfg,
9298 .ndo_set_vf_trust = ice_set_vf_trust,
9299 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9300 .ndo_set_vf_link_state = ice_set_vf_link_state,
9301 .ndo_get_vf_stats = ice_get_vf_stats,
9302 .ndo_set_vf_rate = ice_set_vf_bw,
9303 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9304 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9305 .ndo_setup_tc = ice_setup_tc,
9306 .ndo_set_features = ice_set_features,
9307 .ndo_bridge_getlink = ice_bridge_getlink,
9308 .ndo_bridge_setlink = ice_bridge_setlink,
9309 .ndo_fdb_add = ice_fdb_add,
9310 .ndo_fdb_del = ice_fdb_del,
9311 #ifdef CONFIG_RFS_ACCEL
9312 .ndo_rx_flow_steer = ice_rx_flow_steer,
9313 #endif
9314 .ndo_tx_timeout = ice_tx_timeout,
9315 .ndo_bpf = ice_xdp,
9316 .ndo_xdp_xmit = ice_xdp_xmit,
9317 .ndo_xsk_wakeup = ice_xsk_wakeup,
9318 };
9319