• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47 {
48 	struct ieee80211_rate *bitrates;
49 	u32 mandatory_rates = 0;
50 	enum ieee80211_rate_flags mandatory_flag;
51 	int i;
52 
53 	if (WARN_ON(!sband))
54 		return 1;
55 
56 	if (sband->band == NL80211_BAND_2GHZ)
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 	else
59 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 
61 	bitrates = sband->bitrates;
62 	for (i = 0; i < sband->n_bitrates; i++)
63 		if (bitrates[i].flags & mandatory_flag)
64 			mandatory_rates |= BIT(i);
65 	return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70 {
71 	/* see 802.11 17.3.8.3.2 and Annex J
72 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 	if (chan <= 0)
74 		return 0; /* not supported */
75 	switch (band) {
76 	case NL80211_BAND_2GHZ:
77 	case NL80211_BAND_LC:
78 		if (chan == 14)
79 			return MHZ_TO_KHZ(2484);
80 		else if (chan < 14)
81 			return MHZ_TO_KHZ(2407 + chan * 5);
82 		break;
83 	case NL80211_BAND_5GHZ:
84 		if (chan >= 182 && chan <= 196)
85 			return MHZ_TO_KHZ(4000 + chan * 5);
86 		else
87 			return MHZ_TO_KHZ(5000 + chan * 5);
88 		break;
89 	case NL80211_BAND_6GHZ:
90 		/* see 802.11ax D6.1 27.3.23.2 */
91 		if (chan == 2)
92 			return MHZ_TO_KHZ(5935);
93 		if (chan <= 233)
94 			return MHZ_TO_KHZ(5950 + chan * 5);
95 		break;
96 	case NL80211_BAND_60GHZ:
97 		if (chan < 7)
98 			return MHZ_TO_KHZ(56160 + chan * 2160);
99 		break;
100 	case NL80211_BAND_S1GHZ:
101 		return 902000 + chan * 500;
102 	default:
103 		;
104 	}
105 	return 0; /* not supported */
106 }
107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108 
109 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)110 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
111 {
112 	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
113 		return NL80211_CHAN_WIDTH_20_NOHT;
114 
115 	/*S1G defines a single allowed channel width per channel.
116 	 * Extract that width here.
117 	 */
118 	if (chan->flags & IEEE80211_CHAN_1MHZ)
119 		return NL80211_CHAN_WIDTH_1;
120 	else if (chan->flags & IEEE80211_CHAN_2MHZ)
121 		return NL80211_CHAN_WIDTH_2;
122 	else if (chan->flags & IEEE80211_CHAN_4MHZ)
123 		return NL80211_CHAN_WIDTH_4;
124 	else if (chan->flags & IEEE80211_CHAN_8MHZ)
125 		return NL80211_CHAN_WIDTH_8;
126 	else if (chan->flags & IEEE80211_CHAN_16MHZ)
127 		return NL80211_CHAN_WIDTH_16;
128 
129 	pr_err("unknown channel width for channel at %dKHz?\n",
130 	       ieee80211_channel_to_khz(chan));
131 
132 	return NL80211_CHAN_WIDTH_1;
133 }
134 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
135 
ieee80211_freq_khz_to_channel(u32 freq)136 int ieee80211_freq_khz_to_channel(u32 freq)
137 {
138 	/* TODO: just handle MHz for now */
139 	freq = KHZ_TO_MHZ(freq);
140 
141 	/* see 802.11 17.3.8.3.2 and Annex J */
142 	if (freq == 2484)
143 		return 14;
144 	else if (freq < 2484)
145 		return (freq - 2407) / 5;
146 	else if (freq >= 4910 && freq <= 4980)
147 		return (freq - 4000) / 5;
148 	else if (freq < 5925)
149 		return (freq - 5000) / 5;
150 	else if (freq == 5935)
151 		return 2;
152 	else if (freq <= 45000) /* DMG band lower limit */
153 		/* see 802.11ax D6.1 27.3.22.2 */
154 		return (freq - 5950) / 5;
155 	else if (freq >= 58320 && freq <= 70200)
156 		return (freq - 56160) / 2160;
157 	else
158 		return 0;
159 }
160 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
161 
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)162 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
163 						    u32 freq)
164 {
165 	enum nl80211_band band;
166 	struct ieee80211_supported_band *sband;
167 	int i;
168 
169 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
170 		sband = wiphy->bands[band];
171 
172 		if (!sband)
173 			continue;
174 
175 		for (i = 0; i < sband->n_channels; i++) {
176 			struct ieee80211_channel *chan = &sband->channels[i];
177 
178 			if (ieee80211_channel_to_khz(chan) == freq)
179 				return chan;
180 		}
181 	}
182 
183 	return NULL;
184 }
185 EXPORT_SYMBOL(ieee80211_get_channel_khz);
186 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)187 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
188 {
189 	int i, want;
190 
191 	switch (sband->band) {
192 	case NL80211_BAND_5GHZ:
193 	case NL80211_BAND_6GHZ:
194 		want = 3;
195 		for (i = 0; i < sband->n_bitrates; i++) {
196 			if (sband->bitrates[i].bitrate == 60 ||
197 			    sband->bitrates[i].bitrate == 120 ||
198 			    sband->bitrates[i].bitrate == 240) {
199 				sband->bitrates[i].flags |=
200 					IEEE80211_RATE_MANDATORY_A;
201 				want--;
202 			}
203 		}
204 		WARN_ON(want);
205 		break;
206 	case NL80211_BAND_2GHZ:
207 	case NL80211_BAND_LC:
208 		want = 7;
209 		for (i = 0; i < sband->n_bitrates; i++) {
210 			switch (sband->bitrates[i].bitrate) {
211 			case 10:
212 			case 20:
213 			case 55:
214 			case 110:
215 				sband->bitrates[i].flags |=
216 					IEEE80211_RATE_MANDATORY_B |
217 					IEEE80211_RATE_MANDATORY_G;
218 				want--;
219 				break;
220 			case 60:
221 			case 120:
222 			case 240:
223 				sband->bitrates[i].flags |=
224 					IEEE80211_RATE_MANDATORY_G;
225 				want--;
226 				fallthrough;
227 			default:
228 				sband->bitrates[i].flags |=
229 					IEEE80211_RATE_ERP_G;
230 				break;
231 			}
232 		}
233 		WARN_ON(want != 0 && want != 3);
234 		break;
235 	case NL80211_BAND_60GHZ:
236 		/* check for mandatory HT MCS 1..4 */
237 		WARN_ON(!sband->ht_cap.ht_supported);
238 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
239 		break;
240 	case NL80211_BAND_S1GHZ:
241 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
242 		 * mandatory is ok.
243 		 */
244 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
245 		break;
246 	case NUM_NL80211_BANDS:
247 	default:
248 		WARN_ON(1);
249 		break;
250 	}
251 }
252 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)253 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
254 {
255 	enum nl80211_band band;
256 
257 	for (band = 0; band < NUM_NL80211_BANDS; band++)
258 		if (wiphy->bands[band])
259 			set_mandatory_flags_band(wiphy->bands[band]);
260 }
261 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)262 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
263 {
264 	int i;
265 	for (i = 0; i < wiphy->n_cipher_suites; i++)
266 		if (cipher == wiphy->cipher_suites[i])
267 			return true;
268 	return false;
269 }
270 
271 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)272 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
273 {
274 	struct wiphy *wiphy = &rdev->wiphy;
275 	int i;
276 
277 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
278 		switch (wiphy->cipher_suites[i]) {
279 		case WLAN_CIPHER_SUITE_AES_CMAC:
280 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
281 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
282 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
283 			return true;
284 		}
285 	}
286 
287 	return false;
288 }
289 
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)290 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
291 			    int key_idx, bool pairwise)
292 {
293 	int max_key_idx;
294 
295 	if (pairwise)
296 		max_key_idx = 3;
297 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
298 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
299 		 wiphy_ext_feature_isset(&rdev->wiphy,
300 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
301 		max_key_idx = 7;
302 	else if (cfg80211_igtk_cipher_supported(rdev))
303 		max_key_idx = 5;
304 	else
305 		max_key_idx = 3;
306 
307 	if (key_idx < 0 || key_idx > max_key_idx)
308 		return false;
309 
310 	return true;
311 }
312 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)313 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
314 				   struct key_params *params, int key_idx,
315 				   bool pairwise, const u8 *mac_addr)
316 {
317 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
318 		return -EINVAL;
319 
320 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
321 		return -EINVAL;
322 
323 	if (pairwise && !mac_addr)
324 		return -EINVAL;
325 
326 	switch (params->cipher) {
327 	case WLAN_CIPHER_SUITE_TKIP:
328 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
329 		if ((pairwise && key_idx) ||
330 		    params->mode != NL80211_KEY_RX_TX)
331 			return -EINVAL;
332 		break;
333 	case WLAN_CIPHER_SUITE_CCMP:
334 	case WLAN_CIPHER_SUITE_CCMP_256:
335 	case WLAN_CIPHER_SUITE_GCMP:
336 	case WLAN_CIPHER_SUITE_GCMP_256:
337 		/* IEEE802.11-2016 allows only 0 and - when supporting
338 		 * Extended Key ID - 1 as index for pairwise keys.
339 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
340 		 * the driver supports Extended Key ID.
341 		 * @NL80211_KEY_SET_TX can't be set when installing and
342 		 * validating a key.
343 		 */
344 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
345 		    params->mode == NL80211_KEY_SET_TX)
346 			return -EINVAL;
347 		if (wiphy_ext_feature_isset(&rdev->wiphy,
348 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
349 			if (pairwise && (key_idx < 0 || key_idx > 1))
350 				return -EINVAL;
351 		} else if (pairwise && key_idx) {
352 			return -EINVAL;
353 		}
354 		break;
355 	case WLAN_CIPHER_SUITE_AES_CMAC:
356 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
357 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
358 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
359 		/* Disallow BIP (group-only) cipher as pairwise cipher */
360 		if (pairwise)
361 			return -EINVAL;
362 		if (key_idx < 4)
363 			return -EINVAL;
364 		break;
365 	case WLAN_CIPHER_SUITE_WEP40:
366 	case WLAN_CIPHER_SUITE_WEP104:
367 		if (key_idx > 3)
368 			return -EINVAL;
369 		break;
370 	default:
371 		break;
372 	}
373 
374 	switch (params->cipher) {
375 	case WLAN_CIPHER_SUITE_WEP40:
376 		if (params->key_len != WLAN_KEY_LEN_WEP40)
377 			return -EINVAL;
378 		break;
379 	case WLAN_CIPHER_SUITE_TKIP:
380 		if (params->key_len != WLAN_KEY_LEN_TKIP)
381 			return -EINVAL;
382 		break;
383 	case WLAN_CIPHER_SUITE_CCMP:
384 		if (params->key_len != WLAN_KEY_LEN_CCMP)
385 			return -EINVAL;
386 		break;
387 	case WLAN_CIPHER_SUITE_CCMP_256:
388 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
389 			return -EINVAL;
390 		break;
391 	case WLAN_CIPHER_SUITE_GCMP:
392 		if (params->key_len != WLAN_KEY_LEN_GCMP)
393 			return -EINVAL;
394 		break;
395 	case WLAN_CIPHER_SUITE_GCMP_256:
396 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
397 			return -EINVAL;
398 		break;
399 	case WLAN_CIPHER_SUITE_WEP104:
400 		if (params->key_len != WLAN_KEY_LEN_WEP104)
401 			return -EINVAL;
402 		break;
403 	case WLAN_CIPHER_SUITE_AES_CMAC:
404 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
405 			return -EINVAL;
406 		break;
407 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
408 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
409 			return -EINVAL;
410 		break;
411 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
413 			return -EINVAL;
414 		break;
415 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
416 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
417 			return -EINVAL;
418 		break;
419 	default:
420 		/*
421 		 * We don't know anything about this algorithm,
422 		 * allow using it -- but the driver must check
423 		 * all parameters! We still check below whether
424 		 * or not the driver supports this algorithm,
425 		 * of course.
426 		 */
427 		break;
428 	}
429 
430 	if (params->seq) {
431 		switch (params->cipher) {
432 		case WLAN_CIPHER_SUITE_WEP40:
433 		case WLAN_CIPHER_SUITE_WEP104:
434 			/* These ciphers do not use key sequence */
435 			return -EINVAL;
436 		case WLAN_CIPHER_SUITE_TKIP:
437 		case WLAN_CIPHER_SUITE_CCMP:
438 		case WLAN_CIPHER_SUITE_CCMP_256:
439 		case WLAN_CIPHER_SUITE_GCMP:
440 		case WLAN_CIPHER_SUITE_GCMP_256:
441 		case WLAN_CIPHER_SUITE_AES_CMAC:
442 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
443 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
444 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
445 			if (params->seq_len != 6)
446 				return -EINVAL;
447 			break;
448 		}
449 	}
450 
451 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
452 		return -EINVAL;
453 
454 	return 0;
455 }
456 
ieee80211_hdrlen(__le16 fc)457 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
458 {
459 	unsigned int hdrlen = 24;
460 
461 	if (ieee80211_is_ext(fc)) {
462 		hdrlen = 4;
463 		goto out;
464 	}
465 
466 	if (ieee80211_is_data(fc)) {
467 		if (ieee80211_has_a4(fc))
468 			hdrlen = 30;
469 		if (ieee80211_is_data_qos(fc)) {
470 			hdrlen += IEEE80211_QOS_CTL_LEN;
471 			if (ieee80211_has_order(fc))
472 				hdrlen += IEEE80211_HT_CTL_LEN;
473 		}
474 		goto out;
475 	}
476 
477 	if (ieee80211_is_mgmt(fc)) {
478 		if (ieee80211_has_order(fc))
479 			hdrlen += IEEE80211_HT_CTL_LEN;
480 		goto out;
481 	}
482 
483 	if (ieee80211_is_ctl(fc)) {
484 		/*
485 		 * ACK and CTS are 10 bytes, all others 16. To see how
486 		 * to get this condition consider
487 		 *   subtype mask:   0b0000000011110000 (0x00F0)
488 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
489 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
490 		 *   bits that matter:         ^^^      (0x00E0)
491 		 *   value of those: 0b0000000011000000 (0x00C0)
492 		 */
493 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
494 			hdrlen = 10;
495 		else
496 			hdrlen = 16;
497 	}
498 out:
499 	return hdrlen;
500 }
501 EXPORT_SYMBOL(ieee80211_hdrlen);
502 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)503 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
504 {
505 	const struct ieee80211_hdr *hdr =
506 			(const struct ieee80211_hdr *)skb->data;
507 	unsigned int hdrlen;
508 
509 	if (unlikely(skb->len < 10))
510 		return 0;
511 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
512 	if (unlikely(hdrlen > skb->len))
513 		return 0;
514 	return hdrlen;
515 }
516 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
517 
__ieee80211_get_mesh_hdrlen(u8 flags)518 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
519 {
520 	int ae = flags & MESH_FLAGS_AE;
521 	/* 802.11-2012, 8.2.4.7.3 */
522 	switch (ae) {
523 	default:
524 	case 0:
525 		return 6;
526 	case MESH_FLAGS_AE_A4:
527 		return 12;
528 	case MESH_FLAGS_AE_A5_A6:
529 		return 18;
530 	}
531 }
532 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)533 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
534 {
535 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
536 }
537 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
538 
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)539 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
540 {
541 	const __be16 *hdr_proto = hdr + ETH_ALEN;
542 
543 	if (!(ether_addr_equal(hdr, rfc1042_header) &&
544 	      *hdr_proto != htons(ETH_P_AARP) &&
545 	      *hdr_proto != htons(ETH_P_IPX)) &&
546 	    !ether_addr_equal(hdr, bridge_tunnel_header))
547 		return false;
548 
549 	*proto = *hdr_proto;
550 
551 	return true;
552 }
553 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
554 
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)555 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
556 {
557 	const void *mesh_addr;
558 	struct {
559 		struct ethhdr eth;
560 		u8 flags;
561 	} payload;
562 	int hdrlen;
563 	int ret;
564 
565 	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
566 	if (ret)
567 		return ret;
568 
569 	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
570 
571 	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
572 		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
573 						   &payload.eth.h_proto)))
574 		hdrlen += ETH_ALEN + 2;
575 	else if (!pskb_may_pull(skb, hdrlen))
576 		return -EINVAL;
577 	else
578 		payload.eth.h_proto = htons(skb->len - hdrlen);
579 
580 	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
581 	switch (payload.flags & MESH_FLAGS_AE) {
582 	case MESH_FLAGS_AE_A4:
583 		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
584 		break;
585 	case MESH_FLAGS_AE_A5_A6:
586 		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
587 		break;
588 	default:
589 		break;
590 	}
591 
592 	pskb_pull(skb, hdrlen - sizeof(payload.eth));
593 	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
594 
595 	return 0;
596 }
597 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
598 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)599 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
600 				  const u8 *addr, enum nl80211_iftype iftype,
601 				  u8 data_offset, bool is_amsdu)
602 {
603 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
604 	struct {
605 		u8 hdr[ETH_ALEN] __aligned(2);
606 		__be16 proto;
607 	} payload;
608 	struct ethhdr tmp;
609 	u16 hdrlen;
610 
611 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
612 		return -1;
613 
614 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
615 	if (skb->len < hdrlen)
616 		return -1;
617 
618 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
619 	 * header
620 	 * IEEE 802.11 address fields:
621 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
622 	 *   0     0   DA    SA    BSSID n/a
623 	 *   0     1   DA    BSSID SA    n/a
624 	 *   1     0   BSSID SA    DA    n/a
625 	 *   1     1   RA    TA    DA    SA
626 	 */
627 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
628 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
629 
630 	switch (hdr->frame_control &
631 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
632 	case cpu_to_le16(IEEE80211_FCTL_TODS):
633 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
634 			     iftype != NL80211_IFTYPE_AP_VLAN &&
635 			     iftype != NL80211_IFTYPE_P2P_GO))
636 			return -1;
637 		break;
638 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
639 		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
640 			     iftype != NL80211_IFTYPE_AP_VLAN &&
641 			     iftype != NL80211_IFTYPE_STATION))
642 			return -1;
643 		break;
644 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
645 		if ((iftype != NL80211_IFTYPE_STATION &&
646 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
647 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
648 		    (is_multicast_ether_addr(tmp.h_dest) &&
649 		     ether_addr_equal(tmp.h_source, addr)))
650 			return -1;
651 		break;
652 	case cpu_to_le16(0):
653 		if (iftype != NL80211_IFTYPE_ADHOC &&
654 		    iftype != NL80211_IFTYPE_STATION &&
655 		    iftype != NL80211_IFTYPE_OCB)
656 				return -1;
657 		break;
658 	}
659 
660 	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
661 		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
662 		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
663 		/* remove RFC1042 or Bridge-Tunnel encapsulation */
664 		hdrlen += ETH_ALEN + 2;
665 		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
666 	} else {
667 		tmp.h_proto = htons(skb->len - hdrlen);
668 	}
669 
670 	pskb_pull(skb, hdrlen);
671 
672 	if (!ehdr)
673 		ehdr = skb_push(skb, sizeof(struct ethhdr));
674 	memcpy(ehdr, &tmp, sizeof(tmp));
675 
676 	return 0;
677 }
678 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
679 
680 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)681 __frame_add_frag(struct sk_buff *skb, struct page *page,
682 		 void *ptr, int len, int size)
683 {
684 	struct skb_shared_info *sh = skb_shinfo(skb);
685 	int page_offset;
686 
687 	get_page(page);
688 	page_offset = ptr - page_address(page);
689 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
690 }
691 
692 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)693 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
694 			    int offset, int len)
695 {
696 	struct skb_shared_info *sh = skb_shinfo(skb);
697 	const skb_frag_t *frag = &sh->frags[0];
698 	struct page *frag_page;
699 	void *frag_ptr;
700 	int frag_len, frag_size;
701 	int head_size = skb->len - skb->data_len;
702 	int cur_len;
703 
704 	frag_page = virt_to_head_page(skb->head);
705 	frag_ptr = skb->data;
706 	frag_size = head_size;
707 
708 	while (offset >= frag_size) {
709 		offset -= frag_size;
710 		frag_page = skb_frag_page(frag);
711 		frag_ptr = skb_frag_address(frag);
712 		frag_size = skb_frag_size(frag);
713 		frag++;
714 	}
715 
716 	frag_ptr += offset;
717 	frag_len = frag_size - offset;
718 
719 	cur_len = min(len, frag_len);
720 
721 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
722 	len -= cur_len;
723 
724 	while (len > 0) {
725 		frag_len = skb_frag_size(frag);
726 		cur_len = min(len, frag_len);
727 		__frame_add_frag(frame, skb_frag_page(frag),
728 				 skb_frag_address(frag), cur_len, frag_len);
729 		len -= cur_len;
730 		frag++;
731 	}
732 }
733 
734 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)735 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
736 		       int offset, int len, bool reuse_frag,
737 		       int min_len)
738 {
739 	struct sk_buff *frame;
740 	int cur_len = len;
741 
742 	if (skb->len - offset < len)
743 		return NULL;
744 
745 	/*
746 	 * When reusing framents, copy some data to the head to simplify
747 	 * ethernet header handling and speed up protocol header processing
748 	 * in the stack later.
749 	 */
750 	if (reuse_frag)
751 		cur_len = min_t(int, len, min_len);
752 
753 	/*
754 	 * Allocate and reserve two bytes more for payload
755 	 * alignment since sizeof(struct ethhdr) is 14.
756 	 */
757 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
758 	if (!frame)
759 		return NULL;
760 
761 	frame->priority = skb->priority;
762 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
763 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
764 
765 	len -= cur_len;
766 	if (!len)
767 		return frame;
768 
769 	offset += cur_len;
770 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
771 
772 	return frame;
773 }
774 
775 static u16
ieee80211_amsdu_subframe_length(void * field,u8 mesh_flags,u8 hdr_type)776 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
777 {
778 	__le16 *field_le = field;
779 	__be16 *field_be = field;
780 	u16 len;
781 
782 	if (hdr_type >= 2)
783 		len = le16_to_cpu(*field_le);
784 	else
785 		len = be16_to_cpu(*field_be);
786 	if (hdr_type)
787 		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
788 
789 	return len;
790 }
791 
ieee80211_is_valid_amsdu(struct sk_buff * skb,u8 mesh_hdr)792 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
793 {
794 	int offset = 0, subframe_len, padding;
795 
796 	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
797 		int remaining = skb->len - offset;
798 		struct {
799 		    __be16 len;
800 		    u8 mesh_flags;
801 		} hdr;
802 		u16 len;
803 
804 		if (sizeof(hdr) > remaining)
805 			return false;
806 
807 		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808 			return false;
809 
810 		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811 						      mesh_hdr);
812 		subframe_len = sizeof(struct ethhdr) + len;
813 		padding = (4 - subframe_len) & 0x3;
814 
815 		if (subframe_len > remaining)
816 			return false;
817 	}
818 
819 	return true;
820 }
821 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
822 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,u8 mesh_control)823 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
824 			      const u8 *addr, enum nl80211_iftype iftype,
825 			      const unsigned int extra_headroom,
826 			      const u8 *check_da, const u8 *check_sa,
827 			      u8 mesh_control)
828 {
829 	unsigned int hlen = ALIGN(extra_headroom, 4);
830 	struct sk_buff *frame = NULL;
831 	int offset = 0;
832 	struct {
833 		struct ethhdr eth;
834 		uint8_t flags;
835 	} hdr;
836 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
837 	bool reuse_skb = false;
838 	bool last = false;
839 	int copy_len = sizeof(hdr.eth);
840 
841 	if (iftype == NL80211_IFTYPE_MESH_POINT)
842 		copy_len = sizeof(hdr);
843 
844 	while (!last) {
845 		int remaining = skb->len - offset;
846 		unsigned int subframe_len;
847 		int len, mesh_len = 0;
848 		u8 padding;
849 
850 		if (copy_len > remaining)
851 			goto purge;
852 
853 		skb_copy_bits(skb, offset, &hdr, copy_len);
854 		if (iftype == NL80211_IFTYPE_MESH_POINT)
855 			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
856 		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
857 						      mesh_control);
858 		subframe_len = sizeof(struct ethhdr) + len;
859 		padding = (4 - subframe_len) & 0x3;
860 
861 		/* the last MSDU has no padding */
862 		if (subframe_len > remaining)
863 			goto purge;
864 		/* mitigate A-MSDU aggregation injection attacks */
865 		if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
866 			goto purge;
867 
868 		offset += sizeof(struct ethhdr);
869 		last = remaining <= subframe_len + padding;
870 
871 		/* FIXME: should we really accept multicast DA? */
872 		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
873 		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
874 		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
875 			offset += len + padding;
876 			continue;
877 		}
878 
879 		/* reuse skb for the last subframe */
880 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
881 			skb_pull(skb, offset);
882 			frame = skb;
883 			reuse_skb = true;
884 		} else {
885 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
886 						       reuse_frag, 32 + mesh_len);
887 			if (!frame)
888 				goto purge;
889 
890 			offset += len + padding;
891 		}
892 
893 		skb_reset_network_header(frame);
894 		frame->dev = skb->dev;
895 		frame->priority = skb->priority;
896 
897 		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
898 			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
899 			skb_pull(frame, ETH_ALEN + 2);
900 
901 		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
902 		__skb_queue_tail(list, frame);
903 	}
904 
905 	if (!reuse_skb)
906 		dev_kfree_skb(skb);
907 
908 	return;
909 
910  purge:
911 	__skb_queue_purge(list);
912 	dev_kfree_skb(skb);
913 }
914 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
915 
916 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)917 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
918 				    struct cfg80211_qos_map *qos_map)
919 {
920 	unsigned int dscp;
921 	unsigned char vlan_priority;
922 	unsigned int ret;
923 
924 	/* skb->priority values from 256->263 are magic values to
925 	 * directly indicate a specific 802.1d priority.  This is used
926 	 * to allow 802.1d priority to be passed directly in from VLAN
927 	 * tags, etc.
928 	 */
929 	if (skb->priority >= 256 && skb->priority <= 263) {
930 		ret = skb->priority - 256;
931 		goto out;
932 	}
933 
934 	if (skb_vlan_tag_present(skb)) {
935 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
936 			>> VLAN_PRIO_SHIFT;
937 		if (vlan_priority > 0) {
938 			ret = vlan_priority;
939 			goto out;
940 		}
941 	}
942 
943 	switch (skb->protocol) {
944 	case htons(ETH_P_IP):
945 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
946 		break;
947 	case htons(ETH_P_IPV6):
948 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
949 		break;
950 	case htons(ETH_P_MPLS_UC):
951 	case htons(ETH_P_MPLS_MC): {
952 		struct mpls_label mpls_tmp, *mpls;
953 
954 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
955 					  sizeof(*mpls), &mpls_tmp);
956 		if (!mpls)
957 			return 0;
958 
959 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
960 			>> MPLS_LS_TC_SHIFT;
961 		goto out;
962 	}
963 	case htons(ETH_P_80221):
964 		/* 802.21 is always network control traffic */
965 		return 7;
966 	default:
967 		return 0;
968 	}
969 
970 	if (qos_map) {
971 		unsigned int i, tmp_dscp = dscp >> 2;
972 
973 		for (i = 0; i < qos_map->num_des; i++) {
974 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
975 				ret = qos_map->dscp_exception[i].up;
976 				goto out;
977 			}
978 		}
979 
980 		for (i = 0; i < 8; i++) {
981 			if (tmp_dscp >= qos_map->up[i].low &&
982 			    tmp_dscp <= qos_map->up[i].high) {
983 				ret = i;
984 				goto out;
985 			}
986 		}
987 	}
988 
989 	ret = dscp >> 5;
990 out:
991 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
992 }
993 EXPORT_SYMBOL(cfg80211_classify8021d);
994 
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)995 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
996 {
997 	const struct cfg80211_bss_ies *ies;
998 
999 	ies = rcu_dereference(bss->ies);
1000 	if (!ies)
1001 		return NULL;
1002 
1003 	return cfg80211_find_elem(id, ies->data, ies->len);
1004 }
1005 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1006 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)1007 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1008 {
1009 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1010 	struct net_device *dev = wdev->netdev;
1011 	int i;
1012 
1013 	if (!wdev->connect_keys)
1014 		return;
1015 
1016 	for (i = 0; i < 4; i++) {
1017 		if (!wdev->connect_keys->params[i].cipher)
1018 			continue;
1019 		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1020 				 &wdev->connect_keys->params[i])) {
1021 			netdev_err(dev, "failed to set key %d\n", i);
1022 			continue;
1023 		}
1024 		if (wdev->connect_keys->def == i &&
1025 		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1026 			netdev_err(dev, "failed to set defkey %d\n", i);
1027 			continue;
1028 		}
1029 	}
1030 
1031 	kfree_sensitive(wdev->connect_keys);
1032 	wdev->connect_keys = NULL;
1033 }
1034 
cfg80211_process_wdev_events(struct wireless_dev * wdev)1035 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1036 {
1037 	struct cfg80211_event *ev;
1038 	unsigned long flags;
1039 
1040 	spin_lock_irqsave(&wdev->event_lock, flags);
1041 	while (!list_empty(&wdev->event_list)) {
1042 		ev = list_first_entry(&wdev->event_list,
1043 				      struct cfg80211_event, list);
1044 		list_del(&ev->list);
1045 		spin_unlock_irqrestore(&wdev->event_lock, flags);
1046 
1047 		wdev_lock(wdev);
1048 		switch (ev->type) {
1049 		case EVENT_CONNECT_RESULT:
1050 			__cfg80211_connect_result(
1051 				wdev->netdev,
1052 				&ev->cr,
1053 				ev->cr.status == WLAN_STATUS_SUCCESS);
1054 			break;
1055 		case EVENT_ROAMED:
1056 			__cfg80211_roamed(wdev, &ev->rm);
1057 			break;
1058 		case EVENT_DISCONNECTED:
1059 			__cfg80211_disconnected(wdev->netdev,
1060 						ev->dc.ie, ev->dc.ie_len,
1061 						ev->dc.reason,
1062 						!ev->dc.locally_generated);
1063 			break;
1064 		case EVENT_IBSS_JOINED:
1065 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1066 					       ev->ij.channel);
1067 			break;
1068 		case EVENT_STOPPED:
1069 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1070 			break;
1071 		case EVENT_PORT_AUTHORIZED:
1072 			__cfg80211_port_authorized(wdev, ev->pa.bssid,
1073 						   ev->pa.td_bitmap,
1074 						   ev->pa.td_bitmap_len);
1075 			break;
1076 		}
1077 		wdev_unlock(wdev);
1078 
1079 		kfree(ev);
1080 
1081 		spin_lock_irqsave(&wdev->event_lock, flags);
1082 	}
1083 	spin_unlock_irqrestore(&wdev->event_lock, flags);
1084 }
1085 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1086 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1087 {
1088 	struct wireless_dev *wdev;
1089 
1090 	lockdep_assert_held(&rdev->wiphy.mtx);
1091 
1092 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1093 		cfg80211_process_wdev_events(wdev);
1094 }
1095 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1096 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1097 			  struct net_device *dev, enum nl80211_iftype ntype,
1098 			  struct vif_params *params)
1099 {
1100 	int err;
1101 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1102 
1103 	lockdep_assert_held(&rdev->wiphy.mtx);
1104 
1105 	/* don't support changing VLANs, you just re-create them */
1106 	if (otype == NL80211_IFTYPE_AP_VLAN)
1107 		return -EOPNOTSUPP;
1108 
1109 	/* cannot change into P2P device or NAN */
1110 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1111 	    ntype == NL80211_IFTYPE_NAN)
1112 		return -EOPNOTSUPP;
1113 
1114 	if (!rdev->ops->change_virtual_intf ||
1115 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1116 		return -EOPNOTSUPP;
1117 
1118 	if (ntype != otype) {
1119 		/* if it's part of a bridge, reject changing type to station/ibss */
1120 		if (netif_is_bridge_port(dev) &&
1121 		    (ntype == NL80211_IFTYPE_ADHOC ||
1122 		     ntype == NL80211_IFTYPE_STATION ||
1123 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1124 			return -EBUSY;
1125 
1126 		dev->ieee80211_ptr->use_4addr = false;
1127 		wdev_lock(dev->ieee80211_ptr);
1128 		rdev_set_qos_map(rdev, dev, NULL);
1129 		wdev_unlock(dev->ieee80211_ptr);
1130 
1131 		switch (otype) {
1132 		case NL80211_IFTYPE_AP:
1133 		case NL80211_IFTYPE_P2P_GO:
1134 			cfg80211_stop_ap(rdev, dev, -1, true);
1135 			break;
1136 		case NL80211_IFTYPE_ADHOC:
1137 			cfg80211_leave_ibss(rdev, dev, false);
1138 			break;
1139 		case NL80211_IFTYPE_STATION:
1140 		case NL80211_IFTYPE_P2P_CLIENT:
1141 			wdev_lock(dev->ieee80211_ptr);
1142 			cfg80211_disconnect(rdev, dev,
1143 					    WLAN_REASON_DEAUTH_LEAVING, true);
1144 			wdev_unlock(dev->ieee80211_ptr);
1145 			break;
1146 		case NL80211_IFTYPE_MESH_POINT:
1147 			/* mesh should be handled? */
1148 			break;
1149 		case NL80211_IFTYPE_OCB:
1150 			cfg80211_leave_ocb(rdev, dev);
1151 			break;
1152 		default:
1153 			break;
1154 		}
1155 
1156 		cfg80211_process_rdev_events(rdev);
1157 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1158 
1159 		memset(&dev->ieee80211_ptr->u, 0,
1160 		       sizeof(dev->ieee80211_ptr->u));
1161 		memset(&dev->ieee80211_ptr->links, 0,
1162 		       sizeof(dev->ieee80211_ptr->links));
1163 	}
1164 
1165 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1166 
1167 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1168 
1169 	if (!err && params && params->use_4addr != -1)
1170 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1171 
1172 	if (!err) {
1173 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1174 		switch (ntype) {
1175 		case NL80211_IFTYPE_STATION:
1176 			if (dev->ieee80211_ptr->use_4addr)
1177 				break;
1178 			fallthrough;
1179 		case NL80211_IFTYPE_OCB:
1180 		case NL80211_IFTYPE_P2P_CLIENT:
1181 		case NL80211_IFTYPE_ADHOC:
1182 			dev->priv_flags |= IFF_DONT_BRIDGE;
1183 			break;
1184 		case NL80211_IFTYPE_P2P_GO:
1185 		case NL80211_IFTYPE_AP:
1186 		case NL80211_IFTYPE_AP_VLAN:
1187 		case NL80211_IFTYPE_MESH_POINT:
1188 			/* bridging OK */
1189 			break;
1190 		case NL80211_IFTYPE_MONITOR:
1191 			/* monitor can't bridge anyway */
1192 			break;
1193 		case NL80211_IFTYPE_UNSPECIFIED:
1194 		case NUM_NL80211_IFTYPES:
1195 			/* not happening */
1196 			break;
1197 		case NL80211_IFTYPE_P2P_DEVICE:
1198 		case NL80211_IFTYPE_WDS:
1199 		case NL80211_IFTYPE_NAN:
1200 			WARN_ON(1);
1201 			break;
1202 		}
1203 	}
1204 
1205 	if (!err && ntype != otype && netif_running(dev)) {
1206 		cfg80211_update_iface_num(rdev, ntype, 1);
1207 		cfg80211_update_iface_num(rdev, otype, -1);
1208 	}
1209 
1210 	return err;
1211 }
1212 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1213 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1214 {
1215 	int modulation, streams, bitrate;
1216 
1217 	/* the formula below does only work for MCS values smaller than 32 */
1218 	if (WARN_ON_ONCE(rate->mcs >= 32))
1219 		return 0;
1220 
1221 	modulation = rate->mcs & 7;
1222 	streams = (rate->mcs >> 3) + 1;
1223 
1224 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1225 
1226 	if (modulation < 4)
1227 		bitrate *= (modulation + 1);
1228 	else if (modulation == 4)
1229 		bitrate *= (modulation + 2);
1230 	else
1231 		bitrate *= (modulation + 3);
1232 
1233 	bitrate *= streams;
1234 
1235 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1236 		bitrate = (bitrate / 9) * 10;
1237 
1238 	/* do NOT round down here */
1239 	return (bitrate + 50000) / 100000;
1240 }
1241 
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1242 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1243 {
1244 	static const u32 __mcs2bitrate[] = {
1245 		/* control PHY */
1246 		[0] =   275,
1247 		/* SC PHY */
1248 		[1] =  3850,
1249 		[2] =  7700,
1250 		[3] =  9625,
1251 		[4] = 11550,
1252 		[5] = 12512, /* 1251.25 mbps */
1253 		[6] = 15400,
1254 		[7] = 19250,
1255 		[8] = 23100,
1256 		[9] = 25025,
1257 		[10] = 30800,
1258 		[11] = 38500,
1259 		[12] = 46200,
1260 		/* OFDM PHY */
1261 		[13] =  6930,
1262 		[14] =  8662, /* 866.25 mbps */
1263 		[15] = 13860,
1264 		[16] = 17325,
1265 		[17] = 20790,
1266 		[18] = 27720,
1267 		[19] = 34650,
1268 		[20] = 41580,
1269 		[21] = 45045,
1270 		[22] = 51975,
1271 		[23] = 62370,
1272 		[24] = 67568, /* 6756.75 mbps */
1273 		/* LP-SC PHY */
1274 		[25] =  6260,
1275 		[26] =  8340,
1276 		[27] = 11120,
1277 		[28] = 12510,
1278 		[29] = 16680,
1279 		[30] = 22240,
1280 		[31] = 25030,
1281 	};
1282 
1283 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1284 		return 0;
1285 
1286 	return __mcs2bitrate[rate->mcs];
1287 }
1288 
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1289 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1290 {
1291 	static const u32 __mcs2bitrate[] = {
1292 		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1293 		[7 - 6] = 50050, /* MCS 12.1 */
1294 		[8 - 6] = 53900,
1295 		[9 - 6] = 57750,
1296 		[10 - 6] = 63900,
1297 		[11 - 6] = 75075,
1298 		[12 - 6] = 80850,
1299 	};
1300 
1301 	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1302 	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1303 		return 0;
1304 
1305 	return __mcs2bitrate[rate->mcs - 6];
1306 }
1307 
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1308 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1309 {
1310 	static const u32 __mcs2bitrate[] = {
1311 		/* control PHY */
1312 		[0] =   275,
1313 		/* SC PHY */
1314 		[1] =  3850,
1315 		[2] =  7700,
1316 		[3] =  9625,
1317 		[4] = 11550,
1318 		[5] = 12512, /* 1251.25 mbps */
1319 		[6] = 13475,
1320 		[7] = 15400,
1321 		[8] = 19250,
1322 		[9] = 23100,
1323 		[10] = 25025,
1324 		[11] = 26950,
1325 		[12] = 30800,
1326 		[13] = 38500,
1327 		[14] = 46200,
1328 		[15] = 50050,
1329 		[16] = 53900,
1330 		[17] = 57750,
1331 		[18] = 69300,
1332 		[19] = 75075,
1333 		[20] = 80850,
1334 	};
1335 
1336 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1337 		return 0;
1338 
1339 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1340 }
1341 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1342 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1343 {
1344 	static const u32 base[4][12] = {
1345 		{   6500000,
1346 		   13000000,
1347 		   19500000,
1348 		   26000000,
1349 		   39000000,
1350 		   52000000,
1351 		   58500000,
1352 		   65000000,
1353 		   78000000,
1354 		/* not in the spec, but some devices use this: */
1355 		   86700000,
1356 		   97500000,
1357 		  108300000,
1358 		},
1359 		{  13500000,
1360 		   27000000,
1361 		   40500000,
1362 		   54000000,
1363 		   81000000,
1364 		  108000000,
1365 		  121500000,
1366 		  135000000,
1367 		  162000000,
1368 		  180000000,
1369 		  202500000,
1370 		  225000000,
1371 		},
1372 		{  29300000,
1373 		   58500000,
1374 		   87800000,
1375 		  117000000,
1376 		  175500000,
1377 		  234000000,
1378 		  263300000,
1379 		  292500000,
1380 		  351000000,
1381 		  390000000,
1382 		  438800000,
1383 		  487500000,
1384 		},
1385 		{  58500000,
1386 		  117000000,
1387 		  175500000,
1388 		  234000000,
1389 		  351000000,
1390 		  468000000,
1391 		  526500000,
1392 		  585000000,
1393 		  702000000,
1394 		  780000000,
1395 		  877500000,
1396 		  975000000,
1397 		},
1398 	};
1399 	u32 bitrate;
1400 	int idx;
1401 
1402 	if (rate->mcs > 11)
1403 		goto warn;
1404 
1405 	switch (rate->bw) {
1406 	case RATE_INFO_BW_160:
1407 		idx = 3;
1408 		break;
1409 	case RATE_INFO_BW_80:
1410 		idx = 2;
1411 		break;
1412 	case RATE_INFO_BW_40:
1413 		idx = 1;
1414 		break;
1415 	case RATE_INFO_BW_5:
1416 	case RATE_INFO_BW_10:
1417 	default:
1418 		goto warn;
1419 	case RATE_INFO_BW_20:
1420 		idx = 0;
1421 	}
1422 
1423 	bitrate = base[idx][rate->mcs];
1424 	bitrate *= rate->nss;
1425 
1426 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1427 		bitrate = (bitrate / 9) * 10;
1428 
1429 	/* do NOT round down here */
1430 	return (bitrate + 50000) / 100000;
1431  warn:
1432 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1433 		  rate->bw, rate->mcs, rate->nss);
1434 	return 0;
1435 }
1436 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1437 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1438 {
1439 #define SCALE 6144
1440 	u32 mcs_divisors[14] = {
1441 		102399, /* 16.666666... */
1442 		 51201, /*  8.333333... */
1443 		 34134, /*  5.555555... */
1444 		 25599, /*  4.166666... */
1445 		 17067, /*  2.777777... */
1446 		 12801, /*  2.083333... */
1447 		 11377, /*  1.851725... */
1448 		 10239, /*  1.666666... */
1449 		  8532, /*  1.388888... */
1450 		  7680, /*  1.250000... */
1451 		  6828, /*  1.111111... */
1452 		  6144, /*  1.000000... */
1453 		  5690, /*  0.926106... */
1454 		  5120, /*  0.833333... */
1455 	};
1456 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1457 	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1458 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1459 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1460 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1461 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1462 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1463 	u64 tmp;
1464 	u32 result;
1465 
1466 	if (WARN_ON_ONCE(rate->mcs > 13))
1467 		return 0;
1468 
1469 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1470 		return 0;
1471 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1472 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1473 		return 0;
1474 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1475 		return 0;
1476 
1477 	if (rate->bw == RATE_INFO_BW_160 ||
1478 	    (rate->bw == RATE_INFO_BW_HE_RU &&
1479 	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1480 		result = rates_160M[rate->he_gi];
1481 	else if (rate->bw == RATE_INFO_BW_80 ||
1482 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1483 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1484 		result = rates_996[rate->he_gi];
1485 	else if (rate->bw == RATE_INFO_BW_40 ||
1486 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1487 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1488 		result = rates_484[rate->he_gi];
1489 	else if (rate->bw == RATE_INFO_BW_20 ||
1490 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1491 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1492 		result = rates_242[rate->he_gi];
1493 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1494 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1495 		result = rates_106[rate->he_gi];
1496 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1497 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1498 		result = rates_52[rate->he_gi];
1499 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1500 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1501 		result = rates_26[rate->he_gi];
1502 	else {
1503 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1504 		     rate->bw, rate->he_ru_alloc);
1505 		return 0;
1506 	}
1507 
1508 	/* now scale to the appropriate MCS */
1509 	tmp = result;
1510 	tmp *= SCALE;
1511 	do_div(tmp, mcs_divisors[rate->mcs]);
1512 	result = tmp;
1513 
1514 	/* and take NSS, DCM into account */
1515 	result = (result * rate->nss) / 8;
1516 	if (rate->he_dcm)
1517 		result /= 2;
1518 
1519 	return result / 10000;
1520 }
1521 
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1522 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1523 {
1524 #define SCALE 6144
1525 	static const u32 mcs_divisors[16] = {
1526 		102399, /* 16.666666... */
1527 		 51201, /*  8.333333... */
1528 		 34134, /*  5.555555... */
1529 		 25599, /*  4.166666... */
1530 		 17067, /*  2.777777... */
1531 		 12801, /*  2.083333... */
1532 		 11377, /*  1.851725... */
1533 		 10239, /*  1.666666... */
1534 		  8532, /*  1.388888... */
1535 		  7680, /*  1.250000... */
1536 		  6828, /*  1.111111... */
1537 		  6144, /*  1.000000... */
1538 		  5690, /*  0.926106... */
1539 		  5120, /*  0.833333... */
1540 		409600, /* 66.666666... */
1541 		204800, /* 33.333333... */
1542 	};
1543 	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1544 	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1545 	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1546 	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1547 	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1548 	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1549 	u64 tmp;
1550 	u32 result;
1551 
1552 	if (WARN_ON_ONCE(rate->mcs > 15))
1553 		return 0;
1554 	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1555 		return 0;
1556 	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1557 			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1558 		return 0;
1559 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1560 		return 0;
1561 
1562 	/* Bandwidth checks for MCS 14 */
1563 	if (rate->mcs == 14) {
1564 		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1565 		     rate->bw != RATE_INFO_BW_80 &&
1566 		     rate->bw != RATE_INFO_BW_160 &&
1567 		     rate->bw != RATE_INFO_BW_320) ||
1568 		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1569 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1570 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1571 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1572 			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1573 			     rate->bw, rate->eht_ru_alloc);
1574 			return 0;
1575 		}
1576 	}
1577 
1578 	if (rate->bw == RATE_INFO_BW_320 ||
1579 	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1580 	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1581 		result = 4 * rates_996[rate->eht_gi];
1582 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1583 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1584 		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1585 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1586 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1587 		result = 3 * rates_996[rate->eht_gi];
1588 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1589 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1590 		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1591 	else if (rate->bw == RATE_INFO_BW_160 ||
1592 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1593 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1594 		result = 2 * rates_996[rate->eht_gi];
1595 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1596 		 rate->eht_ru_alloc ==
1597 		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1598 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1599 			 + rates_242[rate->eht_gi];
1600 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1601 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1602 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1603 	else if (rate->bw == RATE_INFO_BW_80 ||
1604 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1605 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1606 		result = rates_996[rate->eht_gi];
1607 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1608 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1609 		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1610 	else if (rate->bw == RATE_INFO_BW_40 ||
1611 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1612 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1613 		result = rates_484[rate->eht_gi];
1614 	else if (rate->bw == RATE_INFO_BW_20 ||
1615 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1616 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1617 		result = rates_242[rate->eht_gi];
1618 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1619 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1620 		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1621 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1622 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1623 		result = rates_106[rate->eht_gi];
1624 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1625 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1626 		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1627 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1628 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1629 		result = rates_52[rate->eht_gi];
1630 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1631 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1632 		result = rates_26[rate->eht_gi];
1633 	else {
1634 		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1635 		     rate->bw, rate->eht_ru_alloc);
1636 		return 0;
1637 	}
1638 
1639 	/* now scale to the appropriate MCS */
1640 	tmp = result;
1641 	tmp *= SCALE;
1642 	do_div(tmp, mcs_divisors[rate->mcs]);
1643 
1644 	/* and take NSS */
1645 	tmp *= rate->nss;
1646 	do_div(tmp, 8);
1647 
1648 	result = tmp;
1649 
1650 	return result / 10000;
1651 }
1652 
cfg80211_calculate_bitrate_s1g(struct rate_info * rate)1653 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1654 {
1655 	/* For 1, 2, 4, 8 and 16 MHz channels */
1656 	static const u32 base[5][11] = {
1657 		{  300000,
1658 		   600000,
1659 		   900000,
1660 		  1200000,
1661 		  1800000,
1662 		  2400000,
1663 		  2700000,
1664 		  3000000,
1665 		  3600000,
1666 		  4000000,
1667 		  /* MCS 10 supported in 1 MHz only */
1668 		  150000,
1669 		},
1670 		{  650000,
1671 		  1300000,
1672 		  1950000,
1673 		  2600000,
1674 		  3900000,
1675 		  5200000,
1676 		  5850000,
1677 		  6500000,
1678 		  7800000,
1679 		  /* MCS 9 not valid */
1680 		},
1681 		{  1350000,
1682 		   2700000,
1683 		   4050000,
1684 		   5400000,
1685 		   8100000,
1686 		  10800000,
1687 		  12150000,
1688 		  13500000,
1689 		  16200000,
1690 		  18000000,
1691 		},
1692 		{  2925000,
1693 		   5850000,
1694 		   8775000,
1695 		  11700000,
1696 		  17550000,
1697 		  23400000,
1698 		  26325000,
1699 		  29250000,
1700 		  35100000,
1701 		  39000000,
1702 		},
1703 		{  8580000,
1704 		  11700000,
1705 		  17550000,
1706 		  23400000,
1707 		  35100000,
1708 		  46800000,
1709 		  52650000,
1710 		  58500000,
1711 		  70200000,
1712 		  78000000,
1713 		},
1714 	};
1715 	u32 bitrate;
1716 	/* default is 1 MHz index */
1717 	int idx = 0;
1718 
1719 	if (rate->mcs >= 11)
1720 		goto warn;
1721 
1722 	switch (rate->bw) {
1723 	case RATE_INFO_BW_16:
1724 		idx = 4;
1725 		break;
1726 	case RATE_INFO_BW_8:
1727 		idx = 3;
1728 		break;
1729 	case RATE_INFO_BW_4:
1730 		idx = 2;
1731 		break;
1732 	case RATE_INFO_BW_2:
1733 		idx = 1;
1734 		break;
1735 	case RATE_INFO_BW_1:
1736 		idx = 0;
1737 		break;
1738 	case RATE_INFO_BW_5:
1739 	case RATE_INFO_BW_10:
1740 	case RATE_INFO_BW_20:
1741 	case RATE_INFO_BW_40:
1742 	case RATE_INFO_BW_80:
1743 	case RATE_INFO_BW_160:
1744 	default:
1745 		goto warn;
1746 	}
1747 
1748 	bitrate = base[idx][rate->mcs];
1749 	bitrate *= rate->nss;
1750 
1751 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1752 		bitrate = (bitrate / 9) * 10;
1753 	/* do NOT round down here */
1754 	return (bitrate + 50000) / 100000;
1755 warn:
1756 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1757 		  rate->bw, rate->mcs, rate->nss);
1758 	return 0;
1759 }
1760 
cfg80211_calculate_bitrate(struct rate_info * rate)1761 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1762 {
1763 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1764 		return cfg80211_calculate_bitrate_ht(rate);
1765 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1766 		return cfg80211_calculate_bitrate_dmg(rate);
1767 	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1768 		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1769 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1770 		return cfg80211_calculate_bitrate_edmg(rate);
1771 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1772 		return cfg80211_calculate_bitrate_vht(rate);
1773 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1774 		return cfg80211_calculate_bitrate_he(rate);
1775 	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1776 		return cfg80211_calculate_bitrate_eht(rate);
1777 	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1778 		return cfg80211_calculate_bitrate_s1g(rate);
1779 
1780 	return rate->legacy;
1781 }
1782 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1783 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1784 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1785 			  enum ieee80211_p2p_attr_id attr,
1786 			  u8 *buf, unsigned int bufsize)
1787 {
1788 	u8 *out = buf;
1789 	u16 attr_remaining = 0;
1790 	bool desired_attr = false;
1791 	u16 desired_len = 0;
1792 
1793 	while (len > 0) {
1794 		unsigned int iedatalen;
1795 		unsigned int copy;
1796 		const u8 *iedata;
1797 
1798 		if (len < 2)
1799 			return -EILSEQ;
1800 		iedatalen = ies[1];
1801 		if (iedatalen + 2 > len)
1802 			return -EILSEQ;
1803 
1804 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1805 			goto cont;
1806 
1807 		if (iedatalen < 4)
1808 			goto cont;
1809 
1810 		iedata = ies + 2;
1811 
1812 		/* check WFA OUI, P2P subtype */
1813 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1814 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1815 			goto cont;
1816 
1817 		iedatalen -= 4;
1818 		iedata += 4;
1819 
1820 		/* check attribute continuation into this IE */
1821 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1822 		if (copy && desired_attr) {
1823 			desired_len += copy;
1824 			if (out) {
1825 				memcpy(out, iedata, min(bufsize, copy));
1826 				out += min(bufsize, copy);
1827 				bufsize -= min(bufsize, copy);
1828 			}
1829 
1830 
1831 			if (copy == attr_remaining)
1832 				return desired_len;
1833 		}
1834 
1835 		attr_remaining -= copy;
1836 		if (attr_remaining)
1837 			goto cont;
1838 
1839 		iedatalen -= copy;
1840 		iedata += copy;
1841 
1842 		while (iedatalen > 0) {
1843 			u16 attr_len;
1844 
1845 			/* P2P attribute ID & size must fit */
1846 			if (iedatalen < 3)
1847 				return -EILSEQ;
1848 			desired_attr = iedata[0] == attr;
1849 			attr_len = get_unaligned_le16(iedata + 1);
1850 			iedatalen -= 3;
1851 			iedata += 3;
1852 
1853 			copy = min_t(unsigned int, attr_len, iedatalen);
1854 
1855 			if (desired_attr) {
1856 				desired_len += copy;
1857 				if (out) {
1858 					memcpy(out, iedata, min(bufsize, copy));
1859 					out += min(bufsize, copy);
1860 					bufsize -= min(bufsize, copy);
1861 				}
1862 
1863 				if (copy == attr_len)
1864 					return desired_len;
1865 			}
1866 
1867 			iedata += copy;
1868 			iedatalen -= copy;
1869 			attr_remaining = attr_len - copy;
1870 		}
1871 
1872  cont:
1873 		len -= ies[1] + 2;
1874 		ies += ies[1] + 2;
1875 	}
1876 
1877 	if (attr_remaining && desired_attr)
1878 		return -EILSEQ;
1879 
1880 	return -ENOENT;
1881 }
1882 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1883 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1884 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1885 {
1886 	int i;
1887 
1888 	/* Make sure array values are legal */
1889 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1890 		return false;
1891 
1892 	i = 0;
1893 	while (i < n_ids) {
1894 		if (ids[i] == WLAN_EID_EXTENSION) {
1895 			if (id_ext && (ids[i + 1] == id))
1896 				return true;
1897 
1898 			i += 2;
1899 			continue;
1900 		}
1901 
1902 		if (ids[i] == id && !id_ext)
1903 			return true;
1904 
1905 		i++;
1906 	}
1907 	return false;
1908 }
1909 
skip_ie(const u8 * ies,size_t ielen,size_t pos)1910 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1911 {
1912 	/* we assume a validly formed IEs buffer */
1913 	u8 len = ies[pos + 1];
1914 
1915 	pos += 2 + len;
1916 
1917 	/* the IE itself must have 255 bytes for fragments to follow */
1918 	if (len < 255)
1919 		return pos;
1920 
1921 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1922 		len = ies[pos + 1];
1923 		pos += 2 + len;
1924 	}
1925 
1926 	return pos;
1927 }
1928 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1929 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1930 			      const u8 *ids, int n_ids,
1931 			      const u8 *after_ric, int n_after_ric,
1932 			      size_t offset)
1933 {
1934 	size_t pos = offset;
1935 
1936 	while (pos < ielen) {
1937 		u8 ext = 0;
1938 
1939 		if (ies[pos] == WLAN_EID_EXTENSION)
1940 			ext = 2;
1941 		if ((pos + ext) >= ielen)
1942 			break;
1943 
1944 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1945 					  ies[pos] == WLAN_EID_EXTENSION))
1946 			break;
1947 
1948 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1949 			pos = skip_ie(ies, ielen, pos);
1950 
1951 			while (pos < ielen) {
1952 				if (ies[pos] == WLAN_EID_EXTENSION)
1953 					ext = 2;
1954 				else
1955 					ext = 0;
1956 
1957 				if ((pos + ext) >= ielen)
1958 					break;
1959 
1960 				if (!ieee80211_id_in_list(after_ric,
1961 							  n_after_ric,
1962 							  ies[pos + ext],
1963 							  ext == 2))
1964 					pos = skip_ie(ies, ielen, pos);
1965 				else
1966 					break;
1967 			}
1968 		} else {
1969 			pos = skip_ie(ies, ielen, pos);
1970 		}
1971 	}
1972 
1973 	return pos;
1974 }
1975 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1976 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1977 bool ieee80211_operating_class_to_band(u8 operating_class,
1978 				       enum nl80211_band *band)
1979 {
1980 	switch (operating_class) {
1981 	case 112:
1982 	case 115 ... 127:
1983 	case 128 ... 130:
1984 		*band = NL80211_BAND_5GHZ;
1985 		return true;
1986 	case 131 ... 135:
1987 		*band = NL80211_BAND_6GHZ;
1988 		return true;
1989 	case 81:
1990 	case 82:
1991 	case 83:
1992 	case 84:
1993 		*band = NL80211_BAND_2GHZ;
1994 		return true;
1995 	case 180:
1996 		*band = NL80211_BAND_60GHZ;
1997 		return true;
1998 	}
1999 
2000 	return false;
2001 }
2002 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2003 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)2004 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2005 					  u8 *op_class)
2006 {
2007 	u8 vht_opclass;
2008 	u32 freq = chandef->center_freq1;
2009 
2010 	if (freq >= 2412 && freq <= 2472) {
2011 		if (chandef->width > NL80211_CHAN_WIDTH_40)
2012 			return false;
2013 
2014 		/* 2.407 GHz, channels 1..13 */
2015 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2016 			if (freq > chandef->chan->center_freq)
2017 				*op_class = 83; /* HT40+ */
2018 			else
2019 				*op_class = 84; /* HT40- */
2020 		} else {
2021 			*op_class = 81;
2022 		}
2023 
2024 		return true;
2025 	}
2026 
2027 	if (freq == 2484) {
2028 		/* channel 14 is only for IEEE 802.11b */
2029 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2030 			return false;
2031 
2032 		*op_class = 82; /* channel 14 */
2033 		return true;
2034 	}
2035 
2036 	switch (chandef->width) {
2037 	case NL80211_CHAN_WIDTH_80:
2038 		vht_opclass = 128;
2039 		break;
2040 	case NL80211_CHAN_WIDTH_160:
2041 		vht_opclass = 129;
2042 		break;
2043 	case NL80211_CHAN_WIDTH_80P80:
2044 		vht_opclass = 130;
2045 		break;
2046 	case NL80211_CHAN_WIDTH_10:
2047 	case NL80211_CHAN_WIDTH_5:
2048 		return false; /* unsupported for now */
2049 	default:
2050 		vht_opclass = 0;
2051 		break;
2052 	}
2053 
2054 	/* 5 GHz, channels 36..48 */
2055 	if (freq >= 5180 && freq <= 5240) {
2056 		if (vht_opclass) {
2057 			*op_class = vht_opclass;
2058 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2059 			if (freq > chandef->chan->center_freq)
2060 				*op_class = 116;
2061 			else
2062 				*op_class = 117;
2063 		} else {
2064 			*op_class = 115;
2065 		}
2066 
2067 		return true;
2068 	}
2069 
2070 	/* 5 GHz, channels 52..64 */
2071 	if (freq >= 5260 && freq <= 5320) {
2072 		if (vht_opclass) {
2073 			*op_class = vht_opclass;
2074 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2075 			if (freq > chandef->chan->center_freq)
2076 				*op_class = 119;
2077 			else
2078 				*op_class = 120;
2079 		} else {
2080 			*op_class = 118;
2081 		}
2082 
2083 		return true;
2084 	}
2085 
2086 	/* 5 GHz, channels 100..144 */
2087 	if (freq >= 5500 && freq <= 5720) {
2088 		if (vht_opclass) {
2089 			*op_class = vht_opclass;
2090 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2091 			if (freq > chandef->chan->center_freq)
2092 				*op_class = 122;
2093 			else
2094 				*op_class = 123;
2095 		} else {
2096 			*op_class = 121;
2097 		}
2098 
2099 		return true;
2100 	}
2101 
2102 	/* 5 GHz, channels 149..169 */
2103 	if (freq >= 5745 && freq <= 5845) {
2104 		if (vht_opclass) {
2105 			*op_class = vht_opclass;
2106 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2107 			if (freq > chandef->chan->center_freq)
2108 				*op_class = 126;
2109 			else
2110 				*op_class = 127;
2111 		} else if (freq <= 5805) {
2112 			*op_class = 124;
2113 		} else {
2114 			*op_class = 125;
2115 		}
2116 
2117 		return true;
2118 	}
2119 
2120 	/* 56.16 GHz, channel 1..4 */
2121 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2122 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2123 			return false;
2124 
2125 		*op_class = 180;
2126 		return true;
2127 	}
2128 
2129 	/* not supported yet */
2130 	return false;
2131 }
2132 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2133 
cfg80211_wdev_bi(struct wireless_dev * wdev)2134 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2135 {
2136 	switch (wdev->iftype) {
2137 	case NL80211_IFTYPE_AP:
2138 	case NL80211_IFTYPE_P2P_GO:
2139 		WARN_ON(wdev->valid_links);
2140 		return wdev->links[0].ap.beacon_interval;
2141 	case NL80211_IFTYPE_MESH_POINT:
2142 		return wdev->u.mesh.beacon_interval;
2143 	case NL80211_IFTYPE_ADHOC:
2144 		return wdev->u.ibss.beacon_interval;
2145 	default:
2146 		break;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)2152 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2153 				       u32 *beacon_int_gcd,
2154 				       bool *beacon_int_different)
2155 {
2156 	struct wireless_dev *wdev;
2157 
2158 	*beacon_int_gcd = 0;
2159 	*beacon_int_different = false;
2160 
2161 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2162 		int wdev_bi;
2163 
2164 		/* this feature isn't supported with MLO */
2165 		if (wdev->valid_links)
2166 			continue;
2167 
2168 		wdev_bi = cfg80211_wdev_bi(wdev);
2169 
2170 		if (!wdev_bi)
2171 			continue;
2172 
2173 		if (!*beacon_int_gcd) {
2174 			*beacon_int_gcd = wdev_bi;
2175 			continue;
2176 		}
2177 
2178 		if (wdev_bi == *beacon_int_gcd)
2179 			continue;
2180 
2181 		*beacon_int_different = true;
2182 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2183 	}
2184 
2185 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2186 		if (*beacon_int_gcd)
2187 			*beacon_int_different = true;
2188 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2189 	}
2190 }
2191 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2192 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2193 				 enum nl80211_iftype iftype, u32 beacon_int)
2194 {
2195 	/*
2196 	 * This is just a basic pre-condition check; if interface combinations
2197 	 * are possible the driver must already be checking those with a call
2198 	 * to cfg80211_check_combinations(), in which case we'll validate more
2199 	 * through the cfg80211_calculate_bi_data() call and code in
2200 	 * cfg80211_iter_combinations().
2201 	 */
2202 
2203 	if (beacon_int < 10 || beacon_int > 10000)
2204 		return -EINVAL;
2205 
2206 	return 0;
2207 }
2208 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2209 int cfg80211_iter_combinations(struct wiphy *wiphy,
2210 			       struct iface_combination_params *params,
2211 			       void (*iter)(const struct ieee80211_iface_combination *c,
2212 					    void *data),
2213 			       void *data)
2214 {
2215 	const struct ieee80211_regdomain *regdom;
2216 	enum nl80211_dfs_regions region = 0;
2217 	int i, j, iftype;
2218 	int num_interfaces = 0;
2219 	u32 used_iftypes = 0;
2220 	u32 beacon_int_gcd;
2221 	bool beacon_int_different;
2222 
2223 	/*
2224 	 * This is a bit strange, since the iteration used to rely only on
2225 	 * the data given by the driver, but here it now relies on context,
2226 	 * in form of the currently operating interfaces.
2227 	 * This is OK for all current users, and saves us from having to
2228 	 * push the GCD calculations into all the drivers.
2229 	 * In the future, this should probably rely more on data that's in
2230 	 * cfg80211 already - the only thing not would appear to be any new
2231 	 * interfaces (while being brought up) and channel/radar data.
2232 	 */
2233 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2234 				   &beacon_int_gcd, &beacon_int_different);
2235 
2236 	if (params->radar_detect) {
2237 		rcu_read_lock();
2238 		regdom = rcu_dereference(cfg80211_regdomain);
2239 		if (regdom)
2240 			region = regdom->dfs_region;
2241 		rcu_read_unlock();
2242 	}
2243 
2244 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2245 		num_interfaces += params->iftype_num[iftype];
2246 		if (params->iftype_num[iftype] > 0 &&
2247 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2248 			used_iftypes |= BIT(iftype);
2249 	}
2250 
2251 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
2252 		const struct ieee80211_iface_combination *c;
2253 		struct ieee80211_iface_limit *limits;
2254 		u32 all_iftypes = 0;
2255 
2256 		c = &wiphy->iface_combinations[i];
2257 
2258 		if (num_interfaces > c->max_interfaces)
2259 			continue;
2260 		if (params->num_different_channels > c->num_different_channels)
2261 			continue;
2262 
2263 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2264 				 GFP_KERNEL);
2265 		if (!limits)
2266 			return -ENOMEM;
2267 
2268 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2269 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2270 				continue;
2271 			for (j = 0; j < c->n_limits; j++) {
2272 				all_iftypes |= limits[j].types;
2273 				if (!(limits[j].types & BIT(iftype)))
2274 					continue;
2275 				if (limits[j].max < params->iftype_num[iftype])
2276 					goto cont;
2277 				limits[j].max -= params->iftype_num[iftype];
2278 			}
2279 		}
2280 
2281 		if (params->radar_detect !=
2282 			(c->radar_detect_widths & params->radar_detect))
2283 			goto cont;
2284 
2285 		if (params->radar_detect && c->radar_detect_regions &&
2286 		    !(c->radar_detect_regions & BIT(region)))
2287 			goto cont;
2288 
2289 		/* Finally check that all iftypes that we're currently
2290 		 * using are actually part of this combination. If they
2291 		 * aren't then we can't use this combination and have
2292 		 * to continue to the next.
2293 		 */
2294 		if ((all_iftypes & used_iftypes) != used_iftypes)
2295 			goto cont;
2296 
2297 		if (beacon_int_gcd) {
2298 			if (c->beacon_int_min_gcd &&
2299 			    beacon_int_gcd < c->beacon_int_min_gcd)
2300 				goto cont;
2301 			if (!c->beacon_int_min_gcd && beacon_int_different)
2302 				goto cont;
2303 		}
2304 
2305 		/* This combination covered all interface types and
2306 		 * supported the requested numbers, so we're good.
2307 		 */
2308 
2309 		(*iter)(c, data);
2310  cont:
2311 		kfree(limits);
2312 	}
2313 
2314 	return 0;
2315 }
2316 EXPORT_SYMBOL(cfg80211_iter_combinations);
2317 
2318 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2319 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2320 			  void *data)
2321 {
2322 	int *num = data;
2323 	(*num)++;
2324 }
2325 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2326 int cfg80211_check_combinations(struct wiphy *wiphy,
2327 				struct iface_combination_params *params)
2328 {
2329 	int err, num = 0;
2330 
2331 	err = cfg80211_iter_combinations(wiphy, params,
2332 					 cfg80211_iter_sum_ifcombs, &num);
2333 	if (err)
2334 		return err;
2335 	if (num == 0)
2336 		return -EBUSY;
2337 
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(cfg80211_check_combinations);
2341 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2342 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2343 			   const u8 *rates, unsigned int n_rates,
2344 			   u32 *mask)
2345 {
2346 	int i, j;
2347 
2348 	if (!sband)
2349 		return -EINVAL;
2350 
2351 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2352 		return -EINVAL;
2353 
2354 	*mask = 0;
2355 
2356 	for (i = 0; i < n_rates; i++) {
2357 		int rate = (rates[i] & 0x7f) * 5;
2358 		bool found = false;
2359 
2360 		for (j = 0; j < sband->n_bitrates; j++) {
2361 			if (sband->bitrates[j].bitrate == rate) {
2362 				found = true;
2363 				*mask |= BIT(j);
2364 				break;
2365 			}
2366 		}
2367 		if (!found)
2368 			return -EINVAL;
2369 	}
2370 
2371 	/*
2372 	 * mask must have at least one bit set here since we
2373 	 * didn't accept a 0-length rates array nor allowed
2374 	 * entries in the array that didn't exist
2375 	 */
2376 
2377 	return 0;
2378 }
2379 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2380 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2381 {
2382 	enum nl80211_band band;
2383 	unsigned int n_channels = 0;
2384 
2385 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2386 		if (wiphy->bands[band])
2387 			n_channels += wiphy->bands[band]->n_channels;
2388 
2389 	return n_channels;
2390 }
2391 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2392 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2393 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2394 			 struct station_info *sinfo)
2395 {
2396 	struct cfg80211_registered_device *rdev;
2397 	struct wireless_dev *wdev;
2398 	int ret;
2399 
2400 	wdev = dev->ieee80211_ptr;
2401 	if (!wdev)
2402 		return -EOPNOTSUPP;
2403 
2404 	rdev = wiphy_to_rdev(wdev->wiphy);
2405 	if (!rdev->ops->get_station)
2406 		return -EOPNOTSUPP;
2407 
2408 	memset(sinfo, 0, sizeof(*sinfo));
2409 
2410 	wiphy_lock(&rdev->wiphy);
2411 	ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2412 	wiphy_unlock(&rdev->wiphy);
2413 
2414 	return ret;
2415 }
2416 EXPORT_SYMBOL(cfg80211_get_station);
2417 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2418 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2419 {
2420 	int i;
2421 
2422 	if (!f)
2423 		return;
2424 
2425 	kfree(f->serv_spec_info);
2426 	kfree(f->srf_bf);
2427 	kfree(f->srf_macs);
2428 	for (i = 0; i < f->num_rx_filters; i++)
2429 		kfree(f->rx_filters[i].filter);
2430 
2431 	for (i = 0; i < f->num_tx_filters; i++)
2432 		kfree(f->tx_filters[i].filter);
2433 
2434 	kfree(f->rx_filters);
2435 	kfree(f->tx_filters);
2436 	kfree(f);
2437 }
2438 EXPORT_SYMBOL(cfg80211_free_nan_func);
2439 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2440 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2441 				u32 center_freq_khz, u32 bw_khz)
2442 {
2443 	u32 start_freq_khz, end_freq_khz;
2444 
2445 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2446 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2447 
2448 	if (start_freq_khz >= freq_range->start_freq_khz &&
2449 	    end_freq_khz <= freq_range->end_freq_khz)
2450 		return true;
2451 
2452 	return false;
2453 }
2454 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2455 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2456 {
2457 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2458 				sizeof(*(sinfo->pertid)),
2459 				gfp);
2460 	if (!sinfo->pertid)
2461 		return -ENOMEM;
2462 
2463 	return 0;
2464 }
2465 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2466 
2467 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2468 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2469 const unsigned char rfc1042_header[] __aligned(2) =
2470 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2471 EXPORT_SYMBOL(rfc1042_header);
2472 
2473 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2474 const unsigned char bridge_tunnel_header[] __aligned(2) =
2475 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2476 EXPORT_SYMBOL(bridge_tunnel_header);
2477 
2478 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2479 struct iapp_layer2_update {
2480 	u8 da[ETH_ALEN];	/* broadcast */
2481 	u8 sa[ETH_ALEN];	/* STA addr */
2482 	__be16 len;		/* 6 */
2483 	u8 dsap;		/* 0 */
2484 	u8 ssap;		/* 0 */
2485 	u8 control;
2486 	u8 xid_info[3];
2487 } __packed;
2488 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2489 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2490 {
2491 	struct iapp_layer2_update *msg;
2492 	struct sk_buff *skb;
2493 
2494 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2495 	 * bridge devices */
2496 
2497 	skb = dev_alloc_skb(sizeof(*msg));
2498 	if (!skb)
2499 		return;
2500 	msg = skb_put(skb, sizeof(*msg));
2501 
2502 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2503 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2504 
2505 	eth_broadcast_addr(msg->da);
2506 	ether_addr_copy(msg->sa, addr);
2507 	msg->len = htons(6);
2508 	msg->dsap = 0;
2509 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2510 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2511 				 * F=0 (no poll command; unsolicited frame) */
2512 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2513 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2514 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2515 
2516 	skb->dev = dev;
2517 	skb->protocol = eth_type_trans(skb, dev);
2518 	memset(skb->cb, 0, sizeof(skb->cb));
2519 	netif_rx(skb);
2520 }
2521 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2522 
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2523 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2524 			      enum ieee80211_vht_chanwidth bw,
2525 			      int mcs, bool ext_nss_bw_capable,
2526 			      unsigned int max_vht_nss)
2527 {
2528 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2529 	int ext_nss_bw;
2530 	int supp_width;
2531 	int i, mcs_encoding;
2532 
2533 	if (map == 0xffff)
2534 		return 0;
2535 
2536 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2537 		return 0;
2538 	if (mcs <= 7)
2539 		mcs_encoding = 0;
2540 	else if (mcs == 8)
2541 		mcs_encoding = 1;
2542 	else
2543 		mcs_encoding = 2;
2544 
2545 	if (!max_vht_nss) {
2546 		/* find max_vht_nss for the given MCS */
2547 		for (i = 7; i >= 0; i--) {
2548 			int supp = (map >> (2 * i)) & 3;
2549 
2550 			if (supp == 3)
2551 				continue;
2552 
2553 			if (supp >= mcs_encoding) {
2554 				max_vht_nss = i + 1;
2555 				break;
2556 			}
2557 		}
2558 	}
2559 
2560 	if (!(cap->supp_mcs.tx_mcs_map &
2561 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2562 		return max_vht_nss;
2563 
2564 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2565 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2566 	supp_width = le32_get_bits(cap->vht_cap_info,
2567 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2568 
2569 	/* if not capable, treat ext_nss_bw as 0 */
2570 	if (!ext_nss_bw_capable)
2571 		ext_nss_bw = 0;
2572 
2573 	/* This is invalid */
2574 	if (supp_width == 3)
2575 		return 0;
2576 
2577 	/* This is an invalid combination so pretend nothing is supported */
2578 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2579 		return 0;
2580 
2581 	/*
2582 	 * Cover all the special cases according to IEEE 802.11-2016
2583 	 * Table 9-250. All other cases are either factor of 1 or not
2584 	 * valid/supported.
2585 	 */
2586 	switch (bw) {
2587 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2588 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2589 		if ((supp_width == 1 || supp_width == 2) &&
2590 		    ext_nss_bw == 3)
2591 			return 2 * max_vht_nss;
2592 		break;
2593 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2594 		if (supp_width == 0 &&
2595 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2596 			return max_vht_nss / 2;
2597 		if (supp_width == 0 &&
2598 		    ext_nss_bw == 3)
2599 			return (3 * max_vht_nss) / 4;
2600 		if (supp_width == 1 &&
2601 		    ext_nss_bw == 3)
2602 			return 2 * max_vht_nss;
2603 		break;
2604 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2605 		if (supp_width == 0 && ext_nss_bw == 1)
2606 			return 0; /* not possible */
2607 		if (supp_width == 0 &&
2608 		    ext_nss_bw == 2)
2609 			return max_vht_nss / 2;
2610 		if (supp_width == 0 &&
2611 		    ext_nss_bw == 3)
2612 			return (3 * max_vht_nss) / 4;
2613 		if (supp_width == 1 &&
2614 		    ext_nss_bw == 0)
2615 			return 0; /* not possible */
2616 		if (supp_width == 1 &&
2617 		    ext_nss_bw == 1)
2618 			return max_vht_nss / 2;
2619 		if (supp_width == 1 &&
2620 		    ext_nss_bw == 2)
2621 			return (3 * max_vht_nss) / 4;
2622 		break;
2623 	}
2624 
2625 	/* not covered or invalid combination received */
2626 	return max_vht_nss;
2627 }
2628 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2629 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2630 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2631 			     bool is_4addr, u8 check_swif)
2632 
2633 {
2634 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2635 
2636 	switch (check_swif) {
2637 	case 0:
2638 		if (is_vlan && is_4addr)
2639 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2640 		return wiphy->interface_modes & BIT(iftype);
2641 	case 1:
2642 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2643 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2644 		return wiphy->software_iftypes & BIT(iftype);
2645 	default:
2646 		break;
2647 	}
2648 
2649 	return false;
2650 }
2651 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2652 
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2653 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2654 {
2655 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2656 
2657 	ASSERT_WDEV_LOCK(wdev);
2658 
2659 	switch (wdev->iftype) {
2660 	case NL80211_IFTYPE_AP:
2661 	case NL80211_IFTYPE_P2P_GO:
2662 		__cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2663 		break;
2664 	default:
2665 		/* per-link not relevant */
2666 		break;
2667 	}
2668 
2669 	wdev->valid_links &= ~BIT(link_id);
2670 
2671 	rdev_del_intf_link(rdev, wdev, link_id);
2672 
2673 	eth_zero_addr(wdev->links[link_id].addr);
2674 }
2675 
cfg80211_remove_links(struct wireless_dev * wdev)2676 void cfg80211_remove_links(struct wireless_dev *wdev)
2677 {
2678 	unsigned int link_id;
2679 
2680 	/*
2681 	 * links are controlled by upper layers (userspace/cfg)
2682 	 * only for AP mode, so only remove them here for AP
2683 	 */
2684 	if (wdev->iftype != NL80211_IFTYPE_AP)
2685 		return;
2686 
2687 	wdev_lock(wdev);
2688 	if (wdev->valid_links) {
2689 		for_each_valid_link(wdev, link_id)
2690 			cfg80211_remove_link(wdev, link_id);
2691 	}
2692 	wdev_unlock(wdev);
2693 }
2694 
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2695 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2696 				 struct wireless_dev *wdev)
2697 {
2698 	cfg80211_remove_links(wdev);
2699 
2700 	return rdev_del_virtual_intf(rdev, wdev);
2701 }
2702 
2703 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2704 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2705 {
2706 	int i;
2707 
2708 	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2709 		if (wiphy->iftype_ext_capab[i].iftype == type)
2710 			return &wiphy->iftype_ext_capab[i];
2711 	}
2712 
2713 	return NULL;
2714 }
2715 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2716