1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37 * valid. Now, docs explain in dwords what is in the context object. The full
38 * size is 70720 bytes, however, the power context and execlist context will
39 * never be saved (power context is stored elsewhere, and execlists don't work
40 * on HSW) - so the final size, including the extra state required for the
41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42 */
43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 u8 class;
55 u8 instance;
56 /* mmio bases table *must* be sorted in reverse graphics_ver order */
57 struct engine_mmio_base {
58 u32 graphics_ver : 8;
59 u32 base : 24;
60 } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64 [RCS0] = {
65 .class = RENDER_CLASS,
66 .instance = 0,
67 .mmio_bases = {
68 { .graphics_ver = 1, .base = RENDER_RING_BASE }
69 },
70 },
71 [BCS0] = {
72 .class = COPY_ENGINE_CLASS,
73 .instance = 0,
74 .mmio_bases = {
75 { .graphics_ver = 6, .base = BLT_RING_BASE }
76 },
77 },
78 [BCS1] = {
79 .class = COPY_ENGINE_CLASS,
80 .instance = 1,
81 .mmio_bases = {
82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 },
84 },
85 [BCS2] = {
86 .class = COPY_ENGINE_CLASS,
87 .instance = 2,
88 .mmio_bases = {
89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 },
91 },
92 [BCS3] = {
93 .class = COPY_ENGINE_CLASS,
94 .instance = 3,
95 .mmio_bases = {
96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 },
98 },
99 [BCS4] = {
100 .class = COPY_ENGINE_CLASS,
101 .instance = 4,
102 .mmio_bases = {
103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 },
105 },
106 [BCS5] = {
107 .class = COPY_ENGINE_CLASS,
108 .instance = 5,
109 .mmio_bases = {
110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 },
112 },
113 [BCS6] = {
114 .class = COPY_ENGINE_CLASS,
115 .instance = 6,
116 .mmio_bases = {
117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 },
119 },
120 [BCS7] = {
121 .class = COPY_ENGINE_CLASS,
122 .instance = 7,
123 .mmio_bases = {
124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 },
126 },
127 [BCS8] = {
128 .class = COPY_ENGINE_CLASS,
129 .instance = 8,
130 .mmio_bases = {
131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 },
133 },
134 [VCS0] = {
135 .class = VIDEO_DECODE_CLASS,
136 .instance = 0,
137 .mmio_bases = {
138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 { .graphics_ver = 4, .base = BSD_RING_BASE }
141 },
142 },
143 [VCS1] = {
144 .class = VIDEO_DECODE_CLASS,
145 .instance = 1,
146 .mmio_bases = {
147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 },
150 },
151 [VCS2] = {
152 .class = VIDEO_DECODE_CLASS,
153 .instance = 2,
154 .mmio_bases = {
155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 },
157 },
158 [VCS3] = {
159 .class = VIDEO_DECODE_CLASS,
160 .instance = 3,
161 .mmio_bases = {
162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 },
164 },
165 [VCS4] = {
166 .class = VIDEO_DECODE_CLASS,
167 .instance = 4,
168 .mmio_bases = {
169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 },
171 },
172 [VCS5] = {
173 .class = VIDEO_DECODE_CLASS,
174 .instance = 5,
175 .mmio_bases = {
176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 },
178 },
179 [VCS6] = {
180 .class = VIDEO_DECODE_CLASS,
181 .instance = 6,
182 .mmio_bases = {
183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 },
185 },
186 [VCS7] = {
187 .class = VIDEO_DECODE_CLASS,
188 .instance = 7,
189 .mmio_bases = {
190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 },
192 },
193 [VECS0] = {
194 .class = VIDEO_ENHANCEMENT_CLASS,
195 .instance = 0,
196 .mmio_bases = {
197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 },
200 },
201 [VECS1] = {
202 .class = VIDEO_ENHANCEMENT_CLASS,
203 .instance = 1,
204 .mmio_bases = {
205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 },
207 },
208 [VECS2] = {
209 .class = VIDEO_ENHANCEMENT_CLASS,
210 .instance = 2,
211 .mmio_bases = {
212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 },
214 },
215 [VECS3] = {
216 .class = VIDEO_ENHANCEMENT_CLASS,
217 .instance = 3,
218 .mmio_bases = {
219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 },
221 },
222 [CCS0] = {
223 .class = COMPUTE_CLASS,
224 .instance = 0,
225 .mmio_bases = {
226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 }
228 },
229 [CCS1] = {
230 .class = COMPUTE_CLASS,
231 .instance = 1,
232 .mmio_bases = {
233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 }
235 },
236 [CCS2] = {
237 .class = COMPUTE_CLASS,
238 .instance = 2,
239 .mmio_bases = {
240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 }
242 },
243 [CCS3] = {
244 .class = COMPUTE_CLASS,
245 .instance = 3,
246 .mmio_bases = {
247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 }
249 },
250 [GSC0] = {
251 .class = OTHER_CLASS,
252 .instance = OTHER_GSC_INSTANCE,
253 .mmio_bases = {
254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 }
256 },
257 };
258
259 /**
260 * intel_engine_context_size() - return the size of the context for an engine
261 * @gt: the gt
262 * @class: engine class
263 *
264 * Each engine class may require a different amount of space for a context
265 * image.
266 *
267 * Return: size (in bytes) of an engine class specific context image
268 *
269 * Note: this size includes the HWSP, which is part of the context image
270 * in LRC mode, but does not include the "shared data page" used with
271 * GuC submission. The caller should account for this if using the GuC.
272 */
intel_engine_context_size(struct intel_gt * gt,u8 class)273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 struct intel_uncore *uncore = gt->uncore;
276 u32 cxt_size;
277
278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280 switch (class) {
281 case COMPUTE_CLASS:
282 fallthrough;
283 case RENDER_CLASS:
284 switch (GRAPHICS_VER(gt->i915)) {
285 default:
286 MISSING_CASE(GRAPHICS_VER(gt->i915));
287 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 case 12:
289 case 11:
290 return GEN11_LR_CONTEXT_RENDER_SIZE;
291 case 9:
292 return GEN9_LR_CONTEXT_RENDER_SIZE;
293 case 8:
294 return GEN8_LR_CONTEXT_RENDER_SIZE;
295 case 7:
296 if (IS_HASWELL(gt->i915))
297 return HSW_CXT_TOTAL_SIZE;
298
299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 PAGE_SIZE);
302 case 6:
303 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 PAGE_SIZE);
306 case 5:
307 case 4:
308 /*
309 * There is a discrepancy here between the size reported
310 * by the register and the size of the context layout
311 * in the docs. Both are described as authorative!
312 *
313 * The discrepancy is on the order of a few cachelines,
314 * but the total is under one page (4k), which is our
315 * minimum allocation anyway so it should all come
316 * out in the wash.
317 */
318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 drm_dbg(>->i915->drm,
320 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
321 GRAPHICS_VER(gt->i915), cxt_size * 64,
322 cxt_size - 1);
323 return round_up(cxt_size * 64, PAGE_SIZE);
324 case 3:
325 case 2:
326 /* For the special day when i810 gets merged. */
327 case 1:
328 return 0;
329 }
330 break;
331 default:
332 MISSING_CASE(class);
333 fallthrough;
334 case VIDEO_DECODE_CLASS:
335 case VIDEO_ENHANCEMENT_CLASS:
336 case COPY_ENGINE_CLASS:
337 case OTHER_CLASS:
338 if (GRAPHICS_VER(gt->i915) < 8)
339 return 0;
340 return GEN8_LR_CONTEXT_OTHER_SIZE;
341 }
342 }
343
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)344 static u32 __engine_mmio_base(struct drm_i915_private *i915,
345 const struct engine_mmio_base *bases)
346 {
347 int i;
348
349 for (i = 0; i < MAX_MMIO_BASES; i++)
350 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
351 break;
352
353 GEM_BUG_ON(i == MAX_MMIO_BASES);
354 GEM_BUG_ON(!bases[i].base);
355
356 return bases[i].base;
357 }
358
__sprint_engine_name(struct intel_engine_cs * engine)359 static void __sprint_engine_name(struct intel_engine_cs *engine)
360 {
361 /*
362 * Before we know what the uABI name for this engine will be,
363 * we still would like to keep track of this engine in the debug logs.
364 * We throw in a ' here as a reminder that this isn't its final name.
365 */
366 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
367 intel_engine_class_repr(engine->class),
368 engine->instance) >= sizeof(engine->name));
369 }
370
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
372 {
373 /*
374 * Though they added more rings on g4x/ilk, they did not add
375 * per-engine HWSTAM until gen6.
376 */
377 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
378 return;
379
380 if (GRAPHICS_VER(engine->i915) >= 3)
381 ENGINE_WRITE(engine, RING_HWSTAM, mask);
382 else
383 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
384 }
385
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 {
388 /* Mask off all writes into the unknown HWSP */
389 intel_engine_set_hwsp_writemask(engine, ~0u);
390 }
391
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 {
394 GEM_DEBUG_WARN_ON(iir);
395 }
396
get_reset_domain(u8 ver,enum intel_engine_id id)397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
398 {
399 u32 reset_domain;
400
401 if (ver >= 11) {
402 static const u32 engine_reset_domains[] = {
403 [RCS0] = GEN11_GRDOM_RENDER,
404 [BCS0] = GEN11_GRDOM_BLT,
405 [BCS1] = XEHPC_GRDOM_BLT1,
406 [BCS2] = XEHPC_GRDOM_BLT2,
407 [BCS3] = XEHPC_GRDOM_BLT3,
408 [BCS4] = XEHPC_GRDOM_BLT4,
409 [BCS5] = XEHPC_GRDOM_BLT5,
410 [BCS6] = XEHPC_GRDOM_BLT6,
411 [BCS7] = XEHPC_GRDOM_BLT7,
412 [BCS8] = XEHPC_GRDOM_BLT8,
413 [VCS0] = GEN11_GRDOM_MEDIA,
414 [VCS1] = GEN11_GRDOM_MEDIA2,
415 [VCS2] = GEN11_GRDOM_MEDIA3,
416 [VCS3] = GEN11_GRDOM_MEDIA4,
417 [VCS4] = GEN11_GRDOM_MEDIA5,
418 [VCS5] = GEN11_GRDOM_MEDIA6,
419 [VCS6] = GEN11_GRDOM_MEDIA7,
420 [VCS7] = GEN11_GRDOM_MEDIA8,
421 [VECS0] = GEN11_GRDOM_VECS,
422 [VECS1] = GEN11_GRDOM_VECS2,
423 [VECS2] = GEN11_GRDOM_VECS3,
424 [VECS3] = GEN11_GRDOM_VECS4,
425 [CCS0] = GEN11_GRDOM_RENDER,
426 [CCS1] = GEN11_GRDOM_RENDER,
427 [CCS2] = GEN11_GRDOM_RENDER,
428 [CCS3] = GEN11_GRDOM_RENDER,
429 [GSC0] = GEN12_GRDOM_GSC,
430 };
431 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
432 !engine_reset_domains[id]);
433 reset_domain = engine_reset_domains[id];
434 } else {
435 static const u32 engine_reset_domains[] = {
436 [RCS0] = GEN6_GRDOM_RENDER,
437 [BCS0] = GEN6_GRDOM_BLT,
438 [VCS0] = GEN6_GRDOM_MEDIA,
439 [VCS1] = GEN8_GRDOM_MEDIA2,
440 [VECS0] = GEN6_GRDOM_VECS,
441 };
442 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
443 !engine_reset_domains[id]);
444 reset_domain = engine_reset_domains[id];
445 }
446
447 return reset_domain;
448 }
449
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id,u8 logical_instance)450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
451 u8 logical_instance)
452 {
453 const struct engine_info *info = &intel_engines[id];
454 struct drm_i915_private *i915 = gt->i915;
455 struct intel_engine_cs *engine;
456 u8 guc_class;
457
458 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
459 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
460 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
461 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462
463 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
464 return -EINVAL;
465
466 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
467 return -EINVAL;
468
469 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
470 return -EINVAL;
471
472 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
473 return -EINVAL;
474
475 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
476 if (!engine)
477 return -ENOMEM;
478
479 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480
481 INIT_LIST_HEAD(&engine->pinned_contexts_list);
482 engine->id = id;
483 engine->legacy_idx = INVALID_ENGINE;
484 engine->mask = BIT(id);
485 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
486 id);
487 engine->i915 = i915;
488 engine->gt = gt;
489 engine->uncore = gt->uncore;
490 guc_class = engine_class_to_guc_class(info->class);
491 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
492 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493
494 engine->irq_handler = nop_irq_handler;
495
496 engine->class = info->class;
497 engine->instance = info->instance;
498 engine->logical_mask = BIT(logical_instance);
499 __sprint_engine_name(engine);
500
501 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
502 __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
503 engine->class == RENDER_CLASS)
504 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
505
506 /* features common between engines sharing EUs */
507 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
508 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
509 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
510 }
511
512 engine->props.heartbeat_interval_ms =
513 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
514 engine->props.max_busywait_duration_ns =
515 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
516 engine->props.preempt_timeout_ms =
517 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
518 engine->props.stop_timeout_ms =
519 CONFIG_DRM_I915_STOP_TIMEOUT;
520 engine->props.timeslice_duration_ms =
521 CONFIG_DRM_I915_TIMESLICE_DURATION;
522
523 /*
524 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
525 * some compute workloads run quite long threads. That means they get
526 * reset due to not pre-empting in a timely manner. So, bump the
527 * pre-emption timeout value to be much higher for compute engines.
528 */
529 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
530 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
531
532 /* Cap properties according to any system limits */
533 #define CLAMP_PROP(field) \
534 do { \
535 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
536 if (clamp != engine->props.field) { \
537 drm_notice(&engine->i915->drm, \
538 "Warning, clamping %s to %lld to prevent overflow\n", \
539 #field, clamp); \
540 engine->props.field = clamp; \
541 } \
542 } while (0)
543
544 CLAMP_PROP(heartbeat_interval_ms);
545 CLAMP_PROP(max_busywait_duration_ns);
546 CLAMP_PROP(preempt_timeout_ms);
547 CLAMP_PROP(stop_timeout_ms);
548 CLAMP_PROP(timeslice_duration_ms);
549
550 #undef CLAMP_PROP
551
552 engine->defaults = engine->props; /* never to change again */
553
554 engine->context_size = intel_engine_context_size(gt, engine->class);
555 if (WARN_ON(engine->context_size > BIT(20)))
556 engine->context_size = 0;
557 if (engine->context_size)
558 DRIVER_CAPS(i915)->has_logical_contexts = true;
559
560 ewma__engine_latency_init(&engine->latency);
561
562 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
563
564 /* Scrub mmio state on takeover */
565 intel_engine_sanitize_mmio(engine);
566
567 gt->engine_class[info->class][info->instance] = engine;
568 gt->engine[id] = engine;
569
570 return 0;
571 }
572
intel_clamp_heartbeat_interval_ms(struct intel_engine_cs * engine,u64 value)573 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
574 {
575 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
576
577 return value;
578 }
579
intel_clamp_max_busywait_duration_ns(struct intel_engine_cs * engine,u64 value)580 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
581 {
582 value = min(value, jiffies_to_nsecs(2));
583
584 return value;
585 }
586
intel_clamp_preempt_timeout_ms(struct intel_engine_cs * engine,u64 value)587 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
588 {
589 /*
590 * NB: The GuC API only supports 32bit values. However, the limit is further
591 * reduced due to internal calculations which would otherwise overflow.
592 */
593 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
594 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
595
596 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
597
598 return value;
599 }
600
intel_clamp_stop_timeout_ms(struct intel_engine_cs * engine,u64 value)601 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
602 {
603 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
604
605 return value;
606 }
607
intel_clamp_timeslice_duration_ms(struct intel_engine_cs * engine,u64 value)608 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
609 {
610 /*
611 * NB: The GuC API only supports 32bit values. However, the limit is further
612 * reduced due to internal calculations which would otherwise overflow.
613 */
614 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
615 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
616
617 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
618
619 return value;
620 }
621
__setup_engine_capabilities(struct intel_engine_cs * engine)622 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
623 {
624 struct drm_i915_private *i915 = engine->i915;
625
626 if (engine->class == VIDEO_DECODE_CLASS) {
627 /*
628 * HEVC support is present on first engine instance
629 * before Gen11 and on all instances afterwards.
630 */
631 if (GRAPHICS_VER(i915) >= 11 ||
632 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
633 engine->uabi_capabilities |=
634 I915_VIDEO_CLASS_CAPABILITY_HEVC;
635
636 /*
637 * SFC block is present only on even logical engine
638 * instances.
639 */
640 if ((GRAPHICS_VER(i915) >= 11 &&
641 (engine->gt->info.vdbox_sfc_access &
642 BIT(engine->instance))) ||
643 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
644 engine->uabi_capabilities |=
645 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
646 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
647 if (GRAPHICS_VER(i915) >= 9 &&
648 engine->gt->info.sfc_mask & BIT(engine->instance))
649 engine->uabi_capabilities |=
650 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
651 }
652 }
653
intel_setup_engine_capabilities(struct intel_gt * gt)654 static void intel_setup_engine_capabilities(struct intel_gt *gt)
655 {
656 struct intel_engine_cs *engine;
657 enum intel_engine_id id;
658
659 for_each_engine(engine, gt, id)
660 __setup_engine_capabilities(engine);
661 }
662
663 /**
664 * intel_engines_release() - free the resources allocated for Command Streamers
665 * @gt: pointer to struct intel_gt
666 */
intel_engines_release(struct intel_gt * gt)667 void intel_engines_release(struct intel_gt *gt)
668 {
669 struct intel_engine_cs *engine;
670 enum intel_engine_id id;
671
672 /*
673 * Before we release the resources held by engine, we must be certain
674 * that the HW is no longer accessing them -- having the GPU scribble
675 * to or read from a page being used for something else causes no end
676 * of fun.
677 *
678 * The GPU should be reset by this point, but assume the worst just
679 * in case we aborted before completely initialising the engines.
680 */
681 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
682 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
683 __intel_gt_reset(gt, ALL_ENGINES);
684
685 /* Decouple the backend; but keep the layout for late GPU resets */
686 for_each_engine(engine, gt, id) {
687 if (!engine->release)
688 continue;
689
690 intel_wakeref_wait_for_idle(&engine->wakeref);
691 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
692
693 engine->release(engine);
694 engine->release = NULL;
695
696 memset(&engine->reset, 0, sizeof(engine->reset));
697 }
698 }
699
intel_engine_free_request_pool(struct intel_engine_cs * engine)700 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 {
702 if (!engine->request_pool)
703 return;
704
705 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
706 }
707
intel_engines_free(struct intel_gt * gt)708 void intel_engines_free(struct intel_gt *gt)
709 {
710 struct intel_engine_cs *engine;
711 enum intel_engine_id id;
712
713 /* Free the requests! dma-resv keeps fences around for an eternity */
714 rcu_barrier();
715
716 for_each_engine(engine, gt, id) {
717 intel_engine_free_request_pool(engine);
718 kfree(engine);
719 gt->engine[id] = NULL;
720 }
721 }
722
723 static
gen11_vdbox_has_sfc(struct intel_gt * gt,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)724 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
725 unsigned int physical_vdbox,
726 unsigned int logical_vdbox, u16 vdbox_mask)
727 {
728 struct drm_i915_private *i915 = gt->i915;
729
730 /*
731 * In Gen11, only even numbered logical VDBOXes are hooked
732 * up to an SFC (Scaler & Format Converter) unit.
733 * In Gen12, Even numbered physical instance always are connected
734 * to an SFC. Odd numbered physical instances have SFC only if
735 * previous even instance is fused off.
736 *
737 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
738 * in the fuse register that tells us whether a specific SFC is present.
739 */
740 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
741 return false;
742 else if (MEDIA_VER(i915) >= 12)
743 return (physical_vdbox % 2 == 0) ||
744 !(BIT(physical_vdbox - 1) & vdbox_mask);
745 else if (MEDIA_VER(i915) == 11)
746 return logical_vdbox % 2 == 0;
747
748 return false;
749 }
750
engine_mask_apply_media_fuses(struct intel_gt * gt)751 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
752 {
753 struct drm_i915_private *i915 = gt->i915;
754 unsigned int logical_vdbox = 0;
755 unsigned int i;
756 u32 media_fuse, fuse1;
757 u16 vdbox_mask;
758 u16 vebox_mask;
759
760 if (MEDIA_VER(gt->i915) < 11)
761 return;
762
763 /*
764 * On newer platforms the fusing register is called 'enable' and has
765 * enable semantics, while on older platforms it is called 'disable'
766 * and bits have disable semantices.
767 */
768 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
769 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
770 media_fuse = ~media_fuse;
771
772 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
773 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
774 GEN11_GT_VEBOX_DISABLE_SHIFT;
775
776 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
777 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
778 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
779 } else {
780 gt->info.sfc_mask = ~0;
781 }
782
783 for (i = 0; i < I915_MAX_VCS; i++) {
784 if (!HAS_ENGINE(gt, _VCS(i))) {
785 vdbox_mask &= ~BIT(i);
786 continue;
787 }
788
789 if (!(BIT(i) & vdbox_mask)) {
790 gt->info.engine_mask &= ~BIT(_VCS(i));
791 drm_dbg(&i915->drm, "vcs%u fused off\n", i);
792 continue;
793 }
794
795 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
796 gt->info.vdbox_sfc_access |= BIT(i);
797 logical_vdbox++;
798 }
799 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
800 vdbox_mask, VDBOX_MASK(gt));
801 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
802
803 for (i = 0; i < I915_MAX_VECS; i++) {
804 if (!HAS_ENGINE(gt, _VECS(i))) {
805 vebox_mask &= ~BIT(i);
806 continue;
807 }
808
809 if (!(BIT(i) & vebox_mask)) {
810 gt->info.engine_mask &= ~BIT(_VECS(i));
811 drm_dbg(&i915->drm, "vecs%u fused off\n", i);
812 }
813 }
814 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
815 vebox_mask, VEBOX_MASK(gt));
816 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
817 }
818
engine_mask_apply_compute_fuses(struct intel_gt * gt)819 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
820 {
821 struct drm_i915_private *i915 = gt->i915;
822 struct intel_gt_info *info = >->info;
823 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
824 unsigned long ccs_mask;
825 unsigned int i;
826
827 if (GRAPHICS_VER(i915) < 11)
828 return;
829
830 if (hweight32(CCS_MASK(gt)) <= 1)
831 return;
832
833 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
834 ss_per_ccs);
835 /*
836 * If all DSS in a quadrant are fused off, the corresponding CCS
837 * engine is not available for use.
838 */
839 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
840 info->engine_mask &= ~BIT(_CCS(i));
841 drm_dbg(&i915->drm, "ccs%u fused off\n", i);
842 }
843 }
844
engine_mask_apply_copy_fuses(struct intel_gt * gt)845 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
846 {
847 struct drm_i915_private *i915 = gt->i915;
848 struct intel_gt_info *info = >->info;
849 unsigned long meml3_mask;
850 unsigned long quad;
851
852 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
853 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
854 return;
855
856 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
857 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
858
859 /*
860 * Link Copy engines may be fused off according to meml3_mask. Each
861 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
862 */
863 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
864 unsigned int instance = quad * 2 + 1;
865 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
866 _BCS(instance));
867
868 if (mask & info->engine_mask) {
869 drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
870 drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
871
872 info->engine_mask &= ~mask;
873 }
874 }
875 }
876
877 /*
878 * Determine which engines are fused off in our particular hardware.
879 * Note that we have a catch-22 situation where we need to be able to access
880 * the blitter forcewake domain to read the engine fuses, but at the same time
881 * we need to know which engines are available on the system to know which
882 * forcewake domains are present. We solve this by intializing the forcewake
883 * domains based on the full engine mask in the platform capabilities before
884 * calling this function and pruning the domains for fused-off engines
885 * afterwards.
886 */
init_engine_mask(struct intel_gt * gt)887 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
888 {
889 struct intel_gt_info *info = >->info;
890
891 GEM_BUG_ON(!info->engine_mask);
892
893 engine_mask_apply_media_fuses(gt);
894 engine_mask_apply_compute_fuses(gt);
895 engine_mask_apply_copy_fuses(gt);
896
897 /*
898 * The only use of the GSC CS is to load and communicate with the GSC
899 * FW, so we have no use for it if we don't have the FW.
900 *
901 * IMPORTANT: in cases where we don't have the GSC FW, we have a
902 * catch-22 situation that breaks media C6 due to 2 requirements:
903 * 1) once turned on, the GSC power well will not go to sleep unless the
904 * GSC FW is loaded.
905 * 2) to enable idling (which is required for media C6) we need to
906 * initialize the IDLE_MSG register for the GSC CS and do at least 1
907 * submission, which will wake up the GSC power well.
908 */
909 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) {
910 drm_notice(>->i915->drm,
911 "No GSC FW selected, disabling GSC CS and media C6\n");
912 info->engine_mask &= ~BIT(GSC0);
913 }
914
915 /*
916 * Do not create the command streamer for CCS slices beyond the first.
917 * All the workload submitted to the first engine will be shared among
918 * all the slices.
919 *
920 * Once the user will be allowed to customize the CCS mode, then this
921 * check needs to be removed.
922 */
923 if (IS_DG2(gt->i915)) {
924 u8 first_ccs = __ffs(CCS_MASK(gt));
925
926 /*
927 * Store the number of active cslices before
928 * changing the CCS engine configuration
929 */
930 gt->ccs.cslices = CCS_MASK(gt);
931
932 /* Mask off all the CCS engine */
933 info->engine_mask &= ~GENMASK(CCS3, CCS0);
934 /* Put back in the first CCS engine */
935 info->engine_mask |= BIT(_CCS(first_ccs));
936 }
937
938 return info->engine_mask;
939 }
940
populate_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class,const u8 * map,u8 num_instances)941 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
942 u8 class, const u8 *map, u8 num_instances)
943 {
944 int i, j;
945 u8 current_logical_id = 0;
946
947 for (j = 0; j < num_instances; ++j) {
948 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
949 if (!HAS_ENGINE(gt, i) ||
950 intel_engines[i].class != class)
951 continue;
952
953 if (intel_engines[i].instance == map[j]) {
954 logical_ids[intel_engines[i].instance] =
955 current_logical_id++;
956 break;
957 }
958 }
959 }
960 }
961
setup_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class)962 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
963 {
964 /*
965 * Logical to physical mapping is needed for proper support
966 * to split-frame feature.
967 */
968 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
969 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
970
971 populate_logical_ids(gt, logical_ids, class,
972 map, ARRAY_SIZE(map));
973 } else {
974 int i;
975 u8 map[MAX_ENGINE_INSTANCE + 1];
976
977 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
978 map[i] = i;
979 populate_logical_ids(gt, logical_ids, class,
980 map, ARRAY_SIZE(map));
981 }
982 }
983
984 /**
985 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
986 * @gt: pointer to struct intel_gt
987 *
988 * Return: non-zero if the initialization failed.
989 */
intel_engines_init_mmio(struct intel_gt * gt)990 int intel_engines_init_mmio(struct intel_gt *gt)
991 {
992 struct drm_i915_private *i915 = gt->i915;
993 const unsigned int engine_mask = init_engine_mask(gt);
994 unsigned int mask = 0;
995 unsigned int i, class;
996 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
997 int err;
998
999 drm_WARN_ON(&i915->drm, engine_mask == 0);
1000 drm_WARN_ON(&i915->drm, engine_mask &
1001 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
1002
1003 if (i915_inject_probe_failure(i915))
1004 return -ENODEV;
1005
1006 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
1007 setup_logical_ids(gt, logical_ids, class);
1008
1009 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
1010 u8 instance = intel_engines[i].instance;
1011
1012 if (intel_engines[i].class != class ||
1013 !HAS_ENGINE(gt, i))
1014 continue;
1015
1016 err = intel_engine_setup(gt, i,
1017 logical_ids[instance]);
1018 if (err)
1019 goto cleanup;
1020
1021 mask |= BIT(i);
1022 }
1023 }
1024
1025 /*
1026 * Catch failures to update intel_engines table when the new engines
1027 * are added to the driver by a warning and disabling the forgotten
1028 * engines.
1029 */
1030 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1031 gt->info.engine_mask = mask;
1032
1033 gt->info.num_engines = hweight32(mask);
1034
1035 intel_gt_check_and_clear_faults(gt);
1036
1037 intel_setup_engine_capabilities(gt);
1038
1039 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1040
1041 return 0;
1042
1043 cleanup:
1044 intel_engines_free(gt);
1045 return err;
1046 }
1047
intel_engine_init_execlists(struct intel_engine_cs * engine)1048 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1049 {
1050 struct intel_engine_execlists * const execlists = &engine->execlists;
1051
1052 execlists->port_mask = 1;
1053 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1054 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1055
1056 memset(execlists->pending, 0, sizeof(execlists->pending));
1057 execlists->active =
1058 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1059 }
1060
cleanup_status_page(struct intel_engine_cs * engine)1061 static void cleanup_status_page(struct intel_engine_cs *engine)
1062 {
1063 struct i915_vma *vma;
1064
1065 /* Prevent writes into HWSP after returning the page to the system */
1066 intel_engine_set_hwsp_writemask(engine, ~0u);
1067
1068 vma = fetch_and_zero(&engine->status_page.vma);
1069 if (!vma)
1070 return;
1071
1072 if (!HWS_NEEDS_PHYSICAL(engine->i915))
1073 i915_vma_unpin(vma);
1074
1075 i915_gem_object_unpin_map(vma->obj);
1076 i915_gem_object_put(vma->obj);
1077 }
1078
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)1079 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1080 struct i915_gem_ww_ctx *ww,
1081 struct i915_vma *vma)
1082 {
1083 unsigned int flags;
1084
1085 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1086 /*
1087 * On g33, we cannot place HWS above 256MiB, so
1088 * restrict its pinning to the low mappable arena.
1089 * Though this restriction is not documented for
1090 * gen4, gen5, or byt, they also behave similarly
1091 * and hang if the HWS is placed at the top of the
1092 * GTT. To generalise, it appears that all !llc
1093 * platforms have issues with us placing the HWS
1094 * above the mappable region (even though we never
1095 * actually map it).
1096 */
1097 flags = PIN_MAPPABLE;
1098 else
1099 flags = PIN_HIGH;
1100
1101 return i915_ggtt_pin(vma, ww, 0, flags);
1102 }
1103
init_status_page(struct intel_engine_cs * engine)1104 static int init_status_page(struct intel_engine_cs *engine)
1105 {
1106 struct drm_i915_gem_object *obj;
1107 struct i915_gem_ww_ctx ww;
1108 struct i915_vma *vma;
1109 void *vaddr;
1110 int ret;
1111
1112 INIT_LIST_HEAD(&engine->status_page.timelines);
1113
1114 /*
1115 * Though the HWS register does support 36bit addresses, historically
1116 * we have had hangs and corruption reported due to wild writes if
1117 * the HWS is placed above 4G. We only allow objects to be allocated
1118 * in GFP_DMA32 for i965, and no earlier physical address users had
1119 * access to more than 4G.
1120 */
1121 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1122 if (IS_ERR(obj)) {
1123 drm_err(&engine->i915->drm,
1124 "Failed to allocate status page\n");
1125 return PTR_ERR(obj);
1126 }
1127
1128 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1129
1130 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1131 if (IS_ERR(vma)) {
1132 ret = PTR_ERR(vma);
1133 goto err_put;
1134 }
1135
1136 i915_gem_ww_ctx_init(&ww, true);
1137 retry:
1138 ret = i915_gem_object_lock(obj, &ww);
1139 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1140 ret = pin_ggtt_status_page(engine, &ww, vma);
1141 if (ret)
1142 goto err;
1143
1144 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1145 if (IS_ERR(vaddr)) {
1146 ret = PTR_ERR(vaddr);
1147 goto err_unpin;
1148 }
1149
1150 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1151 engine->status_page.vma = vma;
1152
1153 err_unpin:
1154 if (ret)
1155 i915_vma_unpin(vma);
1156 err:
1157 if (ret == -EDEADLK) {
1158 ret = i915_gem_ww_ctx_backoff(&ww);
1159 if (!ret)
1160 goto retry;
1161 }
1162 i915_gem_ww_ctx_fini(&ww);
1163 err_put:
1164 if (ret)
1165 i915_gem_object_put(obj);
1166 return ret;
1167 }
1168
intel_engine_init_tlb_invalidation(struct intel_engine_cs * engine)1169 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1170 {
1171 static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1172 [RENDER_CLASS].reg = GEN8_RTCR,
1173 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */
1174 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR,
1175 [COPY_ENGINE_CLASS].reg = GEN8_BTCR,
1176 };
1177 static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1178 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR,
1179 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1180 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1181 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR,
1182 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR,
1183 };
1184 static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1185 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR,
1186 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR,
1187 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1188 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR,
1189 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR,
1190 };
1191 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1192 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1193 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1194 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR,
1195 };
1196 struct drm_i915_private *i915 = engine->i915;
1197 const unsigned int instance = engine->instance;
1198 const unsigned int class = engine->class;
1199 const union intel_engine_tlb_inv_reg *regs;
1200 union intel_engine_tlb_inv_reg reg;
1201 unsigned int num = 0;
1202 u32 val;
1203
1204 /*
1205 * New platforms should not be added with catch-all-newer (>=)
1206 * condition so that any later platform added triggers the below warning
1207 * and in turn mandates a human cross-check of whether the invalidation
1208 * flows have compatible semantics.
1209 *
1210 * For instance with the 11.00 -> 12.00 transition three out of five
1211 * respective engine registers were moved to masked type. Then after the
1212 * 12.00 -> 12.50 transition multi cast handling is required too.
1213 */
1214
1215 if (engine->gt->type == GT_MEDIA) {
1216 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1217 regs = xelpmp_regs;
1218 num = ARRAY_SIZE(xelpmp_regs);
1219 }
1220 } else {
1221 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1222 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1223 GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1224 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1225 regs = xehp_regs;
1226 num = ARRAY_SIZE(xehp_regs);
1227 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1228 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1229 regs = gen12_regs;
1230 num = ARRAY_SIZE(gen12_regs);
1231 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1232 regs = gen8_regs;
1233 num = ARRAY_SIZE(gen8_regs);
1234 } else if (GRAPHICS_VER(i915) < 8) {
1235 return 0;
1236 }
1237 }
1238
1239 if (gt_WARN_ONCE(engine->gt, !num,
1240 "Platform does not implement TLB invalidation!"))
1241 return -ENODEV;
1242
1243 if (gt_WARN_ON_ONCE(engine->gt,
1244 class >= num ||
1245 (!regs[class].reg.reg &&
1246 !regs[class].mcr_reg.reg)))
1247 return -ERANGE;
1248
1249 reg = regs[class];
1250
1251 if (regs == xelpmp_regs && class == OTHER_CLASS) {
1252 /*
1253 * There's only a single GSC instance, but it uses register bit
1254 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1255 */
1256 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1257 val = 1;
1258 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1259 reg.reg = GEN8_M2TCR;
1260 val = 0;
1261 } else {
1262 val = instance;
1263 }
1264
1265 val = BIT(val);
1266
1267 engine->tlb_inv.mcr = regs == xehp_regs;
1268 engine->tlb_inv.reg = reg;
1269 engine->tlb_inv.done = val;
1270
1271 if (GRAPHICS_VER(i915) >= 12 &&
1272 (engine->class == VIDEO_DECODE_CLASS ||
1273 engine->class == VIDEO_ENHANCEMENT_CLASS ||
1274 engine->class == COMPUTE_CLASS ||
1275 engine->class == OTHER_CLASS))
1276 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1277 else
1278 engine->tlb_inv.request = val;
1279
1280 return 0;
1281 }
1282
engine_setup_common(struct intel_engine_cs * engine)1283 static int engine_setup_common(struct intel_engine_cs *engine)
1284 {
1285 int err;
1286
1287 init_llist_head(&engine->barrier_tasks);
1288
1289 err = intel_engine_init_tlb_invalidation(engine);
1290 if (err)
1291 return err;
1292
1293 err = init_status_page(engine);
1294 if (err)
1295 return err;
1296
1297 engine->breadcrumbs = intel_breadcrumbs_create(engine);
1298 if (!engine->breadcrumbs) {
1299 err = -ENOMEM;
1300 goto err_status;
1301 }
1302
1303 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1304 if (!engine->sched_engine) {
1305 err = -ENOMEM;
1306 goto err_sched_engine;
1307 }
1308 engine->sched_engine->private_data = engine;
1309
1310 err = intel_engine_init_cmd_parser(engine);
1311 if (err)
1312 goto err_cmd_parser;
1313
1314 intel_engine_init_execlists(engine);
1315 intel_engine_init__pm(engine);
1316 intel_engine_init_retire(engine);
1317
1318 /* Use the whole device by default */
1319 engine->sseu =
1320 intel_sseu_from_device_info(&engine->gt->info.sseu);
1321
1322 intel_engine_init_workarounds(engine);
1323 intel_engine_init_whitelist(engine);
1324 intel_engine_init_ctx_wa(engine);
1325
1326 if (GRAPHICS_VER(engine->i915) >= 12)
1327 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1328
1329 return 0;
1330
1331 err_cmd_parser:
1332 i915_sched_engine_put(engine->sched_engine);
1333 err_sched_engine:
1334 intel_breadcrumbs_put(engine->breadcrumbs);
1335 err_status:
1336 cleanup_status_page(engine);
1337 return err;
1338 }
1339
1340 struct measure_breadcrumb {
1341 struct i915_request rq;
1342 struct intel_ring ring;
1343 u32 cs[2048];
1344 };
1345
measure_breadcrumb_dw(struct intel_context * ce)1346 static int measure_breadcrumb_dw(struct intel_context *ce)
1347 {
1348 struct intel_engine_cs *engine = ce->engine;
1349 struct measure_breadcrumb *frame;
1350 int dw;
1351
1352 GEM_BUG_ON(!engine->gt->scratch);
1353
1354 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1355 if (!frame)
1356 return -ENOMEM;
1357
1358 frame->rq.i915 = engine->i915;
1359 frame->rq.engine = engine;
1360 frame->rq.context = ce;
1361 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1362 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1363
1364 frame->ring.vaddr = frame->cs;
1365 frame->ring.size = sizeof(frame->cs);
1366 frame->ring.wrap =
1367 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1368 frame->ring.effective_size = frame->ring.size;
1369 intel_ring_update_space(&frame->ring);
1370 frame->rq.ring = &frame->ring;
1371
1372 mutex_lock(&ce->timeline->mutex);
1373 spin_lock_irq(&engine->sched_engine->lock);
1374
1375 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1376
1377 spin_unlock_irq(&engine->sched_engine->lock);
1378 mutex_unlock(&ce->timeline->mutex);
1379
1380 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1381
1382 kfree(frame);
1383 return dw;
1384 }
1385
1386 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)1387 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1388 struct i915_address_space *vm,
1389 unsigned int ring_size,
1390 unsigned int hwsp,
1391 struct lock_class_key *key,
1392 const char *name)
1393 {
1394 struct intel_context *ce;
1395 int err;
1396
1397 ce = intel_context_create(engine);
1398 if (IS_ERR(ce))
1399 return ce;
1400
1401 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1402 ce->timeline = page_pack_bits(NULL, hwsp);
1403 ce->ring = NULL;
1404 ce->ring_size = ring_size;
1405
1406 i915_vm_put(ce->vm);
1407 ce->vm = i915_vm_get(vm);
1408
1409 err = intel_context_pin(ce); /* perma-pin so it is always available */
1410 if (err) {
1411 intel_context_put(ce);
1412 return ERR_PTR(err);
1413 }
1414
1415 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1416
1417 /*
1418 * Give our perma-pinned kernel timelines a separate lockdep class,
1419 * so that we can use them from within the normal user timelines
1420 * should we need to inject GPU operations during their request
1421 * construction.
1422 */
1423 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1424
1425 return ce;
1426 }
1427
intel_engine_destroy_pinned_context(struct intel_context * ce)1428 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1429 {
1430 struct intel_engine_cs *engine = ce->engine;
1431 struct i915_vma *hwsp = engine->status_page.vma;
1432
1433 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1434
1435 mutex_lock(&hwsp->vm->mutex);
1436 list_del(&ce->timeline->engine_link);
1437 mutex_unlock(&hwsp->vm->mutex);
1438
1439 list_del(&ce->pinned_contexts_link);
1440 intel_context_unpin(ce);
1441 intel_context_put(ce);
1442 }
1443
1444 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)1445 create_kernel_context(struct intel_engine_cs *engine)
1446 {
1447 static struct lock_class_key kernel;
1448
1449 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1450 I915_GEM_HWS_SEQNO_ADDR,
1451 &kernel, "kernel_context");
1452 }
1453
1454 /*
1455 * engine_init_common - initialize engine state which might require hw access
1456 * @engine: Engine to initialize.
1457 *
1458 * Initializes @engine@ structure members shared between legacy and execlists
1459 * submission modes which do require hardware access.
1460 *
1461 * Typcally done at later stages of submission mode specific engine setup.
1462 *
1463 * Returns zero on success or an error code on failure.
1464 */
engine_init_common(struct intel_engine_cs * engine)1465 static int engine_init_common(struct intel_engine_cs *engine)
1466 {
1467 struct intel_context *ce;
1468 int ret;
1469
1470 engine->set_default_submission(engine);
1471
1472 /*
1473 * We may need to do things with the shrinker which
1474 * require us to immediately switch back to the default
1475 * context. This can cause a problem as pinning the
1476 * default context also requires GTT space which may not
1477 * be available. To avoid this we always pin the default
1478 * context.
1479 */
1480 ce = create_kernel_context(engine);
1481 if (IS_ERR(ce))
1482 return PTR_ERR(ce);
1483
1484 ret = measure_breadcrumb_dw(ce);
1485 if (ret < 0)
1486 goto err_context;
1487
1488 engine->emit_fini_breadcrumb_dw = ret;
1489 engine->kernel_context = ce;
1490
1491 return 0;
1492
1493 err_context:
1494 intel_engine_destroy_pinned_context(ce);
1495 return ret;
1496 }
1497
intel_engines_init(struct intel_gt * gt)1498 int intel_engines_init(struct intel_gt *gt)
1499 {
1500 int (*setup)(struct intel_engine_cs *engine);
1501 struct intel_engine_cs *engine;
1502 enum intel_engine_id id;
1503 int err;
1504
1505 if (intel_uc_uses_guc_submission(>->uc)) {
1506 gt->submission_method = INTEL_SUBMISSION_GUC;
1507 setup = intel_guc_submission_setup;
1508 } else if (HAS_EXECLISTS(gt->i915)) {
1509 gt->submission_method = INTEL_SUBMISSION_ELSP;
1510 setup = intel_execlists_submission_setup;
1511 } else {
1512 gt->submission_method = INTEL_SUBMISSION_RING;
1513 setup = intel_ring_submission_setup;
1514 }
1515
1516 for_each_engine(engine, gt, id) {
1517 err = engine_setup_common(engine);
1518 if (err)
1519 return err;
1520
1521 err = setup(engine);
1522 if (err) {
1523 intel_engine_cleanup_common(engine);
1524 return err;
1525 }
1526
1527 /* The backend should now be responsible for cleanup */
1528 GEM_BUG_ON(engine->release == NULL);
1529
1530 err = engine_init_common(engine);
1531 if (err)
1532 return err;
1533
1534 intel_engine_add_user(engine);
1535 }
1536
1537 return 0;
1538 }
1539
1540 /**
1541 * intel_engine_cleanup_common - cleans up the engine state created by
1542 * the common initiailizers.
1543 * @engine: Engine to cleanup.
1544 *
1545 * This cleans up everything created by the common helpers.
1546 */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1547 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1548 {
1549 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1550
1551 i915_sched_engine_put(engine->sched_engine);
1552 intel_breadcrumbs_put(engine->breadcrumbs);
1553
1554 intel_engine_fini_retire(engine);
1555 intel_engine_cleanup_cmd_parser(engine);
1556
1557 if (engine->default_state)
1558 fput(engine->default_state);
1559
1560 if (engine->kernel_context)
1561 intel_engine_destroy_pinned_context(engine->kernel_context);
1562
1563 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1564 cleanup_status_page(engine);
1565
1566 intel_wa_list_free(&engine->ctx_wa_list);
1567 intel_wa_list_free(&engine->wa_list);
1568 intel_wa_list_free(&engine->whitelist);
1569 }
1570
1571 /**
1572 * intel_engine_resume - re-initializes the HW state of the engine
1573 * @engine: Engine to resume.
1574 *
1575 * Returns zero on success or an error code on failure.
1576 */
intel_engine_resume(struct intel_engine_cs * engine)1577 int intel_engine_resume(struct intel_engine_cs *engine)
1578 {
1579 intel_engine_apply_workarounds(engine);
1580 intel_engine_apply_whitelist(engine);
1581
1582 return engine->resume(engine);
1583 }
1584
intel_engine_get_active_head(const struct intel_engine_cs * engine)1585 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1586 {
1587 struct drm_i915_private *i915 = engine->i915;
1588
1589 u64 acthd;
1590
1591 if (GRAPHICS_VER(i915) >= 8)
1592 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1593 else if (GRAPHICS_VER(i915) >= 4)
1594 acthd = ENGINE_READ(engine, RING_ACTHD);
1595 else
1596 acthd = ENGINE_READ(engine, ACTHD);
1597
1598 return acthd;
1599 }
1600
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1601 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1602 {
1603 u64 bbaddr;
1604
1605 if (GRAPHICS_VER(engine->i915) >= 8)
1606 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1607 else
1608 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1609
1610 return bbaddr;
1611 }
1612
stop_timeout(const struct intel_engine_cs * engine)1613 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1614 {
1615 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1616 return 0;
1617
1618 /*
1619 * If we are doing a normal GPU reset, we can take our time and allow
1620 * the engine to quiesce. We've stopped submission to the engine, and
1621 * if we wait long enough an innocent context should complete and
1622 * leave the engine idle. So they should not be caught unaware by
1623 * the forthcoming GPU reset (which usually follows the stop_cs)!
1624 */
1625 return READ_ONCE(engine->props.stop_timeout_ms);
1626 }
1627
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1628 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1629 int fast_timeout_us,
1630 int slow_timeout_ms)
1631 {
1632 struct intel_uncore *uncore = engine->uncore;
1633 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1634 int err;
1635
1636 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1637
1638 /*
1639 * Wa_22011802037: Prior to doing a reset, ensure CS is
1640 * stopped, set ring stop bit and prefetch disable bit to halt CS
1641 */
1642 if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1643 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1644 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1645
1646 err = __intel_wait_for_register_fw(engine->uncore, mode,
1647 MODE_IDLE, MODE_IDLE,
1648 fast_timeout_us,
1649 slow_timeout_ms,
1650 NULL);
1651
1652 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1653 intel_uncore_posting_read_fw(uncore, mode);
1654 return err;
1655 }
1656
intel_engine_stop_cs(struct intel_engine_cs * engine)1657 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1658 {
1659 int err = 0;
1660
1661 if (GRAPHICS_VER(engine->i915) < 3)
1662 return -ENODEV;
1663
1664 ENGINE_TRACE(engine, "\n");
1665 /*
1666 * TODO: Find out why occasionally stopping the CS times out. Seen
1667 * especially with gem_eio tests.
1668 *
1669 * Occasionally trying to stop the cs times out, but does not adversely
1670 * affect functionality. The timeout is set as a config parameter that
1671 * defaults to 100ms. In most cases the follow up operation is to wait
1672 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1673 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1674 * caused, the caller must check and handle the return from this
1675 * function.
1676 */
1677 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1678 ENGINE_TRACE(engine,
1679 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1680 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1681 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1682
1683 /*
1684 * Sometimes we observe that the idle flag is not
1685 * set even though the ring is empty. So double
1686 * check before giving up.
1687 */
1688 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1689 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1690 err = -ETIMEDOUT;
1691 }
1692
1693 return err;
1694 }
1695
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1696 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1697 {
1698 ENGINE_TRACE(engine, "\n");
1699
1700 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1701 }
1702
__cs_pending_mi_force_wakes(struct intel_engine_cs * engine)1703 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1704 {
1705 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1706 [RCS0] = MSG_IDLE_CS,
1707 [BCS0] = MSG_IDLE_BCS,
1708 [VCS0] = MSG_IDLE_VCS0,
1709 [VCS1] = MSG_IDLE_VCS1,
1710 [VCS2] = MSG_IDLE_VCS2,
1711 [VCS3] = MSG_IDLE_VCS3,
1712 [VCS4] = MSG_IDLE_VCS4,
1713 [VCS5] = MSG_IDLE_VCS5,
1714 [VCS6] = MSG_IDLE_VCS6,
1715 [VCS7] = MSG_IDLE_VCS7,
1716 [VECS0] = MSG_IDLE_VECS0,
1717 [VECS1] = MSG_IDLE_VECS1,
1718 [VECS2] = MSG_IDLE_VECS2,
1719 [VECS3] = MSG_IDLE_VECS3,
1720 [CCS0] = MSG_IDLE_CS,
1721 [CCS1] = MSG_IDLE_CS,
1722 [CCS2] = MSG_IDLE_CS,
1723 [CCS3] = MSG_IDLE_CS,
1724 };
1725 u32 val;
1726
1727 if (!_reg[engine->id].reg)
1728 return 0;
1729
1730 val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1731
1732 /* bits[29:25] & bits[13:9] >> shift */
1733 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1734 }
1735
__gpm_wait_for_fw_complete(struct intel_gt * gt,u32 fw_mask)1736 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1737 {
1738 int ret;
1739
1740 /* Ensure GPM receives fw up/down after CS is stopped */
1741 udelay(1);
1742
1743 /* Wait for forcewake request to complete in GPM */
1744 ret = __intel_wait_for_register_fw(gt->uncore,
1745 GEN9_PWRGT_DOMAIN_STATUS,
1746 fw_mask, fw_mask, 5000, 0, NULL);
1747
1748 /* Ensure CS receives fw ack from GPM */
1749 udelay(1);
1750
1751 if (ret)
1752 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1753 }
1754
1755 /*
1756 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1757 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1758 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1759 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1760 * are concerned only with the gt reset here, we use a logical OR of pending
1761 * forcewakeups from all reset domains and then wait for them to complete by
1762 * querying PWRGT_DOMAIN_STATUS.
1763 */
intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs * engine)1764 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1765 {
1766 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1767
1768 if (fw_pending)
1769 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1770 }
1771
1772 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1773 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1774 struct intel_instdone *instdone)
1775 {
1776 struct drm_i915_private *i915 = engine->i915;
1777 struct intel_uncore *uncore = engine->uncore;
1778 u32 mmio_base = engine->mmio_base;
1779 int slice;
1780 int subslice;
1781 int iter;
1782
1783 memset(instdone, 0, sizeof(*instdone));
1784
1785 if (GRAPHICS_VER(i915) >= 8) {
1786 instdone->instdone =
1787 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1788
1789 if (engine->id != RCS0)
1790 return;
1791
1792 instdone->slice_common =
1793 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1794 if (GRAPHICS_VER(i915) >= 12) {
1795 instdone->slice_common_extra[0] =
1796 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1797 instdone->slice_common_extra[1] =
1798 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1799 }
1800
1801 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1802 instdone->sampler[slice][subslice] =
1803 intel_gt_mcr_read(engine->gt,
1804 GEN8_SAMPLER_INSTDONE,
1805 slice, subslice);
1806 instdone->row[slice][subslice] =
1807 intel_gt_mcr_read(engine->gt,
1808 GEN8_ROW_INSTDONE,
1809 slice, subslice);
1810 }
1811
1812 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1813 for_each_ss_steering(iter, engine->gt, slice, subslice)
1814 instdone->geom_svg[slice][subslice] =
1815 intel_gt_mcr_read(engine->gt,
1816 XEHPG_INSTDONE_GEOM_SVG,
1817 slice, subslice);
1818 }
1819 } else if (GRAPHICS_VER(i915) >= 7) {
1820 instdone->instdone =
1821 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1822
1823 if (engine->id != RCS0)
1824 return;
1825
1826 instdone->slice_common =
1827 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1828 instdone->sampler[0][0] =
1829 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1830 instdone->row[0][0] =
1831 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1832 } else if (GRAPHICS_VER(i915) >= 4) {
1833 instdone->instdone =
1834 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1835 if (engine->id == RCS0)
1836 /* HACK: Using the wrong struct member */
1837 instdone->slice_common =
1838 intel_uncore_read(uncore, GEN4_INSTDONE1);
1839 } else {
1840 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1841 }
1842 }
1843
ring_is_idle(struct intel_engine_cs * engine)1844 static bool ring_is_idle(struct intel_engine_cs *engine)
1845 {
1846 bool idle = true;
1847
1848 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1849 return true;
1850
1851 if (!intel_engine_pm_get_if_awake(engine))
1852 return true;
1853
1854 /* First check that no commands are left in the ring */
1855 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1856 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1857 idle = false;
1858
1859 /* No bit for gen2, so assume the CS parser is idle */
1860 if (GRAPHICS_VER(engine->i915) > 2 &&
1861 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1862 idle = false;
1863
1864 intel_engine_pm_put(engine);
1865
1866 return idle;
1867 }
1868
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1869 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1870 {
1871 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1872
1873 if (!t->callback)
1874 return;
1875
1876 local_bh_disable();
1877 if (tasklet_trylock(t)) {
1878 /* Must wait for any GPU reset in progress. */
1879 if (__tasklet_is_enabled(t))
1880 t->callback(t);
1881 tasklet_unlock(t);
1882 }
1883 local_bh_enable();
1884
1885 /* Synchronise and wait for the tasklet on another CPU */
1886 if (sync)
1887 tasklet_unlock_wait(t);
1888 }
1889
1890 /**
1891 * intel_engine_is_idle() - Report if the engine has finished process all work
1892 * @engine: the intel_engine_cs
1893 *
1894 * Return true if there are no requests pending, nothing left to be submitted
1895 * to hardware, and that the engine is idle.
1896 */
intel_engine_is_idle(struct intel_engine_cs * engine)1897 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1898 {
1899 /* More white lies, if wedged, hw state is inconsistent */
1900 if (intel_gt_is_wedged(engine->gt))
1901 return true;
1902
1903 if (!intel_engine_pm_is_awake(engine))
1904 return true;
1905
1906 /* Waiting to drain ELSP? */
1907 intel_synchronize_hardirq(engine->i915);
1908 intel_engine_flush_submission(engine);
1909
1910 /* ELSP is empty, but there are ready requests? E.g. after reset */
1911 if (!i915_sched_engine_is_empty(engine->sched_engine))
1912 return false;
1913
1914 /* Ring stopped? */
1915 return ring_is_idle(engine);
1916 }
1917
intel_engines_are_idle(struct intel_gt * gt)1918 bool intel_engines_are_idle(struct intel_gt *gt)
1919 {
1920 struct intel_engine_cs *engine;
1921 enum intel_engine_id id;
1922
1923 /*
1924 * If the driver is wedged, HW state may be very inconsistent and
1925 * report that it is still busy, even though we have stopped using it.
1926 */
1927 if (intel_gt_is_wedged(gt))
1928 return true;
1929
1930 /* Already parked (and passed an idleness test); must still be idle */
1931 if (!READ_ONCE(gt->awake))
1932 return true;
1933
1934 for_each_engine(engine, gt, id) {
1935 if (!intel_engine_is_idle(engine))
1936 return false;
1937 }
1938
1939 return true;
1940 }
1941
intel_engine_irq_enable(struct intel_engine_cs * engine)1942 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1943 {
1944 if (!engine->irq_enable)
1945 return false;
1946
1947 /* Caller disables interrupts */
1948 spin_lock(engine->gt->irq_lock);
1949 engine->irq_enable(engine);
1950 spin_unlock(engine->gt->irq_lock);
1951
1952 return true;
1953 }
1954
intel_engine_irq_disable(struct intel_engine_cs * engine)1955 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1956 {
1957 if (!engine->irq_disable)
1958 return;
1959
1960 /* Caller disables interrupts */
1961 spin_lock(engine->gt->irq_lock);
1962 engine->irq_disable(engine);
1963 spin_unlock(engine->gt->irq_lock);
1964 }
1965
intel_engines_reset_default_submission(struct intel_gt * gt)1966 void intel_engines_reset_default_submission(struct intel_gt *gt)
1967 {
1968 struct intel_engine_cs *engine;
1969 enum intel_engine_id id;
1970
1971 for_each_engine(engine, gt, id) {
1972 if (engine->sanitize)
1973 engine->sanitize(engine);
1974
1975 engine->set_default_submission(engine);
1976 }
1977 }
1978
intel_engine_can_store_dword(struct intel_engine_cs * engine)1979 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1980 {
1981 switch (GRAPHICS_VER(engine->i915)) {
1982 case 2:
1983 return false; /* uses physical not virtual addresses */
1984 case 3:
1985 /* maybe only uses physical not virtual addresses */
1986 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1987 case 4:
1988 return !IS_I965G(engine->i915); /* who knows! */
1989 case 6:
1990 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1991 default:
1992 return true;
1993 }
1994 }
1995
get_timeline(struct i915_request * rq)1996 static struct intel_timeline *get_timeline(struct i915_request *rq)
1997 {
1998 struct intel_timeline *tl;
1999
2000 /*
2001 * Even though we are holding the engine->sched_engine->lock here, there
2002 * is no control over the submission queue per-se and we are
2003 * inspecting the active state at a random point in time, with an
2004 * unknown queue. Play safe and make sure the timeline remains valid.
2005 * (Only being used for pretty printing, one extra kref shouldn't
2006 * cause a camel stampede!)
2007 */
2008 rcu_read_lock();
2009 tl = rcu_dereference(rq->timeline);
2010 if (!kref_get_unless_zero(&tl->kref))
2011 tl = NULL;
2012 rcu_read_unlock();
2013
2014 return tl;
2015 }
2016
print_ring(char * buf,int sz,struct i915_request * rq)2017 static int print_ring(char *buf, int sz, struct i915_request *rq)
2018 {
2019 int len = 0;
2020
2021 if (!i915_request_signaled(rq)) {
2022 struct intel_timeline *tl = get_timeline(rq);
2023
2024 len = scnprintf(buf, sz,
2025 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2026 i915_ggtt_offset(rq->ring->vma),
2027 tl ? tl->hwsp_offset : 0,
2028 hwsp_seqno(rq),
2029 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2030 1000 * 1000));
2031
2032 if (tl)
2033 intel_timeline_put(tl);
2034 }
2035
2036 return len;
2037 }
2038
hexdump(struct drm_printer * m,const void * buf,size_t len)2039 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2040 {
2041 const size_t rowsize = 8 * sizeof(u32);
2042 const void *prev = NULL;
2043 bool skip = false;
2044 size_t pos;
2045
2046 for (pos = 0; pos < len; pos += rowsize) {
2047 char line[128];
2048
2049 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2050 if (!skip) {
2051 drm_printf(m, "*\n");
2052 skip = true;
2053 }
2054 continue;
2055 }
2056
2057 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2058 rowsize, sizeof(u32),
2059 line, sizeof(line),
2060 false) >= sizeof(line));
2061 drm_printf(m, "[%04zx] %s\n", pos, line);
2062
2063 prev = buf + pos;
2064 skip = false;
2065 }
2066 }
2067
repr_timer(const struct timer_list * t)2068 static const char *repr_timer(const struct timer_list *t)
2069 {
2070 if (!READ_ONCE(t->expires))
2071 return "inactive";
2072
2073 if (timer_pending(t))
2074 return "active";
2075
2076 return "expired";
2077 }
2078
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)2079 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2080 struct drm_printer *m)
2081 {
2082 struct drm_i915_private *i915 = engine->i915;
2083 struct intel_engine_execlists * const execlists = &engine->execlists;
2084 u64 addr;
2085
2086 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2087 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2088 if (HAS_EXECLISTS(i915)) {
2089 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2090 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2091 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2092 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2093 }
2094 drm_printf(m, "\tRING_START: 0x%08x\n",
2095 ENGINE_READ(engine, RING_START));
2096 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
2097 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2098 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
2099 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2100 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
2101 ENGINE_READ(engine, RING_CTL),
2102 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2103 if (GRAPHICS_VER(engine->i915) > 2) {
2104 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
2105 ENGINE_READ(engine, RING_MI_MODE),
2106 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2107 }
2108
2109 if (GRAPHICS_VER(i915) >= 6) {
2110 drm_printf(m, "\tRING_IMR: 0x%08x\n",
2111 ENGINE_READ(engine, RING_IMR));
2112 drm_printf(m, "\tRING_ESR: 0x%08x\n",
2113 ENGINE_READ(engine, RING_ESR));
2114 drm_printf(m, "\tRING_EMR: 0x%08x\n",
2115 ENGINE_READ(engine, RING_EMR));
2116 drm_printf(m, "\tRING_EIR: 0x%08x\n",
2117 ENGINE_READ(engine, RING_EIR));
2118 }
2119
2120 addr = intel_engine_get_active_head(engine);
2121 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
2122 upper_32_bits(addr), lower_32_bits(addr));
2123 addr = intel_engine_get_last_batch_head(engine);
2124 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2125 upper_32_bits(addr), lower_32_bits(addr));
2126 if (GRAPHICS_VER(i915) >= 8)
2127 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2128 else if (GRAPHICS_VER(i915) >= 4)
2129 addr = ENGINE_READ(engine, RING_DMA_FADD);
2130 else
2131 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2132 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2133 upper_32_bits(addr), lower_32_bits(addr));
2134 if (GRAPHICS_VER(i915) >= 4) {
2135 drm_printf(m, "\tIPEIR: 0x%08x\n",
2136 ENGINE_READ(engine, RING_IPEIR));
2137 drm_printf(m, "\tIPEHR: 0x%08x\n",
2138 ENGINE_READ(engine, RING_IPEHR));
2139 } else {
2140 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2141 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2142 }
2143
2144 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2145 struct i915_request * const *port, *rq;
2146 const u32 *hws =
2147 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2148 const u8 num_entries = execlists->csb_size;
2149 unsigned int idx;
2150 u8 read, write;
2151
2152 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2153 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2154 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2155 repr_timer(&engine->execlists.preempt),
2156 repr_timer(&engine->execlists.timer));
2157
2158 read = execlists->csb_head;
2159 write = READ_ONCE(*execlists->csb_write);
2160
2161 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2162 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2163 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2164 read, write, num_entries);
2165
2166 if (read >= num_entries)
2167 read = 0;
2168 if (write >= num_entries)
2169 write = 0;
2170 if (read > write)
2171 write += num_entries;
2172 while (read < write) {
2173 idx = ++read % num_entries;
2174 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2175 idx, hws[idx * 2], hws[idx * 2 + 1]);
2176 }
2177
2178 i915_sched_engine_active_lock_bh(engine->sched_engine);
2179 rcu_read_lock();
2180 for (port = execlists->active; (rq = *port); port++) {
2181 char hdr[160];
2182 int len;
2183
2184 len = scnprintf(hdr, sizeof(hdr),
2185 "\t\tActive[%d]: ccid:%08x%s%s, ",
2186 (int)(port - execlists->active),
2187 rq->context->lrc.ccid,
2188 intel_context_is_closed(rq->context) ? "!" : "",
2189 intel_context_is_banned(rq->context) ? "*" : "");
2190 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2191 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2192 i915_request_show(m, rq, hdr, 0);
2193 }
2194 for (port = execlists->pending; (rq = *port); port++) {
2195 char hdr[160];
2196 int len;
2197
2198 len = scnprintf(hdr, sizeof(hdr),
2199 "\t\tPending[%d]: ccid:%08x%s%s, ",
2200 (int)(port - execlists->pending),
2201 rq->context->lrc.ccid,
2202 intel_context_is_closed(rq->context) ? "!" : "",
2203 intel_context_is_banned(rq->context) ? "*" : "");
2204 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2205 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2206 i915_request_show(m, rq, hdr, 0);
2207 }
2208 rcu_read_unlock();
2209 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2210 } else if (GRAPHICS_VER(i915) > 6) {
2211 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2212 ENGINE_READ(engine, RING_PP_DIR_BASE));
2213 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2214 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2215 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2216 ENGINE_READ(engine, RING_PP_DIR_DCLV));
2217 }
2218 }
2219
print_request_ring(struct drm_printer * m,struct i915_request * rq)2220 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2221 {
2222 struct i915_vma_resource *vma_res = rq->batch_res;
2223 void *ring;
2224 int size;
2225
2226 drm_printf(m,
2227 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2228 rq->head, rq->postfix, rq->tail,
2229 vma_res ? upper_32_bits(vma_res->start) : ~0u,
2230 vma_res ? lower_32_bits(vma_res->start) : ~0u);
2231
2232 size = rq->tail - rq->head;
2233 if (rq->tail < rq->head)
2234 size += rq->ring->size;
2235
2236 ring = kmalloc(size, GFP_ATOMIC);
2237 if (ring) {
2238 const void *vaddr = rq->ring->vaddr;
2239 unsigned int head = rq->head;
2240 unsigned int len = 0;
2241
2242 if (rq->tail < head) {
2243 len = rq->ring->size - head;
2244 memcpy(ring, vaddr + head, len);
2245 head = 0;
2246 }
2247 memcpy(ring + len, vaddr + head, size - len);
2248
2249 hexdump(m, ring, size);
2250 kfree(ring);
2251 }
2252 }
2253
read_ul(void * p,size_t x)2254 static unsigned long read_ul(void *p, size_t x)
2255 {
2256 return *(unsigned long *)(p + x);
2257 }
2258
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)2259 static void print_properties(struct intel_engine_cs *engine,
2260 struct drm_printer *m)
2261 {
2262 static const struct pmap {
2263 size_t offset;
2264 const char *name;
2265 } props[] = {
2266 #define P(x) { \
2267 .offset = offsetof(typeof(engine->props), x), \
2268 .name = #x \
2269 }
2270 P(heartbeat_interval_ms),
2271 P(max_busywait_duration_ns),
2272 P(preempt_timeout_ms),
2273 P(stop_timeout_ms),
2274 P(timeslice_duration_ms),
2275
2276 {},
2277 #undef P
2278 };
2279 const struct pmap *p;
2280
2281 drm_printf(m, "\tProperties:\n");
2282 for (p = props; p->name; p++)
2283 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2284 p->name,
2285 read_ul(&engine->props, p->offset),
2286 read_ul(&engine->defaults, p->offset));
2287 }
2288
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)2289 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2290 {
2291 struct intel_timeline *tl = get_timeline(rq);
2292
2293 i915_request_show(m, rq, msg, 0);
2294
2295 drm_printf(m, "\t\tring->start: 0x%08x\n",
2296 i915_ggtt_offset(rq->ring->vma));
2297 drm_printf(m, "\t\tring->head: 0x%08x\n",
2298 rq->ring->head);
2299 drm_printf(m, "\t\tring->tail: 0x%08x\n",
2300 rq->ring->tail);
2301 drm_printf(m, "\t\tring->emit: 0x%08x\n",
2302 rq->ring->emit);
2303 drm_printf(m, "\t\tring->space: 0x%08x\n",
2304 rq->ring->space);
2305
2306 if (tl) {
2307 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
2308 tl->hwsp_offset);
2309 intel_timeline_put(tl);
2310 }
2311
2312 print_request_ring(m, rq);
2313
2314 if (rq->context->lrc_reg_state) {
2315 drm_printf(m, "Logical Ring Context:\n");
2316 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2317 }
2318 }
2319
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)2320 void intel_engine_dump_active_requests(struct list_head *requests,
2321 struct i915_request *hung_rq,
2322 struct drm_printer *m)
2323 {
2324 struct i915_request *rq;
2325 const char *msg;
2326 enum i915_request_state state;
2327
2328 list_for_each_entry(rq, requests, sched.link) {
2329 if (rq == hung_rq)
2330 continue;
2331
2332 state = i915_test_request_state(rq);
2333 if (state < I915_REQUEST_QUEUED)
2334 continue;
2335
2336 if (state == I915_REQUEST_ACTIVE)
2337 msg = "\t\tactive on engine";
2338 else
2339 msg = "\t\tactive in queue";
2340
2341 engine_dump_request(rq, m, msg);
2342 }
2343 }
2344
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)2345 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2346 struct drm_printer *m)
2347 {
2348 struct intel_context *hung_ce = NULL;
2349 struct i915_request *hung_rq = NULL;
2350
2351 /*
2352 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2353 * The GPU is still running so requests are still executing and any
2354 * hardware reads will be out of date by the time they are reported.
2355 * But the intention here is just to report an instantaneous snapshot
2356 * so that's fine.
2357 */
2358 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2359
2360 drm_printf(m, "\tRequests:\n");
2361
2362 if (hung_rq)
2363 engine_dump_request(hung_rq, m, "\t\thung");
2364 else if (hung_ce)
2365 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2366
2367 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2368 intel_guc_dump_active_requests(engine, hung_rq, m);
2369 else
2370 intel_execlists_dump_active_requests(engine, hung_rq, m);
2371
2372 if (hung_rq)
2373 i915_request_put(hung_rq);
2374 }
2375
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)2376 void intel_engine_dump(struct intel_engine_cs *engine,
2377 struct drm_printer *m,
2378 const char *header, ...)
2379 {
2380 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2381 struct i915_request *rq;
2382 intel_wakeref_t wakeref;
2383 ktime_t dummy;
2384
2385 if (header) {
2386 va_list ap;
2387
2388 va_start(ap, header);
2389 drm_vprintf(m, header, &ap);
2390 va_end(ap);
2391 }
2392
2393 if (intel_gt_is_wedged(engine->gt))
2394 drm_printf(m, "*** WEDGED ***\n");
2395
2396 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2397 drm_printf(m, "\tBarriers?: %s\n",
2398 str_yes_no(!llist_empty(&engine->barrier_tasks)));
2399 drm_printf(m, "\tLatency: %luus\n",
2400 ewma__engine_latency_read(&engine->latency));
2401 if (intel_engine_supports_stats(engine))
2402 drm_printf(m, "\tRuntime: %llums\n",
2403 ktime_to_ms(intel_engine_get_busy_time(engine,
2404 &dummy)));
2405 drm_printf(m, "\tForcewake: %x domains, %d active\n",
2406 engine->fw_domain, READ_ONCE(engine->fw_active));
2407
2408 rcu_read_lock();
2409 rq = READ_ONCE(engine->heartbeat.systole);
2410 if (rq)
2411 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2412 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2413 rcu_read_unlock();
2414 drm_printf(m, "\tReset count: %d (global %d)\n",
2415 i915_reset_engine_count(error, engine),
2416 i915_reset_count(error));
2417 print_properties(engine, m);
2418
2419 engine_dump_active_requests(engine, m);
2420
2421 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
2422 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2423 if (wakeref) {
2424 intel_engine_print_registers(engine, m);
2425 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2426 } else {
2427 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2428 }
2429
2430 intel_execlists_show_requests(engine, m, i915_request_show, 8);
2431
2432 drm_printf(m, "HWSP:\n");
2433 hexdump(m, engine->status_page.addr, PAGE_SIZE);
2434
2435 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2436
2437 intel_engine_print_breadcrumbs(engine, m);
2438 }
2439
2440 /**
2441 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2442 * @engine: engine to report on
2443 * @now: monotonic timestamp of sampling
2444 *
2445 * Returns accumulated time @engine was busy since engine stats were enabled.
2446 */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)2447 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2448 {
2449 return engine->busyness(engine, now);
2450 }
2451
2452 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)2453 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2454 unsigned int count, unsigned long flags)
2455 {
2456 if (count == 0)
2457 return ERR_PTR(-EINVAL);
2458
2459 if (count == 1 && !(flags & FORCE_VIRTUAL))
2460 return intel_context_create(siblings[0]);
2461
2462 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2463 return siblings[0]->cops->create_virtual(siblings, count, flags);
2464 }
2465
engine_execlist_find_hung_request(struct intel_engine_cs * engine)2466 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2467 {
2468 struct i915_request *request, *active = NULL;
2469
2470 /*
2471 * This search does not work in GuC submission mode. However, the GuC
2472 * will report the hanging context directly to the driver itself. So
2473 * the driver should never get here when in GuC mode.
2474 */
2475 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2476
2477 /*
2478 * We are called by the error capture, reset and to dump engine
2479 * state at random points in time. In particular, note that neither is
2480 * crucially ordered with an interrupt. After a hang, the GPU is dead
2481 * and we assume that no more writes can happen (we waited long enough
2482 * for all writes that were in transaction to be flushed) - adding an
2483 * extra delay for a recent interrupt is pointless. Hence, we do
2484 * not need an engine->irq_seqno_barrier() before the seqno reads.
2485 * At all other times, we must assume the GPU is still running, but
2486 * we only care about the snapshot of this moment.
2487 */
2488 lockdep_assert_held(&engine->sched_engine->lock);
2489
2490 rcu_read_lock();
2491 request = execlists_active(&engine->execlists);
2492 if (request) {
2493 struct intel_timeline *tl = request->context->timeline;
2494
2495 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2496 if (__i915_request_is_complete(request))
2497 break;
2498
2499 active = request;
2500 }
2501 }
2502 rcu_read_unlock();
2503 if (active)
2504 return active;
2505
2506 list_for_each_entry(request, &engine->sched_engine->requests,
2507 sched.link) {
2508 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2509 continue;
2510
2511 active = request;
2512 break;
2513 }
2514
2515 return active;
2516 }
2517
intel_engine_get_hung_entity(struct intel_engine_cs * engine,struct intel_context ** ce,struct i915_request ** rq)2518 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2519 struct intel_context **ce, struct i915_request **rq)
2520 {
2521 unsigned long flags;
2522
2523 *ce = intel_engine_get_hung_context(engine);
2524 if (*ce) {
2525 intel_engine_clear_hung_context(engine);
2526
2527 *rq = intel_context_get_active_request(*ce);
2528 return;
2529 }
2530
2531 /*
2532 * Getting here with GuC enabled means it is a forced error capture
2533 * with no actual hang. So, no need to attempt the execlist search.
2534 */
2535 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2536 return;
2537
2538 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2539 *rq = engine_execlist_find_hung_request(engine);
2540 if (*rq)
2541 *rq = i915_request_get_rcu(*rq);
2542 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2543 }
2544
xehp_enable_ccs_engines(struct intel_engine_cs * engine)2545 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2546 {
2547 /*
2548 * If there are any non-fused-off CCS engines, we need to enable CCS
2549 * support in the RCU_MODE register. This only needs to be done once,
2550 * so for simplicity we'll take care of this in the RCS engine's
2551 * resume handler; since the RCS and all CCS engines belong to the
2552 * same reset domain and are reset together, this will also take care
2553 * of re-applying the setting after i915-triggered resets.
2554 */
2555 if (!CCS_MASK(engine->gt))
2556 return;
2557
2558 intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2559 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2560 }
2561
2562 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2563 #include "mock_engine.c"
2564 #include "selftest_engine.c"
2565 #include "selftest_engine_cs.c"
2566 #endif
2567