1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_print.h"
15 #include "intel_guc_slpc.h"
16 #include "intel_guc_submission.h"
17 #include "i915_drv.h"
18 #include "i915_irq.h"
19 #include "i915_reg.h"
20
21 /**
22 * DOC: GuC
23 *
24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
25 * designed to offload some of the functionality usually performed by the host
26 * driver; currently the main operations it can take care of are:
27 *
28 * - Authentication of the HuC, which is required to fully enable HuC usage.
29 * - Low latency graphics context scheduling (a.k.a. GuC submission).
30 * - GT Power management.
31 *
32 * The enable_guc module parameter can be used to select which of those
33 * operations to enable within GuC. Note that not all the operations are
34 * supported on all gen9+ platforms.
35 *
36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
37 * if at least one of the operations is selected. However, not loading the GuC
38 * might result in the loss of some features that do require the GuC (currently
39 * just the HuC, but more are expected to land in the future).
40 */
41
intel_guc_notify(struct intel_guc * guc)42 void intel_guc_notify(struct intel_guc *guc)
43 {
44 struct intel_gt *gt = guc_to_gt(guc);
45
46 /*
47 * On Gen11+, the value written to the register is passes as a payload
48 * to the FW. However, the FW currently treats all values the same way
49 * (H2G interrupt), so we can just write the value that the HW expects
50 * on older gens.
51 */
52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
53 }
54
guc_send_reg(struct intel_guc * guc,u32 i)55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
56 {
57 GEM_BUG_ON(!guc->send_regs.base);
58 GEM_BUG_ON(!guc->send_regs.count);
59 GEM_BUG_ON(i >= guc->send_regs.count);
60
61 return _MMIO(guc->send_regs.base + 4 * i);
62 }
63
intel_guc_init_send_regs(struct intel_guc * guc)64 void intel_guc_init_send_regs(struct intel_guc *guc)
65 {
66 struct intel_gt *gt = guc_to_gt(guc);
67 enum forcewake_domains fw_domains = 0;
68 unsigned int i;
69
70 GEM_BUG_ON(!guc->send_regs.base);
71 GEM_BUG_ON(!guc->send_regs.count);
72
73 for (i = 0; i < guc->send_regs.count; i++) {
74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75 guc_send_reg(guc, i),
76 FW_REG_READ | FW_REG_WRITE);
77 }
78 guc->send_regs.fw_domains = fw_domains;
79 }
80
gen9_reset_guc_interrupts(struct intel_guc * guc)81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83 struct intel_gt *gt = guc_to_gt(guc);
84
85 assert_rpm_wakelock_held(>->i915->runtime_pm);
86
87 spin_lock_irq(gt->irq_lock);
88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89 spin_unlock_irq(gt->irq_lock);
90 }
91
gen9_enable_guc_interrupts(struct intel_guc * guc)92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94 struct intel_gt *gt = guc_to_gt(guc);
95
96 assert_rpm_wakelock_held(>->i915->runtime_pm);
97
98 spin_lock_irq(gt->irq_lock);
99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
100 gt->pm_guc_events);
101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
102 spin_unlock_irq(gt->irq_lock);
103
104 guc->interrupts.enabled = true;
105 }
106
gen9_disable_guc_interrupts(struct intel_guc * guc)107 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
108 {
109 struct intel_gt *gt = guc_to_gt(guc);
110
111 assert_rpm_wakelock_held(>->i915->runtime_pm);
112 guc->interrupts.enabled = false;
113
114 spin_lock_irq(gt->irq_lock);
115
116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
117
118 spin_unlock_irq(gt->irq_lock);
119 intel_synchronize_irq(gt->i915);
120
121 gen9_reset_guc_interrupts(guc);
122 }
123
__gen11_reset_guc_interrupts(struct intel_gt * gt)124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
125 {
126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
127
128 lockdep_assert_held(gt->irq_lock);
129 return gen11_gt_reset_one_iir(gt, 0, irq);
130 }
131
gen11_reset_guc_interrupts(struct intel_guc * guc)132 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
133 {
134 struct intel_gt *gt = guc_to_gt(guc);
135
136 spin_lock_irq(gt->irq_lock);
137 __gen11_reset_guc_interrupts(gt);
138 spin_unlock_irq(gt->irq_lock);
139 }
140
gen11_enable_guc_interrupts(struct intel_guc * guc)141 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
142 {
143 struct intel_gt *gt = guc_to_gt(guc);
144
145 spin_lock_irq(gt->irq_lock);
146 __gen11_reset_guc_interrupts(gt);
147 spin_unlock_irq(gt->irq_lock);
148
149 guc->interrupts.enabled = true;
150 }
151
gen11_disable_guc_interrupts(struct intel_guc * guc)152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154 struct intel_gt *gt = guc_to_gt(guc);
155
156 guc->interrupts.enabled = false;
157 intel_synchronize_irq(gt->i915);
158
159 gen11_reset_guc_interrupts(guc);
160 }
161
intel_guc_init_early(struct intel_guc * guc)162 void intel_guc_init_early(struct intel_guc *guc)
163 {
164 struct intel_gt *gt = guc_to_gt(guc);
165 struct drm_i915_private *i915 = gt->i915;
166
167 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true);
168 intel_guc_ct_init_early(&guc->ct);
169 intel_guc_log_init_early(&guc->log);
170 intel_guc_submission_init_early(guc);
171 intel_guc_slpc_init_early(&guc->slpc);
172 intel_guc_rc_init_early(guc);
173
174 mutex_init(&guc->send_mutex);
175 spin_lock_init(&guc->irq_lock);
176 if (GRAPHICS_VER(i915) >= 11) {
177 guc->interrupts.reset = gen11_reset_guc_interrupts;
178 guc->interrupts.enable = gen11_enable_guc_interrupts;
179 guc->interrupts.disable = gen11_disable_guc_interrupts;
180 if (gt->type == GT_MEDIA) {
181 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
182 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
183 } else {
184 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
185 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
186 }
187
188 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
189
190 } else {
191 guc->notify_reg = GUC_SEND_INTERRUPT;
192 guc->interrupts.reset = gen9_reset_guc_interrupts;
193 guc->interrupts.enable = gen9_enable_guc_interrupts;
194 guc->interrupts.disable = gen9_disable_guc_interrupts;
195 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
196 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
197 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
198 }
199
200 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
201 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
202 }
203
intel_guc_init_late(struct intel_guc * guc)204 void intel_guc_init_late(struct intel_guc *guc)
205 {
206 intel_guc_ads_init_late(guc);
207 }
208
guc_ctl_debug_flags(struct intel_guc * guc)209 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
210 {
211 u32 level = intel_guc_log_get_level(&guc->log);
212 u32 flags = 0;
213
214 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
215 flags |= GUC_LOG_DISABLED;
216 else
217 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
218 GUC_LOG_VERBOSITY_SHIFT;
219
220 return flags;
221 }
222
guc_ctl_feature_flags(struct intel_guc * guc)223 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
224 {
225 u32 flags = 0;
226
227 if (!intel_guc_submission_is_used(guc))
228 flags |= GUC_CTL_DISABLE_SCHEDULER;
229
230 if (intel_guc_slpc_is_used(guc))
231 flags |= GUC_CTL_ENABLE_SLPC;
232
233 return flags;
234 }
235
guc_ctl_log_params_flags(struct intel_guc * guc)236 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
237 {
238 struct intel_guc_log *log = &guc->log;
239 u32 offset, flags;
240
241 GEM_BUG_ON(!log->sizes_initialised);
242
243 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
244
245 flags = GUC_LOG_VALID |
246 GUC_LOG_NOTIFY_ON_HALF_FULL |
247 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
248 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
249 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
250 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
251 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
252 (offset << GUC_LOG_BUF_ADDR_SHIFT);
253
254 return flags;
255 }
256
guc_ctl_ads_flags(struct intel_guc * guc)257 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
258 {
259 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
260 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
261
262 return flags;
263 }
264
guc_ctl_wa_flags(struct intel_guc * guc)265 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
266 {
267 struct intel_gt *gt = guc_to_gt(guc);
268 u32 flags = 0;
269
270 /* Wa_22012773006:gen11,gen12 < XeHP */
271 if (GRAPHICS_VER(gt->i915) >= 11 &&
272 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
273 flags |= GUC_WA_POLLCS;
274
275 /* Wa_14014475959 */
276 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
277 IS_DG2(gt->i915))
278 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
279
280 /*
281 * Wa_14012197797
282 * Wa_22011391025
283 *
284 * The same WA bit is used for both and 22011391025 is applicable to
285 * all DG2.
286 */
287 if (IS_DG2(gt->i915))
288 flags |= GUC_WA_DUAL_QUEUE;
289
290 /* Wa_22011802037: graphics version 11/12 */
291 if (intel_engine_reset_needs_wa_22011802037(gt))
292 flags |= GUC_WA_PRE_PARSER;
293
294 /*
295 * Wa_22012727170
296 * Wa_22012727685
297 */
298 if (IS_DG2_G11(gt->i915))
299 flags |= GUC_WA_CONTEXT_ISOLATION;
300
301 /* Wa_16015675438 */
302 if (!RCS_MASK(gt))
303 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
304
305 return flags;
306 }
307
guc_ctl_devid(struct intel_guc * guc)308 static u32 guc_ctl_devid(struct intel_guc *guc)
309 {
310 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
311
312 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
313 }
314
315 /*
316 * Initialise the GuC parameter block before starting the firmware
317 * transfer. These parameters are read by the firmware on startup
318 * and cannot be changed thereafter.
319 */
guc_init_params(struct intel_guc * guc)320 static void guc_init_params(struct intel_guc *guc)
321 {
322 u32 *params = guc->params;
323 int i;
324
325 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
326
327 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
328 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
329 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
330 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
331 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
332 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
333
334 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
335 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
336 }
337
338 /*
339 * Initialise the GuC parameter block before starting the firmware
340 * transfer. These parameters are read by the firmware on startup
341 * and cannot be changed thereafter.
342 */
intel_guc_write_params(struct intel_guc * guc)343 void intel_guc_write_params(struct intel_guc *guc)
344 {
345 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
346 int i;
347
348 /*
349 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
350 * they are power context saved so it's ok to release forcewake
351 * when we are done here and take it again at xfer time.
352 */
353 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
354
355 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
356
357 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
358 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
359
360 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
361 }
362
intel_guc_dump_time_info(struct intel_guc * guc,struct drm_printer * p)363 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
364 {
365 struct intel_gt *gt = guc_to_gt(guc);
366 intel_wakeref_t wakeref;
367 u32 stamp = 0;
368 u64 ktime;
369
370 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
371 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
372 ktime = ktime_get_boottime_ns();
373
374 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
375 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
376 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
377 gt->clock_frequency, gt->clock_period_ns);
378 }
379
intel_guc_init(struct intel_guc * guc)380 int intel_guc_init(struct intel_guc *guc)
381 {
382 int ret;
383
384 ret = intel_uc_fw_init(&guc->fw);
385 if (ret)
386 goto out;
387
388 ret = intel_guc_log_create(&guc->log);
389 if (ret)
390 goto err_fw;
391
392 ret = intel_guc_capture_init(guc);
393 if (ret)
394 goto err_log;
395
396 ret = intel_guc_ads_create(guc);
397 if (ret)
398 goto err_capture;
399
400 GEM_BUG_ON(!guc->ads_vma);
401
402 ret = intel_guc_ct_init(&guc->ct);
403 if (ret)
404 goto err_ads;
405
406 if (intel_guc_submission_is_used(guc)) {
407 /*
408 * This is stuff we need to have available at fw load time
409 * if we are planning to enable submission later
410 */
411 ret = intel_guc_submission_init(guc);
412 if (ret)
413 goto err_ct;
414 }
415
416 if (intel_guc_slpc_is_used(guc)) {
417 ret = intel_guc_slpc_init(&guc->slpc);
418 if (ret)
419 goto err_submission;
420 }
421
422 /* now that everything is perma-pinned, initialize the parameters */
423 guc_init_params(guc);
424
425 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
426
427 return 0;
428
429 err_submission:
430 intel_guc_submission_fini(guc);
431 err_ct:
432 intel_guc_ct_fini(&guc->ct);
433 err_ads:
434 intel_guc_ads_destroy(guc);
435 err_capture:
436 intel_guc_capture_destroy(guc);
437 err_log:
438 intel_guc_log_destroy(&guc->log);
439 err_fw:
440 intel_uc_fw_fini(&guc->fw);
441 out:
442 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
443 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
444 return ret;
445 }
446
intel_guc_fini(struct intel_guc * guc)447 void intel_guc_fini(struct intel_guc *guc)
448 {
449 if (!intel_uc_fw_is_loadable(&guc->fw))
450 return;
451
452 if (intel_guc_slpc_is_used(guc))
453 intel_guc_slpc_fini(&guc->slpc);
454
455 if (intel_guc_submission_is_used(guc))
456 intel_guc_submission_fini(guc);
457
458 intel_guc_ct_fini(&guc->ct);
459
460 intel_guc_ads_destroy(guc);
461 intel_guc_capture_destroy(guc);
462 intel_guc_log_destroy(&guc->log);
463 intel_uc_fw_fini(&guc->fw);
464 }
465
466 /*
467 * This function implements the MMIO based host to GuC interface.
468 */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * request,u32 len,u32 * response_buf,u32 response_buf_size)469 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
470 u32 *response_buf, u32 response_buf_size)
471 {
472 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
473 u32 header;
474 int i;
475 int ret;
476
477 GEM_BUG_ON(!len);
478 GEM_BUG_ON(len > guc->send_regs.count);
479
480 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
481 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
482
483 mutex_lock(&guc->send_mutex);
484 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
485
486 retry:
487 for (i = 0; i < len; i++)
488 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
489
490 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
491
492 intel_guc_notify(guc);
493
494 /*
495 * No GuC command should ever take longer than 10ms.
496 * Fast commands should still complete in 10us.
497 */
498 ret = __intel_wait_for_register_fw(uncore,
499 guc_send_reg(guc, 0),
500 GUC_HXG_MSG_0_ORIGIN,
501 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
502 GUC_HXG_ORIGIN_GUC),
503 10, 10, &header);
504 if (unlikely(ret)) {
505 timeout:
506 guc_err(guc, "mmio request %#x: no reply %x\n",
507 request[0], header);
508 goto out;
509 }
510
511 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
512 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
513 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
514 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
515
516 ret = wait_for(done, 1000);
517 if (unlikely(ret))
518 goto timeout;
519 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
520 GUC_HXG_ORIGIN_GUC))
521 goto proto;
522 #undef done
523 }
524
525 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
526 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
527
528 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
529 request[0], reason);
530 goto retry;
531 }
532
533 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
534 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
535 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
536
537 guc_err(guc, "mmio request %#x: failure %x/%u\n",
538 request[0], error, hint);
539 ret = -ENXIO;
540 goto out;
541 }
542
543 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
544 proto:
545 guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
546 request[0], header);
547 ret = -EPROTO;
548 goto out;
549 }
550
551 if (response_buf) {
552 int count = min(response_buf_size, guc->send_regs.count);
553
554 GEM_BUG_ON(!count);
555
556 response_buf[0] = header;
557
558 for (i = 1; i < count; i++)
559 response_buf[i] = intel_uncore_read(uncore,
560 guc_send_reg(guc, i));
561
562 /* Use number of copied dwords as our return value */
563 ret = count;
564 } else {
565 /* Use data from the GuC response as our return value */
566 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
567 }
568
569 out:
570 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
571 mutex_unlock(&guc->send_mutex);
572
573 return ret;
574 }
575
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,const u32 * payload,u32 len)576 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
577 const u32 *payload, u32 len)
578 {
579 u32 msg;
580
581 if (unlikely(!len))
582 return -EPROTO;
583
584 /* Make sure to handle only enabled messages */
585 msg = payload[0] & guc->msg_enabled_mask;
586
587 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
588 guc_err(guc, "Received early crash dump notification!\n");
589 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
590 guc_err(guc, "Received early exception notification!\n");
591
592 return 0;
593 }
594
595 /**
596 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
597 * @guc: intel_guc structure
598 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
599 *
600 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
601 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
602 * intel_huc_auth().
603 *
604 * Return: non-zero code on error
605 */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)606 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
607 {
608 u32 action[] = {
609 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
610 rsa_offset
611 };
612
613 return intel_guc_send(guc, action, ARRAY_SIZE(action));
614 }
615
616 /**
617 * intel_guc_suspend() - notify GuC entering suspend state
618 * @guc: the guc
619 */
intel_guc_suspend(struct intel_guc * guc)620 int intel_guc_suspend(struct intel_guc *guc)
621 {
622 int ret;
623 u32 action[] = {
624 INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
625 };
626
627 if (!intel_guc_is_ready(guc))
628 return 0;
629
630 if (intel_guc_submission_is_used(guc)) {
631 /*
632 * This H2G MMIO command tears down the GuC in two steps. First it will
633 * generate a G2H CTB for every active context indicating a reset. In
634 * practice the i915 shouldn't ever get a G2H as suspend should only be
635 * called when the GPU is idle. Next, it tears down the CTBs and this
636 * H2G MMIO command completes.
637 *
638 * Don't abort on a failure code from the GuC. Keep going and do the
639 * clean up in santize() and re-initialisation on resume and hopefully
640 * the error here won't be problematic.
641 */
642 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
643 if (ret)
644 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
645 ERR_PTR(ret));
646 }
647
648 /* Signal that the GuC isn't running. */
649 intel_guc_sanitize(guc);
650
651 return 0;
652 }
653
654 /**
655 * intel_guc_resume() - notify GuC resuming from suspend state
656 * @guc: the guc
657 */
intel_guc_resume(struct intel_guc * guc)658 int intel_guc_resume(struct intel_guc *guc)
659 {
660 /*
661 * NB: This function can still be called even if GuC submission is
662 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
663 * if any code is later added here, it must be support doing nothing
664 * if submission is disabled (as per intel_guc_suspend).
665 */
666 return 0;
667 }
668
669 /**
670 * DOC: GuC Memory Management
671 *
672 * GuC can't allocate any memory for its own usage, so all the allocations must
673 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
674 * exception of the top and bottom parts of the 4GB address space, which are
675 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
676 * or other parts of the HW. The driver must take care not to place objects that
677 * the GuC is going to access in these reserved ranges. The layout of the GuC
678 * address space is shown below:
679 *
680 * ::
681 *
682 * +===========> +====================+ <== FFFF_FFFF
683 * ^ | Reserved |
684 * | +====================+ <== GUC_GGTT_TOP
685 * | | |
686 * | | DRAM |
687 * GuC | |
688 * Address +===> +====================+ <== GuC ggtt_pin_bias
689 * Space ^ | |
690 * | | | |
691 * | GuC | GuC |
692 * | WOPCM | WOPCM |
693 * | Size | |
694 * | | | |
695 * v v | |
696 * +=======+===> +====================+ <== 0000_0000
697 *
698 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
699 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
700 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
701 */
702
703 /**
704 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
705 * @guc: the guc
706 * @size: size of area to allocate (both virtual space and memory)
707 *
708 * This is a wrapper to create an object for use with the GuC. In order to
709 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
710 * both some backing storage and a range inside the Global GTT. We must pin
711 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
712 * range is reserved inside GuC.
713 *
714 * Return: A i915_vma if successful, otherwise an ERR_PTR.
715 */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)716 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
717 {
718 struct intel_gt *gt = guc_to_gt(guc);
719 struct drm_i915_gem_object *obj;
720 struct i915_vma *vma;
721 u64 flags;
722 int ret;
723
724 if (HAS_LMEM(gt->i915))
725 obj = i915_gem_object_create_lmem(gt->i915, size,
726 I915_BO_ALLOC_CPU_CLEAR |
727 I915_BO_ALLOC_CONTIGUOUS |
728 I915_BO_ALLOC_PM_EARLY);
729 else
730 obj = i915_gem_object_create_shmem(gt->i915, size);
731
732 if (IS_ERR(obj))
733 return ERR_CAST(obj);
734
735 /*
736 * Wa_22016122933: For Media version 13.0, all Media GT shared
737 * memory needs to be mapped as WC on CPU side and UC (PAT
738 * index 2) on GPU side.
739 */
740 if (intel_gt_needs_wa_22016122933(gt))
741 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
742
743 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
744 if (IS_ERR(vma))
745 goto err;
746
747 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
748 ret = i915_ggtt_pin(vma, NULL, 0, flags);
749 if (ret) {
750 vma = ERR_PTR(ret);
751 goto err;
752 }
753
754 return i915_vma_make_unshrinkable(vma);
755
756 err:
757 i915_gem_object_put(obj);
758 return vma;
759 }
760
761 /**
762 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
763 * @guc: the guc
764 * @size: size of area to allocate (both virtual space and memory)
765 * @out_vma: return variable for the allocated vma pointer
766 * @out_vaddr: return variable for the obj mapping
767 *
768 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
769 * object with I915_MAP_WB.
770 *
771 * Return: 0 if successful, a negative errno code otherwise.
772 */
intel_guc_allocate_and_map_vma(struct intel_guc * guc,u32 size,struct i915_vma ** out_vma,void ** out_vaddr)773 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
774 struct i915_vma **out_vma, void **out_vaddr)
775 {
776 struct i915_vma *vma;
777 void *vaddr;
778
779 vma = intel_guc_allocate_vma(guc, size);
780 if (IS_ERR(vma))
781 return PTR_ERR(vma);
782
783 vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
784 intel_gt_coherent_map_type(guc_to_gt(guc),
785 vma->obj, true));
786 if (IS_ERR(vaddr)) {
787 i915_vma_unpin_and_release(&vma, 0);
788 return PTR_ERR(vaddr);
789 }
790
791 *out_vma = vma;
792 *out_vaddr = vaddr;
793
794 return 0;
795 }
796
__guc_action_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)797 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
798 {
799 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
800 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
801 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
802 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
803 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
804 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
805 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
806 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
807 };
808 int ret;
809
810 GEM_BUG_ON(len > 2);
811 GEM_BUG_ON(len == 1 && upper_32_bits(value));
812
813 /* Self config must go over MMIO */
814 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
815
816 if (unlikely(ret < 0))
817 return ret;
818 if (unlikely(ret > 1))
819 return -EPROTO;
820 if (unlikely(!ret))
821 return -ENOKEY;
822
823 return 0;
824 }
825
__guc_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)826 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
827 {
828 int err = __guc_action_self_cfg(guc, key, len, value);
829
830 if (unlikely(err))
831 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
832 ERR_PTR(err), key, value);
833 return err;
834 }
835
intel_guc_self_cfg32(struct intel_guc * guc,u16 key,u32 value)836 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
837 {
838 return __guc_self_cfg(guc, key, 1, value);
839 }
840
intel_guc_self_cfg64(struct intel_guc * guc,u16 key,u64 value)841 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
842 {
843 return __guc_self_cfg(guc, key, 2, value);
844 }
845
846 /**
847 * intel_guc_load_status - dump information about GuC load status
848 * @guc: the GuC
849 * @p: the &drm_printer
850 *
851 * Pretty printer for GuC load status.
852 */
intel_guc_load_status(struct intel_guc * guc,struct drm_printer * p)853 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
854 {
855 struct intel_gt *gt = guc_to_gt(guc);
856 struct intel_uncore *uncore = gt->uncore;
857 intel_wakeref_t wakeref;
858
859 if (!intel_guc_is_supported(guc)) {
860 drm_printf(p, "GuC not supported\n");
861 return;
862 }
863
864 if (!intel_guc_is_wanted(guc)) {
865 drm_printf(p, "GuC disabled\n");
866 return;
867 }
868
869 intel_uc_fw_dump(&guc->fw, p);
870
871 with_intel_runtime_pm(uncore->rpm, wakeref) {
872 u32 status = intel_uncore_read(uncore, GUC_STATUS);
873 u32 i;
874
875 drm_printf(p, "GuC status 0x%08x:\n", status);
876 drm_printf(p, "\tBootrom status = 0x%x\n",
877 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
878 drm_printf(p, "\tuKernel status = 0x%x\n",
879 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
880 drm_printf(p, "\tMIA Core status = 0x%x\n",
881 (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
882 drm_puts(p, "Scratch registers:\n");
883 for (i = 0; i < 16; i++) {
884 drm_printf(p, "\t%2d: \t0x%x\n",
885 i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
886 }
887 }
888 }
889
intel_guc_write_barrier(struct intel_guc * guc)890 void intel_guc_write_barrier(struct intel_guc *guc)
891 {
892 struct intel_gt *gt = guc_to_gt(guc);
893
894 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
895 /*
896 * Ensure intel_uncore_write_fw can be used rather than
897 * intel_uncore_write.
898 */
899 GEM_BUG_ON(guc->send_regs.fw_domains);
900
901 /*
902 * This register is used by the i915 and GuC for MMIO based
903 * communication. Once we are in this code CTBs are the only
904 * method the i915 uses to communicate with the GuC so it is
905 * safe to write to this register (a value of 0 is NOP for MMIO
906 * communication). If we ever start mixing CTBs and MMIOs a new
907 * register will have to be chosen. This function is also used
908 * to enforce ordering of a work queue item write and an update
909 * to the process descriptor. When a work queue is being used,
910 * CTBs are also the only mechanism of communication.
911 */
912 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
913 } else {
914 /* wmb() sufficient for a barrier if in smem */
915 wmb();
916 }
917 }
918