1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016-2019 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7 #include <linux/ktime.h>
8 #include <linux/time64.h>
9 #include <linux/string_helpers.h>
10 #include <linux/timekeeping.h>
11
12 #include "i915_drv.h"
13 #include "intel_guc_ct.h"
14 #include "intel_guc_print.h"
15
16 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
17 enum {
18 CT_DEAD_ALIVE = 0,
19 CT_DEAD_SETUP,
20 CT_DEAD_WRITE,
21 CT_DEAD_DEADLOCK,
22 CT_DEAD_H2G_HAS_ROOM,
23 CT_DEAD_READ,
24 CT_DEAD_PROCESS_FAILED,
25 };
26
27 static void ct_dead_ct_worker_func(struct work_struct *w);
28
29 #define CT_DEAD(ct, reason) \
30 do { \
31 if (!(ct)->dead_ct_reported) { \
32 (ct)->dead_ct_reason |= 1 << CT_DEAD_##reason; \
33 queue_work(system_unbound_wq, &(ct)->dead_ct_worker); \
34 } \
35 } while (0)
36 #else
37 #define CT_DEAD(ct, reason) do { } while (0)
38 #endif
39
ct_to_guc(struct intel_guc_ct * ct)40 static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct)
41 {
42 return container_of(ct, struct intel_guc, ct);
43 }
44
45 #define CT_ERROR(_ct, _fmt, ...) \
46 guc_err(ct_to_guc(_ct), "CT: " _fmt, ##__VA_ARGS__)
47 #ifdef CONFIG_DRM_I915_DEBUG_GUC
48 #define CT_DEBUG(_ct, _fmt, ...) \
49 guc_dbg(ct_to_guc(_ct), "CT: " _fmt, ##__VA_ARGS__)
50 #else
51 #define CT_DEBUG(...) do { } while (0)
52 #endif
53 #define CT_PROBE_ERROR(_ct, _fmt, ...) \
54 guc_probe_error(ct_to_guc(ct), "CT: " _fmt, ##__VA_ARGS__)
55
56 /**
57 * DOC: CTB Blob
58 *
59 * We allocate single blob to hold both CTB descriptors and buffers:
60 *
61 * +--------+-----------------------------------------------+------+
62 * | offset | contents | size |
63 * +========+===============================================+======+
64 * | 0x0000 | H2G `CTB Descriptor`_ (send) | |
65 * +--------+-----------------------------------------------+ 4K |
66 * | 0x0800 | G2H `CTB Descriptor`_ (recv) | |
67 * +--------+-----------------------------------------------+------+
68 * | 0x1000 | H2G `CT Buffer`_ (send) | n*4K |
69 * | | | |
70 * +--------+-----------------------------------------------+------+
71 * | 0x1000 | G2H `CT Buffer`_ (recv) | m*4K |
72 * | + n*4K | | |
73 * +--------+-----------------------------------------------+------+
74 *
75 * Size of each `CT Buffer`_ must be multiple of 4K.
76 * We don't expect too many messages in flight at any time, unless we are
77 * using the GuC submission. In that case each request requires a minimum
78 * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
79 * enough space to avoid backpressure on the driver. We increase the size
80 * of the receive buffer (relative to the send) to ensure a G2H response
81 * CTB has a landing spot.
82 */
83 #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
84 #define CTB_H2G_BUFFER_SIZE (SZ_4K)
85 #define CTB_G2H_BUFFER_SIZE (4 * CTB_H2G_BUFFER_SIZE)
86 #define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 4)
87
88 struct ct_request {
89 struct list_head link;
90 u32 fence;
91 u32 status;
92 u32 response_len;
93 u32 *response_buf;
94 };
95
96 struct ct_incoming_msg {
97 struct list_head link;
98 u32 size;
99 u32 msg[];
100 };
101
102 enum { CTB_SEND = 0, CTB_RECV = 1 };
103
104 enum { CTB_OWNER_HOST = 0 };
105
106 static void ct_receive_tasklet_func(struct tasklet_struct *t);
107 static void ct_incoming_request_worker_func(struct work_struct *w);
108
109 /**
110 * intel_guc_ct_init_early - Initialize CT state without requiring device access
111 * @ct: pointer to CT struct
112 */
intel_guc_ct_init_early(struct intel_guc_ct * ct)113 void intel_guc_ct_init_early(struct intel_guc_ct *ct)
114 {
115 spin_lock_init(&ct->ctbs.send.lock);
116 spin_lock_init(&ct->ctbs.recv.lock);
117 spin_lock_init(&ct->requests.lock);
118 INIT_LIST_HEAD(&ct->requests.pending);
119 INIT_LIST_HEAD(&ct->requests.incoming);
120 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
121 INIT_WORK(&ct->dead_ct_worker, ct_dead_ct_worker_func);
122 #endif
123 INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func);
124 tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func);
125 init_waitqueue_head(&ct->wq);
126 }
127
guc_ct_buffer_desc_init(struct guc_ct_buffer_desc * desc)128 static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc)
129 {
130 memset(desc, 0, sizeof(*desc));
131 }
132
guc_ct_buffer_reset(struct intel_guc_ct_buffer * ctb)133 static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb)
134 {
135 u32 space;
136
137 ctb->broken = false;
138 ctb->tail = 0;
139 ctb->head = 0;
140 space = CIRC_SPACE(ctb->tail, ctb->head, ctb->size) - ctb->resv_space;
141 atomic_set(&ctb->space, space);
142
143 guc_ct_buffer_desc_init(ctb->desc);
144 }
145
guc_ct_buffer_init(struct intel_guc_ct_buffer * ctb,struct guc_ct_buffer_desc * desc,u32 * cmds,u32 size_in_bytes,u32 resv_space)146 static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb,
147 struct guc_ct_buffer_desc *desc,
148 u32 *cmds, u32 size_in_bytes, u32 resv_space)
149 {
150 GEM_BUG_ON(size_in_bytes % 4);
151
152 ctb->desc = desc;
153 ctb->cmds = cmds;
154 ctb->size = size_in_bytes / 4;
155 ctb->resv_space = resv_space / 4;
156
157 guc_ct_buffer_reset(ctb);
158 }
159
guc_action_control_ctb(struct intel_guc * guc,u32 control)160 static int guc_action_control_ctb(struct intel_guc *guc, u32 control)
161 {
162 u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
163 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
164 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
165 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_CONTROL_CTB),
166 FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, control),
167 };
168 int ret;
169
170 GEM_BUG_ON(control != GUC_CTB_CONTROL_DISABLE && control != GUC_CTB_CONTROL_ENABLE);
171
172 /* CT control must go over MMIO */
173 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
174
175 return ret > 0 ? -EPROTO : ret;
176 }
177
ct_control_enable(struct intel_guc_ct * ct,bool enable)178 static int ct_control_enable(struct intel_guc_ct *ct, bool enable)
179 {
180 int err;
181
182 err = guc_action_control_ctb(ct_to_guc(ct), enable ?
183 GUC_CTB_CONTROL_ENABLE : GUC_CTB_CONTROL_DISABLE);
184 if (unlikely(err))
185 CT_PROBE_ERROR(ct, "Failed to control/%s CTB (%pe)\n",
186 str_enable_disable(enable), ERR_PTR(err));
187
188 return err;
189 }
190
ct_register_buffer(struct intel_guc_ct * ct,bool send,u32 desc_addr,u32 buff_addr,u32 size)191 static int ct_register_buffer(struct intel_guc_ct *ct, bool send,
192 u32 desc_addr, u32 buff_addr, u32 size)
193 {
194 int err;
195
196 err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
197 GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY :
198 GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
199 desc_addr);
200 if (unlikely(err))
201 goto failed;
202
203 err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
204 GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY :
205 GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
206 buff_addr);
207 if (unlikely(err))
208 goto failed;
209
210 err = intel_guc_self_cfg32(ct_to_guc(ct), send ?
211 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY :
212 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
213 size);
214 if (unlikely(err))
215 failed:
216 CT_PROBE_ERROR(ct, "Failed to register %s buffer (%pe)\n",
217 send ? "SEND" : "RECV", ERR_PTR(err));
218
219 return err;
220 }
221
222 /**
223 * intel_guc_ct_init - Init buffer-based communication
224 * @ct: pointer to CT struct
225 *
226 * Allocate memory required for buffer-based communication.
227 *
228 * Return: 0 on success, a negative errno code on failure.
229 */
intel_guc_ct_init(struct intel_guc_ct * ct)230 int intel_guc_ct_init(struct intel_guc_ct *ct)
231 {
232 struct intel_guc *guc = ct_to_guc(ct);
233 struct guc_ct_buffer_desc *desc;
234 u32 blob_size;
235 u32 cmds_size;
236 u32 resv_space;
237 void *blob;
238 u32 *cmds;
239 int err;
240
241 err = i915_inject_probe_error(guc_to_gt(guc)->i915, -ENXIO);
242 if (err)
243 return err;
244
245 GEM_BUG_ON(ct->vma);
246
247 blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE;
248 err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob);
249 if (unlikely(err)) {
250 CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n",
251 blob_size, ERR_PTR(err));
252 return err;
253 }
254
255 CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size);
256
257 /* store pointers to desc and cmds for send ctb */
258 desc = blob;
259 cmds = blob + 2 * CTB_DESC_SIZE;
260 cmds_size = CTB_H2G_BUFFER_SIZE;
261 resv_space = 0;
262 CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "send",
263 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
264 resv_space);
265
266 guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size, resv_space);
267
268 /* store pointers to desc and cmds for recv ctb */
269 desc = blob + CTB_DESC_SIZE;
270 cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE;
271 cmds_size = CTB_G2H_BUFFER_SIZE;
272 resv_space = G2H_ROOM_BUFFER_SIZE;
273 CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "recv",
274 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
275 resv_space);
276
277 guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size, resv_space);
278
279 return 0;
280 }
281
282 /**
283 * intel_guc_ct_fini - Fini buffer-based communication
284 * @ct: pointer to CT struct
285 *
286 * Deallocate memory required for buffer-based communication.
287 */
intel_guc_ct_fini(struct intel_guc_ct * ct)288 void intel_guc_ct_fini(struct intel_guc_ct *ct)
289 {
290 GEM_BUG_ON(ct->enabled);
291
292 tasklet_kill(&ct->receive_tasklet);
293 i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP);
294 memset(ct, 0, sizeof(*ct));
295 }
296
297 /**
298 * intel_guc_ct_enable - Enable buffer based command transport.
299 * @ct: pointer to CT struct
300 *
301 * Return: 0 on success, a negative errno code on failure.
302 */
intel_guc_ct_enable(struct intel_guc_ct * ct)303 int intel_guc_ct_enable(struct intel_guc_ct *ct)
304 {
305 struct intel_guc *guc = ct_to_guc(ct);
306 u32 base, desc, cmds, size;
307 void *blob;
308 int err;
309
310 GEM_BUG_ON(ct->enabled);
311
312 /* vma should be already allocated and map'ed */
313 GEM_BUG_ON(!ct->vma);
314 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj));
315 base = intel_guc_ggtt_offset(guc, ct->vma);
316
317 /* blob should start with send descriptor */
318 blob = __px_vaddr(ct->vma->obj);
319 GEM_BUG_ON(blob != ct->ctbs.send.desc);
320
321 /* (re)initialize descriptors */
322 guc_ct_buffer_reset(&ct->ctbs.send);
323 guc_ct_buffer_reset(&ct->ctbs.recv);
324
325 /*
326 * Register both CT buffers starting with RECV buffer.
327 * Descriptors are in first half of the blob.
328 */
329 desc = base + ptrdiff(ct->ctbs.recv.desc, blob);
330 cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob);
331 size = ct->ctbs.recv.size * 4;
332 err = ct_register_buffer(ct, false, desc, cmds, size);
333 if (unlikely(err))
334 goto err_out;
335
336 desc = base + ptrdiff(ct->ctbs.send.desc, blob);
337 cmds = base + ptrdiff(ct->ctbs.send.cmds, blob);
338 size = ct->ctbs.send.size * 4;
339 err = ct_register_buffer(ct, true, desc, cmds, size);
340 if (unlikely(err))
341 goto err_out;
342
343 err = ct_control_enable(ct, true);
344 if (unlikely(err))
345 goto err_out;
346
347 ct->enabled = true;
348 ct->stall_time = KTIME_MAX;
349 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
350 ct->dead_ct_reported = false;
351 ct->dead_ct_reason = CT_DEAD_ALIVE;
352 #endif
353
354 return 0;
355
356 err_out:
357 CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err));
358 CT_DEAD(ct, SETUP);
359 return err;
360 }
361
362 /**
363 * intel_guc_ct_disable - Disable buffer based command transport.
364 * @ct: pointer to CT struct
365 */
intel_guc_ct_disable(struct intel_guc_ct * ct)366 void intel_guc_ct_disable(struct intel_guc_ct *ct)
367 {
368 struct intel_guc *guc = ct_to_guc(ct);
369
370 GEM_BUG_ON(!ct->enabled);
371
372 ct->enabled = false;
373
374 if (intel_guc_is_fw_running(guc)) {
375 ct_control_enable(ct, false);
376 }
377 }
378
379 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
ct_track_lost_and_found(struct intel_guc_ct * ct,u32 fence,u32 action)380 static void ct_track_lost_and_found(struct intel_guc_ct *ct, u32 fence, u32 action)
381 {
382 unsigned int lost = fence % ARRAY_SIZE(ct->requests.lost_and_found);
383 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
384 unsigned long entries[SZ_32];
385 unsigned int n;
386
387 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
388
389 /* May be called under spinlock, so avoid sleeping */
390 ct->requests.lost_and_found[lost].stack = stack_depot_save(entries, n, GFP_NOWAIT);
391 #endif
392 ct->requests.lost_and_found[lost].fence = fence;
393 ct->requests.lost_and_found[lost].action = action;
394 }
395 #endif
396
ct_get_next_fence(struct intel_guc_ct * ct)397 static u32 ct_get_next_fence(struct intel_guc_ct *ct)
398 {
399 /* For now it's trivial */
400 return ++ct->requests.last_fence;
401 }
402
ct_write(struct intel_guc_ct * ct,const u32 * action,u32 len,u32 fence,u32 flags)403 static int ct_write(struct intel_guc_ct *ct,
404 const u32 *action,
405 u32 len /* in dwords */,
406 u32 fence, u32 flags)
407 {
408 struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
409 struct guc_ct_buffer_desc *desc = ctb->desc;
410 u32 tail = ctb->tail;
411 u32 size = ctb->size;
412 u32 header;
413 u32 hxg;
414 u32 type;
415 u32 *cmds = ctb->cmds;
416 unsigned int i;
417
418 if (unlikely(desc->status))
419 goto corrupted;
420
421 GEM_BUG_ON(tail > size);
422
423 #ifdef CONFIG_DRM_I915_DEBUG_GUC
424 if (unlikely(tail != READ_ONCE(desc->tail))) {
425 CT_ERROR(ct, "Tail was modified %u != %u\n",
426 desc->tail, tail);
427 desc->status |= GUC_CTB_STATUS_MISMATCH;
428 goto corrupted;
429 }
430 if (unlikely(READ_ONCE(desc->head) >= size)) {
431 CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
432 desc->head, size);
433 desc->status |= GUC_CTB_STATUS_OVERFLOW;
434 goto corrupted;
435 }
436 #endif
437
438 /*
439 * dw0: CT header (including fence)
440 * dw1: HXG header (including action code)
441 * dw2+: action data
442 */
443 header = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
444 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
445 FIELD_PREP(GUC_CTB_MSG_0_FENCE, fence);
446
447 type = (flags & INTEL_GUC_CT_SEND_NB) ? GUC_HXG_TYPE_FAST_REQUEST :
448 GUC_HXG_TYPE_REQUEST;
449 hxg = FIELD_PREP(GUC_HXG_MSG_0_TYPE, type) |
450 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION |
451 GUC_HXG_REQUEST_MSG_0_DATA0, action[0]);
452
453 CT_DEBUG(ct, "writing (tail %u) %*ph %*ph %*ph\n",
454 tail, 4, &header, 4, &hxg, 4 * (len - 1), &action[1]);
455
456 cmds[tail] = header;
457 tail = (tail + 1) % size;
458
459 cmds[tail] = hxg;
460 tail = (tail + 1) % size;
461
462 for (i = 1; i < len; i++) {
463 cmds[tail] = action[i];
464 tail = (tail + 1) % size;
465 }
466 GEM_BUG_ON(tail > size);
467
468 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
469 ct_track_lost_and_found(ct, fence,
470 FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, action[0]));
471 #endif
472
473 /*
474 * make sure H2G buffer update and LRC tail update (if this triggering a
475 * submission) are visible before updating the descriptor tail
476 */
477 intel_guc_write_barrier(ct_to_guc(ct));
478
479 /* update local copies */
480 ctb->tail = tail;
481 GEM_BUG_ON(atomic_read(&ctb->space) < len + GUC_CTB_HDR_LEN);
482 atomic_sub(len + GUC_CTB_HDR_LEN, &ctb->space);
483
484 /* now update descriptor */
485 WRITE_ONCE(desc->tail, tail);
486
487 return 0;
488
489 corrupted:
490 CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
491 desc->head, desc->tail, desc->status);
492 CT_DEAD(ct, WRITE);
493 ctb->broken = true;
494 return -EPIPE;
495 }
496
497 /**
498 * wait_for_ct_request_update - Wait for CT request state update.
499 * @ct: pointer to CT
500 * @req: pointer to pending request
501 * @status: placeholder for status
502 *
503 * For each sent request, GuC shall send back CT response message.
504 * Our message handler will update status of tracked request once
505 * response message with given fence is received. Wait here and
506 * check for valid response status value.
507 *
508 * Return:
509 * * 0 response received (status is valid)
510 * * -ETIMEDOUT no response within hardcoded timeout
511 */
wait_for_ct_request_update(struct intel_guc_ct * ct,struct ct_request * req,u32 * status)512 static int wait_for_ct_request_update(struct intel_guc_ct *ct, struct ct_request *req, u32 *status)
513 {
514 int err;
515 bool ct_enabled;
516
517 /*
518 * Fast commands should complete in less than 10us, so sample quickly
519 * up to that length of time, then switch to a slower sleep-wait loop.
520 * No GuC command should ever take longer than 10ms but many GuC
521 * commands can be inflight at time, so use a 1s timeout on the slower
522 * sleep-wait loop.
523 */
524 #define GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS 10
525 #define GUC_CTB_RESPONSE_TIMEOUT_LONG_MS 1000
526 #define done \
527 (!(ct_enabled = intel_guc_ct_enabled(ct)) || \
528 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, READ_ONCE(req->status)) == \
529 GUC_HXG_ORIGIN_GUC)
530 err = wait_for_us(done, GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS);
531 if (err)
532 err = wait_for(done, GUC_CTB_RESPONSE_TIMEOUT_LONG_MS);
533 #undef done
534 if (!ct_enabled)
535 err = -ENODEV;
536
537 *status = req->status;
538 return err;
539 }
540
541 #define GUC_CTB_TIMEOUT_MS 1500
ct_deadlocked(struct intel_guc_ct * ct)542 static inline bool ct_deadlocked(struct intel_guc_ct *ct)
543 {
544 long timeout = GUC_CTB_TIMEOUT_MS;
545 bool ret = ktime_ms_delta(ktime_get(), ct->stall_time) > timeout;
546
547 if (unlikely(ret)) {
548 struct guc_ct_buffer_desc *send = ct->ctbs.send.desc;
549 struct guc_ct_buffer_desc *recv = ct->ctbs.send.desc;
550
551 CT_ERROR(ct, "Communication stalled for %lld ms, desc status=%#x,%#x\n",
552 ktime_ms_delta(ktime_get(), ct->stall_time),
553 send->status, recv->status);
554 CT_ERROR(ct, "H2G Space: %u (Bytes)\n",
555 atomic_read(&ct->ctbs.send.space) * 4);
556 CT_ERROR(ct, "Head: %u (Dwords)\n", ct->ctbs.send.desc->head);
557 CT_ERROR(ct, "Tail: %u (Dwords)\n", ct->ctbs.send.desc->tail);
558 CT_ERROR(ct, "G2H Space: %u (Bytes)\n",
559 atomic_read(&ct->ctbs.recv.space) * 4);
560 CT_ERROR(ct, "Head: %u\n (Dwords)", ct->ctbs.recv.desc->head);
561 CT_ERROR(ct, "Tail: %u\n (Dwords)", ct->ctbs.recv.desc->tail);
562
563 CT_DEAD(ct, DEADLOCK);
564 ct->ctbs.send.broken = true;
565 }
566
567 return ret;
568 }
569
g2h_has_room(struct intel_guc_ct * ct,u32 g2h_len_dw)570 static inline bool g2h_has_room(struct intel_guc_ct *ct, u32 g2h_len_dw)
571 {
572 struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
573
574 /*
575 * We leave a certain amount of space in the G2H CTB buffer for
576 * unexpected G2H CTBs (e.g. logging, engine hang, etc...)
577 */
578 return !g2h_len_dw || atomic_read(&ctb->space) >= g2h_len_dw;
579 }
580
g2h_reserve_space(struct intel_guc_ct * ct,u32 g2h_len_dw)581 static inline void g2h_reserve_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
582 {
583 lockdep_assert_held(&ct->ctbs.send.lock);
584
585 GEM_BUG_ON(!g2h_has_room(ct, g2h_len_dw));
586
587 if (g2h_len_dw)
588 atomic_sub(g2h_len_dw, &ct->ctbs.recv.space);
589 }
590
g2h_release_space(struct intel_guc_ct * ct,u32 g2h_len_dw)591 static inline void g2h_release_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
592 {
593 atomic_add(g2h_len_dw, &ct->ctbs.recv.space);
594 }
595
h2g_has_room(struct intel_guc_ct * ct,u32 len_dw)596 static inline bool h2g_has_room(struct intel_guc_ct *ct, u32 len_dw)
597 {
598 struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
599 struct guc_ct_buffer_desc *desc = ctb->desc;
600 u32 head;
601 u32 space;
602
603 if (atomic_read(&ctb->space) >= len_dw)
604 return true;
605
606 head = READ_ONCE(desc->head);
607 if (unlikely(head > ctb->size)) {
608 CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
609 head, ctb->size);
610 desc->status |= GUC_CTB_STATUS_OVERFLOW;
611 ctb->broken = true;
612 CT_DEAD(ct, H2G_HAS_ROOM);
613 return false;
614 }
615
616 space = CIRC_SPACE(ctb->tail, head, ctb->size);
617 atomic_set(&ctb->space, space);
618
619 return space >= len_dw;
620 }
621
has_room_nb(struct intel_guc_ct * ct,u32 h2g_dw,u32 g2h_dw)622 static int has_room_nb(struct intel_guc_ct *ct, u32 h2g_dw, u32 g2h_dw)
623 {
624 bool h2g = h2g_has_room(ct, h2g_dw);
625 bool g2h = g2h_has_room(ct, g2h_dw);
626
627 lockdep_assert_held(&ct->ctbs.send.lock);
628
629 if (unlikely(!h2g || !g2h)) {
630 if (ct->stall_time == KTIME_MAX)
631 ct->stall_time = ktime_get();
632
633 /* Be paranoid and kick G2H tasklet to free credits */
634 if (!g2h)
635 tasklet_hi_schedule(&ct->receive_tasklet);
636
637 if (unlikely(ct_deadlocked(ct)))
638 return -EPIPE;
639 else
640 return -EBUSY;
641 }
642
643 ct->stall_time = KTIME_MAX;
644 return 0;
645 }
646
647 #define G2H_LEN_DW(f) ({ \
648 typeof(f) f_ = (f); \
649 FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) ? \
650 FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) + \
651 GUC_CTB_HXG_MSG_MIN_LEN : 0; \
652 })
ct_send_nb(struct intel_guc_ct * ct,const u32 * action,u32 len,u32 flags)653 static int ct_send_nb(struct intel_guc_ct *ct,
654 const u32 *action,
655 u32 len,
656 u32 flags)
657 {
658 struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
659 unsigned long spin_flags;
660 u32 g2h_len_dw = G2H_LEN_DW(flags);
661 u32 fence;
662 int ret;
663
664 spin_lock_irqsave(&ctb->lock, spin_flags);
665
666 ret = has_room_nb(ct, len + GUC_CTB_HDR_LEN, g2h_len_dw);
667 if (unlikely(ret))
668 goto out;
669
670 fence = ct_get_next_fence(ct);
671 ret = ct_write(ct, action, len, fence, flags);
672 if (unlikely(ret))
673 goto out;
674
675 g2h_reserve_space(ct, g2h_len_dw);
676 intel_guc_notify(ct_to_guc(ct));
677
678 out:
679 spin_unlock_irqrestore(&ctb->lock, spin_flags);
680
681 return ret;
682 }
683
ct_send(struct intel_guc_ct * ct,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size,u32 * status)684 static int ct_send(struct intel_guc_ct *ct,
685 const u32 *action,
686 u32 len,
687 u32 *response_buf,
688 u32 response_buf_size,
689 u32 *status)
690 {
691 struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
692 struct ct_request request;
693 unsigned long flags;
694 unsigned int sleep_period_ms = 1;
695 bool send_again;
696 u32 fence;
697 int err;
698
699 GEM_BUG_ON(!ct->enabled);
700 GEM_BUG_ON(!len);
701 GEM_BUG_ON(len > GUC_CTB_HXG_MSG_MAX_LEN - GUC_CTB_HDR_LEN);
702 GEM_BUG_ON(!response_buf && response_buf_size);
703 might_sleep();
704
705 resend:
706 send_again = false;
707
708 /*
709 * We use a lazy spin wait loop here as we believe that if the CT
710 * buffers are sized correctly the flow control condition should be
711 * rare. Reserving the maximum size in the G2H credits as we don't know
712 * how big the response is going to be.
713 */
714 retry:
715 spin_lock_irqsave(&ctb->lock, flags);
716 if (unlikely(!h2g_has_room(ct, len + GUC_CTB_HDR_LEN) ||
717 !g2h_has_room(ct, GUC_CTB_HXG_MSG_MAX_LEN))) {
718 if (ct->stall_time == KTIME_MAX)
719 ct->stall_time = ktime_get();
720 spin_unlock_irqrestore(&ctb->lock, flags);
721
722 if (unlikely(ct_deadlocked(ct)))
723 return -EPIPE;
724
725 if (msleep_interruptible(sleep_period_ms))
726 return -EINTR;
727 sleep_period_ms = sleep_period_ms << 1;
728
729 goto retry;
730 }
731
732 ct->stall_time = KTIME_MAX;
733
734 fence = ct_get_next_fence(ct);
735 request.fence = fence;
736 request.status = 0;
737 request.response_len = response_buf_size;
738 request.response_buf = response_buf;
739
740 spin_lock(&ct->requests.lock);
741 list_add_tail(&request.link, &ct->requests.pending);
742 spin_unlock(&ct->requests.lock);
743
744 err = ct_write(ct, action, len, fence, 0);
745 g2h_reserve_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
746
747 spin_unlock_irqrestore(&ctb->lock, flags);
748
749 if (unlikely(err))
750 goto unlink;
751
752 intel_guc_notify(ct_to_guc(ct));
753
754 err = wait_for_ct_request_update(ct, &request, status);
755 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
756 if (unlikely(err)) {
757 if (err == -ENODEV)
758 /* wait_for_ct_request_update returns -ENODEV on reset/suspend in progress.
759 * In this case, output is debug rather than error info
760 */
761 CT_DEBUG(ct, "Request %#x (fence %u) cancelled as CTB is disabled\n",
762 action[0], request.fence);
763 else
764 CT_ERROR(ct, "No response for request %#x (fence %u)\n",
765 action[0], request.fence);
766 goto unlink;
767 }
768
769 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
770 CT_DEBUG(ct, "retrying request %#x (%u)\n", *action,
771 FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, *status));
772 send_again = true;
773 goto unlink;
774 }
775
776 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
777 err = -EIO;
778 goto unlink;
779 }
780
781 if (response_buf) {
782 /* There shall be no data in the status */
783 WARN_ON(FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, request.status));
784 /* Return actual response len */
785 err = request.response_len;
786 } else {
787 /* There shall be no response payload */
788 WARN_ON(request.response_len);
789 /* Return data decoded from the status dword */
790 err = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, *status);
791 }
792
793 unlink:
794 spin_lock_irqsave(&ct->requests.lock, flags);
795 list_del(&request.link);
796 spin_unlock_irqrestore(&ct->requests.lock, flags);
797
798 if (unlikely(send_again))
799 goto resend;
800
801 return err;
802 }
803
804 /*
805 * Command Transport (CT) buffer based GuC send function.
806 */
intel_guc_ct_send(struct intel_guc_ct * ct,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size,u32 flags)807 int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len,
808 u32 *response_buf, u32 response_buf_size, u32 flags)
809 {
810 u32 status = ~0; /* undefined */
811 int ret;
812
813 if (unlikely(!ct->enabled)) {
814 struct intel_guc *guc = ct_to_guc(ct);
815 struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
816
817 WARN(!uc->reset_in_progress, "Unexpected send: action=%#x\n", *action);
818 return -ENODEV;
819 }
820
821 if (unlikely(ct->ctbs.send.broken))
822 return -EPIPE;
823
824 if (flags & INTEL_GUC_CT_SEND_NB)
825 return ct_send_nb(ct, action, len, flags);
826
827 ret = ct_send(ct, action, len, response_buf, response_buf_size, &status);
828 if (unlikely(ret < 0)) {
829 if (ret != -ENODEV)
830 CT_ERROR(ct, "Sending action %#x failed (%pe) status=%#X\n",
831 action[0], ERR_PTR(ret), status);
832 } else if (unlikely(ret)) {
833 CT_DEBUG(ct, "send action %#x returned %d (%#x)\n",
834 action[0], ret, ret);
835 }
836
837 return ret;
838 }
839
ct_alloc_msg(u32 num_dwords)840 static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords)
841 {
842 struct ct_incoming_msg *msg;
843
844 msg = kmalloc(struct_size(msg, msg, num_dwords), GFP_ATOMIC);
845 if (msg)
846 msg->size = num_dwords;
847 return msg;
848 }
849
ct_free_msg(struct ct_incoming_msg * msg)850 static void ct_free_msg(struct ct_incoming_msg *msg)
851 {
852 kfree(msg);
853 }
854
855 /*
856 * Return: number available remaining dwords to read (0 if empty)
857 * or a negative error code on failure
858 */
ct_read(struct intel_guc_ct * ct,struct ct_incoming_msg ** msg)859 static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg)
860 {
861 struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
862 struct guc_ct_buffer_desc *desc = ctb->desc;
863 u32 head = ctb->head;
864 u32 tail = READ_ONCE(desc->tail);
865 u32 size = ctb->size;
866 u32 *cmds = ctb->cmds;
867 s32 available;
868 unsigned int len;
869 unsigned int i;
870 u32 header;
871
872 if (unlikely(ctb->broken))
873 return -EPIPE;
874
875 if (unlikely(desc->status)) {
876 u32 status = desc->status;
877
878 if (status & GUC_CTB_STATUS_UNUSED) {
879 /*
880 * Potentially valid if a CLIENT_RESET request resulted in
881 * contexts/engines being reset. But should never happen as
882 * no contexts should be active when CLIENT_RESET is sent.
883 */
884 CT_ERROR(ct, "Unexpected G2H after GuC has stopped!\n");
885 status &= ~GUC_CTB_STATUS_UNUSED;
886 }
887
888 if (status)
889 goto corrupted;
890 }
891
892 GEM_BUG_ON(head > size);
893
894 #ifdef CONFIG_DRM_I915_DEBUG_GUC
895 if (unlikely(head != READ_ONCE(desc->head))) {
896 CT_ERROR(ct, "Head was modified %u != %u\n",
897 desc->head, head);
898 desc->status |= GUC_CTB_STATUS_MISMATCH;
899 goto corrupted;
900 }
901 #endif
902 if (unlikely(tail >= size)) {
903 CT_ERROR(ct, "Invalid tail offset %u >= %u)\n",
904 tail, size);
905 desc->status |= GUC_CTB_STATUS_OVERFLOW;
906 goto corrupted;
907 }
908
909 /* tail == head condition indicates empty */
910 available = tail - head;
911 if (unlikely(available == 0)) {
912 *msg = NULL;
913 return 0;
914 }
915
916 /* beware of buffer wrap case */
917 if (unlikely(available < 0))
918 available += size;
919 CT_DEBUG(ct, "available %d (%u:%u:%u)\n", available, head, tail, size);
920 GEM_BUG_ON(available < 0);
921
922 header = cmds[head];
923 head = (head + 1) % size;
924
925 /* message len with header */
926 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, header) + GUC_CTB_MSG_MIN_LEN;
927 if (unlikely(len > (u32)available)) {
928 CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n",
929 4, &header,
930 4 * (head + available - 1 > size ?
931 size - head : available - 1), &cmds[head],
932 4 * (head + available - 1 > size ?
933 available - 1 - size + head : 0), &cmds[0]);
934 desc->status |= GUC_CTB_STATUS_UNDERFLOW;
935 goto corrupted;
936 }
937
938 *msg = ct_alloc_msg(len);
939 if (!*msg) {
940 CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n",
941 4, &header,
942 4 * (head + available - 1 > size ?
943 size - head : available - 1), &cmds[head],
944 4 * (head + available - 1 > size ?
945 available - 1 - size + head : 0), &cmds[0]);
946 return available;
947 }
948
949 (*msg)->msg[0] = header;
950
951 for (i = 1; i < len; i++) {
952 (*msg)->msg[i] = cmds[head];
953 head = (head + 1) % size;
954 }
955 CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg);
956
957 /* update local copies */
958 ctb->head = head;
959
960 /* now update descriptor */
961 WRITE_ONCE(desc->head, head);
962
963 intel_guc_write_barrier(ct_to_guc(ct));
964
965 return available - len;
966
967 corrupted:
968 CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
969 desc->head, desc->tail, desc->status);
970 ctb->broken = true;
971 CT_DEAD(ct, READ);
972 return -EPIPE;
973 }
974
975 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
ct_check_lost_and_found(struct intel_guc_ct * ct,u32 fence)976 static bool ct_check_lost_and_found(struct intel_guc_ct *ct, u32 fence)
977 {
978 unsigned int n;
979 char *buf = NULL;
980 bool found = false;
981
982 lockdep_assert_held(&ct->requests.lock);
983
984 for (n = 0; n < ARRAY_SIZE(ct->requests.lost_and_found); n++) {
985 if (ct->requests.lost_and_found[n].fence != fence)
986 continue;
987 found = true;
988
989 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
990 buf = kmalloc(SZ_4K, GFP_NOWAIT);
991 if (buf && stack_depot_snprint(ct->requests.lost_and_found[n].stack,
992 buf, SZ_4K, 0)) {
993 CT_ERROR(ct, "Fence %u was used by action %#04x sent at\n%s",
994 fence, ct->requests.lost_and_found[n].action, buf);
995 break;
996 }
997 #endif
998 CT_ERROR(ct, "Fence %u was used by action %#04x\n",
999 fence, ct->requests.lost_and_found[n].action);
1000 break;
1001 }
1002 kfree(buf);
1003 return found;
1004 }
1005 #else
ct_check_lost_and_found(struct intel_guc_ct * ct,u32 fence)1006 static bool ct_check_lost_and_found(struct intel_guc_ct *ct, u32 fence)
1007 {
1008 return false;
1009 }
1010 #endif
1011
ct_handle_response(struct intel_guc_ct * ct,struct ct_incoming_msg * response)1012 static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response)
1013 {
1014 u32 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, response->msg[0]);
1015 u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, response->msg[0]);
1016 const u32 *hxg = &response->msg[GUC_CTB_MSG_MIN_LEN];
1017 const u32 *data = &hxg[GUC_HXG_MSG_MIN_LEN];
1018 u32 datalen = len - GUC_HXG_MSG_MIN_LEN;
1019 struct ct_request *req;
1020 unsigned long flags;
1021 bool found = false;
1022 int err = 0;
1023
1024 GEM_BUG_ON(len < GUC_HXG_MSG_MIN_LEN);
1025 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]) != GUC_HXG_ORIGIN_GUC);
1026 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_SUCCESS &&
1027 FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_NO_RESPONSE_RETRY &&
1028 FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_FAILURE);
1029
1030 CT_DEBUG(ct, "response fence %u status %#x\n", fence, hxg[0]);
1031
1032 spin_lock_irqsave(&ct->requests.lock, flags);
1033 list_for_each_entry(req, &ct->requests.pending, link) {
1034 if (unlikely(fence != req->fence)) {
1035 CT_DEBUG(ct, "request %u awaits response\n",
1036 req->fence);
1037 continue;
1038 }
1039 if (unlikely(datalen > req->response_len)) {
1040 CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n",
1041 req->fence, datalen, req->response_len);
1042 datalen = min(datalen, req->response_len);
1043 err = -EMSGSIZE;
1044 }
1045 if (datalen)
1046 memcpy(req->response_buf, data, 4 * datalen);
1047 req->response_len = datalen;
1048 WRITE_ONCE(req->status, hxg[0]);
1049 found = true;
1050 break;
1051 }
1052 if (!found) {
1053 CT_ERROR(ct, "Unsolicited response message: len %u, data %#x (fence %u, last %u)\n",
1054 len, hxg[0], fence, ct->requests.last_fence);
1055 if (!ct_check_lost_and_found(ct, fence)) {
1056 list_for_each_entry(req, &ct->requests.pending, link)
1057 CT_ERROR(ct, "request %u awaits response\n",
1058 req->fence);
1059 }
1060 err = -ENOKEY;
1061 }
1062 spin_unlock_irqrestore(&ct->requests.lock, flags);
1063
1064 if (unlikely(err))
1065 return err;
1066
1067 ct_free_msg(response);
1068 return 0;
1069 }
1070
ct_process_request(struct intel_guc_ct * ct,struct ct_incoming_msg * request)1071 static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1072 {
1073 struct intel_guc *guc = ct_to_guc(ct);
1074 const u32 *hxg;
1075 const u32 *payload;
1076 u32 hxg_len, action, len;
1077 int ret;
1078
1079 hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1080 hxg_len = request->size - GUC_CTB_MSG_MIN_LEN;
1081 payload = &hxg[GUC_HXG_MSG_MIN_LEN];
1082 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1083 len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1084
1085 CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload);
1086
1087 switch (action) {
1088 case INTEL_GUC_ACTION_DEFAULT:
1089 ret = intel_guc_to_host_process_recv_msg(guc, payload, len);
1090 break;
1091 case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1092 ret = intel_guc_deregister_done_process_msg(guc, payload,
1093 len);
1094 break;
1095 case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1096 ret = intel_guc_sched_done_process_msg(guc, payload, len);
1097 break;
1098 case INTEL_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1099 ret = intel_guc_context_reset_process_msg(guc, payload, len);
1100 break;
1101 case INTEL_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1102 ret = intel_guc_error_capture_process_msg(guc, payload, len);
1103 if (unlikely(ret))
1104 CT_ERROR(ct, "error capture notification failed %x %*ph\n",
1105 action, 4 * len, payload);
1106 break;
1107 case INTEL_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1108 ret = intel_guc_engine_failure_process_msg(guc, payload, len);
1109 break;
1110 case INTEL_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1111 intel_guc_log_handle_flush_event(&guc->log);
1112 ret = 0;
1113 break;
1114 case INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1115 CT_ERROR(ct, "Received GuC crash dump notification!\n");
1116 ret = 0;
1117 break;
1118 case INTEL_GUC_ACTION_NOTIFY_EXCEPTION:
1119 CT_ERROR(ct, "Received GuC exception notification!\n");
1120 ret = 0;
1121 break;
1122 default:
1123 ret = -EOPNOTSUPP;
1124 break;
1125 }
1126
1127 if (unlikely(ret)) {
1128 CT_ERROR(ct, "Failed to process request %04x (%pe)\n",
1129 action, ERR_PTR(ret));
1130 return ret;
1131 }
1132
1133 ct_free_msg(request);
1134 return 0;
1135 }
1136
ct_process_incoming_requests(struct intel_guc_ct * ct)1137 static bool ct_process_incoming_requests(struct intel_guc_ct *ct)
1138 {
1139 unsigned long flags;
1140 struct ct_incoming_msg *request;
1141 bool done;
1142 int err;
1143
1144 spin_lock_irqsave(&ct->requests.lock, flags);
1145 request = list_first_entry_or_null(&ct->requests.incoming,
1146 struct ct_incoming_msg, link);
1147 if (request)
1148 list_del(&request->link);
1149 done = !!list_empty(&ct->requests.incoming);
1150 spin_unlock_irqrestore(&ct->requests.lock, flags);
1151
1152 if (!request)
1153 return true;
1154
1155 err = ct_process_request(ct, request);
1156 if (unlikely(err)) {
1157 CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1158 ERR_PTR(err), 4 * request->size, request->msg);
1159 CT_DEAD(ct, PROCESS_FAILED);
1160 ct_free_msg(request);
1161 }
1162
1163 return done;
1164 }
1165
ct_incoming_request_worker_func(struct work_struct * w)1166 static void ct_incoming_request_worker_func(struct work_struct *w)
1167 {
1168 struct intel_guc_ct *ct =
1169 container_of(w, struct intel_guc_ct, requests.worker);
1170 bool done;
1171
1172 do {
1173 done = ct_process_incoming_requests(ct);
1174 } while (!done);
1175 }
1176
ct_handle_event(struct intel_guc_ct * ct,struct ct_incoming_msg * request)1177 static int ct_handle_event(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1178 {
1179 const u32 *hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1180 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1181 unsigned long flags;
1182
1183 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT);
1184
1185 /*
1186 * Adjusting the space must be done in IRQ or deadlock can occur as the
1187 * CTB processing in the below workqueue can send CTBs which creates a
1188 * circular dependency if the space was returned there.
1189 */
1190 switch (action) {
1191 case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1192 case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1193 g2h_release_space(ct, request->size);
1194 }
1195
1196 spin_lock_irqsave(&ct->requests.lock, flags);
1197 list_add_tail(&request->link, &ct->requests.incoming);
1198 spin_unlock_irqrestore(&ct->requests.lock, flags);
1199
1200 queue_work(system_unbound_wq, &ct->requests.worker);
1201 return 0;
1202 }
1203
ct_handle_hxg(struct intel_guc_ct * ct,struct ct_incoming_msg * msg)1204 static int ct_handle_hxg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1205 {
1206 u32 origin, type;
1207 u32 *hxg;
1208 int err;
1209
1210 if (unlikely(msg->size < GUC_CTB_HXG_MSG_MIN_LEN))
1211 return -EBADMSG;
1212
1213 hxg = &msg->msg[GUC_CTB_MSG_MIN_LEN];
1214
1215 origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1216 if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1217 err = -EPROTO;
1218 goto failed;
1219 }
1220
1221 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1222 switch (type) {
1223 case GUC_HXG_TYPE_EVENT:
1224 err = ct_handle_event(ct, msg);
1225 break;
1226 case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1227 case GUC_HXG_TYPE_RESPONSE_FAILURE:
1228 case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1229 err = ct_handle_response(ct, msg);
1230 break;
1231 default:
1232 err = -EOPNOTSUPP;
1233 }
1234
1235 if (unlikely(err)) {
1236 failed:
1237 CT_ERROR(ct, "Failed to handle HXG message (%pe) %*ph\n",
1238 ERR_PTR(err), 4 * GUC_HXG_MSG_MIN_LEN, hxg);
1239 }
1240 return err;
1241 }
1242
ct_handle_msg(struct intel_guc_ct * ct,struct ct_incoming_msg * msg)1243 static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1244 {
1245 u32 format = FIELD_GET(GUC_CTB_MSG_0_FORMAT, msg->msg[0]);
1246 int err;
1247
1248 if (format == GUC_CTB_FORMAT_HXG)
1249 err = ct_handle_hxg(ct, msg);
1250 else
1251 err = -EOPNOTSUPP;
1252
1253 if (unlikely(err)) {
1254 CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1255 ERR_PTR(err), 4 * msg->size, msg->msg);
1256 ct_free_msg(msg);
1257 }
1258 }
1259
1260 /*
1261 * Return: number available remaining dwords to read (0 if empty)
1262 * or a negative error code on failure
1263 */
ct_receive(struct intel_guc_ct * ct)1264 static int ct_receive(struct intel_guc_ct *ct)
1265 {
1266 struct ct_incoming_msg *msg = NULL;
1267 unsigned long flags;
1268 int ret;
1269
1270 spin_lock_irqsave(&ct->ctbs.recv.lock, flags);
1271 ret = ct_read(ct, &msg);
1272 spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags);
1273 if (ret < 0)
1274 return ret;
1275
1276 if (msg)
1277 ct_handle_msg(ct, msg);
1278
1279 return ret;
1280 }
1281
ct_try_receive_message(struct intel_guc_ct * ct)1282 static void ct_try_receive_message(struct intel_guc_ct *ct)
1283 {
1284 int ret;
1285
1286 if (GEM_WARN_ON(!ct->enabled))
1287 return;
1288
1289 ret = ct_receive(ct);
1290 if (ret > 0)
1291 tasklet_hi_schedule(&ct->receive_tasklet);
1292 }
1293
ct_receive_tasklet_func(struct tasklet_struct * t)1294 static void ct_receive_tasklet_func(struct tasklet_struct *t)
1295 {
1296 struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet);
1297
1298 ct_try_receive_message(ct);
1299 }
1300
1301 /*
1302 * When we're communicating with the GuC over CT, GuC uses events
1303 * to notify us about new messages being posted on the RECV buffer.
1304 */
intel_guc_ct_event_handler(struct intel_guc_ct * ct)1305 void intel_guc_ct_event_handler(struct intel_guc_ct *ct)
1306 {
1307 if (unlikely(!ct->enabled)) {
1308 WARN(1, "Unexpected GuC event received while CT disabled!\n");
1309 return;
1310 }
1311
1312 ct_try_receive_message(ct);
1313 }
1314
intel_guc_ct_print_info(struct intel_guc_ct * ct,struct drm_printer * p)1315 void intel_guc_ct_print_info(struct intel_guc_ct *ct,
1316 struct drm_printer *p)
1317 {
1318 drm_printf(p, "CT %s\n", str_enabled_disabled(ct->enabled));
1319
1320 if (!ct->enabled)
1321 return;
1322
1323 drm_printf(p, "H2G Space: %u\n",
1324 atomic_read(&ct->ctbs.send.space) * 4);
1325 drm_printf(p, "Head: %u\n",
1326 ct->ctbs.send.desc->head);
1327 drm_printf(p, "Tail: %u\n",
1328 ct->ctbs.send.desc->tail);
1329 drm_printf(p, "G2H Space: %u\n",
1330 atomic_read(&ct->ctbs.recv.space) * 4);
1331 drm_printf(p, "Head: %u\n",
1332 ct->ctbs.recv.desc->head);
1333 drm_printf(p, "Tail: %u\n",
1334 ct->ctbs.recv.desc->tail);
1335 }
1336
1337 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
ct_dead_ct_worker_func(struct work_struct * w)1338 static void ct_dead_ct_worker_func(struct work_struct *w)
1339 {
1340 struct intel_guc_ct *ct = container_of(w, struct intel_guc_ct, dead_ct_worker);
1341 struct intel_guc *guc = ct_to_guc(ct);
1342
1343 if (ct->dead_ct_reported)
1344 return;
1345
1346 ct->dead_ct_reported = true;
1347
1348 guc_info(guc, "CTB is dead - reason=0x%X\n", ct->dead_ct_reason);
1349 intel_klog_error_capture(guc_to_gt(guc), (intel_engine_mask_t)~0U);
1350 }
1351 #endif
1352