1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Zhi Wang <zhi.a.wang@intel.com>
25 *
26 * Contributors:
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
33 *
34 */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_execlists_submission.h"
41 #include "gt/intel_gt_regs.h"
42 #include "gt/intel_lrc.h"
43 #include "gt/intel_ring.h"
44
45 #include "i915_drv.h"
46 #include "i915_gem_gtt.h"
47 #include "i915_perf_oa_regs.h"
48 #include "gvt.h"
49
50 #define RING_CTX_OFF(x) \
51 offsetof(struct execlist_ring_context, x)
52
set_context_pdp_root_pointer(struct execlist_ring_context * ring_context,u32 pdp[8])53 static void set_context_pdp_root_pointer(
54 struct execlist_ring_context *ring_context,
55 u32 pdp[8])
56 {
57 int i;
58
59 for (i = 0; i < 8; i++)
60 ring_context->pdps[i].val = pdp[7 - i];
61 }
62
update_shadow_pdps(struct intel_vgpu_workload * workload)63 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
64 {
65 struct execlist_ring_context *shadow_ring_context;
66 struct intel_context *ctx = workload->req->context;
67
68 if (WARN_ON(!workload->shadow_mm))
69 return;
70
71 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
72 return;
73
74 shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
75 set_context_pdp_root_pointer(shadow_ring_context,
76 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
77 }
78
79 /*
80 * when populating shadow ctx from guest, we should not overrride oa related
81 * registers, so that they will not be overlapped by guest oa configs. Thus
82 * made it possible to capture oa data from host for both host and guests.
83 */
sr_oa_regs(struct intel_vgpu_workload * workload,u32 * reg_state,bool save)84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85 u32 *reg_state, bool save)
86 {
87 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
88 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90 int i = 0;
91 u32 flex_mmio[] = {
92 i915_mmio_reg_offset(EU_PERF_CNTL0),
93 i915_mmio_reg_offset(EU_PERF_CNTL1),
94 i915_mmio_reg_offset(EU_PERF_CNTL2),
95 i915_mmio_reg_offset(EU_PERF_CNTL3),
96 i915_mmio_reg_offset(EU_PERF_CNTL4),
97 i915_mmio_reg_offset(EU_PERF_CNTL5),
98 i915_mmio_reg_offset(EU_PERF_CNTL6),
99 };
100
101 if (workload->engine->id != RCS0)
102 return;
103
104 if (save) {
105 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106
107 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108 u32 state_offset = ctx_flexeu0 + i * 2;
109
110 workload->flex_mmio[i] = reg_state[state_offset + 1];
111 }
112 } else {
113 reg_state[ctx_oactxctrl] =
114 i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116
117 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118 u32 state_offset = ctx_flexeu0 + i * 2;
119 u32 mmio = flex_mmio[i];
120
121 reg_state[state_offset] = mmio;
122 reg_state[state_offset + 1] = workload->flex_mmio[i];
123 }
124 }
125 }
126
populate_shadow_context(struct intel_vgpu_workload * workload)127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129 struct intel_vgpu *vgpu = workload->vgpu;
130 struct intel_gvt *gvt = vgpu->gvt;
131 struct intel_context *ctx = workload->req->context;
132 struct execlist_ring_context *shadow_ring_context;
133 void *dst;
134 void *context_base;
135 unsigned long context_gpa, context_page_num;
136 unsigned long gpa_base; /* first gpa of consecutive GPAs */
137 unsigned long gpa_size; /* size of consecutive GPAs */
138 struct intel_vgpu_submission *s = &vgpu->submission;
139 int i;
140 bool skip = false;
141 int ring_id = workload->engine->id;
142 int ret;
143
144 GEM_BUG_ON(!intel_context_is_pinned(ctx));
145
146 context_base = (void *) ctx->lrc_reg_state -
147 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
148
149 shadow_ring_context = (void *) ctx->lrc_reg_state;
150
151 sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
152 #define COPY_REG(name) \
153 intel_gvt_read_gpa(vgpu, workload->ring_context_gpa \
154 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
155 #define COPY_REG_MASKED(name) {\
156 intel_gvt_read_gpa(vgpu, workload->ring_context_gpa \
157 + RING_CTX_OFF(name.val),\
158 &shadow_ring_context->name.val, 4);\
159 shadow_ring_context->name.val |= 0xffff << 16;\
160 }
161
162 COPY_REG_MASKED(ctx_ctrl);
163 COPY_REG(ctx_timestamp);
164
165 if (workload->engine->id == RCS0) {
166 COPY_REG(bb_per_ctx_ptr);
167 COPY_REG(rcs_indirect_ctx);
168 COPY_REG(rcs_indirect_ctx_offset);
169 } else if (workload->engine->id == BCS0)
170 intel_gvt_read_gpa(vgpu,
171 workload->ring_context_gpa +
172 BCS_TILE_REGISTER_VAL_OFFSET,
173 (void *)shadow_ring_context +
174 BCS_TILE_REGISTER_VAL_OFFSET, 4);
175 #undef COPY_REG
176 #undef COPY_REG_MASKED
177
178 /* don't copy Ring Context (the first 0x50 dwords),
179 * only copy the Engine Context part from guest
180 */
181 intel_gvt_read_gpa(vgpu,
182 workload->ring_context_gpa +
183 RING_CTX_SIZE,
184 (void *)shadow_ring_context +
185 RING_CTX_SIZE,
186 I915_GTT_PAGE_SIZE - RING_CTX_SIZE);
187
188 sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
189
190 gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
191 workload->engine->name, workload->ctx_desc.lrca,
192 workload->ctx_desc.context_id,
193 workload->ring_context_gpa);
194
195 /* only need to ensure this context is not pinned/unpinned during the
196 * period from last submission to this this submission.
197 * Upon reaching this function, the currently submitted context is not
198 * supposed to get unpinned. If a misbehaving guest driver ever does
199 * this, it would corrupt itself.
200 */
201 if (s->last_ctx[ring_id].valid &&
202 (s->last_ctx[ring_id].lrca ==
203 workload->ctx_desc.lrca) &&
204 (s->last_ctx[ring_id].ring_context_gpa ==
205 workload->ring_context_gpa))
206 skip = true;
207
208 s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
209 s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
210
211 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
212 return 0;
213
214 s->last_ctx[ring_id].valid = false;
215 context_page_num = workload->engine->context_size;
216 context_page_num = context_page_num >> PAGE_SHIFT;
217
218 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
219 context_page_num = 19;
220
221 /* find consecutive GPAs from gma until the first inconsecutive GPA.
222 * read from the continuous GPAs into dst virtual address
223 */
224 gpa_size = 0;
225 for (i = 2; i < context_page_num; i++) {
226 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
227 (u32)((workload->ctx_desc.lrca + i) <<
228 I915_GTT_PAGE_SHIFT));
229 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
230 gvt_vgpu_err("Invalid guest context descriptor\n");
231 return -EFAULT;
232 }
233
234 if (gpa_size == 0) {
235 gpa_base = context_gpa;
236 dst = context_base + (i << I915_GTT_PAGE_SHIFT);
237 } else if (context_gpa != gpa_base + gpa_size)
238 goto read;
239
240 gpa_size += I915_GTT_PAGE_SIZE;
241
242 if (i == context_page_num - 1)
243 goto read;
244
245 continue;
246
247 read:
248 intel_gvt_read_gpa(vgpu, gpa_base, dst, gpa_size);
249 gpa_base = context_gpa;
250 gpa_size = I915_GTT_PAGE_SIZE;
251 dst = context_base + (i << I915_GTT_PAGE_SHIFT);
252 }
253 ret = intel_gvt_scan_engine_context(workload);
254 if (ret) {
255 gvt_vgpu_err("invalid cmd found in guest context pages\n");
256 return ret;
257 }
258 s->last_ctx[ring_id].valid = true;
259 return 0;
260 }
261
is_gvt_request(struct i915_request * rq)262 static inline bool is_gvt_request(struct i915_request *rq)
263 {
264 return intel_context_force_single_submission(rq->context);
265 }
266
save_ring_hw_state(struct intel_vgpu * vgpu,const struct intel_engine_cs * engine)267 static void save_ring_hw_state(struct intel_vgpu *vgpu,
268 const struct intel_engine_cs *engine)
269 {
270 struct intel_uncore *uncore = engine->uncore;
271 i915_reg_t reg;
272
273 reg = RING_INSTDONE(engine->mmio_base);
274 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
275 intel_uncore_read(uncore, reg);
276
277 reg = RING_ACTHD(engine->mmio_base);
278 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
279 intel_uncore_read(uncore, reg);
280
281 reg = RING_ACTHD_UDW(engine->mmio_base);
282 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
283 intel_uncore_read(uncore, reg);
284 }
285
shadow_context_status_change(struct notifier_block * nb,unsigned long action,void * data)286 static int shadow_context_status_change(struct notifier_block *nb,
287 unsigned long action, void *data)
288 {
289 struct i915_request *rq = data;
290 struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
291 shadow_ctx_notifier_block[rq->engine->id]);
292 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
293 enum intel_engine_id ring_id = rq->engine->id;
294 struct intel_vgpu_workload *workload;
295 unsigned long flags;
296
297 if (!is_gvt_request(rq)) {
298 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
299 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
300 scheduler->engine_owner[ring_id]) {
301 /* Switch ring from vGPU to host. */
302 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
303 NULL, rq->engine);
304 scheduler->engine_owner[ring_id] = NULL;
305 }
306 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
307
308 return NOTIFY_OK;
309 }
310
311 workload = scheduler->current_workload[ring_id];
312 if (unlikely(!workload))
313 return NOTIFY_OK;
314
315 switch (action) {
316 case INTEL_CONTEXT_SCHEDULE_IN:
317 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
318 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
319 /* Switch ring from host to vGPU or vGPU to vGPU. */
320 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
321 workload->vgpu, rq->engine);
322 scheduler->engine_owner[ring_id] = workload->vgpu;
323 } else
324 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
325 ring_id, workload->vgpu->id);
326 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
327 atomic_set(&workload->shadow_ctx_active, 1);
328 break;
329 case INTEL_CONTEXT_SCHEDULE_OUT:
330 save_ring_hw_state(workload->vgpu, rq->engine);
331 atomic_set(&workload->shadow_ctx_active, 0);
332 break;
333 case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
334 save_ring_hw_state(workload->vgpu, rq->engine);
335 break;
336 default:
337 WARN_ON(1);
338 return NOTIFY_OK;
339 }
340 wake_up(&workload->shadow_ctx_status_wq);
341 return NOTIFY_OK;
342 }
343
344 static void
shadow_context_descriptor_update(struct intel_context * ce,struct intel_vgpu_workload * workload)345 shadow_context_descriptor_update(struct intel_context *ce,
346 struct intel_vgpu_workload *workload)
347 {
348 u64 desc = ce->lrc.desc;
349
350 /*
351 * Update bits 0-11 of the context descriptor which includes flags
352 * like GEN8_CTX_* cached in desc_template
353 */
354 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
355 desc |= (u64)workload->ctx_desc.addressing_mode <<
356 GEN8_CTX_ADDRESSING_MODE_SHIFT;
357
358 ce->lrc.desc = desc;
359 }
360
copy_workload_to_ring_buffer(struct intel_vgpu_workload * workload)361 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
362 {
363 struct intel_vgpu *vgpu = workload->vgpu;
364 struct i915_request *req = workload->req;
365 void *shadow_ring_buffer_va;
366 u32 *cs;
367 int err;
368
369 if (GRAPHICS_VER(req->engine->i915) == 9 && is_inhibit_context(req->context))
370 intel_vgpu_restore_inhibit_context(vgpu, req);
371
372 /*
373 * To track whether a request has started on HW, we can emit a
374 * breadcrumb at the beginning of the request and check its
375 * timeline's HWSP to see if the breadcrumb has advanced past the
376 * start of this request. Actually, the request must have the
377 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
378 * scheduler might get a wrong state of it during reset. Since the
379 * requests from gvt always set the has_init_breadcrumb flag, here
380 * need to do the emit_init_breadcrumb for all the requests.
381 */
382 if (req->engine->emit_init_breadcrumb) {
383 err = req->engine->emit_init_breadcrumb(req);
384 if (err) {
385 gvt_vgpu_err("fail to emit init breadcrumb\n");
386 return err;
387 }
388 }
389
390 /* allocate shadow ring buffer */
391 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
392 if (IS_ERR(cs)) {
393 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
394 workload->rb_len);
395 return PTR_ERR(cs);
396 }
397
398 shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
399
400 /* get shadow ring buffer va */
401 workload->shadow_ring_buffer_va = cs;
402
403 memcpy(cs, shadow_ring_buffer_va,
404 workload->rb_len);
405
406 cs += workload->rb_len / sizeof(u32);
407 intel_ring_advance(workload->req, cs);
408
409 return 0;
410 }
411
release_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)412 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
413 {
414 if (!wa_ctx->indirect_ctx.obj)
415 return;
416
417 i915_gem_object_lock(wa_ctx->indirect_ctx.obj, NULL);
418 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
419 i915_gem_object_unlock(wa_ctx->indirect_ctx.obj);
420 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
421
422 wa_ctx->indirect_ctx.obj = NULL;
423 wa_ctx->indirect_ctx.shadow_va = NULL;
424 }
425
set_dma_address(struct i915_page_directory * pd,dma_addr_t addr)426 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
427 {
428 struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
429
430 /* This is not a good idea */
431 sg->dma_address = addr;
432 }
433
set_context_ppgtt_from_shadow(struct intel_vgpu_workload * workload,struct intel_context * ce)434 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
435 struct intel_context *ce)
436 {
437 struct intel_vgpu_mm *mm = workload->shadow_mm;
438 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
439 int i = 0;
440
441 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
442 set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
443 } else {
444 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
445 struct i915_page_directory * const pd =
446 i915_pd_entry(ppgtt->pd, i);
447 /* skip now as current i915 ppgtt alloc won't allocate
448 top level pdp for non 4-level table, won't impact
449 shadow ppgtt. */
450 if (!pd)
451 break;
452
453 set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
454 }
455 }
456 }
457
458 static int
intel_gvt_workload_req_alloc(struct intel_vgpu_workload * workload)459 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
460 {
461 struct intel_vgpu *vgpu = workload->vgpu;
462 struct intel_vgpu_submission *s = &vgpu->submission;
463 struct i915_request *rq;
464
465 if (workload->req)
466 return 0;
467
468 rq = i915_request_create(s->shadow[workload->engine->id]);
469 if (IS_ERR(rq)) {
470 gvt_vgpu_err("fail to allocate gem request\n");
471 return PTR_ERR(rq);
472 }
473
474 workload->req = i915_request_get(rq);
475 return 0;
476 }
477
478 /**
479 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
480 * shadow it as well, include ringbuffer,wa_ctx and ctx.
481 * @workload: an abstract entity for each execlist submission.
482 *
483 * This function is called before the workload submitting to i915, to make
484 * sure the content of the workload is valid.
485 */
intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload * workload)486 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
487 {
488 struct intel_vgpu *vgpu = workload->vgpu;
489 struct intel_vgpu_submission *s = &vgpu->submission;
490 int ret;
491
492 lockdep_assert_held(&vgpu->vgpu_lock);
493
494 if (workload->shadow)
495 return 0;
496
497 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
498 shadow_context_descriptor_update(s->shadow[workload->engine->id],
499 workload);
500
501 ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
502 if (ret)
503 return ret;
504
505 if (workload->engine->id == RCS0 &&
506 workload->wa_ctx.indirect_ctx.size) {
507 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
508 if (ret)
509 goto err_shadow;
510 }
511
512 workload->shadow = true;
513 return 0;
514
515 err_shadow:
516 release_shadow_wa_ctx(&workload->wa_ctx);
517 return ret;
518 }
519
520 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
521
prepare_shadow_batch_buffer(struct intel_vgpu_workload * workload)522 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
523 {
524 struct intel_gvt *gvt = workload->vgpu->gvt;
525 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
526 struct intel_vgpu_shadow_bb *bb;
527 struct i915_gem_ww_ctx ww;
528 int ret;
529
530 list_for_each_entry(bb, &workload->shadow_bb, list) {
531 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
532 * is only updated into ring_scan_buffer, not real ring address
533 * allocated in later copy_workload_to_ring_buffer. pls be noted
534 * shadow_ring_buffer_va is now pointed to real ring buffer va
535 * in copy_workload_to_ring_buffer.
536 */
537
538 if (bb->bb_offset)
539 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
540 + bb->bb_offset;
541
542 /*
543 * For non-priv bb, scan&shadow is only for
544 * debugging purpose, so the content of shadow bb
545 * is the same as original bb. Therefore,
546 * here, rather than switch to shadow bb's gma
547 * address, we directly use original batch buffer's
548 * gma address, and send original bb to hardware
549 * directly
550 */
551 if (!bb->ppgtt) {
552 i915_gem_ww_ctx_init(&ww, false);
553 retry:
554 i915_gem_object_lock(bb->obj, &ww);
555
556 bb->vma = i915_gem_object_ggtt_pin_ww(bb->obj, &ww,
557 NULL, 0, 0, 0);
558 if (IS_ERR(bb->vma)) {
559 ret = PTR_ERR(bb->vma);
560 if (ret == -EDEADLK) {
561 ret = i915_gem_ww_ctx_backoff(&ww);
562 if (!ret)
563 goto retry;
564 }
565 goto err;
566 }
567
568 /* relocate shadow batch buffer */
569 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
570 if (gmadr_bytes == 8)
571 bb->bb_start_cmd_va[2] = 0;
572
573 ret = i915_vma_move_to_active(bb->vma, workload->req,
574 __EXEC_OBJECT_NO_REQUEST_AWAIT);
575 if (ret)
576 goto err;
577
578 /* No one is going to touch shadow bb from now on. */
579 i915_gem_object_flush_map(bb->obj);
580 i915_gem_ww_ctx_fini(&ww);
581 }
582 }
583 return 0;
584 err:
585 i915_gem_ww_ctx_fini(&ww);
586 release_shadow_batch_buffer(workload);
587 return ret;
588 }
589
update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx * wa_ctx)590 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
591 {
592 struct intel_vgpu_workload *workload =
593 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
594 struct i915_request *rq = workload->req;
595 struct execlist_ring_context *shadow_ring_context =
596 (struct execlist_ring_context *)rq->context->lrc_reg_state;
597
598 shadow_ring_context->bb_per_ctx_ptr.val =
599 (shadow_ring_context->bb_per_ctx_ptr.val &
600 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
601 shadow_ring_context->rcs_indirect_ctx.val =
602 (shadow_ring_context->rcs_indirect_ctx.val &
603 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
604 }
605
prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)606 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
607 {
608 struct i915_vma *vma;
609 unsigned char *per_ctx_va =
610 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
611 wa_ctx->indirect_ctx.size;
612 struct i915_gem_ww_ctx ww;
613 int ret;
614
615 if (wa_ctx->indirect_ctx.size == 0)
616 return 0;
617
618 i915_gem_ww_ctx_init(&ww, false);
619 retry:
620 i915_gem_object_lock(wa_ctx->indirect_ctx.obj, &ww);
621
622 vma = i915_gem_object_ggtt_pin_ww(wa_ctx->indirect_ctx.obj, &ww, NULL,
623 0, CACHELINE_BYTES, 0);
624 if (IS_ERR(vma)) {
625 ret = PTR_ERR(vma);
626 if (ret == -EDEADLK) {
627 ret = i915_gem_ww_ctx_backoff(&ww);
628 if (!ret)
629 goto retry;
630 }
631 return ret;
632 }
633
634 i915_gem_ww_ctx_fini(&ww);
635
636 /* FIXME: we are not tracking our pinned VMA leaving it
637 * up to the core to fix up the stray pin_count upon
638 * free.
639 */
640
641 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
642
643 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
644 memset(per_ctx_va, 0, CACHELINE_BYTES);
645
646 update_wa_ctx_2_shadow_ctx(wa_ctx);
647 return 0;
648 }
649
update_vreg_in_ctx(struct intel_vgpu_workload * workload)650 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
651 {
652 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
653 workload->rb_start;
654 }
655
release_shadow_batch_buffer(struct intel_vgpu_workload * workload)656 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
657 {
658 struct intel_vgpu_shadow_bb *bb, *pos;
659
660 if (list_empty(&workload->shadow_bb))
661 return;
662
663 bb = list_first_entry(&workload->shadow_bb,
664 struct intel_vgpu_shadow_bb, list);
665
666 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
667 if (bb->obj) {
668 i915_gem_object_lock(bb->obj, NULL);
669 if (bb->va && !IS_ERR(bb->va))
670 i915_gem_object_unpin_map(bb->obj);
671
672 if (bb->vma && !IS_ERR(bb->vma))
673 i915_vma_unpin(bb->vma);
674
675 i915_gem_object_unlock(bb->obj);
676 i915_gem_object_put(bb->obj);
677 }
678 list_del(&bb->list);
679 kfree(bb);
680 }
681 }
682
683 static int
intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload * workload)684 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
685 {
686 struct intel_vgpu *vgpu = workload->vgpu;
687 struct intel_vgpu_mm *m;
688 int ret = 0;
689
690 ret = intel_vgpu_pin_mm(workload->shadow_mm);
691 if (ret) {
692 gvt_vgpu_err("fail to vgpu pin mm\n");
693 return ret;
694 }
695
696 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
697 !workload->shadow_mm->ppgtt_mm.shadowed) {
698 intel_vgpu_unpin_mm(workload->shadow_mm);
699 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
700 return -EINVAL;
701 }
702
703 if (!list_empty(&workload->lri_shadow_mm)) {
704 list_for_each_entry(m, &workload->lri_shadow_mm,
705 ppgtt_mm.link) {
706 ret = intel_vgpu_pin_mm(m);
707 if (ret) {
708 list_for_each_entry_from_reverse(m,
709 &workload->lri_shadow_mm,
710 ppgtt_mm.link)
711 intel_vgpu_unpin_mm(m);
712 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
713 break;
714 }
715 }
716 }
717
718 if (ret)
719 intel_vgpu_unpin_mm(workload->shadow_mm);
720
721 return ret;
722 }
723
724 static void
intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload * workload)725 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
726 {
727 struct intel_vgpu_mm *m;
728
729 if (!list_empty(&workload->lri_shadow_mm)) {
730 list_for_each_entry(m, &workload->lri_shadow_mm,
731 ppgtt_mm.link)
732 intel_vgpu_unpin_mm(m);
733 }
734 intel_vgpu_unpin_mm(workload->shadow_mm);
735 }
736
prepare_workload(struct intel_vgpu_workload * workload)737 static int prepare_workload(struct intel_vgpu_workload *workload)
738 {
739 struct intel_vgpu *vgpu = workload->vgpu;
740 struct intel_vgpu_submission *s = &vgpu->submission;
741 int ret = 0;
742
743 ret = intel_vgpu_shadow_mm_pin(workload);
744 if (ret) {
745 gvt_vgpu_err("fail to pin shadow mm\n");
746 return ret;
747 }
748
749 update_shadow_pdps(workload);
750
751 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
752
753 ret = intel_vgpu_sync_oos_pages(workload->vgpu);
754 if (ret) {
755 gvt_vgpu_err("fail to vgpu sync oos pages\n");
756 goto err_unpin_mm;
757 }
758
759 ret = intel_vgpu_flush_post_shadow(workload->vgpu);
760 if (ret) {
761 gvt_vgpu_err("fail to flush post shadow\n");
762 goto err_unpin_mm;
763 }
764
765 ret = copy_workload_to_ring_buffer(workload);
766 if (ret) {
767 gvt_vgpu_err("fail to generate request\n");
768 goto err_unpin_mm;
769 }
770
771 ret = prepare_shadow_batch_buffer(workload);
772 if (ret) {
773 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
774 goto err_unpin_mm;
775 }
776
777 ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
778 if (ret) {
779 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
780 goto err_shadow_batch;
781 }
782
783 if (workload->prepare) {
784 ret = workload->prepare(workload);
785 if (ret)
786 goto err_shadow_wa_ctx;
787 }
788
789 return 0;
790 err_shadow_wa_ctx:
791 release_shadow_wa_ctx(&workload->wa_ctx);
792 err_shadow_batch:
793 release_shadow_batch_buffer(workload);
794 err_unpin_mm:
795 intel_vgpu_shadow_mm_unpin(workload);
796 return ret;
797 }
798
dispatch_workload(struct intel_vgpu_workload * workload)799 static int dispatch_workload(struct intel_vgpu_workload *workload)
800 {
801 struct intel_vgpu *vgpu = workload->vgpu;
802 struct i915_request *rq;
803 int ret;
804
805 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
806 workload->engine->name, workload);
807
808 mutex_lock(&vgpu->vgpu_lock);
809
810 ret = intel_gvt_workload_req_alloc(workload);
811 if (ret)
812 goto err_req;
813
814 ret = intel_gvt_scan_and_shadow_workload(workload);
815 if (ret)
816 goto out;
817
818 ret = populate_shadow_context(workload);
819 if (ret) {
820 release_shadow_wa_ctx(&workload->wa_ctx);
821 goto out;
822 }
823
824 ret = prepare_workload(workload);
825 out:
826 if (ret) {
827 /* We might still need to add request with
828 * clean ctx to retire it properly..
829 */
830 rq = fetch_and_zero(&workload->req);
831 i915_request_put(rq);
832 }
833
834 if (!IS_ERR_OR_NULL(workload->req)) {
835 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
836 workload->engine->name, workload->req);
837 i915_request_add(workload->req);
838 workload->dispatched = true;
839 }
840 err_req:
841 if (ret)
842 workload->status = ret;
843 mutex_unlock(&vgpu->vgpu_lock);
844 return ret;
845 }
846
847 static struct intel_vgpu_workload *
pick_next_workload(struct intel_gvt * gvt,struct intel_engine_cs * engine)848 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
849 {
850 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
851 struct intel_vgpu_workload *workload = NULL;
852
853 mutex_lock(&gvt->sched_lock);
854
855 /*
856 * no current vgpu / will be scheduled out / no workload
857 * bail out
858 */
859 if (!scheduler->current_vgpu) {
860 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
861 goto out;
862 }
863
864 if (scheduler->need_reschedule) {
865 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
866 goto out;
867 }
868
869 if (!test_bit(INTEL_VGPU_STATUS_ACTIVE,
870 scheduler->current_vgpu->status) ||
871 list_empty(workload_q_head(scheduler->current_vgpu, engine)))
872 goto out;
873
874 /*
875 * still have current workload, maybe the workload disptacher
876 * fail to submit it for some reason, resubmit it.
877 */
878 if (scheduler->current_workload[engine->id]) {
879 workload = scheduler->current_workload[engine->id];
880 gvt_dbg_sched("ring %s still have current workload %p\n",
881 engine->name, workload);
882 goto out;
883 }
884
885 /*
886 * pick a workload as current workload
887 * once current workload is set, schedule policy routines
888 * will wait the current workload is finished when trying to
889 * schedule out a vgpu.
890 */
891 scheduler->current_workload[engine->id] =
892 list_first_entry(workload_q_head(scheduler->current_vgpu,
893 engine),
894 struct intel_vgpu_workload, list);
895
896 workload = scheduler->current_workload[engine->id];
897
898 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
899
900 atomic_inc(&workload->vgpu->submission.running_workload_num);
901 out:
902 mutex_unlock(&gvt->sched_lock);
903 return workload;
904 }
905
update_guest_pdps(struct intel_vgpu * vgpu,u64 ring_context_gpa,u32 pdp[8])906 static void update_guest_pdps(struct intel_vgpu *vgpu,
907 u64 ring_context_gpa, u32 pdp[8])
908 {
909 u64 gpa;
910 int i;
911
912 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
913
914 for (i = 0; i < 8; i++)
915 intel_gvt_write_gpa(vgpu, gpa + i * 8, &pdp[7 - i], 4);
916 }
917
918 static __maybe_unused bool
check_shadow_context_ppgtt(struct execlist_ring_context * c,struct intel_vgpu_mm * m)919 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
920 {
921 if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
922 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
923
924 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
925 gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
926 return false;
927 }
928 return true;
929 } else {
930 /* see comment in LRI handler in cmd_parser.c */
931 gvt_dbg_mm("invalid shadow mm type\n");
932 return false;
933 }
934 }
935
update_guest_context(struct intel_vgpu_workload * workload)936 static void update_guest_context(struct intel_vgpu_workload *workload)
937 {
938 struct i915_request *rq = workload->req;
939 struct intel_vgpu *vgpu = workload->vgpu;
940 struct execlist_ring_context *shadow_ring_context;
941 struct intel_context *ctx = workload->req->context;
942 void *context_base;
943 void *src;
944 unsigned long context_gpa, context_page_num;
945 unsigned long gpa_base; /* first gpa of consecutive GPAs */
946 unsigned long gpa_size; /* size of consecutive GPAs*/
947 int i;
948 u32 ring_base;
949 u32 head, tail;
950 u16 wrap_count;
951
952 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
953 workload->ctx_desc.lrca);
954
955 GEM_BUG_ON(!intel_context_is_pinned(ctx));
956
957 head = workload->rb_head;
958 tail = workload->rb_tail;
959 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
960
961 if (tail < head) {
962 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
963 wrap_count = 0;
964 else
965 wrap_count += 1;
966 }
967
968 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
969
970 ring_base = rq->engine->mmio_base;
971 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
972 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
973
974 context_page_num = rq->engine->context_size;
975 context_page_num = context_page_num >> PAGE_SHIFT;
976
977 if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
978 context_page_num = 19;
979
980 context_base = (void *) ctx->lrc_reg_state -
981 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
982
983 /* find consecutive GPAs from gma until the first inconsecutive GPA.
984 * write to the consecutive GPAs from src virtual address
985 */
986 gpa_size = 0;
987 for (i = 2; i < context_page_num; i++) {
988 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
989 (u32)((workload->ctx_desc.lrca + i) <<
990 I915_GTT_PAGE_SHIFT));
991 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
992 gvt_vgpu_err("invalid guest context descriptor\n");
993 return;
994 }
995
996 if (gpa_size == 0) {
997 gpa_base = context_gpa;
998 src = context_base + (i << I915_GTT_PAGE_SHIFT);
999 } else if (context_gpa != gpa_base + gpa_size)
1000 goto write;
1001
1002 gpa_size += I915_GTT_PAGE_SIZE;
1003
1004 if (i == context_page_num - 1)
1005 goto write;
1006
1007 continue;
1008
1009 write:
1010 intel_gvt_write_gpa(vgpu, gpa_base, src, gpa_size);
1011 gpa_base = context_gpa;
1012 gpa_size = I915_GTT_PAGE_SIZE;
1013 src = context_base + (i << I915_GTT_PAGE_SHIFT);
1014 }
1015
1016 intel_gvt_write_gpa(vgpu, workload->ring_context_gpa +
1017 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
1018
1019 shadow_ring_context = (void *) ctx->lrc_reg_state;
1020
1021 if (!list_empty(&workload->lri_shadow_mm)) {
1022 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
1023 struct intel_vgpu_mm,
1024 ppgtt_mm.link);
1025 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
1026 update_guest_pdps(vgpu, workload->ring_context_gpa,
1027 (void *)m->ppgtt_mm.guest_pdps);
1028 }
1029
1030 #define COPY_REG(name) \
1031 intel_gvt_write_gpa(vgpu, workload->ring_context_gpa + \
1032 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
1033
1034 COPY_REG(ctx_ctrl);
1035 COPY_REG(ctx_timestamp);
1036
1037 #undef COPY_REG
1038
1039 intel_gvt_write_gpa(vgpu,
1040 workload->ring_context_gpa +
1041 sizeof(*shadow_ring_context),
1042 (void *)shadow_ring_context +
1043 sizeof(*shadow_ring_context),
1044 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
1045 }
1046
intel_vgpu_clean_workloads(struct intel_vgpu * vgpu,intel_engine_mask_t engine_mask)1047 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
1048 intel_engine_mask_t engine_mask)
1049 {
1050 struct intel_vgpu_submission *s = &vgpu->submission;
1051 struct intel_engine_cs *engine;
1052 struct intel_vgpu_workload *pos, *n;
1053 intel_engine_mask_t tmp;
1054
1055 /* free the unsubmited workloads in the queues. */
1056 for_each_engine_masked(engine, vgpu->gvt->gt, engine_mask, tmp) {
1057 list_for_each_entry_safe(pos, n,
1058 &s->workload_q_head[engine->id], list) {
1059 list_del_init(&pos->list);
1060 intel_vgpu_destroy_workload(pos);
1061 }
1062 clear_bit(engine->id, s->shadow_ctx_desc_updated);
1063 }
1064 }
1065
complete_current_workload(struct intel_gvt * gvt,int ring_id)1066 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1067 {
1068 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1069 struct intel_vgpu_workload *workload =
1070 scheduler->current_workload[ring_id];
1071 struct intel_vgpu *vgpu = workload->vgpu;
1072 struct intel_vgpu_submission *s = &vgpu->submission;
1073 struct i915_request *rq = workload->req;
1074 int event;
1075
1076 mutex_lock(&vgpu->vgpu_lock);
1077 mutex_lock(&gvt->sched_lock);
1078
1079 /* For the workload w/ request, needs to wait for the context
1080 * switch to make sure request is completed.
1081 * For the workload w/o request, directly complete the workload.
1082 */
1083 if (rq) {
1084 wait_event(workload->shadow_ctx_status_wq,
1085 !atomic_read(&workload->shadow_ctx_active));
1086
1087 /* If this request caused GPU hang, req->fence.error will
1088 * be set to -EIO. Use -EIO to set workload status so
1089 * that when this request caused GPU hang, didn't trigger
1090 * context switch interrupt to guest.
1091 */
1092 if (likely(workload->status == -EINPROGRESS)) {
1093 if (workload->req->fence.error == -EIO)
1094 workload->status = -EIO;
1095 else
1096 workload->status = 0;
1097 }
1098
1099 if (!workload->status &&
1100 !(vgpu->resetting_eng & BIT(ring_id))) {
1101 update_guest_context(workload);
1102
1103 for_each_set_bit(event, workload->pending_events,
1104 INTEL_GVT_EVENT_MAX)
1105 intel_vgpu_trigger_virtual_event(vgpu, event);
1106 }
1107
1108 i915_request_put(fetch_and_zero(&workload->req));
1109 }
1110
1111 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1112 ring_id, workload, workload->status);
1113
1114 scheduler->current_workload[ring_id] = NULL;
1115
1116 list_del_init(&workload->list);
1117
1118 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1119 /* if workload->status is not successful means HW GPU
1120 * has occurred GPU hang or something wrong with i915/GVT,
1121 * and GVT won't inject context switch interrupt to guest.
1122 * So this error is a vGPU hang actually to the guest.
1123 * According to this we should emunlate a vGPU hang. If
1124 * there are pending workloads which are already submitted
1125 * from guest, we should clean them up like HW GPU does.
1126 *
1127 * if it is in middle of engine resetting, the pending
1128 * workloads won't be submitted to HW GPU and will be
1129 * cleaned up during the resetting process later, so doing
1130 * the workload clean up here doesn't have any impact.
1131 **/
1132 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1133 }
1134
1135 workload->complete(workload);
1136
1137 intel_vgpu_shadow_mm_unpin(workload);
1138 intel_vgpu_destroy_workload(workload);
1139
1140 atomic_dec(&s->running_workload_num);
1141 wake_up(&scheduler->workload_complete_wq);
1142
1143 if (gvt->scheduler.need_reschedule)
1144 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1145
1146 mutex_unlock(&gvt->sched_lock);
1147 mutex_unlock(&vgpu->vgpu_lock);
1148 }
1149
workload_thread(void * arg)1150 static int workload_thread(void *arg)
1151 {
1152 struct intel_engine_cs *engine = arg;
1153 const bool need_force_wake = GRAPHICS_VER(engine->i915) >= 9;
1154 struct intel_gvt *gvt = engine->i915->gvt;
1155 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1156 struct intel_vgpu_workload *workload = NULL;
1157 struct intel_vgpu *vgpu = NULL;
1158 int ret;
1159 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1160
1161 gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1162
1163 while (!kthread_should_stop()) {
1164 intel_wakeref_t wakeref;
1165
1166 add_wait_queue(&scheduler->waitq[engine->id], &wait);
1167 do {
1168 workload = pick_next_workload(gvt, engine);
1169 if (workload)
1170 break;
1171 wait_woken(&wait, TASK_INTERRUPTIBLE,
1172 MAX_SCHEDULE_TIMEOUT);
1173 } while (!kthread_should_stop());
1174 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1175
1176 if (!workload)
1177 break;
1178
1179 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1180 engine->name, workload,
1181 workload->vgpu->id);
1182
1183 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1184
1185 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1186 engine->name, workload);
1187
1188 if (need_force_wake)
1189 intel_uncore_forcewake_get(engine->uncore,
1190 FORCEWAKE_ALL);
1191 /*
1192 * Update the vReg of the vGPU which submitted this
1193 * workload. The vGPU may use these registers for checking
1194 * the context state. The value comes from GPU commands
1195 * in this workload.
1196 */
1197 update_vreg_in_ctx(workload);
1198
1199 ret = dispatch_workload(workload);
1200
1201 if (ret) {
1202 vgpu = workload->vgpu;
1203 gvt_vgpu_err("fail to dispatch workload, skip\n");
1204 goto complete;
1205 }
1206
1207 gvt_dbg_sched("ring %s wait workload %p\n",
1208 engine->name, workload);
1209 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1210
1211 complete:
1212 gvt_dbg_sched("will complete workload %p, status: %d\n",
1213 workload, workload->status);
1214
1215 complete_current_workload(gvt, engine->id);
1216
1217 if (need_force_wake)
1218 intel_uncore_forcewake_put(engine->uncore,
1219 FORCEWAKE_ALL);
1220
1221 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1222 if (ret && (vgpu_is_vm_unhealthy(ret)))
1223 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1224 }
1225 return 0;
1226 }
1227
intel_gvt_wait_vgpu_idle(struct intel_vgpu * vgpu)1228 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1229 {
1230 struct intel_vgpu_submission *s = &vgpu->submission;
1231 struct intel_gvt *gvt = vgpu->gvt;
1232 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1233
1234 if (atomic_read(&s->running_workload_num)) {
1235 gvt_dbg_sched("wait vgpu idle\n");
1236
1237 wait_event(scheduler->workload_complete_wq,
1238 !atomic_read(&s->running_workload_num));
1239 }
1240 }
1241
intel_gvt_clean_workload_scheduler(struct intel_gvt * gvt)1242 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1243 {
1244 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1245 struct intel_engine_cs *engine;
1246 enum intel_engine_id i;
1247
1248 gvt_dbg_core("clean workload scheduler\n");
1249
1250 for_each_engine(engine, gvt->gt, i) {
1251 atomic_notifier_chain_unregister(
1252 &engine->context_status_notifier,
1253 &gvt->shadow_ctx_notifier_block[i]);
1254 kthread_stop(scheduler->thread[i]);
1255 }
1256 }
1257
intel_gvt_init_workload_scheduler(struct intel_gvt * gvt)1258 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1259 {
1260 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1261 struct intel_engine_cs *engine;
1262 enum intel_engine_id i;
1263 int ret;
1264
1265 gvt_dbg_core("init workload scheduler\n");
1266
1267 init_waitqueue_head(&scheduler->workload_complete_wq);
1268
1269 for_each_engine(engine, gvt->gt, i) {
1270 init_waitqueue_head(&scheduler->waitq[i]);
1271
1272 scheduler->thread[i] = kthread_run(workload_thread, engine,
1273 "gvt:%s", engine->name);
1274 if (IS_ERR(scheduler->thread[i])) {
1275 gvt_err("fail to create workload thread\n");
1276 ret = PTR_ERR(scheduler->thread[i]);
1277 goto err;
1278 }
1279
1280 gvt->shadow_ctx_notifier_block[i].notifier_call =
1281 shadow_context_status_change;
1282 atomic_notifier_chain_register(&engine->context_status_notifier,
1283 &gvt->shadow_ctx_notifier_block[i]);
1284 }
1285
1286 return 0;
1287
1288 err:
1289 intel_gvt_clean_workload_scheduler(gvt);
1290 return ret;
1291 }
1292
1293 static void
i915_context_ppgtt_root_restore(struct intel_vgpu_submission * s,struct i915_ppgtt * ppgtt)1294 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1295 struct i915_ppgtt *ppgtt)
1296 {
1297 int i;
1298
1299 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1300 set_dma_address(ppgtt->pd, s->i915_context_pml4);
1301 } else {
1302 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1303 struct i915_page_directory * const pd =
1304 i915_pd_entry(ppgtt->pd, i);
1305
1306 set_dma_address(pd, s->i915_context_pdps[i]);
1307 }
1308 }
1309 }
1310
1311 /**
1312 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1313 * @vgpu: a vGPU
1314 *
1315 * This function is called when a vGPU is being destroyed.
1316 *
1317 */
intel_vgpu_clean_submission(struct intel_vgpu * vgpu)1318 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1319 {
1320 struct intel_vgpu_submission *s = &vgpu->submission;
1321 struct intel_engine_cs *engine;
1322 enum intel_engine_id id;
1323
1324 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1325
1326 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1327 for_each_engine(engine, vgpu->gvt->gt, id)
1328 intel_context_put(s->shadow[id]);
1329
1330 kmem_cache_destroy(s->workloads);
1331 }
1332
1333
1334 /**
1335 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1336 * @vgpu: a vGPU
1337 * @engine_mask: engines expected to be reset
1338 *
1339 * This function is called when a vGPU is being destroyed.
1340 *
1341 */
intel_vgpu_reset_submission(struct intel_vgpu * vgpu,intel_engine_mask_t engine_mask)1342 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1343 intel_engine_mask_t engine_mask)
1344 {
1345 struct intel_vgpu_submission *s = &vgpu->submission;
1346
1347 if (!s->active)
1348 return;
1349
1350 intel_vgpu_clean_workloads(vgpu, engine_mask);
1351 s->ops->reset(vgpu, engine_mask);
1352 }
1353
1354 static void
i915_context_ppgtt_root_save(struct intel_vgpu_submission * s,struct i915_ppgtt * ppgtt)1355 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1356 struct i915_ppgtt *ppgtt)
1357 {
1358 int i;
1359
1360 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1361 s->i915_context_pml4 = px_dma(ppgtt->pd);
1362 } else {
1363 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1364 struct i915_page_directory * const pd =
1365 i915_pd_entry(ppgtt->pd, i);
1366
1367 s->i915_context_pdps[i] = px_dma(pd);
1368 }
1369 }
1370 }
1371
1372 /**
1373 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1374 * @vgpu: a vGPU
1375 *
1376 * This function is called when a vGPU is being created.
1377 *
1378 * Returns:
1379 * Zero on success, negative error code if failed.
1380 *
1381 */
intel_vgpu_setup_submission(struct intel_vgpu * vgpu)1382 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1383 {
1384 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1385 struct intel_vgpu_submission *s = &vgpu->submission;
1386 struct intel_engine_cs *engine;
1387 struct i915_ppgtt *ppgtt;
1388 enum intel_engine_id i;
1389 int ret;
1390
1391 ppgtt = i915_ppgtt_create(to_gt(i915), I915_BO_ALLOC_PM_EARLY);
1392 if (IS_ERR(ppgtt))
1393 return PTR_ERR(ppgtt);
1394
1395 i915_context_ppgtt_root_save(s, ppgtt);
1396
1397 for_each_engine(engine, vgpu->gvt->gt, i) {
1398 struct intel_context *ce;
1399
1400 INIT_LIST_HEAD(&s->workload_q_head[i]);
1401 s->shadow[i] = ERR_PTR(-EINVAL);
1402
1403 ce = intel_context_create(engine);
1404 if (IS_ERR(ce)) {
1405 ret = PTR_ERR(ce);
1406 goto out_shadow_ctx;
1407 }
1408
1409 i915_vm_put(ce->vm);
1410 ce->vm = i915_vm_get(&ppgtt->vm);
1411 intel_context_set_single_submission(ce);
1412
1413 /* Max ring buffer size */
1414 if (!intel_uc_wants_guc_submission(&engine->gt->uc))
1415 ce->ring_size = SZ_2M;
1416
1417 s->shadow[i] = ce;
1418 }
1419
1420 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1421
1422 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1423 sizeof(struct intel_vgpu_workload), 0,
1424 SLAB_HWCACHE_ALIGN,
1425 offsetof(struct intel_vgpu_workload, rb_tail),
1426 sizeof_field(struct intel_vgpu_workload, rb_tail),
1427 NULL);
1428
1429 if (!s->workloads) {
1430 ret = -ENOMEM;
1431 goto out_shadow_ctx;
1432 }
1433
1434 atomic_set(&s->running_workload_num, 0);
1435 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1436
1437 memset(s->last_ctx, 0, sizeof(s->last_ctx));
1438
1439 i915_vm_put(&ppgtt->vm);
1440 return 0;
1441
1442 out_shadow_ctx:
1443 i915_context_ppgtt_root_restore(s, ppgtt);
1444 for_each_engine(engine, vgpu->gvt->gt, i) {
1445 if (IS_ERR(s->shadow[i]))
1446 break;
1447
1448 intel_context_put(s->shadow[i]);
1449 }
1450 i915_vm_put(&ppgtt->vm);
1451 return ret;
1452 }
1453
1454 /**
1455 * intel_vgpu_select_submission_ops - select virtual submission interface
1456 * @vgpu: a vGPU
1457 * @engine_mask: either ALL_ENGINES or target engine mask
1458 * @interface: expected vGPU virtual submission interface
1459 *
1460 * This function is called when guest configures submission interface.
1461 *
1462 * Returns:
1463 * Zero on success, negative error code if failed.
1464 *
1465 */
intel_vgpu_select_submission_ops(struct intel_vgpu * vgpu,intel_engine_mask_t engine_mask,unsigned int interface)1466 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1467 intel_engine_mask_t engine_mask,
1468 unsigned int interface)
1469 {
1470 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1471 struct intel_vgpu_submission *s = &vgpu->submission;
1472 const struct intel_vgpu_submission_ops *ops[] = {
1473 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1474 &intel_vgpu_execlist_submission_ops,
1475 };
1476 int ret;
1477
1478 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1479 return -EINVAL;
1480
1481 if (drm_WARN_ON(&i915->drm,
1482 interface == 0 && engine_mask != ALL_ENGINES))
1483 return -EINVAL;
1484
1485 if (s->active)
1486 s->ops->clean(vgpu, engine_mask);
1487
1488 if (interface == 0) {
1489 s->ops = NULL;
1490 s->virtual_submission_interface = 0;
1491 s->active = false;
1492 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1493 return 0;
1494 }
1495
1496 ret = ops[interface]->init(vgpu, engine_mask);
1497 if (ret)
1498 return ret;
1499
1500 s->ops = ops[interface];
1501 s->virtual_submission_interface = interface;
1502 s->active = true;
1503
1504 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1505 vgpu->id, s->ops->name);
1506
1507 return 0;
1508 }
1509
1510 /**
1511 * intel_vgpu_destroy_workload - destroy a vGPU workload
1512 * @workload: workload to destroy
1513 *
1514 * This function is called when destroy a vGPU workload.
1515 *
1516 */
intel_vgpu_destroy_workload(struct intel_vgpu_workload * workload)1517 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1518 {
1519 struct intel_vgpu_submission *s = &workload->vgpu->submission;
1520
1521 intel_context_unpin(s->shadow[workload->engine->id]);
1522 release_shadow_batch_buffer(workload);
1523 release_shadow_wa_ctx(&workload->wa_ctx);
1524
1525 if (!list_empty(&workload->lri_shadow_mm)) {
1526 struct intel_vgpu_mm *m, *mm;
1527 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1528 ppgtt_mm.link) {
1529 list_del(&m->ppgtt_mm.link);
1530 intel_vgpu_mm_put(m);
1531 }
1532 }
1533
1534 GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1535 if (workload->shadow_mm)
1536 intel_vgpu_mm_put(workload->shadow_mm);
1537
1538 kmem_cache_free(s->workloads, workload);
1539 }
1540
1541 static struct intel_vgpu_workload *
alloc_workload(struct intel_vgpu * vgpu)1542 alloc_workload(struct intel_vgpu *vgpu)
1543 {
1544 struct intel_vgpu_submission *s = &vgpu->submission;
1545 struct intel_vgpu_workload *workload;
1546
1547 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1548 if (!workload)
1549 return ERR_PTR(-ENOMEM);
1550
1551 INIT_LIST_HEAD(&workload->list);
1552 INIT_LIST_HEAD(&workload->shadow_bb);
1553 INIT_LIST_HEAD(&workload->lri_shadow_mm);
1554
1555 init_waitqueue_head(&workload->shadow_ctx_status_wq);
1556 atomic_set(&workload->shadow_ctx_active, 0);
1557
1558 workload->status = -EINPROGRESS;
1559 workload->vgpu = vgpu;
1560
1561 return workload;
1562 }
1563
1564 #define RING_CTX_OFF(x) \
1565 offsetof(struct execlist_ring_context, x)
1566
read_guest_pdps(struct intel_vgpu * vgpu,u64 ring_context_gpa,u32 pdp[8])1567 static void read_guest_pdps(struct intel_vgpu *vgpu,
1568 u64 ring_context_gpa, u32 pdp[8])
1569 {
1570 u64 gpa;
1571 int i;
1572
1573 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1574
1575 for (i = 0; i < 8; i++)
1576 intel_gvt_read_gpa(vgpu,
1577 gpa + i * 8, &pdp[7 - i], 4);
1578 }
1579
prepare_mm(struct intel_vgpu_workload * workload)1580 static int prepare_mm(struct intel_vgpu_workload *workload)
1581 {
1582 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1583 struct intel_vgpu_mm *mm;
1584 struct intel_vgpu *vgpu = workload->vgpu;
1585 enum intel_gvt_gtt_type root_entry_type;
1586 u64 pdps[GVT_RING_CTX_NR_PDPS];
1587
1588 switch (desc->addressing_mode) {
1589 case 1: /* legacy 32-bit */
1590 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1591 break;
1592 case 3: /* legacy 64-bit */
1593 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1594 break;
1595 default:
1596 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1597 return -EINVAL;
1598 }
1599
1600 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1601
1602 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1603 if (IS_ERR(mm))
1604 return PTR_ERR(mm);
1605
1606 workload->shadow_mm = mm;
1607 return 0;
1608 }
1609
1610 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1611 ((a)->lrca == (b)->lrca))
1612
1613 /**
1614 * intel_vgpu_create_workload - create a vGPU workload
1615 * @vgpu: a vGPU
1616 * @engine: the engine
1617 * @desc: a guest context descriptor
1618 *
1619 * This function is called when creating a vGPU workload.
1620 *
1621 * Returns:
1622 * struct intel_vgpu_workload * on success, negative error code in
1623 * pointer if failed.
1624 *
1625 */
1626 struct intel_vgpu_workload *
intel_vgpu_create_workload(struct intel_vgpu * vgpu,const struct intel_engine_cs * engine,struct execlist_ctx_descriptor_format * desc)1627 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1628 const struct intel_engine_cs *engine,
1629 struct execlist_ctx_descriptor_format *desc)
1630 {
1631 struct intel_vgpu_submission *s = &vgpu->submission;
1632 struct list_head *q = workload_q_head(vgpu, engine);
1633 struct intel_vgpu_workload *last_workload = NULL;
1634 struct intel_vgpu_workload *workload = NULL;
1635 u64 ring_context_gpa;
1636 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1637 u32 guest_head;
1638 int ret;
1639
1640 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1641 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1642 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1643 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1644 return ERR_PTR(-EINVAL);
1645 }
1646
1647 intel_gvt_read_gpa(vgpu, ring_context_gpa +
1648 RING_CTX_OFF(ring_header.val), &head, 4);
1649
1650 intel_gvt_read_gpa(vgpu, ring_context_gpa +
1651 RING_CTX_OFF(ring_tail.val), &tail, 4);
1652
1653 guest_head = head;
1654
1655 head &= RB_HEAD_OFF_MASK;
1656 tail &= RB_TAIL_OFF_MASK;
1657
1658 list_for_each_entry_reverse(last_workload, q, list) {
1659
1660 if (same_context(&last_workload->ctx_desc, desc)) {
1661 gvt_dbg_el("ring %s cur workload == last\n",
1662 engine->name);
1663 gvt_dbg_el("ctx head %x real head %lx\n", head,
1664 last_workload->rb_tail);
1665 /*
1666 * cannot use guest context head pointer here,
1667 * as it might not be updated at this time
1668 */
1669 head = last_workload->rb_tail;
1670 break;
1671 }
1672 }
1673
1674 gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1675
1676 /* record some ring buffer register values for scan and shadow */
1677 intel_gvt_read_gpa(vgpu, ring_context_gpa +
1678 RING_CTX_OFF(rb_start.val), &start, 4);
1679 intel_gvt_read_gpa(vgpu, ring_context_gpa +
1680 RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1681 intel_gvt_read_gpa(vgpu, ring_context_gpa +
1682 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1683
1684 if (!intel_gvt_ggtt_validate_range(vgpu, start,
1685 _RING_CTL_BUF_SIZE(ctl))) {
1686 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1687 return ERR_PTR(-EINVAL);
1688 }
1689
1690 workload = alloc_workload(vgpu);
1691 if (IS_ERR(workload))
1692 return workload;
1693
1694 workload->engine = engine;
1695 workload->ctx_desc = *desc;
1696 workload->ring_context_gpa = ring_context_gpa;
1697 workload->rb_head = head;
1698 workload->guest_rb_head = guest_head;
1699 workload->rb_tail = tail;
1700 workload->rb_start = start;
1701 workload->rb_ctl = ctl;
1702
1703 if (engine->id == RCS0) {
1704 intel_gvt_read_gpa(vgpu, ring_context_gpa +
1705 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1706 intel_gvt_read_gpa(vgpu, ring_context_gpa +
1707 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1708
1709 workload->wa_ctx.indirect_ctx.guest_gma =
1710 indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1711 workload->wa_ctx.indirect_ctx.size =
1712 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1713 CACHELINE_BYTES;
1714
1715 if (workload->wa_ctx.indirect_ctx.size != 0) {
1716 if (!intel_gvt_ggtt_validate_range(vgpu,
1717 workload->wa_ctx.indirect_ctx.guest_gma,
1718 workload->wa_ctx.indirect_ctx.size)) {
1719 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1720 workload->wa_ctx.indirect_ctx.guest_gma);
1721 kmem_cache_free(s->workloads, workload);
1722 return ERR_PTR(-EINVAL);
1723 }
1724 }
1725
1726 workload->wa_ctx.per_ctx.guest_gma =
1727 per_ctx & PER_CTX_ADDR_MASK;
1728 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1729 if (workload->wa_ctx.per_ctx.valid) {
1730 if (!intel_gvt_ggtt_validate_range(vgpu,
1731 workload->wa_ctx.per_ctx.guest_gma,
1732 CACHELINE_BYTES)) {
1733 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1734 workload->wa_ctx.per_ctx.guest_gma);
1735 kmem_cache_free(s->workloads, workload);
1736 return ERR_PTR(-EINVAL);
1737 }
1738 }
1739 }
1740
1741 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1742 workload, engine->name, head, tail, start, ctl);
1743
1744 ret = prepare_mm(workload);
1745 if (ret) {
1746 kmem_cache_free(s->workloads, workload);
1747 return ERR_PTR(ret);
1748 }
1749
1750 /* Only scan and shadow the first workload in the queue
1751 * as there is only one pre-allocated buf-obj for shadow.
1752 */
1753 if (list_empty(q)) {
1754 intel_wakeref_t wakeref;
1755
1756 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1757 ret = intel_gvt_scan_and_shadow_workload(workload);
1758 }
1759
1760 if (ret) {
1761 if (vgpu_is_vm_unhealthy(ret))
1762 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1763 intel_vgpu_destroy_workload(workload);
1764 return ERR_PTR(ret);
1765 }
1766
1767 ret = intel_context_pin(s->shadow[engine->id]);
1768 if (ret) {
1769 intel_vgpu_destroy_workload(workload);
1770 return ERR_PTR(ret);
1771 }
1772
1773 return workload;
1774 }
1775
1776 /**
1777 * intel_vgpu_queue_workload - Qeue a vGPU workload
1778 * @workload: the workload to queue in
1779 */
intel_vgpu_queue_workload(struct intel_vgpu_workload * workload)1780 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1781 {
1782 list_add_tail(&workload->list,
1783 workload_q_head(workload->vgpu, workload->engine));
1784 intel_gvt_kick_schedule(workload->vgpu->gvt);
1785 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1786 }
1787