1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/io_uring_types.h>
9 #include <uapi/linux/eventpoll.h>
10 #include "io-wq.h"
11 #include "slist.h"
12 #include "filetable.h"
13
14 #ifndef CREATE_TRACE_POINTS
15 #include <trace/events/io_uring.h>
16 #endif
17
18 enum {
19 /*
20 * A hint to not wake right away but delay until there are enough of
21 * tw's queued to match the number of CQEs the task is waiting for.
22 *
23 * Must not be used wirh requests generating more than one CQE.
24 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set.
25 */
26 IOU_F_TWQ_LAZY_WAKE = 1,
27 };
28
29 enum {
30 IOU_OK = 0,
31 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED,
32
33 /*
34 * Requeue the task_work to restart operations on this request. The
35 * actual value isn't important, should just be not an otherwise
36 * valid error code, yet less than -MAX_ERRNO and valid internally.
37 */
38 IOU_REQUEUE = -3072,
39
40 /*
41 * Intended only when both IO_URING_F_MULTISHOT is passed
42 * to indicate to the poll runner that multishot should be
43 * removed and the result is set on req->cqe.res.
44 */
45 IOU_STOP_MULTISHOT = -ECANCELED,
46 };
47
48 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
49 void io_req_cqe_overflow(struct io_kiocb *req);
50 int io_run_task_work_sig(struct io_ring_ctx *ctx);
51 void io_req_defer_failed(struct io_kiocb *req, s32 res);
52 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
53 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
54 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags);
55 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
56
57 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
58
59 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
60 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
61 unsigned issue_flags);
62
63 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
64 bool io_alloc_async_data(struct io_kiocb *req);
65 void io_req_task_queue(struct io_kiocb *req);
66 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use);
67 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
68 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
69 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
70 void tctx_task_work(struct callback_head *cb);
71 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
72 int io_uring_alloc_task_context(struct task_struct *task,
73 struct io_ring_ctx *ctx);
74
75 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
76 int start, int end);
77
78 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
79 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
80 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
81 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
82 int io_req_prep_async(struct io_kiocb *req);
83
84 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
85 void io_wq_submit_work(struct io_wq_work *work);
86
87 void io_free_req(struct io_kiocb *req);
88 void io_queue_next(struct io_kiocb *req);
89 void io_task_refs_refill(struct io_uring_task *tctx);
90 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
91
92 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
93 bool cancel_all);
94
95 void *io_mem_alloc(size_t size);
96 void io_mem_free(void *ptr);
97
98 #if defined(CONFIG_PROVE_LOCKING)
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)99 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
100 {
101 lockdep_assert(in_task());
102
103 if (ctx->flags & IORING_SETUP_IOPOLL) {
104 lockdep_assert_held(&ctx->uring_lock);
105 } else if (!ctx->task_complete) {
106 lockdep_assert_held(&ctx->completion_lock);
107 } else if (ctx->submitter_task) {
108 /*
109 * ->submitter_task may be NULL and we can still post a CQE,
110 * if the ring has been setup with IORING_SETUP_R_DISABLED.
111 * Not from an SQE, as those cannot be submitted, but via
112 * updating tagged resources.
113 */
114 if (ctx->submitter_task->flags & PF_EXITING)
115 lockdep_assert(current_work());
116 else
117 lockdep_assert(current == ctx->submitter_task);
118 }
119 }
120 #else
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)121 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
122 {
123 }
124 #endif
125
io_req_task_work_add(struct io_kiocb * req)126 static inline void io_req_task_work_add(struct io_kiocb *req)
127 {
128 __io_req_task_work_add(req, 0);
129 }
130
131 #define io_for_each_link(pos, head) \
132 for (pos = (head); pos; pos = pos->link)
133
io_get_cqe_overflow(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret,bool overflow)134 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
135 struct io_uring_cqe **ret,
136 bool overflow)
137 {
138 io_lockdep_assert_cq_locked(ctx);
139
140 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
141 if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
142 return false;
143 }
144 *ret = ctx->cqe_cached;
145 ctx->cached_cq_tail++;
146 ctx->cqe_cached++;
147 if (ctx->flags & IORING_SETUP_CQE32)
148 ctx->cqe_cached++;
149 return true;
150 }
151
io_get_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret)152 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
153 {
154 return io_get_cqe_overflow(ctx, ret, false);
155 }
156
io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)157 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
158 struct io_kiocb *req)
159 {
160 struct io_uring_cqe *cqe;
161
162 /*
163 * If we can't get a cq entry, userspace overflowed the
164 * submission (by quite a lot). Increment the overflow count in
165 * the ring.
166 */
167 if (unlikely(!io_get_cqe(ctx, &cqe)))
168 return false;
169
170 if (trace_io_uring_complete_enabled())
171 trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
172 req->cqe.res, req->cqe.flags,
173 req->big_cqe.extra1, req->big_cqe.extra2);
174
175 memcpy(cqe, &req->cqe, sizeof(*cqe));
176 if (ctx->flags & IORING_SETUP_CQE32) {
177 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
178 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
179 }
180 return true;
181 }
182
req_set_fail(struct io_kiocb * req)183 static inline void req_set_fail(struct io_kiocb *req)
184 {
185 req->flags |= REQ_F_FAIL;
186 if (req->flags & REQ_F_CQE_SKIP) {
187 req->flags &= ~REQ_F_CQE_SKIP;
188 req->flags |= REQ_F_SKIP_LINK_CQES;
189 }
190 }
191
io_req_set_res(struct io_kiocb * req,s32 res,u32 cflags)192 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
193 {
194 req->cqe.res = res;
195 req->cqe.flags = cflags;
196 }
197
req_has_async_data(struct io_kiocb * req)198 static inline bool req_has_async_data(struct io_kiocb *req)
199 {
200 return req->flags & REQ_F_ASYNC_DATA;
201 }
202
io_put_file(struct io_kiocb * req)203 static inline void io_put_file(struct io_kiocb *req)
204 {
205 if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
206 fput(req->file);
207 }
208
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)209 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
210 unsigned issue_flags)
211 {
212 lockdep_assert_held(&ctx->uring_lock);
213 if (issue_flags & IO_URING_F_UNLOCKED)
214 mutex_unlock(&ctx->uring_lock);
215 }
216
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)217 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
218 unsigned issue_flags)
219 {
220 /*
221 * "Normal" inline submissions always hold the uring_lock, since we
222 * grab it from the system call. Same is true for the SQPOLL offload.
223 * The only exception is when we've detached the request and issue it
224 * from an async worker thread, grab the lock for that case.
225 */
226 if (issue_flags & IO_URING_F_UNLOCKED)
227 mutex_lock(&ctx->uring_lock);
228 lockdep_assert_held(&ctx->uring_lock);
229 }
230
io_commit_cqring(struct io_ring_ctx * ctx)231 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
232 {
233 /* order cqe stores with ring update */
234 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
235 }
236
io_poll_wq_wake(struct io_ring_ctx * ctx)237 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
238 {
239 if (wq_has_sleeper(&ctx->poll_wq))
240 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
241 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
242 }
243
io_cqring_wake(struct io_ring_ctx * ctx)244 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
245 {
246 /*
247 * Trigger waitqueue handler on all waiters on our waitqueue. This
248 * won't necessarily wake up all the tasks, io_should_wake() will make
249 * that decision.
250 *
251 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
252 * set in the mask so that if we recurse back into our own poll
253 * waitqueue handlers, we know we have a dependency between eventfd or
254 * epoll and should terminate multishot poll at that point.
255 */
256 if (wq_has_sleeper(&ctx->cq_wait))
257 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
258 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
259 }
260
io_sqring_full(struct io_ring_ctx * ctx)261 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
262 {
263 struct io_rings *r = ctx->rings;
264
265 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
266 }
267
io_sqring_entries(struct io_ring_ctx * ctx)268 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
269 {
270 struct io_rings *rings = ctx->rings;
271 unsigned int entries;
272
273 /* make sure SQ entry isn't read before tail */
274 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
275 return min(entries, ctx->sq_entries);
276 }
277
io_run_task_work(void)278 static inline int io_run_task_work(void)
279 {
280 /*
281 * Always check-and-clear the task_work notification signal. With how
282 * signaling works for task_work, we can find it set with nothing to
283 * run. We need to clear it for that case, like get_signal() does.
284 */
285 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
286 clear_notify_signal();
287 /*
288 * PF_IO_WORKER never returns to userspace, so check here if we have
289 * notify work that needs processing.
290 */
291 if (current->flags & PF_IO_WORKER &&
292 test_thread_flag(TIF_NOTIFY_RESUME)) {
293 __set_current_state(TASK_RUNNING);
294 resume_user_mode_work(NULL);
295 }
296 if (task_work_pending(current)) {
297 __set_current_state(TASK_RUNNING);
298 task_work_run();
299 return 1;
300 }
301
302 return 0;
303 }
304
io_task_work_pending(struct io_ring_ctx * ctx)305 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
306 {
307 return task_work_pending(current) || !llist_empty(&ctx->work_llist);
308 }
309
io_tw_lock(struct io_ring_ctx * ctx,struct io_tw_state * ts)310 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
311 {
312 if (!ts->locked) {
313 mutex_lock(&ctx->uring_lock);
314 ts->locked = true;
315 }
316 }
317
318 /*
319 * Don't complete immediately but use deferred completion infrastructure.
320 * Protected by ->uring_lock and can only be used either with
321 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
322 */
io_req_complete_defer(struct io_kiocb * req)323 static inline void io_req_complete_defer(struct io_kiocb *req)
324 __must_hold(&req->ctx->uring_lock)
325 {
326 struct io_submit_state *state = &req->ctx->submit_state;
327
328 lockdep_assert_held(&req->ctx->uring_lock);
329
330 wq_list_add_tail(&req->comp_list, &state->compl_reqs);
331 }
332
io_commit_cqring_flush(struct io_ring_ctx * ctx)333 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
334 {
335 if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
336 ctx->has_evfd || ctx->poll_activated))
337 __io_commit_cqring_flush(ctx);
338 }
339
io_get_task_refs(int nr)340 static inline void io_get_task_refs(int nr)
341 {
342 struct io_uring_task *tctx = current->io_uring;
343
344 tctx->cached_refs -= nr;
345 if (unlikely(tctx->cached_refs < 0))
346 io_task_refs_refill(tctx);
347 }
348
io_req_cache_empty(struct io_ring_ctx * ctx)349 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
350 {
351 return !ctx->submit_state.free_list.next;
352 }
353
354 extern struct kmem_cache *req_cachep;
355
io_extract_req(struct io_ring_ctx * ctx)356 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
357 {
358 struct io_kiocb *req;
359
360 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
361 wq_stack_extract(&ctx->submit_state.free_list);
362 return req;
363 }
364
io_alloc_req(struct io_ring_ctx * ctx,struct io_kiocb ** req)365 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
366 {
367 if (unlikely(io_req_cache_empty(ctx))) {
368 if (!__io_alloc_req_refill(ctx))
369 return false;
370 }
371 *req = io_extract_req(ctx);
372 return true;
373 }
374
io_allowed_defer_tw_run(struct io_ring_ctx * ctx)375 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
376 {
377 return likely(ctx->submitter_task == current);
378 }
379
io_allowed_run_tw(struct io_ring_ctx * ctx)380 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
381 {
382 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
383 ctx->submitter_task == current);
384 }
385
io_req_queue_tw_complete(struct io_kiocb * req,s32 res)386 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
387 {
388 io_req_set_res(req, res, 0);
389 req->io_task_work.func = io_req_task_complete;
390 io_req_task_work_add(req);
391 }
392
393 /*
394 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
395 * slot.
396 */
uring_sqe_size(struct io_ring_ctx * ctx)397 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
398 {
399 if (ctx->flags & IORING_SETUP_SQE128)
400 return 2 * sizeof(struct io_uring_sqe);
401 return sizeof(struct io_uring_sqe);
402 }
403 #endif
404