1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The Internet Protocol (IP) output module.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 *
19 * See ip_input.c for original log
20 *
21 * Fixes:
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
25 * no route is found.
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readability.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * datagrams.
43 * Hirokazu Takahashi: sendfile() on UDP works now.
44 */
45
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/gso.h>
77 #include <net/inetpeer.h>
78 #include <net/inet_ecn.h>
79 #include <net/lwtunnel.h>
80 #include <linux/bpf-cgroup.h>
81 #include <linux/igmp.h>
82 #include <linux/netfilter_ipv4.h>
83 #include <linux/netfilter_bridge.h>
84 #include <linux/netlink.h>
85 #include <linux/tcp.h>
86
87 static int
88 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
89 unsigned int mtu,
90 int (*output)(struct net *, struct sock *, struct sk_buff *));
91
92 /* Generate a checksum for an outgoing IP datagram. */
ip_send_check(struct iphdr * iph)93 void ip_send_check(struct iphdr *iph)
94 {
95 iph->check = 0;
96 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
97 }
98 EXPORT_SYMBOL(ip_send_check);
99
__ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)100 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
101 {
102 struct iphdr *iph = ip_hdr(skb);
103
104 IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS);
105
106 iph_set_totlen(iph, skb->len);
107 ip_send_check(iph);
108
109 /* if egress device is enslaved to an L3 master device pass the
110 * skb to its handler for processing
111 */
112 skb = l3mdev_ip_out(sk, skb);
113 if (unlikely(!skb))
114 return 0;
115
116 skb->protocol = htons(ETH_P_IP);
117
118 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
119 net, sk, skb, NULL, skb_dst(skb)->dev,
120 dst_output);
121 }
122
ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)123 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
124 {
125 int err;
126
127 err = __ip_local_out(net, sk, skb);
128 if (likely(err == 1))
129 err = dst_output(net, sk, skb);
130
131 return err;
132 }
133 EXPORT_SYMBOL_GPL(ip_local_out);
134
ip_select_ttl(const struct inet_sock * inet,const struct dst_entry * dst)135 static inline int ip_select_ttl(const struct inet_sock *inet,
136 const struct dst_entry *dst)
137 {
138 int ttl = READ_ONCE(inet->uc_ttl);
139
140 if (ttl < 0)
141 ttl = ip4_dst_hoplimit(dst);
142 return ttl;
143 }
144
145 /*
146 * Add an ip header to a skbuff and send it out.
147 *
148 */
ip_build_and_send_pkt(struct sk_buff * skb,const struct sock * sk,__be32 saddr,__be32 daddr,struct ip_options_rcu * opt,u8 tos)149 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
150 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
151 u8 tos)
152 {
153 const struct inet_sock *inet = inet_sk(sk);
154 struct rtable *rt = skb_rtable(skb);
155 struct net *net = sock_net(sk);
156 struct iphdr *iph;
157
158 /* Build the IP header. */
159 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
160 skb_reset_network_header(skb);
161 iph = ip_hdr(skb);
162 iph->version = 4;
163 iph->ihl = 5;
164 iph->tos = tos;
165 iph->ttl = ip_select_ttl(inet, &rt->dst);
166 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
167 iph->saddr = saddr;
168 iph->protocol = sk->sk_protocol;
169 /* Do not bother generating IPID for small packets (eg SYNACK) */
170 if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
171 iph->frag_off = htons(IP_DF);
172 iph->id = 0;
173 } else {
174 iph->frag_off = 0;
175 /* TCP packets here are SYNACK with fat IPv4/TCP options.
176 * Avoid using the hashed IP ident generator.
177 */
178 if (sk->sk_protocol == IPPROTO_TCP)
179 iph->id = (__force __be16)get_random_u16();
180 else
181 __ip_select_ident(net, iph, 1);
182 }
183
184 if (opt && opt->opt.optlen) {
185 iph->ihl += opt->opt.optlen>>2;
186 ip_options_build(skb, &opt->opt, daddr, rt);
187 }
188
189 skb->priority = READ_ONCE(sk->sk_priority);
190 if (!skb->mark)
191 skb->mark = READ_ONCE(sk->sk_mark);
192
193 /* Send it out. */
194 return ip_local_out(net, skb->sk, skb);
195 }
196 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
197
ip_finish_output2(struct net * net,struct sock * sk,struct sk_buff * skb)198 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
199 {
200 struct dst_entry *dst = skb_dst(skb);
201 struct rtable *rt = (struct rtable *)dst;
202 struct net_device *dev = dst->dev;
203 unsigned int hh_len = LL_RESERVED_SPACE(dev);
204 struct neighbour *neigh;
205 bool is_v6gw = false;
206
207 if (rt->rt_type == RTN_MULTICAST) {
208 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
209 } else if (rt->rt_type == RTN_BROADCAST)
210 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
211
212 /* OUTOCTETS should be counted after fragment */
213 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
214
215 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
216 skb = skb_expand_head(skb, hh_len);
217 if (!skb)
218 return -ENOMEM;
219 }
220
221 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
222 int res = lwtunnel_xmit(skb);
223
224 if (res != LWTUNNEL_XMIT_CONTINUE)
225 return res;
226 }
227
228 rcu_read_lock();
229 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
230 if (!IS_ERR(neigh)) {
231 int res;
232
233 sock_confirm_neigh(skb, neigh);
234 /* if crossing protocols, can not use the cached header */
235 res = neigh_output(neigh, skb, is_v6gw);
236 rcu_read_unlock();
237 return res;
238 }
239 rcu_read_unlock();
240
241 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
242 __func__);
243 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
244 return PTR_ERR(neigh);
245 }
246
ip_finish_output_gso(struct net * net,struct sock * sk,struct sk_buff * skb,unsigned int mtu)247 static int ip_finish_output_gso(struct net *net, struct sock *sk,
248 struct sk_buff *skb, unsigned int mtu)
249 {
250 struct sk_buff *segs, *nskb;
251 netdev_features_t features;
252 int ret = 0;
253
254 /* common case: seglen is <= mtu
255 */
256 if (skb_gso_validate_network_len(skb, mtu))
257 return ip_finish_output2(net, sk, skb);
258
259 /* Slowpath - GSO segment length exceeds the egress MTU.
260 *
261 * This can happen in several cases:
262 * - Forwarding of a TCP GRO skb, when DF flag is not set.
263 * - Forwarding of an skb that arrived on a virtualization interface
264 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
265 * stack.
266 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
267 * interface with a smaller MTU.
268 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
269 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
270 * insufficient MTU.
271 */
272 features = netif_skb_features(skb);
273 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
274 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
275 if (IS_ERR_OR_NULL(segs)) {
276 kfree_skb(skb);
277 return -ENOMEM;
278 }
279
280 consume_skb(skb);
281
282 skb_list_walk_safe(segs, segs, nskb) {
283 int err;
284
285 skb_mark_not_on_list(segs);
286 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
287
288 if (err && ret == 0)
289 ret = err;
290 }
291
292 return ret;
293 }
294
__ip_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)295 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
296 {
297 unsigned int mtu;
298
299 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
300 /* Policy lookup after SNAT yielded a new policy */
301 if (skb_dst(skb)->xfrm) {
302 IPCB(skb)->flags |= IPSKB_REROUTED;
303 return dst_output(net, sk, skb);
304 }
305 #endif
306 mtu = ip_skb_dst_mtu(sk, skb);
307 if (skb_is_gso(skb))
308 return ip_finish_output_gso(net, sk, skb, mtu);
309
310 if (skb->len > mtu || IPCB(skb)->frag_max_size)
311 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
312
313 return ip_finish_output2(net, sk, skb);
314 }
315
ip_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)316 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
317 {
318 int ret;
319
320 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
321 switch (ret) {
322 case NET_XMIT_SUCCESS:
323 return __ip_finish_output(net, sk, skb);
324 case NET_XMIT_CN:
325 return __ip_finish_output(net, sk, skb) ? : ret;
326 default:
327 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
328 return ret;
329 }
330 }
331
ip_mc_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)332 static int ip_mc_finish_output(struct net *net, struct sock *sk,
333 struct sk_buff *skb)
334 {
335 struct rtable *new_rt;
336 bool do_cn = false;
337 int ret, err;
338
339 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
340 switch (ret) {
341 case NET_XMIT_CN:
342 do_cn = true;
343 fallthrough;
344 case NET_XMIT_SUCCESS:
345 break;
346 default:
347 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
348 return ret;
349 }
350
351 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
352 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
353 * see ipv4_pktinfo_prepare().
354 */
355 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
356 if (new_rt) {
357 new_rt->rt_iif = 0;
358 skb_dst_drop(skb);
359 skb_dst_set(skb, &new_rt->dst);
360 }
361
362 err = dev_loopback_xmit(net, sk, skb);
363 return (do_cn && err) ? ret : err;
364 }
365
ip_mc_output(struct net * net,struct sock * sk,struct sk_buff * skb)366 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
367 {
368 struct rtable *rt = skb_rtable(skb);
369 struct net_device *dev = rt->dst.dev;
370
371 /*
372 * If the indicated interface is up and running, send the packet.
373 */
374 skb->dev = dev;
375 skb->protocol = htons(ETH_P_IP);
376
377 /*
378 * Multicasts are looped back for other local users
379 */
380
381 if (rt->rt_flags&RTCF_MULTICAST) {
382 if (sk_mc_loop(sk)
383 #ifdef CONFIG_IP_MROUTE
384 /* Small optimization: do not loopback not local frames,
385 which returned after forwarding; they will be dropped
386 by ip_mr_input in any case.
387 Note, that local frames are looped back to be delivered
388 to local recipients.
389
390 This check is duplicated in ip_mr_input at the moment.
391 */
392 &&
393 ((rt->rt_flags & RTCF_LOCAL) ||
394 !(IPCB(skb)->flags & IPSKB_FORWARDED))
395 #endif
396 ) {
397 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
398 if (newskb)
399 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
400 net, sk, newskb, NULL, newskb->dev,
401 ip_mc_finish_output);
402 }
403
404 /* Multicasts with ttl 0 must not go beyond the host */
405
406 if (ip_hdr(skb)->ttl == 0) {
407 kfree_skb(skb);
408 return 0;
409 }
410 }
411
412 if (rt->rt_flags&RTCF_BROADCAST) {
413 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
414 if (newskb)
415 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416 net, sk, newskb, NULL, newskb->dev,
417 ip_mc_finish_output);
418 }
419
420 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
421 net, sk, skb, NULL, skb->dev,
422 ip_finish_output,
423 !(IPCB(skb)->flags & IPSKB_REROUTED));
424 }
425
ip_output(struct net * net,struct sock * sk,struct sk_buff * skb)426 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
427 {
428 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
429
430 skb->dev = dev;
431 skb->protocol = htons(ETH_P_IP);
432
433 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
434 net, sk, skb, indev, dev,
435 ip_finish_output,
436 !(IPCB(skb)->flags & IPSKB_REROUTED));
437 }
438 EXPORT_SYMBOL(ip_output);
439
440 /*
441 * copy saddr and daddr, possibly using 64bit load/stores
442 * Equivalent to :
443 * iph->saddr = fl4->saddr;
444 * iph->daddr = fl4->daddr;
445 */
ip_copy_addrs(struct iphdr * iph,const struct flowi4 * fl4)446 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
447 {
448 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
449 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
450
451 iph->saddr = fl4->saddr;
452 iph->daddr = fl4->daddr;
453 }
454
455 /* Note: skb->sk can be different from sk, in case of tunnels */
__ip_queue_xmit(struct sock * sk,struct sk_buff * skb,struct flowi * fl,__u8 tos)456 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
457 __u8 tos)
458 {
459 struct inet_sock *inet = inet_sk(sk);
460 struct net *net = sock_net(sk);
461 struct ip_options_rcu *inet_opt;
462 struct flowi4 *fl4;
463 struct rtable *rt;
464 struct iphdr *iph;
465 int res;
466
467 /* Skip all of this if the packet is already routed,
468 * f.e. by something like SCTP.
469 */
470 rcu_read_lock();
471 inet_opt = rcu_dereference(inet->inet_opt);
472 fl4 = &fl->u.ip4;
473 rt = skb_rtable(skb);
474 if (rt)
475 goto packet_routed;
476
477 /* Make sure we can route this packet. */
478 rt = (struct rtable *)__sk_dst_check(sk, 0);
479 if (!rt) {
480 __be32 daddr;
481
482 /* Use correct destination address if we have options. */
483 daddr = inet->inet_daddr;
484 if (inet_opt && inet_opt->opt.srr)
485 daddr = inet_opt->opt.faddr;
486
487 /* If this fails, retransmit mechanism of transport layer will
488 * keep trying until route appears or the connection times
489 * itself out.
490 */
491 rt = ip_route_output_ports(net, fl4, sk,
492 daddr, inet->inet_saddr,
493 inet->inet_dport,
494 inet->inet_sport,
495 sk->sk_protocol,
496 RT_CONN_FLAGS_TOS(sk, tos),
497 sk->sk_bound_dev_if);
498 if (IS_ERR(rt))
499 goto no_route;
500 sk_setup_caps(sk, &rt->dst);
501 }
502 skb_dst_set_noref(skb, &rt->dst);
503
504 packet_routed:
505 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
506 goto no_route;
507
508 /* OK, we know where to send it, allocate and build IP header. */
509 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
510 skb_reset_network_header(skb);
511 iph = ip_hdr(skb);
512 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
513 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
514 iph->frag_off = htons(IP_DF);
515 else
516 iph->frag_off = 0;
517 iph->ttl = ip_select_ttl(inet, &rt->dst);
518 iph->protocol = sk->sk_protocol;
519 ip_copy_addrs(iph, fl4);
520
521 /* Transport layer set skb->h.foo itself. */
522
523 if (inet_opt && inet_opt->opt.optlen) {
524 iph->ihl += inet_opt->opt.optlen >> 2;
525 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
526 }
527
528 ip_select_ident_segs(net, skb, sk,
529 skb_shinfo(skb)->gso_segs ?: 1);
530
531 /* TODO : should we use skb->sk here instead of sk ? */
532 skb->priority = READ_ONCE(sk->sk_priority);
533 skb->mark = READ_ONCE(sk->sk_mark);
534
535 res = ip_local_out(net, sk, skb);
536 rcu_read_unlock();
537 return res;
538
539 no_route:
540 rcu_read_unlock();
541 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
542 kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
543 return -EHOSTUNREACH;
544 }
545 EXPORT_SYMBOL(__ip_queue_xmit);
546
ip_queue_xmit(struct sock * sk,struct sk_buff * skb,struct flowi * fl)547 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
548 {
549 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
550 }
551 EXPORT_SYMBOL(ip_queue_xmit);
552
ip_copy_metadata(struct sk_buff * to,struct sk_buff * from)553 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
554 {
555 to->pkt_type = from->pkt_type;
556 to->priority = from->priority;
557 to->protocol = from->protocol;
558 to->skb_iif = from->skb_iif;
559 skb_dst_drop(to);
560 skb_dst_copy(to, from);
561 to->dev = from->dev;
562 to->mark = from->mark;
563
564 skb_copy_hash(to, from);
565
566 #ifdef CONFIG_NET_SCHED
567 to->tc_index = from->tc_index;
568 #endif
569 nf_copy(to, from);
570 skb_ext_copy(to, from);
571 #if IS_ENABLED(CONFIG_IP_VS)
572 to->ipvs_property = from->ipvs_property;
573 #endif
574 skb_copy_secmark(to, from);
575 }
576
ip_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,unsigned int mtu,int (* output)(struct net *,struct sock *,struct sk_buff *))577 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
578 unsigned int mtu,
579 int (*output)(struct net *, struct sock *, struct sk_buff *))
580 {
581 struct iphdr *iph = ip_hdr(skb);
582
583 if ((iph->frag_off & htons(IP_DF)) == 0)
584 return ip_do_fragment(net, sk, skb, output);
585
586 if (unlikely(!skb->ignore_df ||
587 (IPCB(skb)->frag_max_size &&
588 IPCB(skb)->frag_max_size > mtu))) {
589 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
590 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
591 htonl(mtu));
592 kfree_skb(skb);
593 return -EMSGSIZE;
594 }
595
596 return ip_do_fragment(net, sk, skb, output);
597 }
598
ip_fraglist_init(struct sk_buff * skb,struct iphdr * iph,unsigned int hlen,struct ip_fraglist_iter * iter)599 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
600 unsigned int hlen, struct ip_fraglist_iter *iter)
601 {
602 unsigned int first_len = skb_pagelen(skb);
603
604 iter->frag = skb_shinfo(skb)->frag_list;
605 skb_frag_list_init(skb);
606
607 iter->offset = 0;
608 iter->iph = iph;
609 iter->hlen = hlen;
610
611 skb->data_len = first_len - skb_headlen(skb);
612 skb->len = first_len;
613 iph->tot_len = htons(first_len);
614 iph->frag_off = htons(IP_MF);
615 ip_send_check(iph);
616 }
617 EXPORT_SYMBOL(ip_fraglist_init);
618
ip_fraglist_prepare(struct sk_buff * skb,struct ip_fraglist_iter * iter)619 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
620 {
621 unsigned int hlen = iter->hlen;
622 struct iphdr *iph = iter->iph;
623 struct sk_buff *frag;
624
625 frag = iter->frag;
626 frag->ip_summed = CHECKSUM_NONE;
627 skb_reset_transport_header(frag);
628 __skb_push(frag, hlen);
629 skb_reset_network_header(frag);
630 memcpy(skb_network_header(frag), iph, hlen);
631 iter->iph = ip_hdr(frag);
632 iph = iter->iph;
633 iph->tot_len = htons(frag->len);
634 ip_copy_metadata(frag, skb);
635 iter->offset += skb->len - hlen;
636 iph->frag_off = htons(iter->offset >> 3);
637 if (frag->next)
638 iph->frag_off |= htons(IP_MF);
639 /* Ready, complete checksum */
640 ip_send_check(iph);
641 }
642 EXPORT_SYMBOL(ip_fraglist_prepare);
643
ip_frag_init(struct sk_buff * skb,unsigned int hlen,unsigned int ll_rs,unsigned int mtu,bool DF,struct ip_frag_state * state)644 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
645 unsigned int ll_rs, unsigned int mtu, bool DF,
646 struct ip_frag_state *state)
647 {
648 struct iphdr *iph = ip_hdr(skb);
649
650 state->DF = DF;
651 state->hlen = hlen;
652 state->ll_rs = ll_rs;
653 state->mtu = mtu;
654
655 state->left = skb->len - hlen; /* Space per frame */
656 state->ptr = hlen; /* Where to start from */
657
658 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
659 state->not_last_frag = iph->frag_off & htons(IP_MF);
660 }
661 EXPORT_SYMBOL(ip_frag_init);
662
ip_frag_ipcb(struct sk_buff * from,struct sk_buff * to,bool first_frag)663 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
664 bool first_frag)
665 {
666 /* Copy the flags to each fragment. */
667 IPCB(to)->flags = IPCB(from)->flags;
668
669 /* ANK: dirty, but effective trick. Upgrade options only if
670 * the segment to be fragmented was THE FIRST (otherwise,
671 * options are already fixed) and make it ONCE
672 * on the initial skb, so that all the following fragments
673 * will inherit fixed options.
674 */
675 if (first_frag)
676 ip_options_fragment(from);
677 }
678
ip_frag_next(struct sk_buff * skb,struct ip_frag_state * state)679 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
680 {
681 unsigned int len = state->left;
682 struct sk_buff *skb2;
683 struct iphdr *iph;
684
685 /* IF: it doesn't fit, use 'mtu' - the data space left */
686 if (len > state->mtu)
687 len = state->mtu;
688 /* IF: we are not sending up to and including the packet end
689 then align the next start on an eight byte boundary */
690 if (len < state->left) {
691 len &= ~7;
692 }
693
694 /* Allocate buffer */
695 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
696 if (!skb2)
697 return ERR_PTR(-ENOMEM);
698
699 /*
700 * Set up data on packet
701 */
702
703 ip_copy_metadata(skb2, skb);
704 skb_reserve(skb2, state->ll_rs);
705 skb_put(skb2, len + state->hlen);
706 skb_reset_network_header(skb2);
707 skb2->transport_header = skb2->network_header + state->hlen;
708
709 /*
710 * Charge the memory for the fragment to any owner
711 * it might possess
712 */
713
714 if (skb->sk)
715 skb_set_owner_w(skb2, skb->sk);
716
717 /*
718 * Copy the packet header into the new buffer.
719 */
720
721 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
722
723 /*
724 * Copy a block of the IP datagram.
725 */
726 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
727 BUG();
728 state->left -= len;
729
730 /*
731 * Fill in the new header fields.
732 */
733 iph = ip_hdr(skb2);
734 iph->frag_off = htons((state->offset >> 3));
735 if (state->DF)
736 iph->frag_off |= htons(IP_DF);
737
738 /*
739 * Added AC : If we are fragmenting a fragment that's not the
740 * last fragment then keep MF on each bit
741 */
742 if (state->left > 0 || state->not_last_frag)
743 iph->frag_off |= htons(IP_MF);
744 state->ptr += len;
745 state->offset += len;
746
747 iph->tot_len = htons(len + state->hlen);
748
749 ip_send_check(iph);
750
751 return skb2;
752 }
753 EXPORT_SYMBOL(ip_frag_next);
754
755 /*
756 * This IP datagram is too large to be sent in one piece. Break it up into
757 * smaller pieces (each of size equal to IP header plus
758 * a block of the data of the original IP data part) that will yet fit in a
759 * single device frame, and queue such a frame for sending.
760 */
761
ip_do_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,int (* output)(struct net *,struct sock *,struct sk_buff *))762 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
763 int (*output)(struct net *, struct sock *, struct sk_buff *))
764 {
765 struct iphdr *iph;
766 struct sk_buff *skb2;
767 bool mono_delivery_time = skb->mono_delivery_time;
768 struct rtable *rt = skb_rtable(skb);
769 unsigned int mtu, hlen, ll_rs;
770 struct ip_fraglist_iter iter;
771 ktime_t tstamp = skb->tstamp;
772 struct ip_frag_state state;
773 int err = 0;
774
775 /* for offloaded checksums cleanup checksum before fragmentation */
776 if (skb->ip_summed == CHECKSUM_PARTIAL &&
777 (err = skb_checksum_help(skb)))
778 goto fail;
779
780 /*
781 * Point into the IP datagram header.
782 */
783
784 iph = ip_hdr(skb);
785
786 mtu = ip_skb_dst_mtu(sk, skb);
787 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
788 mtu = IPCB(skb)->frag_max_size;
789
790 /*
791 * Setup starting values.
792 */
793
794 hlen = iph->ihl * 4;
795 mtu = mtu - hlen; /* Size of data space */
796 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
797 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
798
799 /* When frag_list is given, use it. First, check its validity:
800 * some transformers could create wrong frag_list or break existing
801 * one, it is not prohibited. In this case fall back to copying.
802 *
803 * LATER: this step can be merged to real generation of fragments,
804 * we can switch to copy when see the first bad fragment.
805 */
806 if (skb_has_frag_list(skb)) {
807 struct sk_buff *frag, *frag2;
808 unsigned int first_len = skb_pagelen(skb);
809
810 if (first_len - hlen > mtu ||
811 ((first_len - hlen) & 7) ||
812 ip_is_fragment(iph) ||
813 skb_cloned(skb) ||
814 skb_headroom(skb) < ll_rs)
815 goto slow_path;
816
817 skb_walk_frags(skb, frag) {
818 /* Correct geometry. */
819 if (frag->len > mtu ||
820 ((frag->len & 7) && frag->next) ||
821 skb_headroom(frag) < hlen + ll_rs)
822 goto slow_path_clean;
823
824 /* Partially cloned skb? */
825 if (skb_shared(frag))
826 goto slow_path_clean;
827
828 BUG_ON(frag->sk);
829 if (skb->sk) {
830 frag->sk = skb->sk;
831 frag->destructor = sock_wfree;
832 }
833 skb->truesize -= frag->truesize;
834 }
835
836 /* Everything is OK. Generate! */
837 ip_fraglist_init(skb, iph, hlen, &iter);
838
839 for (;;) {
840 /* Prepare header of the next frame,
841 * before previous one went down. */
842 if (iter.frag) {
843 bool first_frag = (iter.offset == 0);
844
845 IPCB(iter.frag)->flags = IPCB(skb)->flags;
846 ip_fraglist_prepare(skb, &iter);
847 if (first_frag && IPCB(skb)->opt.optlen) {
848 /* ipcb->opt is not populated for frags
849 * coming from __ip_make_skb(),
850 * ip_options_fragment() needs optlen
851 */
852 IPCB(iter.frag)->opt.optlen =
853 IPCB(skb)->opt.optlen;
854 ip_options_fragment(iter.frag);
855 ip_send_check(iter.iph);
856 }
857 }
858
859 skb_set_delivery_time(skb, tstamp, mono_delivery_time);
860 err = output(net, sk, skb);
861
862 if (!err)
863 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
864 if (err || !iter.frag)
865 break;
866
867 skb = ip_fraglist_next(&iter);
868 }
869
870 if (err == 0) {
871 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
872 return 0;
873 }
874
875 kfree_skb_list(iter.frag);
876
877 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
878 return err;
879
880 slow_path_clean:
881 skb_walk_frags(skb, frag2) {
882 if (frag2 == frag)
883 break;
884 frag2->sk = NULL;
885 frag2->destructor = NULL;
886 skb->truesize += frag2->truesize;
887 }
888 }
889
890 slow_path:
891 /*
892 * Fragment the datagram.
893 */
894
895 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
896 &state);
897
898 /*
899 * Keep copying data until we run out.
900 */
901
902 while (state.left > 0) {
903 bool first_frag = (state.offset == 0);
904
905 skb2 = ip_frag_next(skb, &state);
906 if (IS_ERR(skb2)) {
907 err = PTR_ERR(skb2);
908 goto fail;
909 }
910 ip_frag_ipcb(skb, skb2, first_frag);
911
912 /*
913 * Put this fragment into the sending queue.
914 */
915 skb_set_delivery_time(skb2, tstamp, mono_delivery_time);
916 err = output(net, sk, skb2);
917 if (err)
918 goto fail;
919
920 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
921 }
922 consume_skb(skb);
923 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
924 return err;
925
926 fail:
927 kfree_skb(skb);
928 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
929 return err;
930 }
931 EXPORT_SYMBOL(ip_do_fragment);
932
933 int
ip_generic_getfrag(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb)934 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
935 {
936 struct msghdr *msg = from;
937
938 if (skb->ip_summed == CHECKSUM_PARTIAL) {
939 if (!copy_from_iter_full(to, len, &msg->msg_iter))
940 return -EFAULT;
941 } else {
942 __wsum csum = 0;
943 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
944 return -EFAULT;
945 skb->csum = csum_block_add(skb->csum, csum, odd);
946 }
947 return 0;
948 }
949 EXPORT_SYMBOL(ip_generic_getfrag);
950
__ip_append_data(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork,struct page_frag * pfrag,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,unsigned int flags)951 static int __ip_append_data(struct sock *sk,
952 struct flowi4 *fl4,
953 struct sk_buff_head *queue,
954 struct inet_cork *cork,
955 struct page_frag *pfrag,
956 int getfrag(void *from, char *to, int offset,
957 int len, int odd, struct sk_buff *skb),
958 void *from, int length, int transhdrlen,
959 unsigned int flags)
960 {
961 struct inet_sock *inet = inet_sk(sk);
962 struct ubuf_info *uarg = NULL;
963 struct sk_buff *skb;
964 struct ip_options *opt = cork->opt;
965 int hh_len;
966 int exthdrlen;
967 int mtu;
968 int copy;
969 int err;
970 int offset = 0;
971 bool zc = false;
972 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
973 int csummode = CHECKSUM_NONE;
974 struct rtable *rt = (struct rtable *)cork->dst;
975 unsigned int wmem_alloc_delta = 0;
976 bool paged, extra_uref = false;
977 u32 tskey = 0;
978
979 skb = skb_peek_tail(queue);
980
981 exthdrlen = !skb ? rt->dst.header_len : 0;
982 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
983 paged = !!cork->gso_size;
984
985 if (cork->tx_flags & SKBTX_ANY_TSTAMP &&
986 READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID)
987 tskey = atomic_inc_return(&sk->sk_tskey) - 1;
988
989 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
990
991 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
992 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
993 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
994
995 if (cork->length + length > maxnonfragsize - fragheaderlen) {
996 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
997 mtu - (opt ? opt->optlen : 0));
998 return -EMSGSIZE;
999 }
1000
1001 /*
1002 * transhdrlen > 0 means that this is the first fragment and we wish
1003 * it won't be fragmented in the future.
1004 */
1005 if (transhdrlen &&
1006 length + fragheaderlen <= mtu &&
1007 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1008 (!(flags & MSG_MORE) || cork->gso_size) &&
1009 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1010 csummode = CHECKSUM_PARTIAL;
1011
1012 if ((flags & MSG_ZEROCOPY) && length) {
1013 struct msghdr *msg = from;
1014
1015 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) {
1016 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb))
1017 return -EINVAL;
1018
1019 /* Leave uarg NULL if can't zerocopy, callers should
1020 * be able to handle it.
1021 */
1022 if ((rt->dst.dev->features & NETIF_F_SG) &&
1023 csummode == CHECKSUM_PARTIAL) {
1024 paged = true;
1025 zc = true;
1026 uarg = msg->msg_ubuf;
1027 }
1028 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1029 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb));
1030 if (!uarg)
1031 return -ENOBUFS;
1032 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1033 if (rt->dst.dev->features & NETIF_F_SG &&
1034 csummode == CHECKSUM_PARTIAL) {
1035 paged = true;
1036 zc = true;
1037 } else {
1038 uarg_to_msgzc(uarg)->zerocopy = 0;
1039 skb_zcopy_set(skb, uarg, &extra_uref);
1040 }
1041 }
1042 } else if ((flags & MSG_SPLICE_PAGES) && length) {
1043 if (inet_test_bit(HDRINCL, sk))
1044 return -EPERM;
1045 if (rt->dst.dev->features & NETIF_F_SG &&
1046 getfrag == ip_generic_getfrag)
1047 /* We need an empty buffer to attach stuff to */
1048 paged = true;
1049 else
1050 flags &= ~MSG_SPLICE_PAGES;
1051 }
1052
1053 cork->length += length;
1054
1055 /* So, what's going on in the loop below?
1056 *
1057 * We use calculated fragment length to generate chained skb,
1058 * each of segments is IP fragment ready for sending to network after
1059 * adding appropriate IP header.
1060 */
1061
1062 if (!skb)
1063 goto alloc_new_skb;
1064
1065 while (length > 0) {
1066 /* Check if the remaining data fits into current packet. */
1067 copy = mtu - skb->len;
1068 if (copy < length)
1069 copy = maxfraglen - skb->len;
1070 if (copy <= 0) {
1071 char *data;
1072 unsigned int datalen;
1073 unsigned int fraglen;
1074 unsigned int fraggap;
1075 unsigned int alloclen, alloc_extra;
1076 unsigned int pagedlen;
1077 struct sk_buff *skb_prev;
1078 alloc_new_skb:
1079 skb_prev = skb;
1080 if (skb_prev)
1081 fraggap = skb_prev->len - maxfraglen;
1082 else
1083 fraggap = 0;
1084
1085 /*
1086 * If remaining data exceeds the mtu,
1087 * we know we need more fragment(s).
1088 */
1089 datalen = length + fraggap;
1090 if (datalen > mtu - fragheaderlen)
1091 datalen = maxfraglen - fragheaderlen;
1092 fraglen = datalen + fragheaderlen;
1093 pagedlen = 0;
1094
1095 alloc_extra = hh_len + 15;
1096 alloc_extra += exthdrlen;
1097
1098 /* The last fragment gets additional space at tail.
1099 * Note, with MSG_MORE we overallocate on fragments,
1100 * because we have no idea what fragment will be
1101 * the last.
1102 */
1103 if (datalen == length + fraggap)
1104 alloc_extra += rt->dst.trailer_len;
1105
1106 if ((flags & MSG_MORE) &&
1107 !(rt->dst.dev->features&NETIF_F_SG))
1108 alloclen = mtu;
1109 else if (!paged &&
1110 (fraglen + alloc_extra < SKB_MAX_ALLOC ||
1111 !(rt->dst.dev->features & NETIF_F_SG)))
1112 alloclen = fraglen;
1113 else {
1114 alloclen = fragheaderlen + transhdrlen;
1115 pagedlen = datalen - transhdrlen;
1116 }
1117
1118 alloclen += alloc_extra;
1119
1120 if (transhdrlen) {
1121 skb = sock_alloc_send_skb(sk, alloclen,
1122 (flags & MSG_DONTWAIT), &err);
1123 } else {
1124 skb = NULL;
1125 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1126 2 * sk->sk_sndbuf)
1127 skb = alloc_skb(alloclen,
1128 sk->sk_allocation);
1129 if (unlikely(!skb))
1130 err = -ENOBUFS;
1131 }
1132 if (!skb)
1133 goto error;
1134
1135 /*
1136 * Fill in the control structures
1137 */
1138 skb->ip_summed = csummode;
1139 skb->csum = 0;
1140 skb_reserve(skb, hh_len);
1141
1142 /*
1143 * Find where to start putting bytes.
1144 */
1145 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1146 skb_set_network_header(skb, exthdrlen);
1147 skb->transport_header = (skb->network_header +
1148 fragheaderlen);
1149 data += fragheaderlen + exthdrlen;
1150
1151 if (fraggap) {
1152 skb->csum = skb_copy_and_csum_bits(
1153 skb_prev, maxfraglen,
1154 data + transhdrlen, fraggap);
1155 skb_prev->csum = csum_sub(skb_prev->csum,
1156 skb->csum);
1157 data += fraggap;
1158 pskb_trim_unique(skb_prev, maxfraglen);
1159 }
1160
1161 copy = datalen - transhdrlen - fraggap - pagedlen;
1162 /* [!] NOTE: copy will be negative if pagedlen>0
1163 * because then the equation reduces to -fraggap.
1164 */
1165 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1166 err = -EFAULT;
1167 kfree_skb(skb);
1168 goto error;
1169 } else if (flags & MSG_SPLICE_PAGES) {
1170 copy = 0;
1171 }
1172
1173 offset += copy;
1174 length -= copy + transhdrlen;
1175 transhdrlen = 0;
1176 exthdrlen = 0;
1177 csummode = CHECKSUM_NONE;
1178
1179 /* only the initial fragment is time stamped */
1180 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1181 cork->tx_flags = 0;
1182 skb_shinfo(skb)->tskey = tskey;
1183 tskey = 0;
1184 skb_zcopy_set(skb, uarg, &extra_uref);
1185
1186 if ((flags & MSG_CONFIRM) && !skb_prev)
1187 skb_set_dst_pending_confirm(skb, 1);
1188
1189 /*
1190 * Put the packet on the pending queue.
1191 */
1192 if (!skb->destructor) {
1193 skb->destructor = sock_wfree;
1194 skb->sk = sk;
1195 wmem_alloc_delta += skb->truesize;
1196 }
1197 __skb_queue_tail(queue, skb);
1198 continue;
1199 }
1200
1201 if (copy > length)
1202 copy = length;
1203
1204 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1205 skb_tailroom(skb) >= copy) {
1206 unsigned int off;
1207
1208 off = skb->len;
1209 if (getfrag(from, skb_put(skb, copy),
1210 offset, copy, off, skb) < 0) {
1211 __skb_trim(skb, off);
1212 err = -EFAULT;
1213 goto error;
1214 }
1215 } else if (flags & MSG_SPLICE_PAGES) {
1216 struct msghdr *msg = from;
1217
1218 err = -EIO;
1219 if (WARN_ON_ONCE(copy > msg->msg_iter.count))
1220 goto error;
1221
1222 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1223 sk->sk_allocation);
1224 if (err < 0)
1225 goto error;
1226 copy = err;
1227 wmem_alloc_delta += copy;
1228 } else if (!zc) {
1229 int i = skb_shinfo(skb)->nr_frags;
1230
1231 err = -ENOMEM;
1232 if (!sk_page_frag_refill(sk, pfrag))
1233 goto error;
1234
1235 skb_zcopy_downgrade_managed(skb);
1236 if (!skb_can_coalesce(skb, i, pfrag->page,
1237 pfrag->offset)) {
1238 err = -EMSGSIZE;
1239 if (i == MAX_SKB_FRAGS)
1240 goto error;
1241
1242 __skb_fill_page_desc(skb, i, pfrag->page,
1243 pfrag->offset, 0);
1244 skb_shinfo(skb)->nr_frags = ++i;
1245 get_page(pfrag->page);
1246 }
1247 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1248 if (getfrag(from,
1249 page_address(pfrag->page) + pfrag->offset,
1250 offset, copy, skb->len, skb) < 0)
1251 goto error_efault;
1252
1253 pfrag->offset += copy;
1254 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1255 skb_len_add(skb, copy);
1256 wmem_alloc_delta += copy;
1257 } else {
1258 err = skb_zerocopy_iter_dgram(skb, from, copy);
1259 if (err < 0)
1260 goto error;
1261 }
1262 offset += copy;
1263 length -= copy;
1264 }
1265
1266 if (wmem_alloc_delta)
1267 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1268 return 0;
1269
1270 error_efault:
1271 err = -EFAULT;
1272 error:
1273 net_zcopy_put_abort(uarg, extra_uref);
1274 cork->length -= length;
1275 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1276 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1277 return err;
1278 }
1279
ip_setup_cork(struct sock * sk,struct inet_cork * cork,struct ipcm_cookie * ipc,struct rtable ** rtp)1280 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1281 struct ipcm_cookie *ipc, struct rtable **rtp)
1282 {
1283 struct ip_options_rcu *opt;
1284 struct rtable *rt;
1285
1286 rt = *rtp;
1287 if (unlikely(!rt))
1288 return -EFAULT;
1289
1290 cork->fragsize = ip_sk_use_pmtu(sk) ?
1291 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1292
1293 if (!inetdev_valid_mtu(cork->fragsize))
1294 return -ENETUNREACH;
1295
1296 /*
1297 * setup for corking.
1298 */
1299 opt = ipc->opt;
1300 if (opt) {
1301 if (!cork->opt) {
1302 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1303 sk->sk_allocation);
1304 if (unlikely(!cork->opt))
1305 return -ENOBUFS;
1306 }
1307 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1308 cork->flags |= IPCORK_OPT;
1309 cork->addr = ipc->addr;
1310 }
1311
1312 cork->gso_size = ipc->gso_size;
1313
1314 cork->dst = &rt->dst;
1315 /* We stole this route, caller should not release it. */
1316 *rtp = NULL;
1317
1318 cork->length = 0;
1319 cork->ttl = ipc->ttl;
1320 cork->tos = ipc->tos;
1321 cork->mark = ipc->sockc.mark;
1322 cork->priority = ipc->priority;
1323 cork->transmit_time = ipc->sockc.transmit_time;
1324 cork->tx_flags = 0;
1325 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1326
1327 return 0;
1328 }
1329
1330 /*
1331 * ip_append_data() can make one large IP datagram from many pieces of
1332 * data. Each piece will be held on the socket until
1333 * ip_push_pending_frames() is called. Each piece can be a page or
1334 * non-page data.
1335 *
1336 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1337 * this interface potentially.
1338 *
1339 * LATER: length must be adjusted by pad at tail, when it is required.
1340 */
ip_append_data(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,unsigned int flags)1341 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1342 int getfrag(void *from, char *to, int offset, int len,
1343 int odd, struct sk_buff *skb),
1344 void *from, int length, int transhdrlen,
1345 struct ipcm_cookie *ipc, struct rtable **rtp,
1346 unsigned int flags)
1347 {
1348 struct inet_sock *inet = inet_sk(sk);
1349 int err;
1350
1351 if (flags&MSG_PROBE)
1352 return 0;
1353
1354 if (skb_queue_empty(&sk->sk_write_queue)) {
1355 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1356 if (err)
1357 return err;
1358 } else {
1359 transhdrlen = 0;
1360 }
1361
1362 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1363 sk_page_frag(sk), getfrag,
1364 from, length, transhdrlen, flags);
1365 }
1366
ip_cork_release(struct inet_cork * cork)1367 static void ip_cork_release(struct inet_cork *cork)
1368 {
1369 cork->flags &= ~IPCORK_OPT;
1370 kfree(cork->opt);
1371 cork->opt = NULL;
1372 dst_release(cork->dst);
1373 cork->dst = NULL;
1374 }
1375
1376 /*
1377 * Combined all pending IP fragments on the socket as one IP datagram
1378 * and push them out.
1379 */
__ip_make_skb(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork)1380 struct sk_buff *__ip_make_skb(struct sock *sk,
1381 struct flowi4 *fl4,
1382 struct sk_buff_head *queue,
1383 struct inet_cork *cork)
1384 {
1385 struct sk_buff *skb, *tmp_skb;
1386 struct sk_buff **tail_skb;
1387 struct inet_sock *inet = inet_sk(sk);
1388 struct net *net = sock_net(sk);
1389 struct ip_options *opt = NULL;
1390 struct rtable *rt = (struct rtable *)cork->dst;
1391 struct iphdr *iph;
1392 __be16 df = 0;
1393 __u8 ttl;
1394
1395 skb = __skb_dequeue(queue);
1396 if (!skb)
1397 goto out;
1398 tail_skb = &(skb_shinfo(skb)->frag_list);
1399
1400 /* move skb->data to ip header from ext header */
1401 if (skb->data < skb_network_header(skb))
1402 __skb_pull(skb, skb_network_offset(skb));
1403 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1404 __skb_pull(tmp_skb, skb_network_header_len(skb));
1405 *tail_skb = tmp_skb;
1406 tail_skb = &(tmp_skb->next);
1407 skb->len += tmp_skb->len;
1408 skb->data_len += tmp_skb->len;
1409 skb->truesize += tmp_skb->truesize;
1410 tmp_skb->destructor = NULL;
1411 tmp_skb->sk = NULL;
1412 }
1413
1414 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1415 * to fragment the frame generated here. No matter, what transforms
1416 * how transforms change size of the packet, it will come out.
1417 */
1418 skb->ignore_df = ip_sk_ignore_df(sk);
1419
1420 /* DF bit is set when we want to see DF on outgoing frames.
1421 * If ignore_df is set too, we still allow to fragment this frame
1422 * locally. */
1423 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1424 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1425 (skb->len <= dst_mtu(&rt->dst) &&
1426 ip_dont_fragment(sk, &rt->dst)))
1427 df = htons(IP_DF);
1428
1429 if (cork->flags & IPCORK_OPT)
1430 opt = cork->opt;
1431
1432 if (cork->ttl != 0)
1433 ttl = cork->ttl;
1434 else if (rt->rt_type == RTN_MULTICAST)
1435 ttl = inet->mc_ttl;
1436 else
1437 ttl = ip_select_ttl(inet, &rt->dst);
1438
1439 iph = ip_hdr(skb);
1440 iph->version = 4;
1441 iph->ihl = 5;
1442 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1443 iph->frag_off = df;
1444 iph->ttl = ttl;
1445 iph->protocol = sk->sk_protocol;
1446 ip_copy_addrs(iph, fl4);
1447 ip_select_ident(net, skb, sk);
1448
1449 if (opt) {
1450 iph->ihl += opt->optlen >> 2;
1451 ip_options_build(skb, opt, cork->addr, rt);
1452 }
1453
1454 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1455 skb->mark = cork->mark;
1456 skb->tstamp = cork->transmit_time;
1457 /*
1458 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1459 * on dst refcount
1460 */
1461 cork->dst = NULL;
1462 skb_dst_set(skb, &rt->dst);
1463
1464 if (iph->protocol == IPPROTO_ICMP) {
1465 u8 icmp_type;
1466
1467 /* For such sockets, transhdrlen is zero when do ip_append_data(),
1468 * so icmphdr does not in skb linear region and can not get icmp_type
1469 * by icmp_hdr(skb)->type.
1470 */
1471 if (sk->sk_type == SOCK_RAW &&
1472 !(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH))
1473 icmp_type = fl4->fl4_icmp_type;
1474 else
1475 icmp_type = icmp_hdr(skb)->type;
1476 icmp_out_count(net, icmp_type);
1477 }
1478
1479 ip_cork_release(cork);
1480 out:
1481 return skb;
1482 }
1483
ip_send_skb(struct net * net,struct sk_buff * skb)1484 int ip_send_skb(struct net *net, struct sk_buff *skb)
1485 {
1486 int err;
1487
1488 err = ip_local_out(net, skb->sk, skb);
1489 if (err) {
1490 if (err > 0)
1491 err = net_xmit_errno(err);
1492 if (err)
1493 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1494 }
1495
1496 return err;
1497 }
1498
ip_push_pending_frames(struct sock * sk,struct flowi4 * fl4)1499 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1500 {
1501 struct sk_buff *skb;
1502
1503 skb = ip_finish_skb(sk, fl4);
1504 if (!skb)
1505 return 0;
1506
1507 /* Netfilter gets whole the not fragmented skb. */
1508 return ip_send_skb(sock_net(sk), skb);
1509 }
1510
1511 /*
1512 * Throw away all pending data on the socket.
1513 */
__ip_flush_pending_frames(struct sock * sk,struct sk_buff_head * queue,struct inet_cork * cork)1514 static void __ip_flush_pending_frames(struct sock *sk,
1515 struct sk_buff_head *queue,
1516 struct inet_cork *cork)
1517 {
1518 struct sk_buff *skb;
1519
1520 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1521 kfree_skb(skb);
1522
1523 ip_cork_release(cork);
1524 }
1525
ip_flush_pending_frames(struct sock * sk)1526 void ip_flush_pending_frames(struct sock *sk)
1527 {
1528 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1529 }
1530
ip_make_skb(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,struct inet_cork * cork,unsigned int flags)1531 struct sk_buff *ip_make_skb(struct sock *sk,
1532 struct flowi4 *fl4,
1533 int getfrag(void *from, char *to, int offset,
1534 int len, int odd, struct sk_buff *skb),
1535 void *from, int length, int transhdrlen,
1536 struct ipcm_cookie *ipc, struct rtable **rtp,
1537 struct inet_cork *cork, unsigned int flags)
1538 {
1539 struct sk_buff_head queue;
1540 int err;
1541
1542 if (flags & MSG_PROBE)
1543 return NULL;
1544
1545 __skb_queue_head_init(&queue);
1546
1547 cork->flags = 0;
1548 cork->addr = 0;
1549 cork->opt = NULL;
1550 err = ip_setup_cork(sk, cork, ipc, rtp);
1551 if (err)
1552 return ERR_PTR(err);
1553
1554 err = __ip_append_data(sk, fl4, &queue, cork,
1555 ¤t->task_frag, getfrag,
1556 from, length, transhdrlen, flags);
1557 if (err) {
1558 __ip_flush_pending_frames(sk, &queue, cork);
1559 return ERR_PTR(err);
1560 }
1561
1562 return __ip_make_skb(sk, fl4, &queue, cork);
1563 }
1564
1565 /*
1566 * Fetch data from kernel space and fill in checksum if needed.
1567 */
ip_reply_glue_bits(void * dptr,char * to,int offset,int len,int odd,struct sk_buff * skb)1568 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1569 int len, int odd, struct sk_buff *skb)
1570 {
1571 __wsum csum;
1572
1573 csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1574 skb->csum = csum_block_add(skb->csum, csum, odd);
1575 return 0;
1576 }
1577
1578 /*
1579 * Generic function to send a packet as reply to another packet.
1580 * Used to send some TCP resets/acks so far.
1581 */
ip_send_unicast_reply(struct sock * sk,struct sk_buff * skb,const struct ip_options * sopt,__be32 daddr,__be32 saddr,const struct ip_reply_arg * arg,unsigned int len,u64 transmit_time,u32 txhash)1582 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1583 const struct ip_options *sopt,
1584 __be32 daddr, __be32 saddr,
1585 const struct ip_reply_arg *arg,
1586 unsigned int len, u64 transmit_time, u32 txhash)
1587 {
1588 struct ip_options_data replyopts;
1589 struct ipcm_cookie ipc;
1590 struct flowi4 fl4;
1591 struct rtable *rt = skb_rtable(skb);
1592 struct net *net = sock_net(sk);
1593 struct sk_buff *nskb;
1594 int err;
1595 int oif;
1596
1597 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1598 return;
1599
1600 ipcm_init(&ipc);
1601 ipc.addr = daddr;
1602 ipc.sockc.transmit_time = transmit_time;
1603
1604 if (replyopts.opt.opt.optlen) {
1605 ipc.opt = &replyopts.opt;
1606
1607 if (replyopts.opt.opt.srr)
1608 daddr = replyopts.opt.opt.faddr;
1609 }
1610
1611 oif = arg->bound_dev_if;
1612 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1613 oif = skb->skb_iif;
1614
1615 flowi4_init_output(&fl4, oif,
1616 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1617 RT_TOS(arg->tos),
1618 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1619 ip_reply_arg_flowi_flags(arg),
1620 daddr, saddr,
1621 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1622 arg->uid);
1623 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1624 rt = ip_route_output_flow(net, &fl4, sk);
1625 if (IS_ERR(rt))
1626 return;
1627
1628 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK;
1629
1630 sk->sk_protocol = ip_hdr(skb)->protocol;
1631 sk->sk_bound_dev_if = arg->bound_dev_if;
1632 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
1633 ipc.sockc.mark = fl4.flowi4_mark;
1634 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1635 len, 0, &ipc, &rt, MSG_DONTWAIT);
1636 if (unlikely(err)) {
1637 ip_flush_pending_frames(sk);
1638 goto out;
1639 }
1640
1641 nskb = skb_peek(&sk->sk_write_queue);
1642 if (nskb) {
1643 if (arg->csumoffset >= 0)
1644 *((__sum16 *)skb_transport_header(nskb) +
1645 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1646 arg->csum));
1647 nskb->ip_summed = CHECKSUM_NONE;
1648 nskb->mono_delivery_time = !!transmit_time;
1649 if (txhash)
1650 skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4);
1651 ip_push_pending_frames(sk, &fl4);
1652 }
1653 out:
1654 ip_rt_put(rt);
1655 }
1656
ip_init(void)1657 void __init ip_init(void)
1658 {
1659 ip_rt_init();
1660 inet_initpeers();
1661
1662 #if defined(CONFIG_IP_MULTICAST)
1663 igmp_mc_init();
1664 #endif
1665 }
1666